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Abstract

Multi-bang control refers to optimal control problems for partial differential equations where a distributed control should only
take on values from a discrete set of allowed states. This property can be promoted by a combination of L2 and L0-type control
costs. Although the resulting functional is nonconvex and lacks weak lower-semicontinuity, application of Fenchel duality yields a
formal primal-dual optimality system that admits a unique solution. This solution is in general only suboptimal, but the optimality
gap can be characterized and shown to be zero under appropriate conditions. Furthermore, in certain situations it is possible to
derive a generalized multi-bang principle, i.e., to prove that the control almost everywhere takes on allowed values except on sets
where the corresponding state reaches the target. A regularized semismooth Newton method allows the numerical computation of
(sub)optimal controls. Numerical examples illustrate the effectiveness of the proposed approach as well as the structural properties
of multi-bang controls.
© 2013
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1. Introduction

This work is concerned with the problem⎧⎪⎪⎪⎨⎪⎪⎪⎩
min
u,y

1

2
‖y − z‖2

L2 + α

2
‖u‖2

L2 + β

∫
Ω

d∏
i=1

|u(x) − ui |0 dx

s.t. Ay = u, u1 � u(x) � ud for almost every x ∈ Ω

(1.1)

for given α > 0, β > 0, real numbers u1 < · · · < ud , d � 2, and a target z ∈ L2(Ω). We assume that A : V → V ∗ is an
isomorphism for a Hilbert space V with continuous, compact and dense embeddings V ↪→ L2(Ω) ↪→ V ∗ (typically,
an elliptic partial differential operator). The binary term

|t |0 :=
{

0 if t = 0,

1 if t �= 0,
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is related to Donoho’s counting measure. Problem (1.1) is motivated by optimal control problems where it is only
possible or desired for the control to take on values from a discrete set of given control states ui (e.g., velocities or
voltages), preferably those of smallest possible magnitude. In analogy to bang-bang controls, which (under suitable
conditions) attain their control constraints almost everywhere, we refer to such controls as multi-bang controls.

Let us remark on some related control problems. For d = 1, u1 = 0, and no control constraints, problem (1.1) was
investigated in [1], where the choice of the cost was motivated by obtaining sparsity in the structure of the optimal
controls. Sparsity can also be promoted by L1-type and measure-space functionals; see, e.g. [2–4] and the references
given there. We point out that although the desired controls are piecewise constant, problem (1.1) differs fundamen-
tally from control problems with a total-variation-type penalty as considered in [4], since here the constants are fixed
a priori. For d = 2 and α = β = 0, problem (1.1) is a classical bang-bang control problem, where optimal controls
satisfy a generalized bang-bang-principle, i.e., the control constraints u1 and u2 are attained almost everywhere out-
side a set where the optimal state reaches the target; see, e.g., [5–8]. The case d = 3 and u1 < u2 = 0 < u3 has been
treated as a “bang-sparse-bang” control problem in [1, Section 4]. In the context of time-dependent systems, controls
taken pointwise in time from a discrete set of states are referred to as switching controls and have been treated in the
literature mainly with respect to feedback control for ordinary differential equations and exact controllability. Regard-
ing the former we refer to [9–11], where feedback controls and compensators are constructed that switch between a
discrete set of gain operators; typically with the goal of stability of the closed loop system. In [12,13], controllability
of ordinary differential equations and of the heat equation is analyzed for control actuators with switching structure.

Problem (1.1) is challenging since the penalty term is neither convex nor lower semicontinuous. We thus cannot
apply the standard approach in optimal control, which consists in arguing existence of a solution via limits of a
minimizing sequence and deriving necessary optimality conditions using separation theorems from convex analysis.
Recall that for Fréchet-differentiable F and convex G, a minimizer ū of

min
u

F(u) + G(u) (1.2)

satisfies the following necessary optimality conditions: there exists a p̄ = −F ′(ū) such that p̄ ∈ ∂G(ū), which holds
if and only if ū ∈ ∂G∗(p̄); see, e.g., [14, Proposition 4.4.4]. Here, G∗ denotes the Fenchel conjugate of the convex
functional G, and ∂G∗ denotes its convex subdifferential. We thus obtain the primal-dual optimality system{−p̄ =F ′(ū),

ū ∈ ∂G∗(p̄).
(1.3)

Note that since Fenchel conjugates are always convex, this system is well-defined even for nonconvex G, although one
cannot derive it as a necessary optimality condition for minimizers of (1.2).1 We thus follow the approach from [1],
in that we show existence of a solution to (1.3) and verify that (under some conditions) it is a minimizer of (1.1). This
approach is based on deriving an explicit, pointwise characterization of the subdifferential ∂G∗, which also yields
that under some assumptions on α, β , A and z, the solution will attain the values u1, . . . , ud almost everywhere (i.e.,
it satisfies a generalized multi-bang principle). This characterization is also instrumental for the numerical solution
of (1.3) using a semismooth Newton method.

This paper is organized as follows. The next section is concerned with the formal optimality system (1.3), where
an explicit form is derived in Section 2.1, existence and stability of a unique solution is shown in Section 2.2, and the
structure of the resulting controls – in particular, conditions for a generalized multi-bang principle – is investigated in
Section 2.3. Suboptimality of controls is characterized in Section 3, and conditions for optimality are given. Section 4
addresses the computation of solutions by introducing a regularization of (1.3) for which a semismooth Newton
method is applicable. Finally, Section 5 illustrates the structure of multi-bang controls with numerical examples.

2. Formal optimality system

In this section we consider the system (1.3) with

1 This “formal convex analysis” approach should be compared to the formal Lagrangian approach for deriving explicit optimality conditions in
optimal control of partial differential equations.
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F : L2(Ω) → R, u �→ 1

2

∥∥A−1u − z
∥∥2

L2 ,

G : L2(Ω) → R, u �→
∫
Ω

(
α

2

∣∣u(x)
∣∣2 + β

d∏
i=1

∣∣u(x) − ui

∣∣
0

)
dx + δU (u),

where δU is the indicator function of the admissible set

U := {
u ∈ L2(Ω): u1 � u(x) � ud for almost every x ∈ Ω

}
.

2.1. Fenchel conjugate and subdifferential

We begin by computing the Fenchel conjugate G∗ of G, which is defined as

G∗(p) = sup
u∈L2(Ω)

〈u,p〉L2 − G(u),

where 〈·,·〉L2 denotes the inner product in L2(Ω). Since G is the integral of the function

g : R→ R, v �→ α

2
v2 + β

d∏
i=1

|v − ui |0 + δ[u1,ud ](v),

the Fenchel conjugate can be computed pointwise as well; see, e.g., [15, Proposition IV.1.2]. Hence,

G∗(p) =
∫
Ω

g∗(p(x)
)
dx,

where

g∗ : R→ R, q �→ sup
v

vq − g(v), (2.1)

is the Fenchel conjugate of g. To compute g∗(q), we assume that the supremum in (2.1) for given q is attained at v̄.
Then we discriminate the following cases:

(i) v̄ = ui for an i ∈ {1, . . . , d}. Then,

g(v̄) = α

2
u2

i ,

and hence

g∗(q) = qui − α

2
u2

i .

(ii) v̄ �= ui for any i ∈ {1, . . . , d}. Then, v �→ |v − ui |0 ≡ 1 is differentiable at v̄ and hence the supremum in (2.1) is
attained if the necessary condition

v̄ − 1

α
q = 0

is satisfied. Hence in this case,

g∗(q) = 1

2α
q2 − β.

It remains to decide which of these cases is attained based on the value of q . For this purpose, it will be convenient to
define the functions

g∗
i (q) =

{
qui − α

2 u2
i if 1 � i � d,

1 q2 − β if i = 0.
2α
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Firstly, case (i) together with the box constraints on v imply that for q < αu1, the supremum is attained at v̄ = u1, and
similarly, for q > αud , at v̄ = ud . Hence we have that

g∗(q) =
{

g∗
1(q) if q < αu1,

g∗
d(q) if q > αud.

In fact, for q < αu1 we have v /∈ {u1, . . . , ud} since otherwise αv = q < αu1 and hence v < u1, which is impossible.
Hence v ∈ {u1, . . . , ud}. Since for all j ∈ {2, . . . , d} we have(

α(uj + u1)

2
− q

)
(uj − u1) > (αu1 − q)(uj − u1) > 0,

it follows that

g∗
1(q) = qu1 − α

2
u2

1 > quj − α

2
u2

j = g∗
j (q).

We find that g∗(q) = g∗
1(q) if q < αu1. The case q > αud is argued analogously.

We turn to the case q ∈ [αu1, αud ]. Then the pointwise supremum in (2.1) is attained at

g∗(q) = max
{
g∗

0(q), g∗
1(q), . . . , g∗

d(q)
}
.

From the definition of the g∗
i , we have that g∗

0(q) > g∗
j (q) for all j ∈ {1, . . . , d} if and only if

1

2α
(q − αuj )

2 > β for all j ∈ {1, . . . , d}. (2.2)

Hence, for all q ∈ [αu1, αud ] satisfying (2.2), we have that g∗(q) = g∗
0(q). Next consider some q for which

1

2α
(q − αuj )

2 < β for some j ∈ {1, . . . , d},
and determine i such that g∗

i (q) > g∗
j (q) for all j �= i, j > 0. This is the case if and only if

(ui − uj )q >
α

2

(
u2

i − u2
j

)
,

and since the uj are distinct and ordered, this is equivalent to

q ≷ α

2
(ui + uj ) if ui ≷ uj .

This can be written explicitly as

αu1 � q <
α

2
(u1 + u2) if i = 1,

α

2
(ui + ui−1) < q <

α

2
(ui + ui+1) if 1 < i < d,

α

2
(ud−1 + ud) < q � αud if i = d.

Making use of the fact that the ui are ordered, we introduce the sets

Pi :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{q: |q − αuj | > √

2αβ for all j ∈ {1, . . . , d} and αu1 < q < αud} if i = 0,{
q: q − αu1 <

√
2αβ and q < α

2 (u1 + u2)
}

if i = 1,{
q: q − αui | < √

2αβ and α
2 (ui−1 + ui) < q < α

2 (ui + ui+1)
}

if 1 < i < d,{
q: q − αud >

√
2αβ and α

2 (ud + ud−1) < q
}

if i = d.

Summarizing the above calculation and using this definition, we then have

g∗(q) =
{

qui − α
2 u2

i if q ∈ P i, 1 � i � d,

1
2α

q2 − β if q ∈ P 0.

Note that the Pi are pairwise disjoint and that
⋃d

i=0 P i = R. Furthermore, g∗
i (q) = g∗

j (q) for q ∈ P i ∩ P j , since in
this case equality must hold in place of the corresponding inequalities. This implies that g∗ is well-defined, and in
particular that g∗ is (locally Lipschitz) continuous.
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Fig. 1. Plot of g∗(q) (left) and ∂g∗(q) (right) for d = 3, (u1, u2, u3) = (−1,1,2), α = 0.5, β = 0.1. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

We also note that while the sets {Pi}di=1 are open intervals ordered along R, the set P0 consists of several connected
components of the form

(
√

2αβ + ui, ui+1 −√
2αβ) =

(
α(ui+1 + ui)

2
− ρi,

α(ui+1 + ui)

2
+ ρi

)
if

ρi := α(ui+1 − ui)

2
−√

2αβ > 0

for i ∈ {1, . . . , d − 1}. If ρi � 0 for all i ∈ {1, . . . , d − 1}, the set P0 is empty.
Since the Fenchel conjugate g∗ is locally Lipschitz continuous, its convex subdifferential coincides with Clarke’s

generalized gradient [14, Proposition 7.3.9] and hence is given by

∂g∗(q) = co

( ⋃
{i: g∗(q)=g∗

i (q)}

{(
g∗

i

)′
(q)

})

=

⎧⎪⎪⎨⎪⎪⎩
{ui} if q ∈ Pi, 1 � i < d,{ 1

α
q
}

if q ∈ P0,

[ui, ui+1] if q ∈ P i ∩ P i+1, 1 � i < d,[
min

{
ui,

1
α
q
}
,max

{
ui,

1
α
q
}]

if q ∈ P i ∩ P 0, 1 � i � d,

(2.3)

where co denotes the closed convex hull. Fig. 1 gives an example of g∗(q) and ∂g∗(q), where P0 only consists of a
single connected component between P1 and P2.

2.2. Existence and stability

We now verify existence of a solution (ū, p̄) to the formal optimality system (1.3), which can be written as{
−p̄ = A−∗(A−1ū − z

)
,

ū ∈ ∂G∗(p̄),
(2.4)
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where using (2.3), the subdifferential of the convex function G∗ is defined pointwise almost everywhere by

∂G∗(p)(x) = ∂g∗(p(x)
)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{ui} if p(x) ∈ Pi,{ 1

α
p(x)

}
if p(x) ∈ P0,

[ui, ui+1] if p(x) ∈ P i ∩ P i+1,[
min

(
ui,

1
α
p(x)

)
,max

{
ui,

1
α
p(x)

}]
if p(x) ∈ P i ∩ P 0.

Theorem 2.1. There exists a unique solution (ū, p̄) ∈ L2(Ω) × V to (2.4).

Proof. We introduce ȳ := z − A−1ū ∈ L2(Ω) and eliminate ū and p̄ from (2.4) to obtain the reduced optimality
condition

z ∈ ȳ + A−1∂G∗(A−∗ȳ
)
. (2.5)

Since ∂G∗ is the subdifferential of a convex function, it is maximal monotone from L2(Ω) to L2(Ω); see [16, Theo-
rem 20.40]. Furthermore, A and thus A∗ are isomorphisms by assumption, and hence we have that A−∗ is a bounded
operator with ran(A−∗) = V ↪→ L2(Ω). From dom(∂G∗) = L2(Ω), it follows that⋃

λ>0

λ
(
ran

(
A−∗)− dom

(
∂G∗))= L2(Ω)

is closed. This implies that A−1∂G∗(A−∗·) is maximal monotone; see [16, Theorem 24.5]. Since the identity is clearly
maximal monotone with domain L2(Ω), we have that B := I + A−1∂G∗(A−∗·) is maximal monotone from L2(Ω)

to L2(Ω) as well; see [16, Corollary 24.4].
Now by convexity of G∗, we have 〈∂G∗(v) − ∂G∗(0), v〉L2 � 0 for all v ∈ L2(Ω), and hence〈

y + A−1∂G∗(A−∗y
)
, y
〉
L2 = ‖y‖2

L2 + 〈
∂G∗(A−∗y

)
,A−∗y

〉
L2

� ‖y‖2
L2 + 〈

A−1∂G∗(0), y
〉
L2

→ ∞
as ‖y‖L2 → ∞. Hence B is coercive and maximal monotone on L2(Ω) and thus surjective on L2(Ω); see [16,
Corollary 21.2]. From this, we obtain that for any z ∈ L2(Ω) there exists a ȳ ∈ L2(Ω) satisfying (2.5). Furthermore,
for any such ȳ we have

z − ȳ ∈ A−1(∂G∗(A−∗ȳ
))

,

and hence z − ȳ ∈ ran(A−1) = dom(A). We can thus set

ū := A(z − ȳ) ∈ ∂G∗(p̄) ⊂ L2(Ω),

p̄ := A−∗ȳ = A−∗(z − A−1ū
) ∈ V,

and obtain the desired solution of (2.4).
To show uniqueness, assume that ȳ1, ȳ2 ∈ L2(Ω) are two solutions. By inserting both into (2.5) and subtracting,

we obtain

0 = 〈
ȳ1 − ȳ2 + A−1∂G∗(A−∗ȳ1

)− A−1∂G∗(A−∗ȳ2
)
, ȳ1 − ȳ2

〉
L2

= ‖ȳ1 − ȳ2‖2
L2 + 〈

∂G∗(A−∗ȳ1
)− ∂G∗(A−∗ȳ2

)
,A−∗ȳ1 − A−∗ȳ2

〉
L2

� ‖ȳ1 − ȳ2‖2
L2

by monotonicity of ∂G∗, and hence that ȳ1 = ȳ2. Next, let (ū, p̄) ∈ L2(Ω) × V solve (2.4). Then, ȳ := z − A−1ū =
A∗p̄ ∈ L2(Ω) satisfies (2.5). Since this solution is unique and A is an isomorphism, the pair (ū, p̄) must be unique as
well. �
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For later reference, we recall that if (ū, p̄) satisfies ū ∈ ∂G∗(p̄), we have that pointwise almost everywhere

ū(x) ∈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{u1} if p̄(x) < min
{
αu1 + √

2αβ, α
2 (u1 + u2)

}
,

{ui} if max
{
αui − √

2αβ, α
2 (ui−1 + ui)

}
< p̄(x)

< min
{
αui+1 + √

2αβ, α
2 (ui + ui+1)

}
, 1 < i < d,

{ud} if p̄(x) > max
{
αud − √

2αβ, α
2 (ud−1 + ud)

}
,{ 1

α
p̄(x)

}
if p̄(x) ∈ (αu1, αud) and |p̄(x) − αuj | > √

2αβ for all 1 � j � d,

[ui, ui+1] if p̄(x) = α
2 (ui + ui+1), 1 � i < d,[ 1

α
p̄(x), ui

]
if p̄(x) = αui − √

2αβ, 1 < i � d,[
ui,

1
α
p̄(x)

]
if p̄(x) = αui + √

2αβ, 1 � i < d.

(2.6)

Continuous dependence of the solution (ū, ȳ, p̄) on the data z is considered next.

Proposition 2.2. Let (ūz, ȳz, p̄z) denote the solution to (2.4) for given z ∈ L2(Ω). Then, the following statements hold.

(a) There exists a constant K > 0 such that

‖ȳz1 − ȳz2‖L2 + ‖p̄z1 − p̄z2‖V � K‖z1 − z2‖L2,

for all z1 ∈ L2(Ω), z2 ∈ L2(Ω).
(b) For zn → z in L2(Ω) we have that (uzn, yzn) ⇀ (uz, yz) weakly in V ∗ × V and pzn → pz strongly in V .
(c) For z ∈ L2(Ω), let S be a compact subset of

⋃d
i=0 Pi . If A is an isomorphism from H 2(Ω) ∩ H 1

0 (Ω) to L2(Ω)

and Ω ⊂R
n, n� 3, then there exist a neighborhood U(z) in L2(Ω) and a constant KS such that

‖uz̃ − uz‖H 2(ΩS) � KS‖z̃ − z‖L2 for all z̃ ∈ U(z),

where ΩS = {x: p̄(x) ∈ S}.

Proof.

(a) Proceeding as in the second part of the proof of Theorem 2.1 we find that

〈z1 − z2, ȳz1 − ȳz2〉L2 � ‖ȳz1 − ȳz2‖L2,

and hence that ‖ȳz1 − ȳz2‖L2 � ‖z1 − z2‖2
L2 . The estimate now follows using the first equation of (2.4).

(b) To simplify notation, let (un, yn,pn) = (ūzn , ȳzn , p̄zn). By (a) we have that {pn}n∈N is bounded in V , and hence
by the compact embedding V ↪→ L2(Ω), there exists a subsequence (denoted by the same symbol) such that
pn → p̄ := p̄z almost everywhere in Ω ; see, e.g., [17, Theorem 4.3]. Furthermore, the box constraints on un

imply that {un}n∈N is bounded in L2(Ω) and hence that there exists a subsequence of {un}n∈N (also denoted by
the same symbol) such that un ⇀ ũ weakly in L2(Ω) for some ũ ∈ L2(Ω). From (2.6), we deduce that

un → ū almost everywhere on

{
x ∈ Ω: p̄(x) ∈

d⋃
i=0

Pi

}
,

where we use that the sets Pi are open and pn → p̄ almost everywhere. Since un ⇀ ũ and un = 1
α
pn on P0, with

pn → p̄ in L2(Ω), we conclude that un → ũ = ū almost everywhere on {x ∈ Ω: p̄(x) ∈⋃d
i=0 Pi}.

We still need to consider the sets Si,i+1 = {x ∈ Ω: p̄(x) ∈ P i ∩ P i+1} for i ∈ {1, . . . , d − 1} and Si,0 = {x ∈
Ω: p̄(x) ∈ P i ∩ P 0} for i ∈ {1, . . . , d}; note that these sets can be empty. Since un ⇀ ũ weakly in L2(Ω),
from Mazur’s theorem (see, e.g., [18, Theorem V.1.2]) we obtain existence of a convex combination of un that
converges strongly in L2(Ω) to a ũ ∈ L2(Ω). Specifically, there exist coefficients {γ n

k }k,n∈N and summation

bounds {ln}n∈N with
∑l(n)

k=1 γ n
k = 1, and indices nk ∈ {n,n + 1, . . .} such that

ũn :=
ln∑

γ n
k unk

→ ũ strongly in L2(Ω),
k=1
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see [17, Exercise 3.4]. Taking another subsequence, we have ũn → ũ almost everywhere in L2(Ω). To argue that
ũ ∈ ∂G∗(p̄) on

⋃d−1
i=1 Si,i+1 ∪⋃d

i=1 Si,0, we first consider

S1,0 = {
x ∈ Ω: p̄(x) ∈ P 1 ∩ P 0

}= {
x ∈ Ω: p̄(x) = αu1 +√

2αβ
}

(in case it is nonempty). Recall that pn(x) → p̄(x) for almost every x ∈ Ω . Let x ∈ S1,0 be such that pn(x) →
p̄(x) and ũn(x) → ũ(x). Then un(x) ∈ [u1,

1
α
pn(x)] for all n sufficiently large. Consequently,

ũn(x) =
ln∑

k=1

γ n
k unk

(x) ∈
[
u1, sup

k�n

pk(x)
]
.

Taking the limit as n → ∞, we obtain that ũ(x) ∈ [u1,
1
α
p̄(x)] = [u1, αu1 + √

2αβ ], and hence that ũ(x) ∈
∂G∗(p̄)(x) for almost every x ∈ Sd,0. Analogous arguments can be used for the sets Si,i+1 and Si,0 with i ∈
{2, . . . , d} (if they are nonempty). Altogether we have that

ũ ∈ ∂G∗(p̄) almost everywhere on Ω.

Thus (ũ, ȳ, p̄) satisfies (2.4). Uniqueness of the solution to (2.4) implies that ũ = ū.
(c) Next consider the sets Pi associated to the solution (ūz, ȳz, p̄z) of (2.4). By the assumptions on Ω and A we

have that pz̃ → pz in H 2(Ω) ↪→ C(Ω) as z̃ → z in L2(Ω). Hence there exists a neighborhood Uz such that
{x ∈ Ω: p̄z(x) ∈ S ∩ Pi} ⊂ {x ∈ Ω: pz̃(x) ∈ Pi} for i ∈ {0, . . . , d}. Consequently,

ūz = ūz̃ = ui on
{
x ∈ Ω: p̄z(x) ∈ S ∩ Pi

}
for 1 � i � d, and

ūz − ūz̃ = 1

α
(p̄z − p̄z̃) on

{
x ∈ Ω: p̄z(x) ∈ S ∩ P0

}
.

These equalities imply the claim. �
2.3. Structure of solution

We now discuss the structure of the solution ū to (2.4), and in particular, conditions under which ū only takes on
the values u1, . . . , ud almost everywhere. First, observe that

Ω =
d⋃

i=1

{
x ∈ Ω: ū(x) = ui

}∪
{
x ∈ Ω: ū(x) = 1

α
p̄(x) and ū(x) /∈ {u1, . . . , ud}

}

∪
{
x ∈ Ω: ū(x) /∈

{
u1, . . . , ud,

1

α
p̄(x)

}}

=:
d⋃

i=1

Ai ∪F ∪ S.

In analogy to bang-bang control problems, we refer to A :=⋃d
i=1 Ai as the multi-bang arc, to F as the free arc, and

to S as the singular arc.
Consider first the free arc. From (2.6), we can deduce that

F ⊂ {
x ∈ Ω: αui +√

2αβ < p̄(x) < αui+1 −√
2αβ for all 1 � i < d

}∩ (αu1, αud).

Hence, if α and β are chosen such that√
2β/α � 1

2
(ui+1 − ui) for all 1 � i < d, (2.7)

then P0 = ∅, and thus there is no free arc. Note that as long as (2.7) is satisfied, the value of β does not appear in (2.6),
and thus it has no further influence on the structure of ū. Rather than the values themselves, it is therefore the relations
between β and α and between α and ui+1 − ui , 1 � i < d , that determine the structural properties of ū.
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Similarly, we have

S =
{

x ∈ Ω: p̄(x) ∈
d−1⋃
i=1

(P i ∩ P i+1) ∪
d⋃

i=1

(P i ∩ P 0)

}

⊂
{

x ∈ Ω: p̄(x) ∈
d−1⋃
i=1

{
α

2
(ui + ui+1)

}
∪

d⋃
i=1

{αui −√
2αβ,αui +√

2αβ}
}

. (2.8)

From this representation it is possible to derive generalized multi-bang principles for ū. A specific case is given in the
following result, where we assume that A is a second order elliptic partial differential operator of the form

Ay = −
n∑

i,j=1

∂xi
(ai,j ∂xj

y) +
n∑

i=1

∂xi
(biy)

with ai,j ∈ W 1,∞(Ω) and bi ∈ L∞(Ω).

Proposition 2.3. If α and β are chosen according to (2.7), and A satisfies A−∗(L2(Ω)) ⊂ W 2,1(Ω) in addition to the
assumptions above, then

Ω =
d⋃

i=1

{
x ∈ Ω: ū(x) = ui

}∪ {
x ∈ Ω: ȳ(x) = z(x)

}
. (2.9)

Proof. The choice of α and β ensures that there is no free arc. Assume now that the singular arc S has positive
Lebesgue measure (otherwise we are finished). To show that ȳ = z almost everywhere on S , we make use of the
following result from [19, Lemma II.A.4]: Let w ∈ W 1,p(Ω) for some 1 � p � ∞. Then ∇w = 0 almost everywhere
on {x ∈ Ω: w(x) = t} for every t ∈ R. Applying this result for w = p̄ and S1 := {x ∈ Ω: p̄(x) = α

2 (u1 + u2)}, we
deduce that ∇p̄ = 0 almost everywhere on S1. Utilizing this fact, the assumed regularity p̄ ∈ W 2,1(Ω) of the adjoint
state, and the regularity of the coefficients, we can proceed as in [8, Theorem 5.2] to argue that A∗p̄ = 0 almost
everywhere on S1. This argument can be repeated for all components of S . Hence ȳ − z = A∗p̄ = 0 on S , and the
representation (2.9) follows. �

We refer to ū satisfying (2.9) as a generalized multi-bang control. In particular, if α and β are chosen according
to (2.7) and ȳ(x) �= z(x) for almost every x ∈ Ω , ū will only attain values among the desired control states u1, . . . , ud ,
and thus it will be a true multi-bang control. Furthermore, for fixed α, any choice of β satisfying (2.7) leads to the
same control.

As noted in the Introduction, problem (1.1) for d = 2 represents a bang-bang control problem, since in this case, if
the parameters are chosen to satisfy (2.7),

g∗(q) =
{

qu1 if q < α
2 (u1 + u2),

qu2 if q � α
2 (u1 + u2).

Under the assumptions of Proposition 2.3, ū is a generalized bang-bang control, i.e., in the almost everywhere sense,
it will only take on the values of the control constraints u1 and u2 except on singular arcs where ȳ = z. Compared to
standard bang-bang problems, however, the solution ū will be biased towards either u1 or u2 based on the value of α

(unless u1 = −u2). By setting α = 0 in (2.6) we (formally) recover the standard optimality conditions for bang-bang
controls.

Remark 1. The quadratic term α
2 |u(x)|2 should not be interpreted as a regularization of the binary term |u(x) − ui |0,

but as an equally important part of the “multi-bang penalty” G. Let us first turn our attention to the fact that the control
constraints alone are sufficient to ensure existence of a solution to (2.4) even for α = 0. Following the approach in this
section, we find then that the supremum in the Fenchel conjugate (2.1) is attained at the maximal or minimal bound:
For any d � 2, we have that

g̃∗(q) = max{qu1, qu2, . . . , qud−1, qud} =
{

qu1 if q < 0,

qu if q � 0.
d
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Hence, under the assumptions of Proposition 2.3, ū will always be a generalized bang-bang control, independent of
the value of β and the choice of ui , 1 < i < d . The presence of the quadratic term in G is therefore essential for being
able to select from all possible desired control states u1, . . . , ud . Furthermore, from (2.6) we see that smaller values of
α > 0 will allow the control to attain control states of larger magnitudes. In particular, if 0 is among the control states,
the value of α controls the sparsity of the control ū.

We finish this section by remarking on some alternative formulations of the multi-bang penalty in (1.1).

(i) Instead of the product, we can penalize the sum of the binary terms, i.e., consider

g̃(v) = α

2
|v|2 + β

d∑
i=1

|v − ui |0 + δ[u1,ud ](v).

We then obtain

g̃∗(q) =
{

qui − α
2 u2

i − (n − 1)β if q ∈ P i, 1 � i � d,

1
2α

q2 − nβ if q ∈ P 0,

i.e., the Fenchel conjugate is the same up to the additive constant −(n − 1)β , and hence its subdifferential
coincides with ∂g∗.

(ii) The L2 penalty is sufficient to ensure existence of a solution to problem (1.1) even without control constraints.
In this case, we obtain that g̃∗(q) = g∗

0(q) if

1

2α
(q − αuj )

2 > β for all j ∈ {1, . . . , d},
and hence

P̃0 = {
q: |q − αuj | >

√
2αβ for all j ∈ {1, . . . , d}}.

The free arc will thus always contain the two components (−∞, αu1 −√
2αβ) and (αud +√

2αβ,∞). In general,
this will prevent the generalized multi-bang principle in Theorem 2.3 to hold even with the choice (2.7).

(iii) Finally, if the control constraints take the form a � u(x) � b with a < u1 and b > ud , and α = 0, a similar
argument as above shows that

g̃∗(q) = max{qa − β,qu1, . . . , qud, qb − β} =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

qa − β if q < − β
u1−a

,

qu1 if − β
u1−a

� q < 0,

qud if 0 � q <
β

b−ud
,

qb − β if β
b−u1

� q.

Although ū may now take on the two bounds a and b besides the states u1 and ud , the multi-bang arc will not
contain the control states u2, . . . , ud−1.

3. Duality gap and (sub)optimality

We now investigate in which cases the system (1.3) represents sufficient optimality conditions for problem (1.1).
Let (ū, p̄) satisfy (1.3). Since F is convex and Fréchet differentiable, the first relation of (1.3) implies that for any u,

F(u) −F(ū) − 〈−p̄, u − ū〉� 0.

If we could similarly argue that

G(u) − G(ū) − 〈p̄, u − ū〉� 0, (3.1)

we would obtain that ū is a minimizer of J (u) := F(u) + G(u). For convex functionals, this inequality follows from
the characterization of the subdifferential together with the Fenchel–Young inequality. However, since G is not convex,



C. Clason, K. Kunisch / Ann. I. H. Poincaré – AN 31 (2014) 1109–1130 1119
inequality (3.1) cannot hold in general and hence we can only expect that (ū, p̄) is suboptimal. This manifests itself
in a duality gap in the Fenchel extremality relations, i.e., there is an ε � 0 such that

G(ū) + G∗(p̄) � 〈p̄, ū〉 + ε,

which in our case arises due to the set-valued nature of the subdifferential ∂G∗. To estimate the gap ε, we therefore
introduce the critical set

C := {
x ∈ Ω: p̄(x) ∈ P i ∩ P j and ū(x) /∈ {(g∗

i

)′
(x),

(
g∗

j

)′
(x)

}
for some i < j ∈ {0, . . . , d}}.

The geometrical interpretation of the condition x ∈ C is that ū(x) is not an extremal point of [ui, ui+1] if p̄(x) ∈
P i ∩P i+1 for some i ∈ {1, . . . , d −1}, respectively ū(x) is not an extremal point of [min{ui,

1
α
p̄(x)},max{ui,

1
α
p̄(x)}]

if p̄(x) ∈ P i ∩ P 0 for some i ∈ {1, . . . , d}.

Lemma 3.1. Let (ū, p̄) satisfy ū ∈ ∂G∗(p̄), i.e., (2.6). Then we have

G(ū) + G∗(p̄) − 〈p̄, ū〉 � β|C|,
where |C| denotes the Lebesgue measure of the critical set.

Proof. We discriminate pointwise based on the value of p̄(x) for almost every x ∈ Ω .

(i) p̄(x) ∈ Pi for some i ∈ {1, . . . , d}. In this case, the relation (2.6) yields ū(x) = ui and thus

g
(
ū(x)

)+ g∗(p̄(x)
)− p̄(x)ū(x) = α

2
u2

i + p̄(x)ui − α

2
u2

i − p̄(x)ui = 0.

(ii) p̄(x) ∈ P0 and thus ū(x) = 1
α
p̄(x), yielding

g
(
ū(x)

)+ g∗(p̄(x)
)− p̄(x)ū(x) = α

2

(
1

α
p̄(x)

)2

+ β + 1

2α
p̄(x)2 − β − 1

α
p̄(x)2 = 0.

(iii) p̄(x) ∈ P i ∩ P i+1 = {α
2 (ui + ui+1)} for some i ∈ {1, . . . , d − 1} and hence ū(x) ∈ [ui, ui+1]. Assume first that

ui < ū(x) < ui+1. Then we have

g
(
ū(x)

)+ g∗(p̄(x)
)− p̄(x)ū(x) = α

2
ū(x)2 + β + α

2
(ui + ui+1)ui − α

2
u2

i − α

2
(ui + ui+1)ū(x)

= α

2

(
ū(x) − ui

)(
ū(x) − ui+1

)+ β

< β

for all ū(x) ∈ (ui, ui+1) since the first term is negative there.
For ū(x) ∈ {ui, ui+1}, we argue as in case (i) to find that

g
(
ū(x)

)+ g∗(p̄(x)
)− p̄(x)ū(x) = 0.

(iv) p̄(x) ∈ P 0 ∩ P i . This implies

p̄(x) ∈
⎧⎨⎩

{αu1 + √
2αβ } if i = 1,

{αui − √
2αβ,αui + √

2αβ } if 1 < i < d,

{αud − √
2αβ } if i = d.

Consider first the case p̄(x) = αui + √
2αβ for some i ∈ {1, . . . , d − 1}, which implies that ū(x) ∈ [ui,

1
α
p̄(x)].

Assume that ui < ū(x) < 1
α
p̄(x) (otherwise argue as in case (i) or (ii)). Then

g
(
ū(x)

)+ g∗(p̄(x)
)− p̄(x)ū(x) = α

2
ū(x)2 + β + p̄(x)ui − α

2
u2

i − p̄(x)ū(x).

A simple calculus argument shows that the right-hand side is a monotonically decreasing function of ū(x) on
(ui,

1
α
p̄(x)) and hence attains its supremum for ū(x) = ui , which implies that

g
(
ū(x)

)+ g∗(p̄(x)
)− p̄(x)ū(x) < β

for all ū(x) ∈ (ui,
1 p̄(x)).

α
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We argue similarly for p̄(x) = αui − √
2αβ for some i ∈ {2, . . . , d}.

Integrating over Ω yields the claim. �
Having computed the duality gap, we can now characterize (sub)optimality of solutions to the formal optimality

system (1.3) by similar arguments as in the convex case.

Theorem 3.2. Let (ū, p̄) satisfy (1.3). Then for any u ∈ L2(Ω),

J (ū)� J (u) + β|C|.
In particular, if C is a set of Lebesgue measure zero, ū is a solution to (1.1).

Proof. Assume that (ū, p̄) is a solution to (1.3) and let u ∈ L2(Ω) be arbitrary. Recall that the first relation of (1.3)
then implies that

F(u) −F(ū) − 〈−p̄, u − ū〉� 0.

Furthermore, Lemma 3.1 and the Fenchel–Young inequality (which holds for any proper G) imply that

G(u) − G(ū) − 〈p̄, u − ū〉� G(u) − 〈p̄, u〉 + G∗(p̄) − β|C|
� −β|C|.

Hence,

J (u) − J (ū) = (
F(u) + G(u)

)− (
F(ū) + G(ū)

)
= (

F(u) −F(ū) − 〈−p̄, u − ū〉)+ (
G(u) − G(ū) − 〈p̄, u − ū〉)

� −β|C|
as claimed. �

Since the critical set C is contained in the singular arc S , see (2.8), we immediately obtain the following optimality
result.

Corollary 3.3. If the solution ū to (2.4) is a true multi-bang control (in particular, if |S| = 0), then ū is a solution
to (1.1).

4. Solution of optimality system

We now address the computation of solutions to the formal optimality system (1.3), which after introduction of the
optimal state ȳ := A−1ū can be written as{

Aȳ = ū,

A∗p̄ = z − ȳ,

ū ∈ ∂G∗(p̄).

(4.1)

The main difficulty here lies in the set-valued nature of the subdifferential in (4.1). We therefore introduce a single-
valued regularization of (4.1) for which a semismooth Newton method can be applied.

4.1. Regularization

We consider a continuous, piecewise linear regularization of ∂G∗. Constructing this regularization is complicated
by the possible presence of free arcs; see Section 2.3 and Fig. 2. We thus need to introduce the following sets:
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Fig. 2. Possible situations for ∂g∗(q) and its regularization hε(q). Left: P i ∩ P i+1 �= ∅; right: P i ∩ P i+1 = ∅ and hence P i ∩ P i,0+ �= ∅,
P i+1 ∩ P i+1,0− �= ∅. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

P ε
1 =

{
q: q � αu1 +√

2αβ − ε and q � α

2
(u1 + u2) − ε

}
,

P ε
i =

{
q: |q − αui | �

√
2αβ − ε and

α

2
(ui−1 + ui) + ε � q � α

2
(ui + ui+1) − ε

}
,

P ε
d =

{
q: q � αud −√

2αβ + ε and q � α

2
(ud−1 + ud) + ε

}
,

P ε
0 = {

q: |q − αuj |�
√

2αβ + ε for all j ∈ {1, . . . , d} and q ∈ (αu1, αud)
}
,

and if α
2 (ui+1 − ui) �

√
2αβ (i.e., there is no free arc),

P ε
i,i+1 =

{
q:

∣∣∣∣q − α

2
(ui + ui+1)

∣∣∣∣< ε

}
, P ε

i,0− = P ε
i,0+ = ∅,

else

P ε
i,0− = {

q:
∣∣q − (αui −√

2αβ)
∣∣< ε

}
,

P ε
i,0+ = {

q:
∣∣q − (αui +√

2αβ)
∣∣< ε

}
, P ε

i,i+1 = ∅.

In both cases, P ε
1,0− and P ε

d,0+ are always defined as empty. To guarantee that the sets P ε
i are well-defined, we need

to assume that

ε < min

{√
2αβ,

α
(ui+1 − ui−1)

}
. (4.2)
4
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We then define

hε(q) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ui if q ∈ P ε
i ,

1
α
q if q ∈ P ε

0 ,

1
2ε

[
ui

(
α
2 (ui + ui+1) + ε − q

)+ ui+1
(
q − α

2 (ui + ui+1) + ε
)]

if q ∈ P ε
i,i+1,

1
2ε

[ 1
α
(αui − √

2αβ − ε)(αui − √
2αβ + ε − q)

+ ui(q − αui + √
2αβ + ε)

]
if q ∈ P ε

i,0−,

1
2ε

[
ui(αui + √

2αβ + ε − q)

+ 1
α
(αui + √

2αβ + ε)(q − αui − √
2αβ + ε)

]
if q ∈ P ε

i,0+.

The regularization Hε of the subdifferential ∂G∗ is then defined pointwise almost everywhere as

Hε(p)(x) = hε

(
p(x)

)
.

Since hε : R→R is (by construction) a continuous and monotone function, the corresponding superposition operator
Hε : L2(Ω) → L2(Ω) is maximal monotone; see [20, Exemple 2.3.3]. The regularized system{

Ayε = uε,

A∗pε = z − yε,

uε = Hε(pε),

(4.3)

thus has a unique solution (uε, yε,pε) by the same arguments as in the proof of Theorem 2.1. Note that P ε
i is strictly

contained in Pi for all i ∈ {0, . . . , d}. Therefore, if pε(x) ∈ P ε
i for some i ∈ {0, . . . , d} and almost all x ∈ Ω , we obtain

by comparing the definitions of Hε and ∂G∗ that

uε = Hε(pε) ∈ ∂G∗(pε),

and hence that (uε, yε,pε) satisfies (4.1). Furthermore, there is no singular arc in this case, and so uε is a true multi-
bang control and thus optimal. Otherwise, solutions to (4.3) converge to a solution to (4.1) in the following sense.

Theorem 4.1. As ε → 0, the sequence {(uε, yε,pε)}ε>0 converges weakly in L2(Ω)×V ×V to the solution (ū, ȳ, p̄)

to (4.1). If the critical set C has Lebesgue measure zero, uε → ū pointwise almost everywhere.

Proof. Using (4.3) and eliminating uε and pε , we have

yε + A−1Hε

(
A−∗yε

)= z,

and hence

yε + A−1Hε

(
A−∗yε

)− A−1Hε(0) = z − A−1Hε(0).

Since Hε is maximal monotone for every ε > 0, we obtain by taking the inner product with yε that

‖yε‖2
L2 � ‖z‖L2‖yε‖L2 + 〈

Hε(0),A−∗yε

〉
L2

� ‖z‖L2‖yε‖L2 + ∥∥Hε(0)
∥∥

L2

∥∥A−∗yε

∥∥
L2

� C‖yε‖L2,

where we have used that A−∗ is an isomorphism and that Hε(p) is bounded pointwise almost everywhere indepen-
dently of ε by max{|u1|, |ud |}. Together with (4.3), this implies that {(uε, yε,pε)}ε>0 is bounded in L2(Ω) × V × V .
Therefore, there exists a sequence {εn}n∈N with limn→∞ εn = 0 such that (uεn, yεn,pεn) ⇀ (û, ŷ, p̂) weakly in
L2(Ω)×V ×V . Since V ↪→ L2(Ω) compactly and after extracting a subsequence, we have in addition that pεn → p̂

pointwise almost everywhere in Ω . We can thus pass to the limit in (the weak formulation of) the first two equations
in (4.3) to obtain

Aŷ = û, A∗p̂ = z − ŷ.
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Arguing as in the proof of Proposition 2.2, we find coefficients {γ n
k }k,n∈N and summation bounds {ln}n∈N with∑ln

k=1 γ n
k = 1, and indices εnk

∈ {εn, εn+1, . . .} such that

ûεn :=
ln∑

k=1

γ n
k uεnk

→ û strongly in L2(Ω).

Hence, after extracting a further subsequence, ûεn → û almost everywhere in Ω . We then discriminate pointwise
almost everywhere for p̂:

(i) p̂(x) ∈ Pi for some i ∈ {0, . . . , d}: Since the Pi are open sets, by definition of the regularization we
have hεn(p̂(x)) = (g∗

i )′(p̂(x)) for all n sufficiently large. Pointwise convergence of pεn thus implies that
limn→∞ hεn(pεn(x)) = (g∗

i )′(p̂(x)), and since uε(x) = hε(pε(x)) we have

lim
n→∞ ûεn(x) = û(x) = (

g∗
i

)′(
p̂(x)

)
.

(ii) p̂(x) ∈ P i ∩ P i+1 for some 1 � i < d : Again by definition, we have

ui � hε

(
p̂(x)

)
� ui+1.

Since limn→∞ pεn(x) = p̂(x), we have using the definition of hε that

ui � hεn

(
pεn(x)

)
� ui+1

for all n sufficiently large. Since

ûεn(x) =
ln∑

k=1

γ n
k uεnk

=
ln∑

k=1

γ n
k hεnk

(
pεnk

(x)
)
,

we obtain that

ui � lim
n→∞ ûεn(x) = û(x) � ui+1.

(iii) p̂(x) ∈ P i ∩ P 0 for some 1 � i � d . We argue similarly as in (ii) that

lim
n→∞ ûεn(x) = û(x) ∈

[
min

{
ui,

1

α
p(x)

}
,max

{
ui,

1

α
p(x)

}]
.

These calculations imply that pointwise almost everywhere,

û(x) ∈ ∂g∗(p̂(x)
)
,

from which we deduce that (û, ŷ, p̂) satisfies (4.1). Since this solution is unique, the full sequence converges weakly
in L2(Ω) × V × V to (ū, ȳ, p̄).

Finally, if |C| = 0, the convergence uε → ū is pointwise almost everywhere since only case (i) needs to be consid-
ered. �
Remark 2. In the case that the singular arc S is not a set of measure zero, the weak but not pointwise convergence
can be observed numerically. An example for Ω = (0,1), A = −∂xx with homogeneous Dirichlet conditions, and
(u1, u2) = (−1,1) can be constructed as follows: Choose

p̄ =

⎧⎪⎪⎨⎪⎪⎩
−x

(
x − 1

3

)2 if 0 < x < 1
3 ,

0 if 1
3 < x < 2

3 ,

(1 − x)
(
x − 2

3

)2 if 2
3 < x < 1,

ū =

⎧⎪⎨⎪⎩
−1 if 0 < x < 1

3 ,

0 if 1
3 < x < 2

3 ,

1 if 2 < x < 1,
3
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Fig. 3. Controls uε showing weak but not pointwise convergence.

which satisfy ū ∈ ∂G∗(p̄). The corresponding state is

ȳ =

⎧⎪⎪⎨⎪⎪⎩
1
2x2 − 2

9x if 0 < x < 1
3 ,

1
9x − 1

18 if 1
3 < x < 2

3 ,

− 1
2x2 + 7

9x − 5
18 if 2

3 < x < 1.

Setting z = ȳ + (−∂xxp̄), this choice of (ū, ȳ, p̄) is a solution to (4.1). However, the sequence {(uε, yε,pε)}ε>0 does
not converge pointwise on the singular arc [ 1

3 , 2
3 ] but for smaller ε begins to oscillate between −1 and 1 with increasing

frequency; see Fig. 3 (where α = β = 5 · 10−1). This phenomenon is also known in the context of bang-bang optimal
control of ordinary differential equations; see, e.g., [21].

4.2. Semismooth Newton method

We now wish to apply a semismooth Newton method to (4.3). Since hε is Lipschitz continuous and piece-
wise differentiable, the corresponding superposition operator Hε is semismooth from V ↪→ Lr(Ω) to L2(Ω) for
any r > 2; see, e.g., [22]. Its Newton derivative at p in direction δp is defined pointwise almost everywhere
by

[
DNHε(p)δp

]
(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if p(x) ∈ P ε
i ,

1
α
δp(x) if p(x) ∈ P ε

0 ,

ui+1−ui

2ε
δp(x) if p(x) ∈ P ε

i,i+1,√
2αβ+ε
2εα

δp(x) if p(x) ∈ P ε
i,0−,

√
2αβ+ε
2εα

δp(x) if p(x) ∈ P ε
i,0+.

(4.4)

After eliminating uε , a semismooth Newton step then amounts to solving for (δy, δp) in{
δy + A∗δp = z − yk − A∗pk,

Aδy − DNHε

(
pk
)
δp = −Ayk + Hε

(
pk
)
,

(4.5)

and setting yk+1 = yk + δy and pk+1 = pk + δp.
To show local superlinear convergence of the semismooth Newton method, it remains to show uniform boundedness

of the inverse Newton matrix in (4.5), which we take as an equation from V × V → V ∗ × V ∗.

Proposition 4.2. For any (w1,w2) ∈ V ∗ × V ∗ and any p ∈ V , there exists a unique solution (δy, δp) ∈ V × V to{
δy + A∗δp = w1,
Aδy − DNHε(p)δp = w2,
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satisfying

‖δy‖V + ‖δp‖V � C
(‖w1‖V ∗ + ‖w2‖V ∗

)
,

where the constant C > 0 depends on α, ε, and ui , but not on p.

Proof. First note that definition (4.4) implies that [DNHε(p)δp](x) � Cδp(x) almost everywhere, with a constant
C > 0 depending only on the values stated above. Now, eliminating δp using the second equation and applying A−1

yields

δy + A−1DNHε(p)
(
A−∗δy

)= A−1w1 + A−1DNHε(p)A−∗w2.

Taking the inner product with δy and using that A−1 and A−∗ are isomorphisms from V ∗ to V as well as the continuous
embedding V ↪→ L2(Ω) ↪→ V ∗, we obtain that

‖δy‖2
L2 � ‖δy‖2

L2 + 〈
DNHε(p)A−∗δy,A−∗δy

〉
L2

�
∥∥A−1w1

∥∥
L2‖δy‖L2 + C

∥∥DNHε(p)A−∗w2
∥∥

L2

∥∥A−∗δy
∥∥

L2

�
∥∥A−1w1

∥∥
L2‖δy‖L2 + C

∥∥A−∗w2
∥∥

L2

∥∥A−∗δy
∥∥

L2

� C
(‖w1‖V ∗ + ‖w2‖V ∗

)‖δy‖L2, (4.6)

the second term in the first line being nonnegative almost everywhere.
The assumption that A∗ : V → V ∗ is an isomorphism implies coercivity of A∗ and hence, using the first equation,

that

‖δp‖V � C
(‖w1‖V ∗ + ‖δy‖L2

)
. (4.7)

Similarly, the first equation and the pointwise almost everywhere bound on DNHε(p) implies that

‖δy‖V � C
(‖w2‖V ∗ + ‖δp‖L2

)
. (4.8)

Combining (4.6), (4.7), and (4.8) yields the claimed estimate. �
As a consequence of Newton differentiability of Hε and Proposition 4.2, we obtain the following result; see, e.g.,

[23,22].

Theorem 4.3. The semismooth Newton iteration (4.5) converges locally superlinearly in V × V .

Since the right-hand side of the Newton system (4.5) is linear apart from the term Hε(p
k), we have the following

termination criterion for the Newton iteration: If all active sets

Aε
i (p) = {

x ∈ Ω: p(x) ∈ P ε
i

}
, 0 � i � d,

Aε
i,i+1(p) = {

x ∈ Ω: p(x) ∈ P ε
i,i+1

}
, 1 � i < d,

Aε
i,0−(p) = {

x ∈ Ω: p(x) ∈ P ε
i,0−

}
, 1 < i � d,

Aε
i,0+(p) = {

x ∈ Ω: p(x) ∈ P ε
i,0+

}
, 1 � i < d,

coincide for pk and pk+1, and the regularized control is computed as uk+1 = Hε(p
k+1), then (uk+1, yk+1,pk+1)

satisfies (4.3); see, e.g., [23, Remark 7.1.1].
This can be used as part of a continuation strategy to compute a (possibly) optimal control: Starting with an ε0

satisfying (4.2) and starting values (y0,p0) = (0,0), we solve the regularized optimality system (4.3) using the semis-
mooth Newton iteration (4.5). If the iteration converged for some εm (in the sense that all active sets coincide) and
the active sets Aεm

i,i+i (pεm), Aεm

i,0−(pεm) and Aεm

i,0+(pεm) are all empty, we assume that the corresponding control uεm

is optimal and stop the continuation. If they are not empty, we reduce εm+1 = 1
10εm and solve (4.3) again with the

solution for εm as the starting point. If the Newton iteration fails to converge within 10 steps for εm, we terminate the
continuation and return the last iterate uεm−1 . In any case, the continuation is stopped when εm < 10−12 is reached.
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Fig. 4. Target z for numerical examples.

5. Numerical examples

We now illustrate the structure of the (sub)optimal controls with numerical examples for Ω = [0,1]2 and A = −


together with homogeneous Dirichlet conditions. The target for all examples is

z(x1, x2) = 3

10
(4 − 6x1)

2e−(6x1−3)2−(6x2−2)2 −
(

1

5
(6x1 − 3) − (6x1 − 3)3 − (6x2 − 1)5

)
e−(6x1−3)2−(6x2−3)2

− 1

30
e−(6x1−2)2−(6x2−3)2

,

i.e., a scaled version of Matlab’s peaks function; see Fig. 4. The state y and adjoint p are discretized using piecewise
linear finite elements based on a uniform triangulation Th of the domain Ω with Nh = 256 × 256 nodes. Integration
over the piecewise defined functions Hε(ph) and DNHε(ph)δph in the weak formulation of (4.5) is approximated by
applying the mass matrix to the vector of nodal values. Specifically, let Vh denote the space of piecewise linear finite
elements based on the interior nodes {xj }Nh

j=1 of Th, and let �v ∈ R
Nh denote the vector of expansion coefficients of

vh ∈ Vh with respect to the nodal basis of Vh, i.e., �vj = vh(xj ) for 1 � i � Nh. Then we define �Hε( �p) ∈ R
Nh and

D �Hε( �p) ∈R
Nh via[ �Hε( �p)
]
j

= hε

(
p(xj )

)
,

[
D �Hε( �p)

]
j

= DNHε(ph)(xj ), 1 � j � Nh.

The variational equation

〈∇δyh,∇vh〉L2 − 〈
DNHε

(
pk

h

)
δph, vh

〉
L2 = −〈∇yk

h,∇vh

〉
L2 + 〈

Hε

(
pk

h

)
, vh

〉
L2 for all vh ∈ Vh

in (4.5) is then approximated by

Ah
�δy − Mh

(
D �Hε( �p) � �δp)= −Ah �yk + Mh

�Hε

( �pk
)
,

where Ah and Mh are, respectively, the stiffness and mass matrices corresponding to Vh, and � denotes the Hadamard
(i.e., componentwise) product of two vectors. Implementations of the described algorithm in Matlab and Python (using
the DOLFINmodule from the finite element package FEniCS [24,25]) can be downloaded from http://www.uni-graz.
at/~clason/publications.html; the results presented in this section were obtained using the former.

We begin by illustrating the effects of the values of α and β on the structure of the resulting controls. We fix the
d = 5 control states (u1, . . . , u5) = (−2,−1,0,1,2) and first choose α = 5 · 10−3 and β = 10−3. Here, the continu-
ation terminated at ε = 1.25 · 10−8 with all nodes having values in one of the sets P ε

i , 0 � i � d , and the resulting
(optimal) control ū = uε is shown in Fig. 5(a); since in this case

√
2β/α = √

10 > 1 = max1�i<5(ui+1 −ui), there are
no free arcs, and ū is a true multi-bang control. For the choice α = 10−3 and β = 10−3, the continuation terminated

http://www.uni-graz.at/~clason/publications.html
http://www.uni-graz.at/~clason/publications.html
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Fig. 5. Effect of α,β on structure of control uε (top: no free arcs, bottom: free arcs).

at ε = 2.25 · 10−7 with 21 out of Nh = 65 536 nodes having values in one of the “regularized” sets P ε
i,i+1, 1 � i < d .

Since in this case
√

2β/α = √
2 > 1 as well, there are again no free arcs, but the smaller value of α now leads to

control states of larger magnitude. In particular, u1 = −2 is now attained on a subdomain; see Fig. 5(b). We repeat
these tests for the smaller value β = 10−4. Fig. 5(c) shows the (optimal) control ū = uε for α = 5 · 10−3 (where the
continuation terminated at ε = 9 · 10−10 with no nodes having values in regularized sets), and Fig. 5(d) shows the
control uε for α = 1 · 10−3 (where the continuation terminated at ε = 2.25 · 10−8 with 7 nodes having values in one of
the regularized sets P ε

i,0−,P ε
i,0+, 1 � i � d). In both cases, condition (2.7) is violated, and there are free arcs around

u(x) ∈ {−1.5,−0.5,0.5,1.5} whose size decreases with decreasing α.
Table 1 shows the convergence history for the example in Fig. 5(a) by giving the total number of nodes that changed

in one of the active sets after each step k (i.e., the number of indices j for which, e.g., [ �χAε
i ( �pk+1)]j �= [ �χAε

i ( �pk)]j ; nodes
changing between active sets are counted separately for each set). The residual norm in (4.3) behaves very similarly
and is thus not shown. The first iteration with ε0 = 1.2510−3 and starting from (y0,p0) = (0,0) demonstrates the
typical behavior of a converging semismooth Newton method: After some initial steps of relatively constant decrease,
the iteration enters a superlinear phase (here, after step 3) in which convergence is achieved within a few steps. Due
to the continuation, the following iterations already start in the superlinear phase and require successively fewer steps.
The shown behavior is representative of the other examples as well, as long as the Newton iterations converged. If an
iteration failed to converge, it entered a cycle where a small number of nodes (typically 2–6) alternated between two
active sets.
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Table 1
Convergence history for example in Fig. 5(a) (shown are the number of nodes n(k) that changed in the active sets after step k).

ε 1.25e-3 1.25e-4 1.25e-5 1.25e-6 1.25e-7 1.25e-8

k 1 2 3 4 5 1 2 3 1 2 3 1 2 3 1 2 3 1 2

n(k) 65 353 65 386 35 218 130 0 36014 88 0 3396 2 0 324 4 0 36 2 0 2 0

Fig. 6. Control uε for d control states uniformly distributed in [−2,2].

Let us next address the feasibility of the approach with respect to the number of control states. We again take d

uniformly spaced control states between −2 and 2, set α = 5 · 10−3 and β = 10−3 to avoid free arcs, and compute
the resulting controls for d = 15 (Fig. 6(a), for ε = 3.21 · 10−9 with no nodes remaining in regularized active sets),
d = 101 (Fig. 6(b), for ε = 4.5 · 10−9 with 2 nodes remaining in regularized active sets) and d = 1001 (Fig. 6(c),
for ε = 4.5 · 10−11 with 2 nodes remaining in regularized active sets). As d grows, the controls approach in shape
the solution of the standard quadratic optimal control problem (i.e., with β = 0, shown for comparison in Fig. 6(d)),
although they differ in magnitude due to the choice of desired control states and do not coincide with controls obtained
by rounding the quadratic control appropriately. We remark that the number of steps in the semismooth Newton
iterations is almost independent of d . Furthermore, the size of the system matrices does not depend on d ; and since
the ui are ordered, the number of active sets grows only linearly with d . Hence, the presented approach has linear
asymptotic complexity in d .
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Fig. 7. Comparison of multi-bang (α > 0) and bang-bang (α = 0) controls for (u1, u2) = (−1,2) (shown are level-sets {uε(x) = ui }).

Finally, we illustrate the relation to (generalized) bang-bang controls. We take the d = 2 control states (u1, u2) =
(−1,2) and compare the control for α = 10−2 to the control for α = 0, choosing β = 2 ·10−2 sufficiently large in both
cases to prevent free arcs. The control for α > 0 is shown in Fig. 7(a) (for ε = 6.75 · 10−8 with 1 node in regularized
active sets), and the control for α = 0 is shown in Fig. 7(b) (for ε = 10−7 with 1024 nodes in regularized active sets).
It can be observed that the control for α = 10−2 is biased towards the control state u1 = −1 with smaller magnitude,
as opposed to the control for α = 0 which shows no such bias.

6. Conclusion

Control problems where the control is desired to take values only from a discrete set of control states can be
formulated using a combination of L2 and L0-type penalties. Although the resulting problem (1.1) is nonconvex
and lacks weak lower-semicontinuity, Fenchel duality allows the derivation of a primal-dual optimality system that
admits a unique solution and can be solved numerically using a regularized semismooth Newton method. The for-
mulation (1.1) also has the potential to be an effective approach for inverse problems where the true solution can
be assumed to take values only from a known discrete set of parameters (e.g., tissue types). It can be an attractive
alternative to methods based on, e.g., topological derivatives, since the computational effort grows only linearly with
the number d of possible parameter values. We point out in this context that the presented approach does not rely fun-
damentally on linearity of the state equation; all arguments can be extended (under suitable assumptions) to nonlinear
control-to-state (or parameter-to-observation) mappings. In addition, the control states ui are not required to be con-
stant; since the derivations involving the multi-bang penalty G are pointwise in nature, they apply in a straightforward
manner to distributed ui(x) as well. Finally, problem (1.1) can be seen as a prototype for nonconvex relaxations of
other hybrid discrete-continuous problems.
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