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Abstract

This paper is concerned with the parabolic Keller–Segel system{
ut = ∇ · (∇u − um∇v

)
in Ω × (0, T ),

Γ vt = �v − λv + u in Ω × (0, T ),

in a domain Ω of RN with N � 1, where m,Γ > 0, λ � 0 are constants and T > 0. When Ω �= R
N , we impose the Neumann

boundary conditions on the boundary. Under suitable assumptions, we prove the local nondegeneracy of blow-up points. This
seems new even for the classical Keller–Segel system (m = 1). Lower global blow-up estimates are also obtained. In the singular
case 0 < m < 1, as a prerequisite, local existence and regularity properties are established.
© 2013

Résumé

Dans cet article, nous étudions le système parabolique de Keller–Segel{
ut = ∇ · (∇u − um∇v

)
dans Ω × (0, T ),

Γ vt = �v − λv + u dans Ω × (0, T ),

avec Ω un domaine de R
N , N � 1, où m,Γ > 0, λ � 0 sont des constantes et T > 0. Lorsque Ω �= R

N , les conditions aux
limites de Neumann sont prescrites sur le bord. Sous des hypothèses convenables, nous prouvons la non-dégénérescence locale des
points d’explosion. Ce résultat semble nouveau même dans le cas du système de Keller–Segel classique (m = 1). Des estimations
inférieures globales de la vitesse d’explosion sont également obtenues. Dans le cas singulier 0 < m < 1, nous établissons les
propriétés nécessaires d’existence locale et de régularité.
© 2013
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1. Introduction

1.1. Problem and main results

This paper is concerned with the Keller–Segel type system{
ut = ∇ · (∇u − um∇v

)
, x ∈ Ω, t > 0,

Γ vt = �v − λv + u, x ∈ Ω, t > 0.
(1.1)

Throughout this paper, N is a positive integer, Ω is either the whole space Ω = R
N or a bounded domain of RN

of class C3+η for some η > 0 and m,Γ > 0 and λ � 0 are constants. System (1.1) is complemented with the initial
conditions

u(x,0) = u0(x), v(x,0) = v0(x), x ∈ Ω, (1.2)

and the Neumann boundary conditions

∂u

∂ν
(x, t) = ∂v

∂ν
(x, t) = 0, x ∈ ∂Ω, t > 0, (1.3)

where ν is the outward normal vector. Condition (1.3) is of course understood to be empty in case Ω = R
N (so that

the system (1.1)–(1.3) covers both the Cauchy–Neumann and the Cauchy problems).
Throughout this paper, the initial data are assumed to satisfy

u0 ∈ L∞(Ω), v0 ∈ W 1,∞(Ω), u0, v0 � 0. (1.4)

By a solution of (1.1)–(1.3) on [0, T ), we understand a nonnegative mild solution such that (u, v) ∈ L∞
loc([0, T );

L∞(Ω) × W 1,∞(Ω)); see Section 2 for details. Problem (1.1)–(1.3) admits at least a maximal in time solution. For a
given maximal in time solution, we denote by T = Tmax(u, v) ∈ (0,∞] its existence time. For m � 1, it was already
known before that this solution exists and is unique and classical. For 0 < m < 1, the local existence and regularity
issues are nontrivial and require significant effort (see Section 2). We note that in that case the solution need not be
classical nor positive and, moreover, it is not known if it is unique. However, our main results below will apply to any
nonglobal, maximal solution.

The main goal of this paper is to prove a local nondegeneracy property for blow-up points. We recall that, for a
solution (u, v) of (1.1)–(1.3) such that T = Tmax(u, v) < ∞, a is a blow-up point if it belongs to the set

B =
{
a ∈ Ω; lim sup

t→T , Ω�x→a

(
u(x, t) + ∣∣∇v(x, t)

∣∣)= ∞
}
.

For a ∈ Ω and ρ > 0, we define

Ωa,ρ = Bρ(a) ∩ Ω.

Our main result is the following.

Theorem 1.1. Assume either 1 � m < 2 and Γ > 0, or 0 < m < 1 and Γ = 1. Let u0, v0 satisfy (1.4) and, in case
Ω =R

N ,{
u0, v0 ∈ L1(

R
N
)
,

∇u0 ∈ Lr
(
R

N
)

for some r ∈ [1,∞) if m < 1.
(1.5)

Let (u, v) be any solution of (1.1)–(1.3) such that T = Tmax(u, v) < ∞. Let a ∈ Ω , t0 ∈ (0, T ) and ρ > 0. There exists
a constant ε = ε(N,m,Γ ) > 0 such that, if

u(x, t) � ε(T − t)−1/m for all (x, t) ∈ Ωa,ρ × (t0, T ), (1.6)

then a is not a blow-up point.
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Theorem 1.1 can be restated as the following local, lower estimate:

lim sup
t→T , Ω�x→a

(T − t)1/mu(x, t) � ε, (1.7)

near any blow-up point a. It is an analogue of the classical result of Giga and Kohn [15] on the nondegeneracy
of blow-up points for the semilinear heat equations ut − �u = up , p > 1. As a second motivation, we study the
global-in-space lower blow-up estimate and obtain the following.

Theorem 1.2. Let m,Γ > 0 and let (u, v) be any solution of (1.1)–(1.3) such that T = Tmax(u, v) < ∞. Then∥∥u(t)
∥∥m

∞ + ∥∥u(t)
∥∥2(m−1)

∞
∥∥∇v(t)

∥∥2
∞ � c(T − t)−1 for all t ∈ [0, T ), (1.8)

where c = c(N,m,Γ ) > 0. (Here, when m < 1, we make the convention ∞/∞ = ∞.)
If 1 � m < 2, then we have in particular

∥∥u(t)
∥∥∞ + ∥∥∇v(t)

∥∥ 2
2−m∞ � c(T − t)−1/m for all t ∈ [0, T ). (1.9)

Unlike the local lower estimate (1.7) from Theorem 1.1, Theorem 1.2 provides information on the solution at each
time t ∈ (0, T ). However, it does not estimate the size of u alone, but of the couple (u, |∇v|).

Remark 1.1.

(a) Theorems 1.1 and 1.2 seem new even for the classical Keller–Segel system (m = 1). On the other hand, unlike in
the case m� 1, there seems to have been almost no mathematical results on system (1.1) with 0 < m < 1. Indeed,
this range exhibits a number of additional difficulties, in the study of both local existence-regularity and of the
nondegeneracy of blow-up. Some of these difficulties are connected with the necessity to work with suitable weak
solutions.
The proofs of Theorem 1.1 for 1 � m � 2 and for m < 1 are rather different. In the former range, it is based on
multiplier arguments and on various heat kernel estimates. In the latter, due to our assumption of equal diffusivities
(Γ = 1), it turns out that a very helpful auxiliary function is available (see formula (4.1)), which enables one to
rely on scalar maximum principle arguments which are not directly applicable to system (1.1) itself. On the other
hand, in both ranges, the proof of Theorem 1.1 uses an auxiliary result (Lemma 3.1), which provides a local upper
blow-up estimate on |∇v|, assuming a local upper blow-up estimate on u. Its proof relies on heat kernel estimates
and on the mass conservation property for system (1.1).
We stress that, although the assumption Γ = 1 for m < 1 is rather restrictive, the question seems completely open
otherwise. The case m� 2 seems also open.

(b) When Γ = 1 and 0 < m < 1, Theorem 1.1 remains true if the nonlinearity um is replaced with a more general
function behaving like um for large u and satisfying some mild technical assumptions. This can be achieved by
suitably modifying the second term in the auxiliary function H from (4.1) (see Lemma 4.1 below).

(c) As a consequence of properties of the auxiliary function H , we note that the global estimate (1.9) remains true
when 0 < m < 1 and Γ = 1.

(d) Like in [15], our nondegeneracy criterion involves the blow-up rate of the local L∞ norm, and hence does not
relate to the space dimension. In connection with Theorem 1.1, but from a different point of view and for Γ = 0,
one could mention the so-called ε-regularity property (see [46] and the references therein), which is dimension-
dependent and involves a suitable, local, critical norm. Namely, under suitable assumptions, it asserts that no
singularity occurs at a point x0 provided the quantity

∫
Br(x0)

uNm(x, t) dx for some r > 0 remains small enough
for t close to T .

In the following subsection, in order to motivate our results, we summarize some known facts about blow-up for
system (1.1).
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1.2. Background on blow-up for Keller–Segel type systems

In the works described hereafter, for simplicity, we shall not be always specific about whether Ω is bounded
or Ω = R

N . Although the two cases share many common features, some of the results have been proven only in
one of them – see the original references for details. System (1.1) with m = 1 was introduced by Keller and Segel
in [26] to describe the motion of cells which are diffusing and moving towards the gradient of a substance called
chemoattractant, the latter being produced by the cells themselves. The motivation of this model was to describe
the – experimentally observed – phenomenon of chemotactic collapse or aggregation, which refers to the spatial
concentration of the total population to a finite number of points. In mathematical terms this is expected to correspond
to the finite time blow-up of the cell density u near one or several points, along with the formation of one or several
Dirac measures (recall that the total cell mass M =: ∫

Ω
u0 dx is conserved in time). For the two-dimensional problem

with m = 1, the existence of a mass threshold was conjectured in [40,7,8]. Namely, on the basis of heuristic arguments
and numerical simulations, it has been predicted that chemotactic collapse should occur if and only if M is greater
than 8π . This conjecture has since then been partially proven in a rigorous manner (see below).

In variants of the Keller–Segel model, the taxis term −∇ ·(u∇v) is replaced by a more general term −∇ ·(φ(u)∇v),
where the chemosensitivity function φ may be nonlinear. Such a feature may be used to model the so-called volume
filling effect, see [20,21] for a detailed discussion. For simplicity, we shall mainly consider the class of pure power
chemosensitivity functions φ(s) = sm, m > 0. Beside the original parabolic–parabolic model (Γ > 0), the corre-
sponding parabolic–elliptic system (Γ = 0) was later proposed and studied in [23] as a simplified model in the limit
where the diffusion of the chemical is much faster than that of cells. However, it is worth pointing out that proving
the existence of blow-up solutions, not even to mention describing the blow-up singularity formation, has turned out
to be much more difficult for Γ > 0 than for Γ = 0. In a related direction, it is also worth mentioning that chemotaxis
systems involving nonlinear diffusion (replacing ∇u by ∇(ψ(u)) with, e.g., ψ(u) = uσ ) have recently attracted a lot
of interest (see, e.g., [20,29,21,12]).

For about the last fifteen years, the only existing result on finite time blow-up for Γ > 0 had been that of Herrero
and Velázquez in [19], where an example of a special blowing-up, radial solution was constructed in dimension N = 2.
Very recently, a breakthrough was made by M. Winkler [50], who obtained in dimensions N � 3 an explicit criterion
on (radial) initial data which guarantees finite time blow-up. His technique was subsequently generalized in [9,10] to
more general chemosensitivity functions φ behaving for large s like sm with m > 2/N (plus an additional restriction
m � 1, which is probably technical). On the other hand, in dimension N = 2, global existence was proved to hold
for M < 4π in general bounded domains [1,14,38], and for M < 8π for radial solutions in a ball [38] or for general
solutions in the whole space [6]. And indeed, in the example from [19] the concentrated mass near the origin at
t = T is precisely equal to 8π and the total mass M is greater than 8π . However, it seems to remain open whether
arbitrary values of M > 8π can be realized through the construction in [19], so as to fully confirm the mass threshold
conjecture for Γ > 0. On the contrary, no mass threshold phenomenon occurs for dimensions N � 3, since the result
in [50] applies for arbitrary M > 0. As for the description of the blow-up singularity formation, the only known
result is again that of [19], which gives for N = 2 a very precise asymptotic description of u as t → T (see after
formula (1.10) below), but only for the above mentioned special solution.

Let us turn to the case Γ = 0, where more is known. We will mention only a few results. For m = 1 and N = 2,
small mass global existence, as well as large mass blow-up in the radial case, was first established by Jäger and
Luckhaus in [23]. The 8π mass threshold conjecture was later proved in [35] for radial solutions in a ball and in [5,11]
for general solutions in the whole space. In the nonradial bounded domain case, the threshold phenomenon was also
established, and it was shown that the critical mass is actually 4π instead of 8π , due to the possibility of boundary
blow-up points (see [3,36,38]). As for the critical case M = 8π , an infinite time aggregation phenomenon may occur
(see [2,4,25,44] and the references therein). When the chemosensitivity function φ(s) behaves for large s like sm

with m > 2/N , blow-up in finite time occurs independently of the magnitude of initial mass provided the data are
concentrated enough, whereas all solutions exist globally if m < 2/N (see [12,29,35,45]). Moreover, critical mass
phenomena appear for m = 2/N (see [33]).

For Γ = 0 and m = 1, the asymptotic blow-up behavior has been studied by several authors. When N = 2, it is
known (see [47] and the references therein) that blow-up points are isolated and that, near each blow-up point x0,
u(t, ·) converges to a multiple Kδx0 of the Dirac mass as t → T , with K = 8π if x0 ∈ Ω and K = 4π if x0 ∈ ∂Ω .
Moreover, for radial solutions, the origin is the only possible blow-up point. Regarding the temporal blow-up rate, the
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central issue is that of type I vs. type II blow-up, defined by whether lim supt→T (T − t)‖u(t)‖∞ is finite or infinite.
Recall that this notion is motivated by the self-similar scale invariance of the problem, namely the fact that for any
solution of (1.1), the couple (uα, vα), defined by

uα(x, t) := αu
(
α1/2x,αt

)
, vα(x, t) := v

(
α1/2x,αt

)
, α > 0,

is also a solution (taking Ω = R
N and discarding the term λv which is irrelevant for blow-up). The lower blow-up

rate estimate ‖u(t)‖∞ � C(T − t)−1 was obtained for all solutions when m = 1 and N = 2 in [27]. For N � 3, there
exist radial type I blow-up solutions which are backward self-similar [17,39,43], i.e. of the form

u(x, t) = (T − t)−1U(y), v(x, t) = V (y), where y = x(T − t)−1/2.

On the other hand, if N = 2, then any blow-up is type II (see [48, Theorem 8.19]) whereas, for N � 11, radial
type II blow-up solutions are known to exist [31]. For 3 � N � 9, a sufficient condition on the initial data ensuring
type I blow-up was found in [16] (revealing a situation different from the cases N = 2 and N � 11). Moreover, it
was shown in [16] that any type I blow-up solution which blows up only at the origin behaves asymptotically like
a backward self-similar solution around 0 near the blow-up time. We note that, in this connection, our Theorem 1.1
gives a backward self-similar lower bound near any blow-up point for Γ > 0. In [18], for N = 2, a special type II
blow-up solution was constructed, whose blow-up rate was found to be faster than self-similar only by a logarithmic
correction. Its asymptotic behavior is given by

u(x, t) ∼ M(t)u
(
x
√

M(t)
)
, M(t) ∼ C(T − t)−1 exp

[(
2
∣∣log(T − t)

∣∣)1/2]
, (1.10)

for x
√

M(t) bounded, where u(r) = 8(1 + r2)−2. We note that the couple (u, v) with v(r) = 2 log(1 + r2) turns
out to be a stationary solution of system (1.1) with λ = 0. It was later proved in [32] that, for N = 2, any radial
blow-up solution blows up with this rate and recently, in [42], the corresponding blow-up profile was shown to be
stable. The asymptotic behavior of the blow-up solutions constructed in [19] for Γ > 0 is essentially similar to (1.10).
Finally, let us mention that the question of the continuation of solutions after blow-up for Γ = 0, with persistence of
moving Dirac masses, has also been studied (see [13,30,49] and the references therein).

2. Local existence

Notation. Throughout this paper, GΓ = GΓ (x, y; t) and (SΓ (t))t�0 respectively denote the kernel and the semigroup
associated with the operator Γ −1�, with Neumann boundary conditions (unless Ω = R

N ). Recall that for all φ ∈
L∞(Ω), we have (SΓ (t)φ)(x) = ∫

Ω
GΓ (x, y; t)φ(y) dy, x ∈ Ω , t > 0. Also, we will write G = G1, S(t) = S1(t) if

no confusion arises and we recall that GΓ (x, y; t) = G(x,y;Γ −1t), SΓ (t) = S(Γ −1t).

The first result of this section asserts the local existence of a solution of problem (1.1)–(1.3). In the case m � 1
and Ω bounded, this is a special case of [22]. When m � 1 and Ω = R

N , the proof is completely similar to the case
Ω bounded (see also [45]) and we shall omit it. On the other hand, the case 0 < m < 1 seems new. In this case the
nonlinearity is non-Lipschitz and the solution if not expected to be unique, nor u to be positive or smooth at the level
u = 0. The proof of the regularity, of the nonnegativity and, even more, of the L1 property of the solution is nontrivial.
The latter requires the use of the auxiliary function defined in (4.1) and of Lemma 4.1 below and is therefore restricted
to Γ = 1.

Since the nonnegativity of (u, v) is not a priori guaranteed (for 0 < m < 1), we need to redefine the nonlinearity, and
we choose to do so as um+ (here and in the rest of the paper, u+ = max(u,0) denotes the positive part). Of course, any
nonnegative solution will solve the original problem. By a mild solution of (1.1)–(1.3) on [0, T ) we thus understand a
couple (u, v) of functions satisfying

u ∈ L∞
loc

([0, T );L∞(Ω)
)
, v ∈ L∞

loc

([0, T );W 1;∞(Ω)
)

(2.1)

and
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⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

u(t) = S(t)u0 −
t∫

0

S(t − s)∇ · [um+∇v
]
(s) ds, 0 < t < T,

v(t) = SΓ (t)v0 + Γ −1

t∫
0

SΓ (t − s)[u − λv](s) ds, 0 < t < T .

(2.2)

Here, for each t > 0, the operator S(t)∇· : (L∞(Ω))N → L∞(Ω) is defined by

S(t)∇ · h := −
∫
Ω

∇yG(x, y; t) · h(y)dy (2.3)

(see Remark 2.2 at the end of this section for the justification of the definition (2.3)). As for the integral in the first
equation of (2.2), it is understood as an absolutely convergent integral in L∞(Ω). We note (see Remark 2.2) that if Ω

is bounded, then, for any h ∈ (L∞(Ω))N , we have∫
Ω

(
S(t)∇ · h)(x) dx = 0. (2.4)

If Ω =R
N and h ∈ (L∞ ∩ L1(RN))N , then S(t)∇ · h ∈ L1(RN) and (2.4) remains true.

We begin with the local existence of a mild solution and its continuation property.

Theorem 2.1. Let m > 0 and let u0, v0 satisfy (1.4). Then there exist T = Tmax(u, v) ∈ (0,∞] and functions u, v on
Ω × [0, T ) with the following properties:

(u, v) is a solution of (2.1)–(2.2) on [0, T ); (2.5)

either T = ∞, or T < ∞ and lim sup
t→T

∥∥u(t)
∥∥∞ = ∞. (2.6)

If m� 1, then the solution of (2.1)–(2.2) is unique, locally in time.

Our next result is concerned with positivity and regularity of mild solutions, for which we need to separate the
cases m � 1 and 0 < m < 1.

Proposition 2.1.

(i) Assume m � 1 and let (u, v) be the unique, maximal solution of (2.1)–(2.2), given by Theorem 2.1. Then u,v ∈
C(Ω ×[0, T ))∩C2,1(Ω × (0, T )) and (u, v) is a classical solution of (1.1) in Ω × (0, T ). Furthermore, if u0 �≡ 0,
then u,v > 0 in Ω × (0, T ).

(ii) Assume 0 < m < 1 and let (u, v) be any maximal in time solution of (2.1)–(2.2). Then

u ∈ C
(
Ω × (0, T )

)
, v ∈ C

(
Ω × [0, T )

)
, v,∇v ∈ C2,1(Ω × (0, T )

)
, (2.7)

v is a classical solution of Γ vt = �v + u − λv in Ω × (0, T ), (2.8)

u� 0 in Ω × (0, T ), (2.9)

if v0 �≡ 0, then v > 0 in Ω × (0, T ) (2.10)

and

u is a classical solution of ut = ∇ · (∇u − um∇v
)

on the (relatively open) set{
(x, t) ∈ Ω × (0, T ); u(x, t) > 0

}
. (2.11)

Furthermore, we have

u(·, t) ∈ BC1(Ω) for all t ∈ (0, T ), u ∈ L∞
loc

(
(0, T );BC1(Ω)

)
(2.12)
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and, when Ω is bounded,

∂u

∂ν
= 0 on ∂Ω × (0, T ). (2.13)

Finally, we give L1 properties of mild solutions that will be useful in the sequel.

Proposition 2.2. Assume either Ω bounded or Ω = R
N and u0, v0 ∈ L1(RN). If Ω = R

N and m < 1, assume in
addition that Γ = 1 and that ∇v0 ∈ Lq(RN) for some q ∈ [1,∞). Then, for any maximal in time solution (u, v) of
(2.1)–(2.2), we have∥∥u(t)

∥∥
1 = ‖u0‖1 for all t ∈ (0, T ) (2.14)

and ∥∥v(t)
∥∥

1 � ‖v0‖1 + Γ −1t‖u0‖1 for all t ∈ (0, T ). (2.15)

Before giving the proofs, we recall the following Gaussian bounds for the Neumann heat kernel G and its deriva-
tives (see e.g. [28,34] and the references therein), which will be also used in the next section.

Proposition 2.3. There exist constants C, C̃ > 0 such that∣∣∂k
t Dα

x Dβ
y G(x, y; t)∣∣� Ct−k− N+|α|+|β|

2 exp

(
− C̃|x − y|2

t

)
for all x, y ∈ Ω and t > 0,

where k ∈ {0,1}, α,β ∈ N
N , Dα denotes the differentiation corresponding to α with respect to space variables, and

2k + |α| + |β| � 3 with |α| =∑N
i=1 αi .

Proof of Theorem 2.1. As mentioned above, we need only consider the case 0 < m < 1. We may also assume u0 �≡ 0
since otherwise (u(t), v(t)) = (0, SΓ (t)v0) is a solution and there is nothing to prove.

Step 1. Small time existence. Set fε(s) = (s2+ + ε2)m/2 − εm. By [22, Theorem 3.1], there exist a time τε > 0 and a
nonnegative mild solution (uε, vε) of the regularized problem⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

uε(t) = S(t)u0 + g1
ε (t), g1

ε (·, t) := −
t∫

0

S(t − s)∇ · [fε(uε)∇vε

]
(s) ds,

vε(t) = SΓ (t)v0 + g2
ε (t), g2

ε (·, t) := Γ −1

t∫
0

SΓ (t − s)[uε − λvε](s) ds,

(2.16)

for all t ∈ (0, τε). Since |fε(s)| � sm+ , we deduce from the proof of [22, Theorem 3.1] (see formulae (9)–(10) in [22])
that there exist τ0,C > 0 independent of ε such that τε > τ0 and∥∥uε(t)

∥∥∞ + ∥∥vε(t)
∥∥∞ + ∥∥∇vε(t)

∥∥∞ � C for all t ∈ (0, τ0]. (2.17)

Now we claim that, for each 0 < α < 1,(
g1

ε

)
ε

is bounded in Cα,α/2(Qτ0) and
(
g2

ε

)
ε

is bounded in C1+α,α/2(Qτ0), (2.18)

where Qτ0 = Ω × [0, τ0]. To prove the claim, first observe that, owing to standard heat kernel bounds (cf. Proposi-
tion 2.3), for all t, h > 0 and x ∈ Ω , we have the estimate

δ(x, t, h) := h−α/2
∫
Ω

∣∣∇yG(x, y; t + h) − ∇yG(x, y; t)∣∣dy � Ct−(α+1)/2. (2.19)

Indeed, if h� t , then δ(x, t, h) � Ch−α/2t−1/2, hence (2.19) and, on the other hand, if h� t , then
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δ(x, t, h) � h1−α/2
∫
Ω

sup
t�σ�t+h

∣∣∂t∇yG(x, y;σ)
∣∣dy,� Ch1−α/2t−3/2,

hence again (2.19). Setting ψε = fε(uε)∇vε , it follows from (2.17), (2.19) and Proposition 2.3 that, for each 0 � t <

t + h � τ0 and x ∈ Ω ,

h−α/2
∣∣g1

ε (x, t + h) − g1
ε (x, t)

∣∣
� h−α/2

t+h∫
t

∫
Ω

∣∣∇yG(x, y; t + h − s)ψε(y, s)
∣∣dy ds

+ h−α/2

t∫
0

∫
Ω

∣∣(∇yG(x, y; t + h − s) − ∇yG(x, y; t − s)
)
ψε(y, s)

∣∣dy ds

� Ch−α/2

t+h∫
t

(t + h − s)−1/2 ds +
t∫

0

(t − s)−(α+1)/2 ds

� Ch(1−α)/2 + Ct(1−α)/2 � Cτ
(1−α)/2
0 .

This gives the temporal part of the claimed Hölder estimate in (2.18) for g1
ε . The spatial part follows similarly by

using the estimate

sup
x1,x2∈Ω, x1 �=x2

|x1 − x2|−α

∫
Ω

∣∣∇yG(x1, y; t) − ∇yG(x2;y, t)
∣∣dy � Ct−(α+1)/2 for all t > 0,

which also follows from Proposition 2.3. The proof of the Hölder estimate in (2.18) for g2
ε is completely similar. This

proves claim (2.18).
Going back to (2.16), by (2.18) and Ascoli’s theorem, we deduce the existence of a subsequence ε = εj and of

nonnegative functions u ∈ BC(Ω × (0, τ0]) and v ∈ BC1,0(Ω × (0, τ0]), such that uε , vε , ∇vε converge to u,v,∇v,
locally uniformly on Ω × (0, τ0]. We may then pass to the limit, using the Gaussian heat kernel bound in Proposi-
tion 2.3 and dominated convergence, and we end up with a solution of (2.1)–(2.2) with T = τ0.

Step 2. Continuation property. By Zorn’s lemma, (u, v) can be extended maximally in time as a (non-necessarily
unique) solution of (2.1)–(2.2), in such a way that (2.6) holds. Indeed, if (2.6) fails, it first easily follows from the
second equation in (2.2) that sup0<t<T ‖v(t)‖W 1,∞ < ∞. Then by similar Hölder estimates as in Step 1, one can show
that (u(t), v(t),∇v(t)) converges as t → T , locally uniformly on Ω , and that the limit (u(T ), v(T )) ∈ L∞(Ω) ×
W 1,∞(Ω). Moreover, (2.2) is satisfied at t = T . Taking this limit as new initial data, one can extend the solution
beyond T , contradicting the definition of T . �
Proof of Proposition 2.1. Again we need only consider the case 0 < m < 1. Note that, at this stage, we do not know
if u,v � 0 on the whole maximal interval of existence (but only for small time).

Step 1. Regularity of maximal in time solutions. Fix 0 < t0 < τ < T . Since u,um+∇v ∈ L∞(Qτ ), by the argument
leading to (2.18), we obtain u ∈ BCα,α/2(Ω × [t0, τ ]) and v ∈ BC1+α,α/2(Ω × [t0, τ ]) for each 0 < α < 1. By
standard parabolic regularity, we then deduce (2.7), (2.8), along with

u is a classical solution of ut = ∇ · (∇u − um+∇v
)

on the (relatively open) set{
(x, t) ∈ Ω × (0, T ); u(x, t) �= 0

}
. (2.20)

(Note that this will imply (2.11) once we have shown u � 0 at Step 2 below.)
Let us now check properties (2.12)–(2.13). We shall need the following smoothing estimate:∥∥S(t)∇ · h∥∥ k � C(ε)

(
1 + t−(1+ε+k−θ)/2)‖h‖BCθ (Ω), h ∈ (BCθ(Ω)

)N
, t > 0, (2.21)
BC (Ω)
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for any 0 � θ � 1, 0 � k � 2 with k � θ − 1, and any ε > 0. We note that a similar estimate in Sobolev spaces is
proved in [22, Lemma 2.1]. Here, in the case θ = 1, estimate (2.21) (actually true for ε = 0) is a consequence of
definition (2.3), formula (2.30) below and Proposition 2.3. In the case θ = 0, estimate (2.21) (again true for ε = 0) is
a consequence of (2.3) and Proposition 2.3. The general case (with any ε > 0) then follows by interpolation.

Fix 0 < t0 < τ < T . Since um+∇v ∈ BC(Ω ×[t0, τ ]), it follows from (2.21) with θ = 0 and the first equation in (2.2)
(shifted in time) that u ∈ L∞(t0, τ ;BCk(Ω)) for all k ∈ (0,1). Consequently, um+ ∈ L∞(t0, τ ;BCmk(Ω)), hence

um+∇v ∈ L∞(t0, τ ;BCθ(Ω)
)

for all θ ∈ (0,m).

Applying (2.21) again, this time with θ ∈ (0,m), we deduce that, for all t ∈ (t0, τ ), u(t) ∈ BCk(Ω) for all k ∈
(0,1 + m), hence in particular (2.12).

Moreover, when Ω is bounded, for each given t ∈ (0, T ), the function zs(·) := S(t − s)∇ · (um+∇v)(s) belongs
to C1(Ω) and satisfies ∂zs

∂ν
(x) = 0 on ∂Ω . Since the estimates in the previous paragraph guarantee that the integral∫ t

0 z(·, s) ds is absolutely convergent in C1(Ω), property (2.13) follows.

Step 2. Nonnegativity of maximal in time solutions. Although u is not smooth at the level u = 0, one can use the
following maximum principle argument on alleged negative values of u.

Let us first show u � 0 in the case Ω bounded. Assume that the property u � 0 is not true. Set w = e−t u. Then
there exist t0 ∈ (0, T ) and x0 ∈ Ω such that w(x0, t0) = minQ0 w < 0, where Q0 = Ω × [0, t0]. By continuity, the
exists ε > 0 such that w < 0, hence u+ = 0, in V := Q0 ∩ (B(x0, ε) × [t0 − ε, t0]). In view of (2.20), we deduce that
wt − �w = −w > 0 in V . This yields a direct contradiction at (x0, t0) if x0 ∈ Ω . If x0 ∈ ∂Ω , since ∂w

∂ν
(x0, t0) = 0,

we get a contradiction with the Hopf lemma.
In the case Ω = R

N , one can modify the above proof by a using a perturbation argument from [24]. Namely, we
fix ε > 0 and set

ŵ = u + ε
(
(2N + 1)t + |x|2).

Fix τ ∈ (0, T ) and assume that the property ŵ � 0 is not true on Qτ := R
N × [0, τ ]. Since u is bounded in Qτ , there

exists R > 0 such that ŵ � 0 in (RN \ BR) × [0, τ ]. Consequently, there exist t0 ∈ (0, τ ] and x0 ∈ BR such that

ŵ(x0, t0) = min
BR×[0,τ ]

ŵ = min
Qτ

ŵ < 0.

Observe that (∂t − �)[(2N + 1)t + |x|2] = 1. Due to (2.20), the function ŵ thus satisfies

ŵt − �ŵ = ut − �u + ε > −∇ · [(ŵ − ε
(
(2N + 1)t + |x|2))m+∇v

]
(2.22)

at any point (x, t) ∈ R
N × (0, T ) where ŵ(x, t) − ε((2N + 1)t + |x|2) �= 0. This is in particular true at (x0, t0) and,

since ŵ(x0, t0) < 0, the RHS of (2.22) vanishes at (x0, t0) and we get 0 � (ŵt − �ŵ)(x0, t0) > 0, a contradiction. We
deduce that ŵ � 0 in R

N × [0, τ ] for each τ ∈ (0, T ) and ε > 0. Letting τ → T and then ε → 0, we conclude that
u� 0 in R

N × [0, T ).
The positivity of v (cf. (2.10)) then follows from the strong maximum principle. �

Proof of Proposition 2.2. If Ω is bounded, then (2.14) and (2.15) directly follow from the mass preserving property
of the Neumann heat semigroup, Fubini’s theorem and (2.4), by integrating each equation of (2.2) in space.

Let us thus assume Ω =R
N . By our hypotheses, we have Γ = 1, u0, v0 ∈ L1 ∩L∞(RN) and ∇v0 ∈ Lq ∩L∞(RN)

for some q ∈ [1,∞). We may assume q � 2 without loss of generality. It suffices to show that

u(t),∇v(t) ∈ L1
loc

([0, T );L1(
R

N
))

. (2.23)

Indeed, once (2.23) is proved, (2.14) and (2.15) follow similarly as in the bounded domain case.
We shall prove (2.23) by a boostrap argument. Fix τ ∈ (0, T ). We have

u,v, |∇v|� C in R
N × (0, τ ). (2.24)
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Here and in what follows, C denotes a generic constant possibly depending on τ . In order to initialize our bootstrap
argument, we shall first prove that∥∥u(t)

∥∥
(2−m)q/2 � C for all t ∈ (0, τ ). (2.25)

In view of the proof of (2.25), we introduce the auxiliary function

H̃ := e−Kt

(
m

2
|∇v|2 + u2−m

2 − m

)
.

It follows from Lemma 4.1 below that for some constant K = K(τ) > 0, the function H̃ satisfies

∂t H̃ − �H̃ � 0 in R
N × (0, τ )

in the weak sense (cf. Remark 4.1). Fix ε > 0. Then the function

Hε := H̃ − ε
(
2Nt + |x|2)

also satisfies ∂tHε −�Hε � 0 in R
N × (0, τ ) in the weak sense. Moreover, since H̃ � C in R

N × (0, τ ) due to (2.24),
we have Hε � 0 on ∂BR × (0, τ ) for all R � R0(ε) � 1. We may then apply the weak maximum principle (in duality
form) in bounded domains (cf. [41, Proposition 52.13]) to deduce that, for all t0 ∈ (0, τ ) and all R � R0(ε),

Hε(·, t) � TR(t − t0)Hε(t0) in BR × (t0, τ ), (2.26)

where (TR(t))t�0 denotes the Dirichlet heat semigroup on BR . On the other hand, it follows from (2.2), (1.4) and
properties of the Cauchy heat semigroup that u, |∇v| ∈ C([0, T ); L1

loc(R
N)), hence Hε ∈ C([0, T );L1

loc(R
N)). We

may thus let t0 → 0 in (2.26) to deduce that, for all R �R0(ε),

Hε(·, t) � TR(t)Hε(0) in BR × (0, τ ),

hence

Hε(·, t) � TR(t)H̃ (0) � S(t)H̃ (0) in BR × (0, τ ).

Letting R → ∞ and then ε → 0, we deduce that H̃ (·, t) � S(t)H̃ (0) in R
N ×(0, τ ). Therefore, supt∈(0,τ ) ‖H̃ (t)‖q/2 �

‖H̃ (0)‖q/2 < ∞, hence (2.25).
By (2.25) and the second equation in (2.2), we have

∥∥∇v(t)
∥∥

(2−m)q/2 � Ct−1/2‖v0‖(2−m)q/2 +
t∫

0

∥∥u(s)
∥∥

(2−m)q/2 ds

� Ct−1/2 for all t ∈ (0, τ ). (2.27)

In view of a bootstrap argument, we now assume that∥∥u(t)
∥∥

k
+ t1/2

∥∥∇v(t)
∥∥

k
� C for all t ∈ (0, τ ), (2.28)

for some k ∈ [1,∞). Interpolating with (2.24), we see that (2.28) is also true with k replaced by k̃ = max(k,m + 1).
Letting r = max(1, k/(m + 1)), it follows from Hölder’s inequality and (2.28) that∥∥um∇v(t)

∥∥
r
= ∥∥um∇v(t)

∥∥
k̃/(m+1)

�
∥∥um(t)

∥∥
k̃/m

∥∥∇v(t)
∥∥

k̃
� Ct−1/2 for all t ∈ (0, τ ). (2.29)

By the first equation in (2.2), we have

∥∥u(t)
∥∥

r
� ‖u0‖r +

t∫
0

∥∥∇e(t−s)� · um∇v(s)
∥∥

r
ds

� ‖u0‖r + C

t∫
(t − s)−1/2s−1/2 ds � C for all t ∈ (0, τ ).
0
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Arguing on the second equation as for (2.27), we see that (2.28) is true with k replaced by r = max(1, k/(m + 1)).
Since m + 1 > 1 and (2.28) is true with k = (2 − m)q/2 by (2.25) and (2.27), after a finite number of steps we
obtain (2.28) with k = 1. This in particular shows (2.23) and concludes the proof of (2.14) and (2.15). �
Remark 2.1.

(a) When m < 1, we point out that for the particular solution obtained by our approximation procedure, the additional
assumption that ∇v0 ∈ Lq(RN) for some q ∈ [1,∞) is not restrictive. Indeed, after a small time-shift, it is satisfied
along with u0, v0 ∈ L1 ∩ L∞(RN). However it is not clear whether this is true for other – nonconstructive –
solutions.

(b) It follows from the proof of Proposition 2.1 that, when 0 < m < 1, for each 0 < β < 1 + m, we have u(·, t) ∈
Cβ(Ω) for all t ∈ (0, T ).

Remark 2.2. To see that the definition (2.3) is natural, observe that if Ω is bounded and h ∈ (BC1(Ω))N then, by
integration by parts, we have(

S(t)(∇ · h)
)
(x) =

∫
Ω

G(x,y; t)(∇y · h)(y) dy

= −
∫
Ω

∇yG(x, y; t) · h(y)dy +
∫

∂Ω

G(x, y; t)(h(y) · ν(y)
)
dσ, (2.30)

for all t > 0 and x ∈ Ω . Now, if (u, v) is a positive classical solution of (1.1)–(1.3), the function h := um∇v ∈
(BC1(Ω))N satisfies h · ν = 0 on ∂Ω , hence(

S(t)(∇ · h)
)
(x) = −

∫
Ω

∇yG(x, y; t) · h(y)dy. (2.31)

When Ω =R
N and h ∈ (BC1(RN))N , (2.31) remains true due to the decay of the heat kernel at space infinity.

Let us next justify the property (2.4) of the operator S(t)∇·. First note that for all h ∈ (C∞
0 (Ω))N , owing to (2.3),

(2.31) and the mass preserving property of the Neumann (or Cauchy) heat semigroup, we have∫
Ω

(
S(t)∇ · h)(x) dx =

∫
Ω

(
S(t)(∇ · h)

)
(x) dx =

∫
Ω

∇ · h(x)dx = 0. (2.32)

On the other hand, by (2.3), Proposition 2.3 and Fubini’s theorem, for any h, h̃ ∈ (L∞ ∩ L1(Ω))N , we have∥∥S(t)∇ · h − S(t)∇ · h̃∥∥1 �
∫
Ω

∫
Ω

∣∣∇yG(x, y; t)(h − h̃)(y)
∣∣dy dx � Ct−

1
2 ‖h − h̃‖1. (2.33)

Property (2.4) then follows from (2.32), (2.33) and the density of C∞
0 (Ω) in L1(Ω).

3. Local nondegeneracy for 1��� m < 2

We begin with the following lemma, a property of the inhomogeneous, linear heat equation, which will be used
again in Section 3. It gives an upper blow-up estimate of the gradient of the solution, assuming an upper blow-up
estimate of the RHS.

Lemma 3.1. Let v be a classical solution of⎧⎨⎩
Γ vt = �v − λv + f, x ∈ Ω, 0 < t < T,

∂v
(x, t) = 0, x ∈ ∂Ω, 0 < t < T,

(3.1)
∂ν
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with f ∈ L∞
loc([0, T );L∞(Ω)) (the boundary conditions being as usual understood to be empty in case Ω =R

N ). For
any real number μ > 1/2, there exists a constant C0 = C0(Ω,μ,Γ,λ) > 0 such that the following holds. Let a ∈ Ω ,
t0 ∈ (0, T ), ρ, ε, c > 0 and assume that∣∣f (x, t)

∣∣� ε(T − t)−μ for all (x, t) ∈ Ωa,ρ × (t0, T ) (3.2)

and ∥∥v(t)
∥∥

L1(Ωa,ρ)
� c for all t ∈ (t0, T ). (3.3)

Then, for any ρ̃ ∈ (0, ρ), there exists a real number K > 0 such that the function v satisfies∣∣∇v(x, t)
∣∣� C0ε(T − t)−μ+ 1

2 + K for all (x, t) ∈ Ωa,ρ̃ × (t0, T ). (3.4)

Proof. It suffices to show that (3.4) holds for some ρ̃ ∈ (0, ρ). Indeed, assume that this is true and fix any ρ̂ ∈ (0, ρ).
Then, for any b ∈ Ωa,ρ̂ , we have |f (x, t)| � ε(T − t)−μ for all (x, t) ∈ Ωb,ρ−ρ̂ × (t0, T ) and consequently there exist
ρb > 0 and Kb > 0 such that∣∣∇v(x, t)

∣∣� C0ε(T − t)−μ+ 1
2 + Kb for all (x, t) ∈ Ωb,ρb

× (t0, T ).

Since the compact Ωa,ρ̂ can be covered by finitely many balls B(bi, ρbi
), we then conclude that (3.4) is true with ρ̃

replaced by ρ̂.
To show that (3.4) holds for some ρ̃ ∈ (0, ρ), we consider the cases a ∈ Ω and a ∈ ∂Ω separately.

Case 1: a ∈ Ω . Set δ = min(ρ,dist(a, ∂Ω)). Take a function ϕ ∈ C2(RN), 0 � ϕ � 1, such that ϕ(x) = 1 for all
x ∈ Bδ/2(a) and ϕ(x) = 0 for all x ∈R

N\Bδ(a). Put ṽ(x, t) = eλtv(x, t)ϕ(x) for (x, t) ∈ Ω × (0, T ). Multiplying the
second equation of (1.1) by ϕ yields

ṽt = �ṽ + eλt (f ϕ − 2∇v · ∇ϕ − v�ϕ) in Ω × (0, T ). (3.5)

Now pick x0 ∈ Bδ/4(a) and t ∈ (t0, T ). Then ∇ṽ(x0, t) is represented as

∇ṽ(x0, t) = J0(x0, t) + J1(x0, t) − 2J2(x0, t) − J3(x0, t), (3.6)

where

J0(x0, t) = ∇V (x0, t) with V (·, t) = S(t − t0)ṽ(t0), (3.7)

and

J1(x0, t) =
t∫

t0

eλs

∫
Ω

∇xG(x0, y; t − s)f (y, s)ϕ(y) dy ds, (3.8)

J2(x0, t) =
t∫

t0

eλs

∫
Ω

∇xG(x0, y; t − s)
(∇v(y, s) · ∇ϕ(y)

)
dy ds, (3.9)

J3(x0, t) =
t∫

t0

eλs

∫
Ω

∇xG(x0, y; t − s)v(y, s) dy ds. (3.10)

Here and below, we denote G = GΓ and S(t) = SΓ (t) for brevity. Also, for i = 1,2, . . . , we shall denote by Ci a
constant depending only on Ω , m, Γ , λ and by Ki a constant independent of x0 ∈ Bδ/4(a) and t ∈ (t0, T ). By standard
linear parabolic regularity properties, there exists K1 such that∣∣J0(x0, t)

∣∣� K1. (3.11)

Using Proposition 2.3 and assumption (3.2), there exist C1,C2,C3 > 0 such that
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∣∣J1(x0, t)
∣∣� C1e

λt

t∫
t0

(t − s)−
N+1

2

∫
Ω

∣∣f (y, s)
∣∣ϕ(y) exp

(
−C2|x0 − y|2

4(t − s)

)
dy ds

� C3e
λt ε

t∫
t0

(T − s)−μ(t − s)−
1
2 ds.

Recalling μ > 1/2, for all t ∈ (t0, T ), we have

t∫
t0

(T − s)−μ(t − s)−
1
2 ds =

∫
t0<s<2t−T

(T − s)−μ(t − s)−
1
2 ds +

∫
2t−T <s<t

(T − s)−μ(t − s)−
1
2 ds

�
∫

t0<s<2t−T

(t − s)−μ− 1
2 ds + (T − t)−μ

∫
2t−T <s<t

(t − s)−
1
2 ds

�
(

μ − 1

2

)−1/2

(T − t)−μ+ 1
2 + 2(T − t)−μ+ 1

2 .

Therefore, there exists C4 > 0 such that∣∣J1(x0, t)
∣∣� C4e

λt ε(T − t)−μ+ 1
2 . (3.12)

Integrating J2(x0, t) by parts in y, making use of ∂ϕ
∂ν

= 0 on ∂Ω , we obtain

J2(x0, t) = −eλt

{ t∫
t0

∫
Ω

v(y, s)�ϕ(y)∇xG(x0, y; t − s) dy ds

+
t∫

t0

∫
Ω

v(y, s)∇y∇xG(x0, y; t − s)∇ϕ(y)dy ds

}
.

Using Proposition 2.3 again, we deduce that∣∣J2(x0, t)
∣∣� C1e

λt
{
J2,1(x0, t) + J2,2(x0, t)

}
, (3.13)

where

J2,1(x0, t) =
t∫

t0

(t − s)−
N+1

2

∫
Ω

∣∣v(y, s)
∣∣ · ∣∣�ϕ(y)

∣∣ exp

(
−C2|x0 − y|2

4(t − s)

)
dy ds

and

J2,2(x0, t) =
t∫

t0

(t − s)−
N+2

2

∫
Ω

∣∣v(y, s)
∣∣ · ∣∣∇ϕ(y)

∣∣ exp

(
−C2|x0 − y|2

4(t − s)

)
dy ds.

Since ∇ϕ(y) = �ϕ(y) = 0 for all y ∈ Bδ/4(x0) ⊂ Bδ/2(a), there exists K2 > 0 such that

τ− N+1
2
∣∣�ϕ(y)

∣∣ exp

(
−C2|x0 − y|2

4τ

)
�K2 for all y ∈ Ω and τ > 0 (3.14)

and

τ− N+2
2
∣∣∇ϕ(y)

∣∣ exp

(
−C2|x0 − y|2)� K2 for all y ∈ Ω and τ > 0. (3.15)
4τ
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It follows from (3.3), (3.13)–(3.15) that∣∣J2(x0, t)
∣∣� K3. (3.16)

We can similarly show that∣∣J3(x0, t)
∣∣� K4. (3.17)

Consequently, from (3.6)–(3.12), (3.16) and (3.17), we obtain K5 > 0 such that∣∣∇ṽ(x0, t)
∣∣� C4e

λt ε(T − t)
1
m

− 1
2 + K5 for all t ∈ (t0, T ).

Since ∇ṽ(x, t) = eλt {∇v(x, t)ϕ(x) + v(x, t)∇ϕ(x)}, we get∣∣∇v(x0, t)
∣∣� C4ε(T − t)

1
m

− 1
2 + K5 for all t ∈ (t0, T ),

hence (3.4) with ρ̃ = δ/4.

Case 2: a ∈ ∂Ω . Set δ = min(ρ,ρ0), where ρ0 is given by Lemma A.1. By that lemma, there exists a function
ϕ̃ ∈ C2(RN) such that ϕ̃(x) = 1 for all x ∈ Bδ/2(a), ϕ̃(x) = 0 for all x ∈ R

N\Bδ(a) and ∂ϕ̃
∂ν

(x) = 0 for all x ∈ ∂Ω .
Now, the above argument with ϕ replaced by ϕ̃ gives a proof in this case with ρ̃ = δ/4. �
Proof of Theorem 1.1 with 1 ��� m < 2. Let (u, v) be a solution of (1.1)–(1.3) such that T = Tmax(u, v) < ∞. Let
a ∈ Ω , t0 ∈ (0, T ), ρ > 0 and assume that

u(x, t) � ε(T − t)−1/m for all (x, t) ∈ Ωa,ρ × (t0, T ). (3.18)

We first consider the case a ∈ Ω . We put δ = min(ρ,dist(a, ∂Ω)). We divide the proof into three steps.

Step 1. We claim that for each p > 1 there exist C1,K1 > 0 such that∫
Bδ/2(a)

up+1 dx � K1(T − t)−C1ε
2m

for all t ∈ [t0, T ). (3.19)

Here and hereafter, for i = 1,2, . . . , we denote by Ci a constant depending only on Ω,m,Γ,λ,p and by Ki a constant
independent of t ∈ (t0, T ) (and of x0 in Steps 2 and 3).

Choose 1 − 1/p < k < 1. Take a function ψ ∈ C2(RN), 0 � ψ � 1, such that ψ(x) = 1 for all x ∈ Bδ/2(x0),
ψ(x) = 0 for all x ∈ R

N\Bδ(x0), and |∇ψ(x)| � Aψ(x)(k+1)/2 for all x ∈R
N , with some constant A > 0. Multiplying

the first equation of (1.1) by upψp+1 and integrating by parts yields

1

p + 1

d

dt

∫
Ω

{
u(t)ψ

}p+1
dx = −I1(t) + I2(t), (3.20)

where

I1(t) = p

∫
Ω

up−1|∇u|2ψp+1 dx + (p + 1)

∫
Ω

upψp∇u · ∇ψ dx

and

I2(t) = p

∫
Ω

up+m−1ψp+1∇u · ∇v dx + (p + 1)

∫
Ω

up+mψp∇v · ∇ψ dx.

Since ∇(u
p+1

2 ) = p+1
2 u

p−1
2 ∇u, we have

I1(t) =
{

4p

(p + 1)2
− 2

p + 1

}∫
Ω

∣∣∇u
p+1

2
∣∣2ψp+1 dx + 2

p + 1

∫
Ω

∣∣∇(uψ)
p+1

2
∣∣2 dx

− 2

p + 1

∫
up+1

∣∣∇ψ
p+1

2
∣∣2 dx.
Ω
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By the choice of p and ψ , we get

I1(t) �
2

p + 1

∫
Ω

∣∣∇(uψ)
p+1

2
∣∣2 dx − p + 1

2

∫
Ω

up+1ψp−1|∇ψ |2 dx

� 2

p + 1

∫
Ω

∣∣∇(uψ)
p+1

2
∣∣2 dx − p + 1

2
A2
∫
Ω

up+1ψp+k dx

= 2

p + 1

∫
Ω

∣∣∇(uψ)
p+1

2 )
∣∣2 dx − p + 1

2
A2
∫
Ω

(uψ)p+ku1−k dx

� 2

p + 1

∫
Ω

∣∣∇(uψ)
p+1

2
∣∣2 dx − p + 1

2
A2M1−k

( ∫
Ω

(uψ)1+ p
k dx

)k

, (3.21)

where M = ‖u0‖1.
Since

I2(t) =
∫
Ω

um−1∇v · [pupψp+1∇u + (p + 1)up+1ψp∇ψ
]
dx

=
∫
Ω

um−1∇v ·
[

p

p + 1
∇(uψ)p+1 + up+1ψp∇ψ

]
dx,

we have

I2(t) � ‖∇v‖L∞(Bδ(x0))‖u‖m−1
L∞(Bδ(x0))

{
p

p + 1

∫
Ω

∣∣∇(uψ)p+1
∣∣dx +

∫
Ω

up+1ψp|∇ψ |dx

}

= ‖∇v‖L∞(Bδ(x0))‖u‖m−1
L∞(Bδ(x0))

{
2p

p + 1

∫
Ω

(uψ)
p+1

2
∣∣∇(uψ)

p+1
2
∣∣dx +

∫
Ω

up+1ψp|∇ψ |dx

}
.

By the choice of ψ , we get∫
Ω

up+1ψp|∇ψ |dx �A

∫
Ω

up+1ψp+ k+1
2 dx � A

∫
Ω

(uψ)p+ k+1
2 u

1−k
2

�AM
1−k

2

( ∫
Ω

(uψ)1+ 2p
k+1 dx

) k+1
2

.

Therefore we obtain

I2(t) �
1

p + 1

∫
Ω

∣∣∇(uψ)
p+1

2
∣∣2 dx + p2

p + 1
‖∇v‖2

L∞(Bδ(x0))
‖u‖2(m−1)

L∞(Bδ(x0))

∫
Ω

(uψ)p+1 dx

+ AM
1−k

2 ‖∇v‖L∞(Bδ(x0))‖u‖m−1
L∞(Bδ(x0))

( ∫
Ω

(uψ)1+ 2p
k+1 dx

) k+1
2

. (3.22)

It follows from (3.20), (3.21), (3.22) that

d

dt

∫
Ω

(uψ)p+1 dx � p2‖∇v‖2
L∞(Bδ(x0))

‖u‖2(m−1)
L∞(Bδ(x0))

∫
Ω

(uψ)p+1 dx + (p + 1)2A2

2
M1−k

( ∫
Ω

(uψ)1+ p
k dx

)k

+ (p + 1)AM
1−k

2 ‖∇v‖L∞(Bδ(x0))‖u‖m−1
L∞(Bδ(x0))

( ∫
(uψ)1+ 2p

k+1 dx

) k+1
2

.

Ω
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By (2.15), (3.18) and Lemma 3.1, there exist C2,K2 > 0 such that∣∣u(t)
∣∣
L∞(Bδ(x0))

� ε(T − t)−
1
m and

∣∣∇v(t)
∣∣2
L∞(Bδ(x0))

� C2ε
2(T − t)1− 2

m + K2.

In particular (assuming ε � 1 without loss of generality), we have

(uψ)1+ p
k � (uψ)p+1(T − t)−

p(1−k)
km , (uψ)1+ k+1

2 � (uψ)p+1(T − t)
− p(1−k)

(k+1)m .

It follows that

d

dt

∫
Ω

(uψ)p+1 dx � p2‖∇v‖2
L∞(Bδ(x0))

‖u‖2(m−1)
L∞(Bδ(x0))

∫
Ω

(uψ)p+1 dx

+ (p + 1)2A2

2
M1−k(T − t)−

p(1−k)
m

( ∫
Ω

(uψ)p+1 dx

)k

+ (p + 1)AM
1−k

2 ‖∇v‖L∞(Bδ(x0))‖u‖m−1
L∞(Bδ(x0))

(T − t)−
p(1−k)

2m

( ∫
Ω

(uψ)p+1 dx

) k+1
2

.

Setting F(t) = 1 + ∫
Ω

(uψ)p+1 dx and using p(1 − k)/m < 2(m − 1)/m < 1, we obtain

F ′(t) �
[
(p + 1)2A2M1−k(T − t)−

p(1−k)
m + (

p2 + 1
)‖∇v‖2

L∞(Bδ(x0))
‖u‖2(m−1)

L∞(Bδ(x0))

]
F(t)

�
[
K3
(
(T − t)−

p(1−k)
m + (T − t)−

2(m−1)
m

)+ C3ε
2m(T − t)−1]F(t)

�
[
K4(T − t)

2
m

−2 + C3ε
2m(T − t)−1]F(t).

After integration, recalling m < 2, we obtain

F(t) � F(t0) exp
[
K5T

2
m

−1](T − t)−C3ε
2m = K1(T − t)−C1ε

2m

,

hence the claim.

Step 2. We claim that∣∣∇v(x0, t)
∣∣� K5 for all x0 ∈ Bδ/8(a) and t ∈ [t0, T ). (3.23)

Take a function ϕ ∈ C2(RN), 0 � ϕ(x) � 1, such that ϕ(x) = 1 for x ∈ Bδ/4(a) and ϕ(x) = 0 for x ∈ R
N\Bδ/2(a).

Put ṽ(x, t) = eλtv(x, t)ϕ(x) for x ∈ Ω × (0, T ). Pick x0 ∈ Bδ/8(a) and t ∈ (t0, T ). Like in the proof of Lemma 3.1,
∇ṽ(x0, t) is represented according to

∇ṽ(x0, t) = J0(x0, t) + J1(x0, t) − 2J2(x0, t) − J3(x0, t), (3.24)

where the terms Ji are defined by (3.7)–(3.10) with f = u. Similarly to the proof of Lemma 3.1, we get the bounded-
ness of J0(x0, t), J2(x0, t) and J3(x0, t) for x0 ∈ Bδ/8(a) and t ∈ [t0, T ).

To control the term J1(x0, t), we proceed as follows. Take p,q � 1 with 1/p + 1/q = 1 and q < 1 + 1/(N − 1).
Let ε > 0 such that

1

2
− N

2

(
1 − 1

q

)
− C1

p
ε2m > 0, (3.25)

where C1 is the constant in (3.19). By Proposition 2.3 and (3.19), there exist Ci > 0 for i = 4,5,6 such that

∣∣J1(x0, t)
∣∣� C4

t∫
t0

(t − s)−
N+1

2

∫
Ω

u(y, s)ϕ(y) exp

(
−C5|x − y|2

4(t − s)

)
dy ds

� C4

t∫
(t − s)

− 1
2 (N+1− N

q
)

t0
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×
{

1

(t − s)N/2

∫
Ω

exp

(
−C5q|x − y|2

4(t − s)

)
dy

}1/q( ∫
Ω

{
u(y, s)ϕ(y)

}p
dy

)1/p

� C6

t∫
t0

(t − s)
− 1

2 (N+1− N
q

){
K1(T − t)−C1ε

2m}1/p
ds.

By the choice of p, q , ε, J1(x0, t) is bounded for x0 ∈ Bδ/8(a) and t ∈ [t0, T ). This proves the claim.

Step 3. We claim that u(x0, t)� K6 for x0 ∈ Bδ/32(a) and t ∈ [t0, T ).
Take a function φ ∈ C2(RN), 0 � φ(x) � 1, such that φ(x) = 1 for x ∈ Bδ/16(x0) and φ(x) = 0 for x ∈

R
N\Bδ/8(x0). Put ũ(x, t) = u(x, t)φ(x). Then ũ satisfies

ũt = �ũ − φ∇(um∇v
)− 2∇u · ∇φ − u�φ.

Pick x0 ∈ Bδ/32(a) and t ∈ (t0, T ). We represent ũ(x0, t) as

ũ(x0, t) = [
S(t − t0)

(
ũ(t0)

)]
(x0)

−
t∫

t0

∫
Ω

G(x0, y; t − s)
{
φ(y)∇[um∇v

]
(y, s) + 2∇u(y, s) · ∇φ(y) + u(y, s)�φ(y)

}
dy ds

= K0(x0, t) + K1(x0, t) + K2(x0, t) − 2K3(x0, t) − K4(x0, t), (3.26)

where

K0(x0, t) = [
S(t − t0)

(
ũ(t0)

)]
(x0),

K1(x0, t) =
t∫

t0

∫
Ω

(∇yG(x0, y; t − s) · ∇v(y, s)
)
um(y, s)φ(y) dy ds,

K2(x0, t) =
t∫

t0

∫
Ω

G(x0, y; t − s)um(y, s)
(∇v(y, s) · ∇φ(y)

)
dy ds,

K3(x0, t) =
t∫

t0

∫
Ω

G(x0, y; t − s)
(∇u(y, s) · ∇φ(y)

)
dy ds

and

K4(x0, t) =
t∫

t0

∫
Ω

G(x0, y; t − s)u(y, s)�φ(y)dy ds.

By (3.23) in Step 2, we obtain the boundedness of K1(x0, t) for x0 ∈ Bδ/32(a) and t ∈ (t0, T ) in the same way as for
J1(x0, t) in Step 2. Similar arguments to those in the proof of Lemma 3.1 imply that K0(x0, t), K2(x0, t), K3(x0, t),
K4(x0, t) are bounded for x0 ∈ Bδ/32(a) and t ∈ (t0, T ). Consequently, ũ(x0, t) is bounded for x0 ∈ Bδ/32(a) and
t ∈ (t0, T ). This proves the claim, hence the theorem in the case a ∈ Ω .

Finally, in the case of a ∈ ∂Ω , set δ = min(ρ,ρ0), where ρ0 is given by Lemma A.1. Thanks to that lemma, we

may find functions ψ̃ , ϕ̃, φ̃ in Steps 1, 2, 3 satisfying ∂ϕ̃
∂ν

= ∂φ̃
∂ν

= 0 on ∂Ω in addition to the properties of ψ , ϕ, φ,
respectively. The above arguments give a proof in this case if ψ , ϕ, φ are replaced by ψ̃ , ϕ̃, φ̃.

The Cauchy problem is similarly treated without Proposition 2.3. �
Remark 3.1. A similar calculation for

∫
Ω

uputψ
p+1 dx in Step 1 of the proof was done in the proof of Proposition 4.2

of [37]. However their method does not work well to prove Theorem 1.1 since they treated (1.1) with m = 1 when
lim supt→T

∫
BR(x0)

u(t) logu(t) dx < ∞ for some R > 0, which yields lim supt→T ‖∇v(t)‖L∞(BR(x0)) < +∞.
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4. Local nondegeneracy for 0 < m < 1

The key to our proof of local nondegeneracy when 0 < m < 1 is the following auxiliary function:

H = m

2
|∇v|2 + u2−m

2 − m
(4.1)

and the following lemma, which states that H satisfies a suitable, scalar parabolic inequality.

Lemma 4.1. Assume 0 < m � 1, Γ = 1 and let p = 2/(2 − m) > 1. Then the function H ∈ L∞
loc((0, T );BC1(Ω))

satisfies

∂tH − �H � C1H
p in Ω × (0, T ) (4.2)

in the weak sense (cf. Remark 4.1), where C1 = (2 − m)2/(2−m) N
4m

> 0.

Remark 4.1. If Ω is bounded, the weak formulation of (4.2) is understood as

τ∫
t0

∫
Ω

(−H∂tϕ + ∇H · ∇ϕ − C1H
pϕ
)
dx dt � −

[ ∫
Ω

Hϕ(x, t) dx

]τ

t0

+
τ∫

t0

∫
∂Ω

ϕ∂νH dσ dt,

for all 0 < t0 < τ < T and all 0 � ϕ ∈ C1,1(Ω × [t0, τ ]). When Ω = R
N , we say that (4.2) is true if is satisfied in

ω × (0, T ) for each smooth compact subdomain ω of RN .

Proof of Lemma 4.1. We only consider the case Ω bounded, the case Ω = R
N being completely similar. Let

(Gk)k∈N∗ be a sequence of approximations of the positive sign function with the following properties:

Gk ∈ C2(R), Gk(s) = 0 for all s � 1/k, 0 � G′
k � 1, G′′

k � 0,

lim
k→∞Gk(s) = s and lim

k→∞G′
k(s) = χ(0,∞)(s) for each s � 0. (4.3)

Let

J = u2−m

2 − m

and note that, for each k, Jk := Gk ◦ J is smooth (since u is smooth on the set {u > 0}). We compute

(∂t − �)Jk = (
G′

k ◦ J
)
(∂tJ − �J) − (

G′′
k ◦ J

)|∇J |2
= (

G′
k ◦ J

)[
u1−m(ut − �u) − (1 − m)|∇u|2u−m

]− (
G′′

k ◦ J
)|∇J |2

� −(G′
k ◦ J

)
u1−m∇ · (um∇v

)
,

hence
τ∫

t0

∫
Ω

(−Jk∂tϕ + (
G′

k ◦ J
)[∇J · ∇ϕ + u�v + m∇u · ∇v]ϕ)dx dt

� −
[ ∫

Ω

Jkϕ(x, t) dx

]τ

t0

+
τ∫

t0

∫
∂Ω

ϕ
(
G′

k ◦ J
)
∂νJ dσ dt, (4.4)

for any 0 < t0 < τ < T and any test-function 0 � ϕ ∈ C1,1(Ω × [t0, τ ]). Also, we observe that, for a.e. t ∈ (t0, T ),
∇u(x, t) = ∇J (x, t) = 0 at each point x ∈ Ω such that u(x, t) = 0 (due to u � 0) and ∂νJ (x, t) = 0 at each point
x ∈ ∂Ω such that u(x, t) = 0. Therefore, using (4.3), we deduce that, as k → ∞:

lim
(
G′

k ◦ J
)[∇J · ∇ϕ + u�v + m∇u · ∇v] = ∇J · ∇ϕ + u�v + m∇u · ∇v
k→∞
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in Ω for a.e. t ∈ (t0, τ ) and

lim
k→∞

(
G′

k ◦ J
)
∂νJ = ∂νJ

on ∂Ω for a.e. t ∈ (t0, τ ). Since also limk→∞ Jk = J uniformly in Ω × [t0, τ ], we may pass to the limit in (4.4) via
dominated convergence and we obtain, in the weak sense (cf. Remark 4.1),

(∂t − �)J � −[u�v + m∇u · ∇v] in Ω × (0, T ). (4.5)

On the other hand, denoting |D2v|2 =∑
ij (∂

2
ij v)2, we have

(Γ ∂t − �)
|∇v|2

2
= ∇v · ∇(vt − �v) − ∣∣D2v

∣∣2 = ∇v · ∇u − ∣∣D2v
∣∣2. (4.6)

(This is satisfied in the classical sense in Ω × (0, T ), recalling (2.7).) Combining (4.5), (4.6) and using Γ = 1, we
obtain

∂tH − �H � −u�v − m
∣∣D2v

∣∣2.
Using the inequality |�v|2 � N |D2v|2, it follows that

∂tH − �H � N

4m
u2

in the weak sense, hence (4.2). �
Next, to obtain suitable boundary conditions on the function H , we shall rely on the following simple, differential

geometric property. It is probably known but we give a proof in Appendix A for completeness.

Lemma 4.2. Assume that Ω is bounded and let w ∈ C2(Ω) satisfy ∂w
∂ν

= 0 on ∂Ω . Then we have

∂|∇w|2
∂ν

� 2κ|∇w|2 on ∂Ω, (4.7)

where κ = κ(Ω) > 0 is an upper bound for the curvatures of ∂Ω .

With Lemmas 3.1, 4.1, 4.2 at hand, we can then reduce the proof of Theorem 1.1 for m < 1 to the following
nondegeneracy result for parabolic scalar equations. It was proved in [15] for classical subsolutions, in the case of
interior points or of boundary points under Dirichlet boundary conditions (see also [41, Section 25] for a simpler,
alternative proof in the interior case). In Appendix A, we give a proof for weak subsolutions in the boundary case
under our current Neumann boundary conditions, by adapting the arguments from [15] (the argument works for weak
subsolutions in the interior case as well).

Proposition 4.1. Let p > 1, M1,M2, T > 0, t0 ∈ (0, T ), ρ > 0, a ∈ Ω . Let 0 � w ∈ L∞
loc((0, T );BC1(Ω)) satisfy

wt − �w � M1w
p in Ω × (t0, T ) (4.8)

in the weak sense. If a ∈ ∂Ω , assume in addition that

∂w

∂ν
� M2w on ∂Ω ∩ B(a,ρ) for a.e. t ∈ (t0, T ). (4.9)

There exists ε0 > 0 depending only on p,M1,M2 such that if

w(x, t)� ε0(T − t)−1/(p−1), (x, t) ∈ Ωρ × (t0, T ), (4.10)

then w is uniformly bounded in a neighborhood of (a, T ).
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Proof of Theorem 1.1 for 0 < m < 1. (The proof is valid also for m = 1 but, unlike that in Section 3 for 1 � m < 2,
it requires Γ = 1.) Assume that (1.6) holds. By Lemma 3.1, it follows that the function H , defined in (4.1), satisfies

H(x, t)� Cε(T − t)−1/m for all (x, t) ∈ (B(a,ρ) ∩ Ω
)× [t0, T ), (4.11)

with C > 0 independent of ε and with some ρ > 0.
On the other hand, by Lemma 4.2 and (2.13), we have

∂H

∂ν
= m

2

∂|∇v|2
∂ν

+ u1−m ∂u

∂ν
� mκ|∇v|2 � 2κH on ∂Ω × (0, T ).

The conclusion then follows from Lemma 4.1 and Proposition 4.1.

5. Global lower estimate for all time: proof of Theorem 1.2

Let us first consider the case u0 �≡ 0 and set

t0 = min
{
t > 0; ∥∥u(t0)

∥∥∞ = 2‖u0‖∞
}
.

Note that, due to (2.6), we have t0 < ∞. For t ∈ (0, t0), we first use the second equation in (2.2) to estimate

∥∥∇v(t)
∥∥∞ � C‖∇v0‖∞ +

t∫
0

C(t − s)−1/2
∥∥u(s)

∥∥∞ ds � C‖∇v0‖∞ + Ct1/2‖u0‖∞.

Next, plugging this into the first equation in (2.2), we obtain

2‖u0‖∞ = ∥∥u(t0)
∥∥∞ � ‖u0‖∞ +

t0∫
0

C(t0 − s)−1/2(2‖u0‖∞
)m[‖∇v0‖∞ + s1/2‖u0‖∞

]
ds,

hence

‖u0‖∞ �
t0∫

0

C(t0 − s)−1/2(2‖u0‖∞
)m[‖∇v0‖∞ + s1/2‖u0‖∞

]
ds

� C‖u0‖m∞‖∇v0‖∞

t0∫
0

(t0 − s)−1/2 ds + C‖u0‖m+1∞

t0∫
0

(t0 − s)−1/2s1/2 ds

� Ct
1/2
0 ‖u0‖m∞‖∇v0‖∞ + Ct0‖u0‖m+1∞

� CT 1/2‖u0‖m∞‖∇v0‖∞ + CT ‖u0‖m+1∞ .

Therefore, we have either

‖u0‖m∞ � cT −1 or ‖u0‖m−1∞ ‖∇v0‖∞ � cT −1/2,

hence

‖u0‖m∞ + ‖u0‖2(m−1)∞ ‖∇v0‖2∞ � cT −1. (5.1)

We note that, if u0 ≡ 0 and m < 1, then (5.1) is still true in view of our convention ∞/∞ = ∞. On the other hand,
we may exclude the case u0 ≡ 0 and m � 1, since then (u, v) = (0, S(t)v0) by local uniqueness, hence T = ∞.

Next, shifting the time origin, with u(t) considered as initial data at time t , we deduce from (5.1) that∥∥u(t)
∥∥m

∞ + ∥∥u(t)
∥∥2(m−1)

∞
∥∥∇v(t)

∥∥2
∞ � c(T − t)−1.

Finally, assume 1 � m < 2. For a given t ∈ [0, T ), if ‖u(t)‖m∞ � (c/2)(T − t)−1, then we infer that

(c/2)(T − t)−1 �
∥∥u(t)

∥∥2(m−1)∥∥∇v(t)
∥∥2 �

[
(c/2)(T − t)−1]2(m−1)/m∥∥∇v(t)

∥∥2
,
∞ ∞ ∞
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hence∥∥∇v(t)
∥∥∞ � c̃(T − t)(m−2)/2m.

It follows that∥∥u(t)
∥∥∞ + ∥∥∇v(t)

∥∥2/(2−m)

∞ � c(T − t)−1/m. �
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Appendix A. Proof of Lemma 4.2 and Proposition 4.1

Proof of Lemma 4.2. We may assume N � 2 since otherwise the result is obvious (with the convention κ = 0). Pick
a ∈ ∂Ω and assume a = 0 without loss of generality. Set x̃ = (x1, . . . , xN−1), so that x = (x̃, xN), and denote by
(e1, . . . , eN) the canonical basis of vectors in R

N . After a rotation, we may assume that, locally near 0, Ω and ∂Ω are
respectively given by {xN � f (x̃)} and {xN = f (x̃)}, where f is a C2-function such that f (0) = 0 and ∇f (0) = 0.
At a point (x̃, f (x̃)) of ∂Ω close to 0, the tangent vectors to ∂Ω are given by

τi(x̃) = (
1 + ∣∣∇f (x̃)

∣∣2)−1/2
(

ei + ∂f

∂xi

(x̃)eN

)
, i = 1, . . . ,N − 1.

Since ∇w|∂Ω is tangential to ∂Ω due to ∂w
∂ν

, setting αi(x̃) = ∇w(x̃, f (x̃)) · τi(x̃), we have

∇w
(
x̃, f (x̃)

)=
N−1∑
i=1

αi(x̃)τi(x̃)

= (
1 + ∣∣∇f (x̃)

∣∣2)−1/2

[(
n−1∑
i=1

αi(x̃)ei

)
+
(

n−1∑
i=1

αi(x̃)
∂f

∂xi

(x̃)

)
eN

]
,

hence

∂w

∂xN

(
x̃, f (x̃)

)= (
1 + ∣∣∇f (x̃)

∣∣2)−1/2
n−1∑
i=1

αi(x̃)
∂f

∂xi

(x̃). (A.1)

On the other hand, using ∂w
∂xN

(0,0) = ∂w
∂ν

(0) = 0, we see that

1

2

∂|∇w|2
∂ν

(0) = 1

2

N∑
j=1

∂

∂xN

(
∂w

∂xj

)2

(0,0) =
N−1∑
j=1

∂2w

∂xN∂xj

∂w

∂xj

(0,0). (A.2)

Differentiating (A.1) and taking into account that ∇f (0) = 0 and αi(0) = ∂w
∂xi

(0,0), we obtain, for j = 1, . . . ,N − 1,

∂2w

∂xN∂xj

(0,0) = ∂

∂xj

(
N−1∑
i=1

αi

∂f

∂xi

)
(0) =

(
N−1∑
i=1

αi

∂2f

∂xj ∂xi

)
(0) =

(
N−1∑
i=1

∂w

∂xi

(0,0)
∂2f

∂xj ∂xi

(0)

)
.

Plugging this into (A.2) and denoting t ∇̃ = (∂/∂x1, . . . , ∂/∂xN−1), we obtain

1

2

∂|∇w|2
∂ν

(0) = [
t ∇̃w

(
D2f

)∇̃w
]
(0) � κ

∣∣∇w(0)
∣∣2,

hence (4.7). �
We now turn to the proof of Proposition 4.1. We shall only consider the case a ∈ ∂Ω , the interior case being easier.

We need a suitable Neumann cut-off function, given by the following lemma.
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Lemma A.1. Let M � 0, 0 < γ < 1 and a ∈ ∂Ω . There exists ρ0 > 0 such that for each ρ ∈ (0, ρ0], there exists a
function 0 � φ ∈ C2(RN) such that

φ(x) = 0 for all x ∈ Bρ/2(a), (A.3)

if M = 0: φ(x) = 1

if M > 0: φ(x) � 1

}
for all x ∈R

N\Bρ(a), (A.4)

∂φ

∂ν
= Mφ on ∂Ω, (A.5)

and

|∇φ| �Aφγ in R
N for some A > 0. (A.6)

Proof. We assume N � 2, the case N = 1 being much easier. To construct φ, we shall use local flow-coordinates
near ∂Ω .

For x ∈ Ω , denote by δ(x) = d(x, ∂Ω) the distance to the boundary and, for η > 0, set Ω ′
η = {x ∈ Ω; δ(x) � η}.

Due to the regularity of Ω , there exists η > 0 such that for all x ∈ Ω ′
η, the projection p(x) of x onto ∂Ω is unique.

Moreover, for all x ∈ Ω ′
η, we have x = p(x)−δ(x)ν(p(x)), where ν is the outer normal vector field on ∂Ω . We denote

the canonical basis of RN by (e1, . . . , eN) and the current point of RN by y = (ỹ, yN), where ỹ = (y1, . . . , yN−1).
Assuming without loss of generality that ν(a) = eN and reducing η if necessary, there exists a local parametrization

of ∂Ω near a, denoted by X0 = X0(ỹ), defined on B̃η := {ỹ ∈ R
N−1; |ỹ| < η}, such that X0(0) = a,

∂X0

∂yi

(0) = ei, i = 1, . . . ,N − 1, (A.7)

and the map

X : Bη � y �→ X(y) = X0(ỹ) + yNν
(
X0(ỹ)

)
(the flow-coordinates) is a C2-diffeomorphism from Bη onto a neighborhood U of a. Moreover

U ∩ Ω = X
(
Bη ∩ {yN < 0}) and U ∩ ∂Ω = X

(
Bη ∩ {yN = 0}). (A.8)

Furthermore, owing to (A.7), by taking ρ0 ∈ (0, η) sufficiently small, we have

Bρ/2(a) ⊂ X(B2ρ/3) ⊂ X(B3ρ/4) ⊂ Bρ(a) ⊂ U for all ρ ∈ (0, ρ0]. (A.9)

Now fix ρ ∈ (0, ρ0]. It is easy to check that there exists a C2-function f : R→ [0,1] such that

f (s) =
{

1 for s � 2ρ/3,

0 for s � 3ρ/4,
(A.10)

along with∣∣f ′(s)
∣∣� Bf γ (s) for some B > 0. (A.11)

We then define the function φ = φ(x) by

φ
(
X(y)

)= f
(|y|)eM(yN−ρ), y ∈ B3ρ/4,

and we extend φ to be 0 on R
N \ X(B3ρ/4). As a consequence of (A.8)–(A.10), we obtain properties (A.3)–(A.4),

whereas (A.11) implies (A.6). We compute(
f ′(|y|)yN

|y| + Mf
(|y|))eMyN = (∇xφ)

(
X(y)

) · ∂X

∂yN

= (∇xφ)
(
X(y)

) · ν(X0(ỹ)
)
, y ∈ Bη.

Evaluating this expression at y = (ỹ,0) and using f ′(0) = 0, we obtain

∂νφ
(
X0(ỹ)

)= (∇xφ)
(
X0(ỹ)

) · ν(X0(ỹ)
)= Mf (ỹ)f (0) = Mφ

(
X0(ỹ)

)
, ỹ ∈ B̃η.

Therefore, ∂νφ = Mφ on U ∩ ∂Ω , hence (A.5). �
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Proof of Proposition 4.1. We treat only the case a ∈ ∂Ω , the case a ∈ Ω being similar (and slightly easier). We shall
adapt the arguments in [15, Theorem 2.1]. Consider the localization of w given by z = wφ, where φ is provided by
Lemma A.1 with M = −M2 (the choice of γ is unimportant since property (A.6) is not used here). The function z

satisfies

zt − �z � M1w
pφ + g in Ω × (t0, T ),

in the weak sense, where

g = −2∇ · (w∇φ) + w�φ. (A.12)

This computation, which is direct in the case of classical subsolutions, can be easily carried out in the case of weak
subsolutions by applying the integral formulation in Remark 4.1 with the test-function ϕ(x, t) replaced by ϕ(x, t)φ(x),
and using the divergence theorem. Moreover, owing to (A.5) with M = −M2, we have

∂νz = w∂νφ + φ∂νw � −wM2φ + φM2w = 0 on ∂Ω for a.e. t ∈ (t0, T ).

Let now Z be the solution of the problem⎧⎪⎪⎨⎪⎪⎩
Zt = �Z + M1w

pφ + g, x ∈ Ω, t0 < t < T,

∂Z

∂ν
(x, t) = 0, x ∈ ∂Ω, t0 < t < T,

Z(x, t0) = z(x, t0), x ∈ Ω.

(A.13)

Since this is a linear problem and M1w
pφ +g ∈ L∞

loc(Ω ×[t0, T )), it is clear that Z exists and is moreover a strong so-
lution in Ω × (t0, T ). We have z � Z in Ω × (t0, T ) by the weak maximum principle (see e.g. [41, Proposition 52.13],
whose proof can be easily adapted to the case of Neumann boundary conditions).

By the variation-of-constants formula, we have

Z(t) = S(t − t0)Z(t0) + M1

t∫
t0

S(t − s)φwp(s) ds +
t∫

t0

S(t − s)g(s) ds, t0 < t < T .

Denote w̃(t) = w(t)|B(a,ρ) and recall (A.12). Using formula (2.3), Proposition 2.3 and the estimate ‖S(t)h‖∞ �
‖h‖∞, we obtain, for all t ∈ (t0, T ),

∥∥Z(t)
∥∥∞ �

∥∥Z(t0)
∥∥∞ + M1

t∫
t0

∥∥wp−1Z
∥∥∞(s) ds + C

t∫
t0

(
1 + (t − s)−1/2)∥∥w̃(s)

∥∥ds. (A.14)

Using assumption (4.10), it follows that,

∥∥Z(t)
∥∥∞ �

∥∥Z(t0)
∥∥∞ + M1ε

p−1

t∫
t0

(T − s)−1‖Z‖∞(s) ds + Cε

t∫
t0

(
1 + (t − s)−1/2)(T − s)−1/(p−1) ds.

Here and in what follows, C is a generic positive constant possibly depending on the solution u. If p > 3, we deduce
that ∥∥Z(t)

∥∥∞ � C + M1ε
p−1

t∫
t0

(T − s)−1‖Z‖∞(s) ds, t0 < t < T .

Taking ε so small that M1ε
p−1 < 1/(p + 1) it follows from Gronwall’s lemma that, for all t ∈ (t0, T ), ‖z(t)‖∞ �

‖Z(t)‖∞ � C(T − t)−1/(p+1), hence w(x, t) � C(T − t)−1/(p+1) in Ω ∩ B(a,ρ/2), due to (A.5). Now let φ̌ be the
cut-off function given by Lemma A.1 with ρ/2 instead of ρ, and define Ž, ž correspondingly. We deduce from (A.14)
applied to Ž that

∥∥Ž(t)
∥∥∞ �

∥∥Ž(t0)
∥∥∞ + C

t∫
t0

(T − s)−p/(p+1) ds + Cε

t∫
t0

(
1 + (t − s)−1/2)(T − s)−1/(p+1) ds � C.

It follows that w is bounded near (a, T ), hence a is not a blow-up point.
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The case 1 < p � 3 follows by adding a bootstrap argument to the above procedure – see the proof of [15, Theo-
rem 2.1] for details. �
References

[1] P. Biler, Local and global solvability of some parabolic systems modeling chemotaxis, Adv. Math. Sci. Appl. 8 (1998) 715–743.
[2] P. Biler, G. Karch, Ph. Laurençot, T. Nadzieja, The 8π -problem for radially symmetric solutions of a chemotaxis model in a disc, Topol.

Methods Nonlinear Anal. 27 (2006) 133–147.
[3] P. Biler, T. Nadzieja, Existence and nonexistence of solutions for a model of gravitational interaction of particles. I, Colloq. Math. 66 (1994)

319–334.
[4] A. Blanchet, J.A. Carrillo, N. Masmoudi, Infinite time aggregation for the critical Patlak–Keller–Segel model in R2, Comm. Pure Appl. Math.

61 (2008) 1449–1481.
[5] A. Blanchet, J. Dolbeault, B. Perthame, Two-dimensional Keller–Segel model: optimal critical mass and qualitative properties of the solutions,

Electron. J. Differential Equations 44 (2006), 32 pp.
[6] V. Calvez, L. Corrias, The parabolic–parabolic Keller–Segel model in R2, Comm. Math. Sci. 6 (2008) 417–447.
[7] S. Childress, Nonlinear aspects of chemotaxis, Math. Biosci. 56 (1981) 217–237.
[8] S. Childress, J.K. Percus, Chemotactic Collapse in Two Dimensions, Lecture Notes in Biomath., vol. 55, Springer, Berlin, 1984, pp. 61–66.
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