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Abstract

We study various boundary and inner regularity questions for p(·)-(super)harmonic functions in Euclidean domains. In particular,
we prove the Kellogg property and introduce a classification of boundary points for p(·)-harmonic functions into three disjoint
classes: regular, semiregular and strongly irregular points. Regular and especially semiregular points are characterized in many
ways. The discussion is illustrated by examples.

Along the way, we present a removability result for bounded p(·)-harmonic functions and give some new characterizations of

W
1,p(·)
0 spaces. We also show that p(·)-superharmonic functions are lower semicontinuously regularized, and characterize them in

terms of lower semicontinuously regularized supersolutions.
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1. Introduction

The theory of partial differential equations with nonstandard growth has been a subject of increasing interest in the
last decade. Several results known for the model elliptic differential operator of nonlinear analysis, the p-Laplacian
�p := div(|∇u|p−2∇u), have been established in the variable exponent setting for the so-called p(·)-Laplace equation
and some of its modifications. The p(·)-Laplace equation

div
(
p(x)|∇u|p(x)−2∇u

) = 0

is the Euler–Lagrange equation for the minimization of the p(·)-Dirichlet integral
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∫
Ω

|∇u|p(x) dx

among functions with given boundary data. Such minimization problems and equations arise for instance from appli-
cations in image processing, see Chen, Levine, and Rao [12], and in the description of electrorheological fluids, see
Acerbi and Mingione [1] and Růžička [29].

Variable exponent equations have been studied, among others, in the context of interior regularity of solutions, see
e.g. Acerbi and Mingione [2], Fan [14] and Henriques [23], and from the point of view of geometric properties of the
solutions, see e.g. Adamowicz and Hästö [3,4]. Also, the nonlinear potential theory associated with variable exponent
elliptic equations has recently attracted attention, see e.g. Harjulehto, Kinnunen, and Lukkari [19], Harjulehto, Hästö,
Koskenoja, Lukkari, and Marola [16], Latvala, Lukkari, and Toivanen [25] and Lukkari [28]. For a survey of recent
results in the field we refer to Harjulehto, Hästö, Lê, and Nuortio [18].

Despite the symbolic similarity to the p-Laplacian, various unexpected phenomena can occur when the exponent
is a function, for instance the minimum of the p(·)-Dirichlet energy may not exist even in the one-dimensional case
for smooth p, see [18, Section 3], and smooth functions need not be dense in the corresponding variable exponent
Sobolev spaces, see the monograph by Diening, Harjulehto, Hästö, and Růžička [13, Chapter 9.2].

In this paper we address several questions regarding boundary regularity of p(·)-harmonic functions, i.e. the solu-
tions of the p(·)-Laplace equation. Our focus is on discussing various types of boundary points and on analyzing the
structure of sets of such points.

A boundary point x0 ∈ ∂Ω is regular if

lim
Ω�y→x0

Hf (y) = f (x0) for all f ∈ C(∂Ω),

where Ω is a nonempty bounded open subset of Rn and Hf is the solution of the p(·)-Dirichlet problem with
boundary values f . (See later sections for notation and precise definitions.)

Theorem 1.1 (The Kellogg property). The set of all irregular boundary points has zero p(·)-capacity.

The Kellogg property for variable exponents was recently obtained by Latvala, Lukkari, and Toivanen [25] using
balayage and the Wiener criterion (the latter being due to Alkhutov and Krasheninnikova [5, Theorem 1.1]). Here we
provide a shorter and more elementary proof, which in particular does not depend on the Wiener criterion. It is based
on the ideas introduced by Björn, Björn, and Shanmugalingam [11] for their proof of the Kellogg property in metric
spaces (with constant p). The proof in [11] is based on Newtonian-type Sobolev spaces, but here we have refrained
from the Newtonian approach and only use the usual variable exponent Sobolev spaces. Our proof may therefore be
of interest also in the constant p case, for readers who prefer to avoid Newtonian spaces.

That a boundary point is regular can be rephrased in the following way. A point x0 ∈ ∂Ω is regular if the following
two conditions hold:

(a) for all f ∈ C(∂Ω) the limit

lim
Ω�y→x0

Hf (y) exists; (1.1)

(b) for all f ∈ C(∂Ω) there is a sequence {yj }∞j=1 such that

Ω � yj → x0 and Hf (yj ) → f (x0), as j → ∞. (1.2)

It turns out that for irregular boundary points exactly one of these two properties holds, i.e. it can never happen that
both fail. This is the content of the following theorem. We say that x0 ∈ ∂Ω is semiregular if (a) holds but not (b), and
strongly irregular if (b) holds but not (a).

Theorem 1.2 (Trichotomy). A boundary point x0 ∈ ∂Ω is either regular, semiregular or strongly irregular.

The first example (for p = 2) of an irregular boundary point was given by Zaremba [30] in 1911, in which he
showed that the centre of a punctured disk is irregular. This is an example of a semiregular point. Shortly afterwards,
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Lebesgue [26] presented his famous Lebesgue spine, whose tip is a strongly irregular point (see e.g. Remark 6.6.17 in
Armitage and Gardiner [6]).

In the linear case the trichotomy was developed in detail in Lukeš and Malý [27] (in an axiomatic setting), whereas
in the nonlinear constant p case it was first stated by A. Björn [7] who obtained it in metric spaces and also for
quasiminimizers. As in [7], there are two main ingredients needed to obtain the trichotomy in the variable exponent
case: the Kellogg property above and the following new removability result.

Theorem 1.3. Let F ⊂ Ω be relatively closed and such that Cp(·)(F ) = 0. If u is a bounded p(·)-harmonic function
in Ω \ F , then it has a unique p(·)-harmonic extension to Ω .

Here and in Theorem 1.4, Ω is allowed to be unbounded.
The paper is organized as follows. In Section 2 we recall some of the basic definitions and theorems from the theory

of variable exponent Sobolev spaces, as well as potential theory. We also observe that some of the characterizations
of the p(·)-Sobolev spaces with zero boundary data discussed in [13] can be improved, and these improvements turn
out useful for our later results. We also discuss the “squeezing” Lemma 2.6 for variable exponent Sobolev spaces with
zero boundary values, which to our best knowledge was not known or formulated in the literature so far.

In Section 3 we discuss p(·)-supersolutions and the obstacle problem in the variable exponent setting. We discuss
the existence and uniqueness of solutions to the obstacle problem and their regularized representatives. In addition,
we obtain comparison principles for Dirichlet and obstacle problems, see Lemmas 3.10 and 3.11.

Section 4 is devoted to studying p(·)-superharmonic functions. Although this notion is well known, also in the
p(·)-setting, we establish the following new characterization of bounded p(·)-superharmonic functions.

Theorem 1.4. Assume that u : Ω → R is locally bounded from above in Ω . Then u is p(·)-superharmonic if and only
if it is an lsc-regularized p(·)-supersolution.

For unbounded p(·)-superharmonic functions we obtain a similar (but necessarily more involved) characterization
in Theorem 4.4.

Section 5 is devoted to the Kellogg property, whereas the removability result (Theorem 1.3 above) is obtained in
Section 6. In the latter section we also obtain a similar removability result for bounded p(·)-superharmonic functions.
Lukkari [28] studied removability for unbounded p(·)-harmonic functions, our results are however not included in his
treatment.

In Section 7 we obtain the trichotomy (Theorem 1.2) and also provide a number of characterizations of regular
points. In the last section we focus on semiregularity and give several characterizations both of semiregular points
themselves and of sets of semiregular points, involving capacity and p(·)-harmonic and p(·)-superharmonic exten-
sions. In particular, we show that semiregularity is a local property. A similar result for regular points is a direct
consequence of the Wiener criterion. It would be interesting to obtain the locality for regular (and thus also for strongly
irregular) points more directly, without appealing to the Wiener criterion. Let us again stress the fact that we do not
use the Wiener criterion in this paper, except for constructing a few examples in Example 8.6 and Propositions 8.7
and 8.8.

2. Preliminaries

A variable exponent is a measurable function p : Rn → [1,∞]. In this paper we assume that

1 < p− � p+ < ∞, where p− = ess inf
Rn

p and p+ = ess sup
Rn

p,

and that p is log-Hölder continuous, i.e. there is a constant L > 0 such that

∣∣p(x) − p(y)
∣∣ � L

log(e + 1/|x − y|) for x, y ∈ Rn. (2.1)

In addition, one usually assumes that p satisfies the log-Hölder decay condition (see Definition 4.1.1 and the discus-
sion in Chapter 4.1 in Diening, Harjulehto, Hästö, and Růžička [13]). However, for the results in this paper no decay
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condition is required. We also assume throughout the paper that Ω ⊂ Rn is a nonempty open set. (In Sections 5–8
as well as in the second half of Section 3 we will further assume that Ω is bounded.) For background on variable
exponent function spaces we refer to [13].

The variable exponent Lebesgue space Lp(·)(Ω) consists of all measurable functions u : Ω → R for which the
so-called Luxemburg norm

‖u‖Lp(·)(Ω) := inf

{
λ > 0:

∫
Ω

∣∣∣∣u(x)

λ

∣∣∣∣
p(x)

dx � 1

}

is finite. Equipped with this norm, Lp(·)(Ω) becomes a Banach space. The variable exponent Lebesgue space is a
special case of a Musielak–Orlicz space. For a constant function p, it coincides with the standard Lebesgue space.

One of the difficulties when extending results from the constant to variable exponent setting is the lack of functional
relationship between the norm and the integral. Nevertheless, we do have the following useful estimates

(∫
Ω

∣∣u(x)
∣∣p(x)

dx

)1/p−

� ‖u‖Lp(·)(Ω) �
(∫

Ω

∣∣u(x)
∣∣p(x)

dx

)1/p+

(2.2)

whenever
∫
Ω

|u(x)|p(x) dx � 1. For a proof and further discussion we refer to Lemmas 3.2.4 and 3.2.5 in Diening,
Harjulehto, Hästö, and Růžička [13]. Note also, that if {ui}∞i=1 is a sequence of Lp(·)(Ω)-integrable functions, then
from (2.2) we infer that

lim
i→∞

∫
Ω

∣∣ui(x)
∣∣p(x)

dx = 0 ⇐⇒ lim
i→∞‖ui‖Lp(·)(Ω) = 0. (2.3)

If p � q are variable exponents, then L
p(·)
loc (Ω) embeds into L

q(·)
loc (Ω). In particular, every function in L

p(·)
loc (Ω)

also belongs to L
p−
loc (Ω) (see Theorem 3.3.1 and the discussion in Section 3.3 in [13]). The Hölder inequality takes

the form∫
Ω

uv dx � 2‖u‖Lp(·)(Ω)‖v‖
Lp′(·)(Ω)

, (2.4)

where p′(·) is the pointwise conjugate exponent, i.e. 1/p(x) + 1/p′(x) ≡ 1, (see Lemma 3.2.20 in [13]).
The variable exponent Sobolev space W 1,p(·)(Ω) consists of all u ∈ Lp(·)(Ω) whose distributional gradient ∇u

also belongs to Lp(·)(Ω). The space W 1,p(·)(Ω) is a Banach space with the norm

‖u‖W 1,p(·)(Ω) = ‖u‖Lp(·)(Ω) + ‖∇u‖Lp(·)(Ω).

In general, smooth functions are not dense in W 1,p(·)(Rn) but the log-Hölder condition (2.1) guarantees that they are,
see Theorem 9.2.2 in [13] and the discussion following it. We refer to Chapter 9 in [13] for a detailed discussion of
this topic.

Definition 2.1. The (Sobolev) p(·)-capacity of a set E ⊂ Rn is defined as

Cp(·)(E) := inf
u

∫
Rn

(|u|p(x) + |∇u|p(x)
)
dx,

where the infimum is taken over all u ∈ W 1,p(·)(Rn) such that u� 1 in a neighbourhood of E.

The p(·)-capacity enjoys similar properties as in the constant case, see Theorem 10.1.2 in [13]. We say that a claim
holds quasieverywhere (q.e. for short) if it holds everywhere except for a set with p(·)-capacity zero.

Definition 2.2. A function u : Ω → [−∞,∞] is quasicontinuous if for every ε > 0 there exists an open set U ⊂ Rn

with Cp(·)(U) < ε such that u|Ω\U is real-valued and continuous.
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Since Cp(·) is an outer capacity (which follows directly from the definition) it is easy to show that if u is quasicon-
tinuous and v = u q.e., then v is also quasicontinuous.

The following lemma sheds more light on quasicontinuous functions. It was obtained by Kilpeläinen for general
capacities satisfying two axioms, both of which are easily verified for the p(·)-capacity.

Lemma 2.3. (See Kilpeläinen [24].) If u and v are quasicontinuous in Ω and u = v a.e. in Ω , then u = v q.e. in Ω .

Following Definition 8.1.10 in Diening, Harjulehto, Hästö, and Růžička [13] we define the Sobolev space
W

1,p(·)
0 (Ω) with zero boundary values as the closure in W 1,p(·)(Ω) of W 1,p(·)(Rn)-functions with compact support

in Ω . By Proposition 11.2.3 in [13], this is equivalent to taking the closure of C∞
0 (Ω) in W 1,p(·)(Ω).

In the rest of this section we give several useful characterizations of W
1,p(·)
0 (Ω) which will be needed later and do

not seem to be anywhere else in the literature. The following result improves upon Theorem 11.2.6 in [13], where the
same conclusion is obtained if u ∈ W 1,p(·)(Rn) and u = 0 q.e. in Rn \ Ω .

Lemma 2.4. If u ∈ W 1,p(·)(Ω) is quasicontinuous in Rn and u = 0 q.e. on ∂Ω , then u ∈ W
1,p(·)
0 (Ω).

Proof. By definition, we need to show that u can be approximated in W 1,p(·)(Ω) by functions from W 1,p(·)(Ω) with
compact support in Ω . This can be done in a similar way as the proof of Theorem 11.2.6 in [13]. Let us recall the
main points of the argument. By Lemma 9.1.1 in [13], u can without loss of generality be assumed to be bounded and
nonnegative. Multiplying u by the Lipschitz functions ηj (x) := min{1, (j − |x|)+} for j = 0,1, . . . and noting that
‖u − uηj‖W 1,p(·)(Ω) → 0 as j → ∞, we can also assume that u has bounded support.

Let ε > 0. By quasicontinuity and the fact that u = 0 q.e. on ∂Ω , there exists an open set G ⊂ Rn such that
Cp(·)(G) < ε, the restriction of u to Rn \ G is continuous and u = 0 on ∂Ω \ G. In particular, this implies that the set

V := {
x ∈ Rn \ G: u(x) < ε

}
is relatively open in Rn \ G and ∂Ω ⊂ G ∪ V . We can also find wε ∈ W 1,p(·)(Rn) such that wε = 1 on G, 0 �wε � 1
in Rn and∫

Rn

(|wε|p(x) + |∇wε|p(x)
)
dx < ε.

As G ∪ V is open and contains ∂Ω , it follows that the function uε := (1 − wε)(u − ε)+χΩ has compact support in Ω

and it is shown as in the proof of Theorem 11.2.6 in [13] that ‖u−uε‖W 1,p(·)(Ω) → 0 as ε → 0, i.e. u ∈ W
1,p(·)
0 (Ω). �

Proposition 2.5. Assume that u is quasicontinuous in Ω . Then u ∈ W
1,p(·)
0 (Ω) if and only if

ũ :=
{

u in Ω,

0 otherwise,

is quasicontinuous and belongs to W 1,p(·)(Rn).

Proof. Assume first that u ∈ W
1,p(·)
0 (Ω). By Corollary 11.2.5 in [13], there is a quasicontinuous function v ∈

W 1,p(·)(Rn) such that v = u a.e. in Ω and v = 0 q.e. outside Ω . By Lemma 2.3, v = u q.e. in Ω , and thus ũ = v

q.e. in Rn. Hence ũ ∈ W 1,p(·)(Rn) and ũ is quasicontinuous. The converse follows directly from Lemma 2.4. �
The following “squeezing lemma” is useful when proving that certain functions belong to W

1,p(·)
0 (Ω).

Lemma 2.6. Let u ∈ W 1,p(·)(Ω) and u1, u2 ∈ W
1,p(·)
0 (Ω) be such that u1 � u� u2 a.e. in Ω . Then u ∈ W

1,p(·)
0 (Ω).

We let B(x, r) be the open ball with centre x and radius r .
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Proof. Replacing each function v = u1, u2, u by its quasicontinuous representative

lim sup
r→0

−
∫

B(x,r)

v dx

(provided by Theorem 11.4.4 in Diening, Harjulehto, Hästö, and Růžička [13]), we can assume that u1, u2 and u are
quasicontinuous in Ω and u1 � u � u2 everywhere in Ω .

To be able to apply Lemma 2.4, we need to show that the zero extension of u to Rn \ Ω is quasicontinuous in Rn.
To this end, Proposition 2.5 implies that both u1 and u2 can be extended by zero outside Ω to obtain quasicontinuous
functions on Rn. In other words, given ε > 0, there exists an open set G with Cp(·)(G) < ε such that the restrictions
u1|Rn\G and u2|Rn\G are continuous. Since u|Rn\G lies between u1|Rn\G and u2|Rn\G, and u = 0 on ∂Ω , we conclude
that u|Rn\G is continuous at all x ∈ ∂Ω \ G. It is clearly continuous in Rn \ Ω and quasicontinuous in Ω . Thus, u is

quasicontinuous in Rn. Lemma 2.4 then shows that u ∈ W
1,p(·)
0 (Ω). �

3. Supersolutions and obstacle problems

In this section we include several auxiliary results about supersolutions and obstacle problems. In particular, we
discuss relations between these two notions, existence and uniqueness of the solutions, their interior regularity and a
comparison principle. We shall consider the following type of obstacle problem.

Definition 3.1. Let f ∈ W 1,p(·)(Ω) and ψ : Ω → [−∞,∞]. Then we define

Kψ,f = {
v ∈ W 1,p(·)(Ω): v − f ∈ W

1,p(·)
0 (Ω) and v � ψ a.e. in Ω

}
.

A function u ∈Kψ,f is a solution of the Kψ,f -obstacle problem if∫
Ω

|∇u|p(x) dx �
∫
Ω

|∇v|p(x) dx for all v ∈ Kψ,f .

The following equivalent definition of obstacle problems is given in Harjulehto, Hästö, Koskenoja, Lukkari, and
Marola [16], p. 3427. The result in [16] is obtained for a bounded Ω , but the proof is valid also for unbounded sets.
In this paper, however, we will need it only for bounded sets.

Proposition 3.2. The function u is a solution of the Kψ,f -obstacle problem if and only if∫
Ω

p(x)|∇u|p(x)−2∇u · ∇(v − u)dx � 0 for all v ∈ Kψ,f .

Definition 3.3. A function u ∈ W
1,p(·)
loc (Ω) is a (super)solution of the p(·)-Laplace equation if∫

ϕ �=0

|∇u|p(x) dx �
∫

ϕ �=0

∣∣∇(u + ϕ)
∣∣p(x)

dx

for all (nonnegative) ϕ ∈ C∞
0 (Ω). A p(·)-harmonic function is a continuous solution.

Clearly, u is a solution if and only if it is both a supersolution and a subsolution (i.e. −u is a supersolution). It is
also immediate that a solution of an obstacle problem is a supersolution. Conversely, if u is a supersolution in Ω and
Ω ′ � Ω is open then by the density of C∞

0 (Ω ′) in W
1,p(·)
0 (Ω ′) we see that u is a solution of the obstacle problem

in Ω ′ with u as the obstacle and the boundary values. (Recall that A � Ω if the closure of A is a compact subset
of Ω .) The following characterization of (super)solutions then follows from Proposition 3.2, cf. Harjulehto, Hästö,
Koskenoja, Lukkari, and Marola [16], p. 3427. By the density of C∞

0 (Ω) again, it is equivalent to require that (3.1)

holds for all (nonnegative) ϕ ∈ W
1,p(·)

(Ω).
0
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Proposition 3.4. A function u ∈ W
1,p(·)
loc (Ω) is a (super)solution if and only if∫

Ω

p(x)|∇u|p(x)−2∇u · ∇ϕ dx � 0 (3.1)

for all (nonnegative) ϕ ∈ C∞
0 (Ω).

For a function u : Ω → R, let

u∗(x) = ess lim inf
y→x

u(y), x ∈ Ω.

It is easy to see that u∗ is always lower semicontinuous, see the proof of Theorem 8.22 in Björn and Björn [9]. We call
u∗ the lsc-regularization of u, and also say that u is lsc-regularized if u = u∗.

Theorem 3.5. Assume that u is a supersolution in Ω . Then u∗ is a quasicontinuous supersolution in Ω and u∗ = u

a.e. in Ω . Moreover, if u is quasicontinuous, then u∗ = u q.e. in Ω .

Proof. By Theorem 4.1 (and Remark 4.2) in Harjulehto, Kinnunen, and Lukkari [19], u∗ = u a.e., and thus also u∗
is a supersolution. By Theorem 6.1 in Harjulehto, Hästö, Koskenoja, Lukkari, and Marola [16], u∗ is superharmonic
(see Section 4 below for the definition of superharmonic functions). It then follows from Theorem 6.7 in Harjulehto
and Latvala [20], that u∗ is quasicontinuous.

Moreover, if u is quasicontinuous, then u∗ = u q.e. in Ω , by Lemma 2.3. �
In the rest of this section we assume that Ω is a bounded nonempty open set.

Theorem 3.6. If ψ is bounded from above, f is bounded, and Kψ,f �= ∅, then there exists a solution u of the
Kψ,f -obstacle problem, and the solution is unique up to sets of measure zero. Moreover, u∗ is the unique lsc-
regularized solution, and u∗ is bounded.

Proof. The existence is proved as in Appendix I in Heinonen, Kilpeläinen, and Martio [22], namely by showing the
monotonicity, coercivity and weak continuity for the operator

Lp(·) : {∇v: v ∈Kψ,f } → Lp′(·)(Ω,Rn
)
, where 1/p(x) + 1/p′(x) ≡ 1,

defined by

〈
Lp(·)v,u

〉 :=
∫
Ω

p(x)
∣∣v(x)

∣∣p(x)−2v(x) · u(x) dx.

These properties are for the variable exponent verified in the same way as in the constant exponent case, cf. Appendix I
in [22] and p. 3427 in Harjulehto, Hästö, Koskenoja, Lukkari, and Marola [16].

The uniqueness follows from Theorem 3.2 in [16]. Indeed, if u and v are solutions of the obstacle problem, then
both are supersolutions and min{u,v} ∈Kψ,f . Theorem 3.2 in [16] then implies that u� v and v � u a.e.

As for the last part, u∗ = u a.e. by Theorem 3.5, and thus u∗ is also a solution of the Kψ,f -obstacle problem.
Since u∗ is independent of which solution u we choose of the Kψ,f -obstacle problem, we see that it is the unique
lsc-regularized solution.

Let M = max{sup |f |, supψ}. Then the truncation v := max{min{u,M},−M} of u at ±M is also a solution, and
by the uniqueness we see that |u∗| � M . �
Theorem 3.7. Assume that ψ : Ω → [−∞,∞) is continuous (as an extended real-valued function) and bounded from
above, that f is bounded, and that Kψ,f �= ∅. Then the lsc-regularized solution of the Kψ,f -obstacle problem is
continuous.

Proof. See Theorem 4.11 in [16]. �
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Remark 3.8. A direct consequence is that if u is a locally bounded solution, in the sense of Definition 3.3, then u∗
is continuous. Indeed, if u is a solution, then it is locally a solution of an unrestricted obstacle problem with itself as
boundary values. Hence u∗ is locally continuous, i.e. continuous.

Definition 3.9. Let f ∈ W 1,p(·)(Ω) be bounded. Then we define the Sobolev solution Hf of the Dirichlet problem
with boundary values f to be the continuous solution of the K−∞,f -obstacle problem.

Note that Hf depends also on p(·). Since u = Hf is a solution of the unrestricted obstacle problem, i.e. with
obstacle −∞, it follows that∫

Ω

|∇u|p(x) dx �
∫
Ω

∣∣∇(u + ϕ)
∣∣p(x)

dx (3.2)

for all ϕ ∈ W
1,p(·)
0 (Ω) and in particular for all ϕ ∈ C∞

0 (Ω). Subtracting∫
A

|∇u|p(x) dx =
∫
A

∣∣∇(u + ϕ)
∣∣p(x)

dx < ∞,

where A = {x ∈ Ω: ϕ(x) = 0}, from both sides of (3.2) shows that u is a continuous solution in the sense of Defini-
tion 3.3, i.e. a p(·)-harmonic function.

The following comparison principle will be important for us.

Lemma 3.10 (Comparison principle). If f1, f2 ∈ W 1,p(·)(Ω) are bounded and (f1 − f2)+ ∈ W
1,p(·)
0 (Ω), then Hf1 �

Hf2 in Ω .

It follows that if f1, f2 ∈ Lip(Ω) and f1 = f2 on ∂Ω , then Hf1 = Hf2. We can therefore define Hf for f ∈
Lip(∂Ω) to be Hf̃ for any extension f̃ ∈ Lip(Ω) such that f̃ = f on ∂Ω . Among such extensions are the so-called
McShane extensions, see e.g. Theorem 6.2 in Heinonen [21].

In view of Lemma 2.4, (f1 − f2)+ ∈ W
1,p(·)
0 (Ω) whenever f1, f2 ∈ W 1,p(·)(Ω) are quasicontinuous in Rn and

f1 � f2 q.e. on ∂Ω .
The following generalization of the comparison principle above is sometimes useful. Even though we will not use

it in this paper, we have chosen to include it here since the proof of it is not more involved than a direct proof of
Lemma 3.10.

Lemma 3.11 (Comparison principle for obstacle problems). Let ψj : Ω → [−∞,∞) be bounded from above and
fj ∈ W 1,p(·)(Ω) be bounded and such that Kψj ,fj

�= ∅. Let further uj be a solution of the Kψj ,fj
-obstacle problem,

j = 1,2. If ψ1 �ψ2 a.e. in Ω and (f1 − f2)+ ∈ W
1,p(·)
0 (Ω), then u1 � u2 a.e. in Ω .

Moreover, the lsc-regularizations satisfy u∗
1 � u∗

2 everywhere in Ω .

Proof of Lemma 3.10. Let ψ1 = ψ2 ≡ −∞. After noting that u∗
1 = Hf1 and u∗

2 = Hf2 the result follows from (the
last part of) Lemma 3.11. �
Proof of Lemma 3.11. Let u = min{u1, u2}. Then

W
1,p(·)
0 (Ω) � u1 − f1 � u − f1 = min{u1 − f1, u2 − f1}

� min
{
u1 − f1, u2 − f2 − (f1 − f2)+

} ∈ W
1,p(·)
0 (Ω).

Lemma 2.6 implies that u − f1 ∈ W
1,p(·)
0 (Ω). As u � ψ1 a.e. in Ω , we get that u ∈ Kψ1,f1 . Similarly v =

max{u1, u2} ∈Kψ2,f2 .
Let A = {x ∈ Ω: u1(x) > u2(x)}. Since u2 is a solution of the Kψ2,f2 -obstacle problem, we have that∫ ∣∣∇u2(x)

∣∣p(x)
dx �

∫ ∣∣∇v(x)
∣∣p(x)

dx =
∫ ∣∣∇u1(x)

∣∣p(x)
dx +

∫ ∣∣∇u2(x)
∣∣p(x)

dx.
Ω Ω A Ω\A
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Thus ∫
A

∣∣∇u2(x)
∣∣p(x)

dx �
∫
A

∣∣∇u1(x)
∣∣p(x)

dx.

It follows that∫
Ω

∣∣∇u(x)
∣∣p(x)

dx =
∫
A

∣∣∇u2(x)
∣∣p(x)

dx +
∫

Ω\A

∣∣∇u1(x)
∣∣p(x)

dx �
∫
Ω

∣∣∇u1(x)
∣∣p(x)

dx.

As u1 is a solution of the Kψ1,f1 -obstacle problem, so is u. By the uniqueness in Theorem 3.6, we have

u1 = u = min{u1, u2} a.e. in Ω,

and thus u1 � u2 a.e. in Ω .
The pointwise comparison of the lsc-regularizations follows directly from their definitions and the above

a.e.-inequality. �
4. Superharmonic functions

In this section we consider superharmonic functions and show that they are lsc-regularized. This in turn leads to the
characterization of bounded superharmonic functions advertised in Theorem 1.4, and to another characterization of
general superharmonic functions. These superharmonic functions are often called p(·)-superharmonic, but to simplify
the terminology we have here refrained from making the dependence on p(·) explicit.

Definition 4.1. A function u : Ω → (−∞,∞] is superharmonic in Ω if

(i) u is lower semicontinuous;
(ii) u is finite almost everywhere;

(iii) for every nonempty open set Ω ′ � Ω and all functions v ∈ C(Ω ′) which are p(·)-harmonic in Ω ′ and satisfy
v � u on ∂Ω ′, it is true that v � u in Ω ′.

A function u : Ω → [−∞,∞) is subharmonic if −u is superharmonic.

In the variable exponent literature superharmonic functions are often assumed to belong to Lt
loc(Ω) for some t > 0,

see e.g. Latvala, Lukkari, and Toivanen [25]. For our purposes the more general definition above is sufficient. In the
constant p case condition (ii) is usually replaced by the equivalent condition

(ii′) u �≡ ∞ in every component of Ω .

Whether this equivalence is true also for variable exponents is not known. However, for the results in this paper we
could as well have replaced (ii) by (ii′) and required that u in Theorem 4.4 satisfies (ii′).

The following lemma is well known and easily proved directly from the definition.

Lemma 4.2. If u and v are superharmonic, then so is min{u,v}.

The following result is well known for constant p, but seems to be new in the variable exponent setting.

Theorem 4.3. If a function is superharmonic, then it is lsc-regularized.

Proof. Let u be a superharmonic function and x0 ∈ Ω be arbitrary. Since u is lower semicontinuous,

u(x0) � lim inf
y→x

u(y) � ess lim infu(y) =: u∗(x0).

0 y→x0
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In order to obtain the converse inequality we assume first that u is bounded from above. Without loss of generality
we can assume that u(x0) > 0. Let 0 < δ � u(x0) be arbitrary. By the lower semicontinuity of u, we can find a ball
B � x0 such that 2B �Ω and u � u(x0)−δ in 2B . Then v = u− (u(x0)−δ) is a bounded nonnegative superharmonic
function in 2B .

Theorem 6.5 in Harjulehto, Hästö, Koskenoja, Lukkari, and Marola [16] provides us with an increasing sequence
of continuous supersolutions vj in B such that vj ↗ v everywhere in B . Theorem 3.7 and Remark 3.8 in Harjulehto,
Kinnunen, and Lukkari [19] imply the following weak Harnack inequality for sufficiently small R > 0 and some
q > 0,

−
∫

B(x0,2R)

v
q
j dx � C

(
ess inf
B(x0,R)

vj + R
)q

, (4.1)

where the constants q and C depend on the bound for v, but not on R. Indeed, the proof of Lemma 3.6 in [19] reveals
that for a bounded v, the Ls(B(x0,4R))-norm in (3.33) in [19] can be substituted by the L∞(Ω)-norm, which gives
the independence of q on R. We can clearly assume that q < 1. Since vj is continuous, the right-hand side in (4.1) is
majorized by

C
(
vj (x0) + R

)q � C
(
v(x0) + R

)q = C(δ + R)q � C
(
δq + Rq

)
.

Inserting this into (4.1) and letting j → ∞ gives

C
(
δq + Rq

)
� −

∫
B(x0,2R)

(
u − (

u(x0) − δ
))q

dx � −
∫

B(x0,2R)

uq dx − (
u(x0) − δ

)q
.

Hence
(
u(x0) − δ

)q + Cδq � −
∫

B(x0,2R)

uq dx − CRq �
(

ess inf
B(x0,2R)

u
)q − CRq → u∗(x0)

q,

as R → 0. Since δ was arbitrary, we conclude that u(x0)� u∗(x0) if u is bounded from above.
Let us now consider the case when u is unbounded. Let a < u∗(x0) be real. Then ua := min{u,a} is superharmonic,

by Lemma 4.2, and thus ua is lsc-regularized by the first part of the proof. Hence

u(x0) � ua(x0) = ess lim inf
y→x0

ua(y) = min
{
a, ess lim inf

y→x0
u(y)

}
= min

{
a,u∗(x0)

} = a.

As a was arbitrary we see that u(x0)� u∗(x0). �
We are now ready to obtain the characterization of superharmonic functions in Theorem 1.4, i.e. that a function

locally bounded from above is superharmonic if and only if it is an lsc-regularized supersolution.

Proof of Theorem 1.4. Assume first that u is superharmonic. Then u is lsc-regularized by Theorem 4.3. That u is
locally bounded from below follows directly from the lower semicontinuity (and the fact that u does not take the
value −∞). Hence u is locally bounded and Corollary 6.6 in Harjulehto, Hästö, Koskenoja, Lukkari, and Marola [16]
shows that u is a supersolution.

The converse follows directly from Theorem 6.1 in [16]. �
For unbounded functions the characterization is (necessarily) a bit more involved.

Theorem 4.4. Let u : Ω → (−∞,∞] be a function which is finite a.e. Then the following are equivalent:

(a) u is superharmonic in Ω ;
(b) min{u, k} is superharmonic in Ω for all k = 1,2, . . . ;
(c) u is lsc-regularized, and min{u, k} is a supersolution in Ω for all k = 1,2, . . . ;
(d) min{u, k} is an lsc-regularized supersolution in Ω for all k = 1,2, . . . .
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Proof. (a) ⇒ (b) This follows from Lemma 4.2.
(b) ⇒ (a) That u is lower semicontinuous follows directly from the fact that min{u, k}, k = 1,2, . . . , are lower

semicontinuous. Let next Ω ′ � Ω be a nonempty open set and v ∈ C(Ω ′) be p(·)-harmonic in Ω ′ satisfying v � u

on ∂Ω ′. Let m = supΩ ′ v < ∞ and let k > m be a positive integer. Then v � min{u, k} on ∂Ω ′. Since min{u, k} is
superharmonic it follows that v � min{u, k}� u in Ω ′. Thus u is superharmonic.

(b) ⇔ (d) This follows from Theorem 1.4.
(a) ⇒ (c) That u is lsc-regularized follows from Theorem 4.3. That min{u, k} is a supersolution follows from the

already shown implication (a) ⇒ (d).
(c) ⇒ (d) It is enough to show that min{u, k} is lsc-regularized, but this follows directly from the fact that u is

lsc-regularized. �
5. The Kellogg property

From now on we assume that Ω is a bounded nonempty open set.

In this section we extend the definition of Sobolev solutions of the Dirichlet problem (Definition 3.9) to continuous
boundary data and show that the solutions are p(·)-harmonic. We also introduce regular and irregular boundary points
and prove the Kellogg property.

Definition 5.1. Given f ∈ C(∂Ω), define Hf : Ω → R by

Hf (x) = sup
Lip(∂Ω)�ϕ�f

Hϕ(x), x ∈ Ω.

Here we abuse notation, since if f ∈ W 1,p(·)(Ω), then Hf has already been defined by Definition 3.9. However, as
continuous functions can be uniformly approximated by Lipschitz functions, the comparison principle (Lemma 3.10),
together with the fact that H(f + a) = Hf + a for a ∈ R, shows that the two definitions of Hf coincide in this case.

The comparison principle (Lemma 3.10) extends immediately to functions in C(∂Ω) in the following way.

Lemma 5.2 (Comparison principle). If f1, f2 ∈ C(∂Ω) and f1 � f2 q.e. on ∂Ω , then Hf1 � Hf2 in Ω .

Let us next show that Hf is indeed p(·)-harmonic even for f ∈ C(∂Ω).

Lemma 5.3. Let f ∈ C(∂Ω). Then Hf is p(·)-harmonic in Ω and

Hf (x) = inf
Lip(∂Ω)�ϕ�f

Hϕ(x) = lim
j→∞Hfj (x), x ∈ Ω,

for every sequence {fj }∞j=1 of functions in Lip(∂Ω) converging uniformly to f .

Proof. Let fj ∈ Lip(∂Ω) be such that sup∂Ω |f − fj | < 1/j , j = 1,2, . . . . Then sup∂Ω |fj ′ − fj ′′ | � 2/j whenever
j ′, j ′′ � j , and the comparison principle implies that for all x ∈ Ω ,

Hfj ′(x) − 2

j
� Hfj ′′(x) � Hfj ′(x) + 2

j
,

i.e. the sequence {Hfj (x)}∞j=1 is a Cauchy sequence. Hence, the limit h(x) := limj→∞ Hfj (x) exists, and is a
p(·)-harmonic function in Ω , by the uniform convergence result in Corollary 5.3 in Harjulehto, Hästö, Koskenoja,
Lukkari, and Marola [16]. Using the comparison principle again, it follows that

h(x) = lim
j→∞H(fj − 1/j)(x) � sup

Lip(∂Ω)�ϕ�f

Hϕ(x)

� inf
Lip(∂Ω)�ϕ�f

Hϕ(x) � lim
j→∞H(fj + 1/j)(x) = h(x). �
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Definition 5.4. Let x0 ∈ ∂Ω . Then x0 is regular if

lim
Ω�y→x0

Hf (y) = f (x0) for all f ∈ C(∂Ω).

We also say that x0 is irregular if it is not regular.

See Theorem 7.1 below for characterizations of regular boundary points.
Next we establish the Kellogg property (Theorem 1.1), which says that q.e. boundary point is regular. The proof is

based on the following pasting lemma, which may be of independent interest.

Lemma 5.5. Let x ∈ ∂Ω and B = B(x, r). Let f ∈ Lip(∂Ω) be such that f = M on B ∩ ∂Ω , where M := sup∂Ω f .
Let further

u =
{

Hf in Ω,

M in B \ Ω.

Then u is a quasicontinuous supersolution in B .

Proof. Extend f to a Lipschitz function on Ω and let f = M on B \ Ω . Then f ∈ Lip(B) ⊂ W 1,p(·)(B). Let

v =
{

u − f in B ∪ Ω,

0 otherwise.

Then v = 0 in Rn \ Ω and v = Hf − f ∈ W
1,p(·)
0 (Ω). As v is continuous in Ω , Proposition 2.5 shows that v ∈

W 1,p(·)(B) and that v is quasicontinuous. Thus u ∈ W 1,p(·)(B) and u is quasicontinuous in B . By the comparison
principle (Lemma 5.2), u � M in B .

To show that u is a supersolution in B , let ϕ ∈ C∞
0 (B) be nonnegative. We shall prove the inequality∫

ϕ �=0

|∇u|p(x) dx �
∫

ϕ �=0

∣∣∇(u + ϕ)
∣∣p(x)

dx.

Let ϕ′ := min{ϕ,M − u} ∈ W
1,p(·)
0 (B), which is quasicontinuous and nonnegative in B . Then ϕ′ = 0 in B \ Ω and

hence ϕ′ ∈ W
1,p(·)
0 (B ∩ Ω), by Proposition 2.5. Since u is p(·)-harmonic in B ∩ Ω , we have that∫

ϕ′ �=0

|∇u|p(x) dx �
∫

ϕ′ �=0

∣∣∇(
u + ϕ′)∣∣p(x)

dx.

Note that ϕ′ = 0 �= ϕ if and only if u = M , in which case ∇u = 0 a.e. Thus∫
ϕ �=0

|∇u|p(x) dx =
∫

ϕ′ �=0

|∇u|p(x) dx �
∫

ϕ′ �=0

∣∣∇(
u + ϕ′)∣∣p(x)

dx.

As u + ϕ′ = min{u + ϕ,M} we have |∇(u + ϕ′)| � |∇(u + ϕ)|. Since ϕ �= 0 whenever ϕ′ �= 0, this finishes the
proof. �
Proof of Theorem 1.1. For each j = 1,2, . . . , we can cover ∂Ω by a finite number of balls Bj,k = B(xj,k,1/j),
1 � k � Nj . Let ϕj,k be a Lipschitz function with support in 3Bj,k such that 0 � ϕj,k � 1 and ϕj,k = 1 on 2Bj,k . Let
further ϕj,k,q = qϕj,k for 0 < q ∈ Q. Consider the sets

Ij,k,q =
{
x ∈ Bj,k ∩ ∂Ω: lim inf

Ω�y→x
Hϕj,k,q(y) < ϕj,k,q(x) = q

}
.

Note that Ij,k,q contains only irregular points. Let further

uj,k,q =
{

Hϕj,k,q in Ω,

q in 2B \ Ω,
j,k
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which is a quasicontinuous supersolution in 2Bj,k by Lemma 5.5. As uj,k,q is continuous in Ω , we have u∗
j,k,q =

Hϕj,k,q in Ω . By Theorem 3.5, u∗
j,k,q = uj,k,q q.e. in 2Bj,k and hence

q = uj,k,q(x) = u∗
j,k,q(x) = lim inf

Ω�y→x
u∗

j,k,q(y) = lim inf
Ω�y→x

Hϕj,k,q(y)

for q.e. x ∈ Bj,k ∩ ∂Ω . Thus Cp(·)(Ij,k,q) = 0.
Now consider a function ϕ ∈ C(∂Ω) and assume that we do not have

lim
Ω�y→x

Hϕ(y) = ϕ(x)

for some x ∈ ∂Ω . By considering −ϕ if necessary, and adding a constant, we can assume that ϕ � 0 and that
lim infΩ�y→x Hϕ(y) < ϕ(x).

Since ϕ is continuous we can find a ball Bj,k containing the point x so that

M := inf
3Bj,k∩∂Ω

ϕ > lim inf
Ω�y→x

Hϕ(y) � 0.

We can then also find a rational q such that M > q > lim infΩ�y→x Hϕ(y).
Thus, ϕj,k,q � ϕ on ∂Ω , and hence, by the comparison principle (Lemma 5.2),

lim inf
Ω�y→x

Hϕj,k,q(y) � lim inf
Ω�y→x

Hϕ(y) < q = ϕj,k,q(x),

i.e. x ∈ Ij,k,q . Thus the set of irregular points

Ip(·) =
∞⋃

j=1

Nj⋃
k=1

⋃
q∈Q
q>0

Ij,k,q , (5.1)

is a countable union of sets of zero p(·)-capacity, and hence itself of zero p(·)-capacity. �
Remark 5.6. It is easy to see that

Ij,k,q =
∞⋃
l=1

(
Bj,k ∩ ∂Ω ∩ {

y ∈ Ω: Hϕj,k,q(y) < q − 1/l
})

,

is a countable union of compact sets. Together with the identity (5.1) this shows that Ip(·) is an Fσ set.

6. Removable singularities

In this section we are going to prove Theorem 1.3. Let us first state it in a slightly more precise form.

Theorem 6.1. Let F ⊂ Ω be relatively closed and such that Cp(·)(F ) = 0. Let u be a bounded p(·)-harmonic function
in Ω \ F . Then u has a unique p(·)-harmonic extension to Ω given by

U(x) = ess lim inf
Ω\F�y→x

u(y), x ∈ Ω.

If moreover u ∈ W 1,p(·)(Ω \ F), then U ∈ W 1,p(·)(Ω) and ‖U‖W 1,p(·)(Ω) = ‖u‖W 1,p(·)(Ω\F).

Note that the boundedness assumption cannot be omitted even in the constant p case, as shown by the function
u(x) = −|x|(p−n)/(p−1), which is p-harmonic in B(0,1) \ {0} ⊂ Rn but not in B(0,1). It also shows that the assump-
tion that u be bounded from below cannot be dropped from Theorem 6.2 below either.

Theorem 6.1 follows directly from Proposition 6.4 below and the following removability result for bounded super-
harmonic functions.



1144 T. Adamowicz et al. / Ann. I. H. Poincaré – AN 31 (2014) 1131–1153
Theorem 6.2. Let F ⊂ Ω be relatively closed and such that Cp(·)(F ) = 0. Let u be a superharmonic function in Ω \F

which is bounded from below. Then u has a unique superharmonic extension U to Ω given by

U(x) = ess lim inf
Ω\F�y→x

u(y), x ∈ Ω.

If moreover u ∈ W 1,p(·)(Ω \ F), then U ∈ W 1,p(·)(Ω) and ‖U‖W 1,p(·)(Ω) = ‖u‖W 1,p(·)(Ω\F).

To prove Theorem 6.2 we need the following lemma. It is similar to Lemma 3.1 in Lukkari [28], but since one also
needs that 0 � ϕj � 1, we provide the short proof and clarify this point.

Lemma 6.3. Let K be a compact set. If Cp(·)(K) = 0, then there exists a sequence {ϕj }∞j=1 of C∞(Rn) functions with
the following properties:

(a) 0 � ϕj � 1 in Rn and ϕj ≡ 0 in a neighbourhood of K ;
(b) limj→∞

∫
Ω

|∇ϕj |p(x) dx = 0;
(c) limj→∞ ϕj = 1 and limj→∞ ∇ϕj = 0 a.e. in Rn.

Proof. By Lemma 10.1.9 in Diening, Harjulehto, Hästö, and Růžička [13], the infimum in the definition of Cp(·)(K)

can be taken over all nonnegative u ∈ C∞(Rn) such that u � 1 in a neighbourhood of K . In fact, it follows from the
proof (which implicitly uses the standard mollification through Theorem 9.1.6 in [13]) that one can also assume that
0 � u � 1. Thus, there are uj ∈ C∞(Rn) such that 0 � uj � 1 in Rn, u = 1 in a neighbourhood of K and

∫
Rn

(
u

p(x)
j + |∇uj |p(x)

)
dx → 0, as j → ∞.

Letting ϕj = 1 − uj and passing to a subsequence then finishes the proof. �
In what follows the Lebesgue measure of a set in Rn is denoted by | · |.

Proof of Theorem 6.2. We first show the uniqueness. Let V be any superharmonic extension of u. Since V is lsc-
regularized, by Theorem 4.3, and |F | = 0, we see that

V (x) = ess lim inf
Ω�y→x

V (y) = ess lim inf
Ω\F�y→x

u(y) = U(x), x ∈ Ω,

which shows the uniqueness.
Let us now turn to the existence. Assume to begin with that u is bounded. By Theorem 1.4, u is an lsc-regularized

supersolution in Ω \ F . It is straightforward that U is bounded and lsc-regularized in Ω and that U = u in Ω \ F .
We shall show that U is a supersolution in Ω , and thus a bounded superharmonic extension of u, by Theorem 1.4
again, as required.

First, we show that U ∈ W
1,p(·)
loc (Ω). Let B � Ω be a ball and η ∈ C∞

0 (B) be such that 0 � η � 1 and η = 1 in 1
2B .

Let {ϕj }∞j=1 be as in Lemma 6.3, with K = F ∩ suppη, and consider ηj = ηϕj . Since u is bounded, we may assume

that u� 0. Then −uη
p+
j ∈ W

1,p(·)
0 (Ω \ F) is nonnegative and compactly supported in Ω \ F . Thus we have

∫
Ω

p(x)|∇u|p(x)−2∇u · (−η
p+
j ∇u − p+uη

p+−1
j ∇ηj

)
dx � 0.

Hence,
∫
Ω

p(x)|∇u|p(x)η
p+
j dx � p+

∫
Ω

p(x)|∇u|p(x)−1|u|ηp+−1
j |∇ηj |dx. (6.1)
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The last integrand can be estimated for every 0 < ε < 1 and x ∈ Ω using the Young inequality as

|u||∇ηj |
ε

(
ε|∇u|p(x)−1η

p+−1
j

)
� (|u||∇ηj |)p(x)

p(x)εp(x)
+ εp′(x)

p′(x)
|∇u|p(x)η

(p+−1)p′(x)
j . (6.2)

Since p′(x) � (p+)′ = p+/(p+ − 1) and 1/p′(x) < 1, inserting this into (6.1) yields
∫
Ω

p(x)|∇u|p(x)η
p+
j dx � p+

εp+

∫
Ω

|u|p(x)|∇ηj |p(x) dx + p+ε(p+)′
∫
Ω

p(x)|∇u|p(x)η
p+
j dx. (6.3)

By choosing ε small enough we can include the last integral in the left-hand side. (Note that it is finite.) As a conse-
quence, we have for every j = 1,2, . . . ,∫

1
2 B

|∇u|p(x)ϕ
p+
j dx �

∫
Ω

|∇u|p(x)ηj
p+

dx � C
(
p+)∫

Ω

|u|p(x)|∇ηj |p(x) dx

� C
(
p+, u

)∫
Ω

(|∇ϕj | + |∇η|)p(x)
dx, (6.4)

since u is bounded. By Lemma 6.3(b), the last integral remains bounded as j → ∞. Thus we get from Lemma 6.3(c)
and dominated convergence that ∇u ∈ Lp(·)( 1

2B). Since B � Ω was arbitrary, ∇u ∈ L
p(·)
loc (Ω).

To conclude that U ∈ W
1,p(·)
loc (Ω) it remains to show that ∇u is the distributional gradient of U in Ω . To this end,

let η ∈ C∞
0 (Ω) be arbitrary and let {ϕj }∞j=1 be as in Lemma 6.3 with K = F ∩ suppη. Then ηϕj ∈ C∞

0 (Ω \F). Since
∇u is the distributional gradient of u in Ω \ F , we have

0 =
∫

Ω\F

(
u∇(ηϕj ) + ηϕj∇u

)
dx =

∫
Ω

uη∇ϕj dx +
∫
Ω

ϕj (U∇η + η∇u)dx.

The first integral in the right-hand side tends to zero by Lemma 6.3(b), (2.3) and the Hölder inequality. Since 0 �
ϕj � 1 and |U∇η + η∇u| ∈ L1(Ω), the last integral tends to∫

Ω

(U∇η + η∇u)dx

by Lemma 6.3(c) and dominated convergence. Thus, ∇u is the distributional gradient of U in Ω , and U ∈ W
1,p(·)
loc (Ω).

It remains to be proven that U is a supersolution in the whole of Ω . Let 0 � η ∈ C∞
0 (Ω) be arbitrary. As above,

ηϕj ∈ C∞
0 (Ω \F) is an admissible test function, where {ϕj }∞j=1 again are given by Lemma 6.3 with K = F ∩ suppη.

Since u is a supersolution in Ω \ F , it holds that∫
Ω

p(x)|∇u|p(x)−2(∇u · ∇ϕj )η dx +
∫
Ω

p(x)|∇u|p(x)−2(∇u · ∇η)ϕj dx � 0. (6.5)

As |∇u|p(·)−1 ∈ L
p′(·)
loc (Ω), the Hölder inequality (2.4) implies that the first term in (6.5) is majorized by

2p+ max
Ω

|η|∥∥|∇u|p(·)−1
∥∥

Lp′(·)(supp η)
‖∇ϕj‖Lp(·)(supp η),

which tends to zero as j → ∞, by Lemma 6.3(b) together with (2.3).
As for the second term in (6.5), the Young inequality shows that |∇u|p(x)−1 ∈ L1(suppη). Hence the second term

in (6.5) converges by dominated convergence. Letting j → ∞ in (6.5) then shows that∫
Ω

p(x)|∇u|p(x)−2∇u · ∇η dx � 0. (6.6)

Thus U is a supersolution in Ω .
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Finally, consider the case when u is unbounded. By Lemma 4.2, uk := min{u, k} is a bounded superharmonic func-
tion in Ω \F which, by the above, has Uk := min{U,k} as a bounded superharmonic extension to Ω . By Theorem 4.4,
U is superharmonic in Ω .

If moreover, u ∈ W 1,p(·)(Ω \ F), then {uk}∞k=1 is a Cauchy sequence in W 1,p(·)(Ω \ F). By the above, ∇uk is the
distributional gradient of Uk in Ω . Since |F | = 0 it follows that ‖Uk‖W 1,p(·)(Ω) = ‖uk‖W 1,p(·)(Ω\F). Hence {Uk}∞k=1 is

a Cauchy sequence in W 1,p(·)(Ω) with limit U , and thus ‖U‖W 1,p(·)(Ω) = ‖u‖W 1,p(·)(Ω\F). �
Proposition 6.4. Assume that F ⊂ Ω is relatively closed and |F | = 0. Let u be a bounded p(·)-harmonic function in
Ω \F , which has a superharmonic extension U and a subharmonic extension V to Ω . Then both U and V are unique
and U = V is p(·)-harmonic in Ω .

Proof. Since U is lsc-regularized and |F | = 0, we have that

U(x) = ess lim inf
Ω∈y→x

U(y) = ess lim inf
Ω\F�y→x

u(y), x ∈ Ω,

and thus U is unique. Moreover, U is bounded, as u is bounded. By Theorem 1.4, U is an lsc-regularized supersolution
and since U = V a.e., U is also a subsolution. Thus, U is a solution. Since U is lsc-regularized, it follows from
Remark 3.8 that U is continuous in Ω , and thus p(·)-harmonic in Ω . Similarly V is continuous in Ω , and as U = V

a.e. in Ω it follows that U = V everywhere in Ω . �
The following two lemmas will be needed in the next section to prove the trichotomy (Theorem 1.2). We state them

already here to avoid a digression later on.

Lemma 6.5. Assume that G ⊂ Rn is open and connected. If F ⊂ G is relatively closed with Cp(·)(F ) = 0, then G \ F

is connected.

Proof. Proposition 10.1.10 in Diening, Harjulehto, Hästö, and Růžička [13] gives us that Cp−(F ) = 0. A simple
modification of Lemma 2.46 in Heinonen, Kilpeläinen, and Martio [22] implies that G \ F is connected. �
Lemma 6.6. Assume that G ⊂ Rn is open and connected. If F � G is relatively closed, then Cp(·)(F ) = 0 if and only
if Cp(·)(∂F ∩ G) = 0.

Proof. The necessity follows immediately from Cp(·)(∂F ∩ G)� Cp(·)(F ) = 0.
In order to show the converse implication, assume that Cp(·)(∂F ∩ G) = 0. Then, by Lemma 6.5, G \ (∂F ∩ G) is

connected and so intF =∅. Hence, F = ∂F ∩ G, and thus Cp(·)(F ) = 0. �
In the setting of metric spaces Lemma 6.6 can be found as Lemma 4.5 in Björn and Björn [9] for the constant p

case. Therein, the use of Newtonian spaces simplifies the argument.

7. Boundary regularity and trichotomy

In this section we prove one of the main results of this paper, namely the trichotomy (Theorem 1.2) between regular,
semiregular and strongly irregular boundary points.

Recall that an irregular boundary point x0 ∈ ∂Ω is semiregular if the limit

lim
Ω�y→x0

Hf (y) exists for all f ∈ C(∂Ω); (7.1)

and strongly irregular if for all f ∈ C(∂Ω) there is a sequence {yj }∞j=1 such that

Ω � yj → x0 and Hf (yj ) → f (x0), as j → ∞. (7.2)
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Proof of Theorem 1.2. Case 1. There is r > 0 such that Cp(·)(B ∩ ∂Ω) = 0, where B = B(x0, r).
By Lemma 6.6, Cp(·)(B \ Ω) = 0 and thus B ⊂ Ω . Let f ∈ C(∂Ω). By Theorem 6.1, the p(·)-harmonic function

Hf has a p(·)-harmonic extension U to Ω ∪ B . Since U is continuous we have

lim
Ω�y→x0

Hf (y) = U(x0),

i.e. (7.1) holds and x0 is either regular or semiregular.
Case 2. The capacity Cp(·)(B(x0, r) ∩ ∂Ω) > 0 for all r > 0. (Note that this is complementary to Case 1.)
For every j = 1,2, . . . , we thus have Cp(·)(B(x0,1/j)∩∂Ω) > 0, and by the Kellogg property (Theorem 1.1) there

is a regular boundary point xj ∈ B(x0,1/j) ∩ ∂Ω . (We do not require the xj to be distinct.)
As xj is regular, we can find yj ∈ B(xj ,1/j)∩Ω so that |Hf (yj )−f (xj )| < 1/j . It follows directly that yj → x0

and Hf (yj ) → f (x0), as j → ∞, i.e. (7.2) holds, and thus x0 is either regular or strongly irregular. �
We finish this section by characterizing regular boundary points in several ways. Semiregular boundary points will

be characterized in Section 8. In view of the trichotomy result this indirectly characterizes the strongly irregular points
as well.

Theorem 7.1. Let x0 ∈ ∂Ω and d(x) := d(x, x0). Then the following are equivalent:

(a) The point x0 is a regular boundary point.
(b) It is true that

lim
Ω�y→x0

H(jd)(y) = 0 for all j = 1,2, . . . .

(c) It is true that

lim
Ω�y→x0

Hf (y) = f (x0)

for all bounded f ∈ W 1,p(·)(Ω) such that f (x0) := limΩ�y→x0 f (y) exists.
(d) It is true that

lim sup
Ω�y→x0

Hf (y) � lim sup
Ω�y→x0

f (y)

for all bounded f ∈ W 1,p(·)(Ω).

In the constant p case it is enough if (b) holds for j = 1, which is easily seen since H(jd) = jHd in this case.
In the variable exponent case this latter fact is not true, but it is not known whether it suffices that (b) holds for
j = 1 also in this case. In fact, the situation is similar for p-parabolic equations in the sense that if u is a p-parabolic
function and a ∈ R, then u + a is p-parabolic, but au is in general not p-parabolic. In the p-parabolic case a similar
characterization of boundary regularity to the one above was obtained by Björn, Björn, Gianazza, and Parviainen [10].
Therein a characterization of boundary regularity in terms of the existence of a family of barriers was also obtained.
It would be interesting to obtain a similar characterization in our variable exponent elliptic case. Whether one barrier
could suffice for boundary regularity in the p-parabolic case or in the variable exponent elliptic case is an open
question.

Proof. (a) ⇒ (b) This follows directly from Definition 5.4 by taking f = jd for j = 1,2, . . . .
(b) ⇒ (d) Let A > lim supΩ�y→x0

f (y) be real and M = sup∂Ω(f −A)+. Let further r > 0 be such that f (x) < A

for x ∈ B(x0, r) ∩ ∂Ω , and let j > M/r be an integer. Then f � A + Md/r < A + jd on ∂Ω . It follows from the
comparison principle in Lemma 3.10 that

lim sup
Ω�y→x0

Hf (y) � A + lim
Ω�y→x0

H(jd)(y) = A.

Letting A → lim supΩ�y→x f (y) gives lim supΩ�y→x Hf (y) � lim supΩ�y→x f (y).

0 0 0
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(d) ⇒ (c) Applying (d) to −f yields

lim inf
Ω�y→x0

Hf (y) = − lim sup
Ω�y→x0

H(−f )(y) � −(−f (x0)
) = f (x0).

Together with (d) this gives the desired conclusion.
(c) ⇒ (a) Let f ∈ C(∂Ω). By the comparison principle together with uniform approximation by Lipschitz functions

we may as well assume that f ∈ Lip(∂Ω). We find an extension f̃ ∈ Lip(Ω) such that f̃ = f on ∂Ω (e.g. a McShane
extension). Then by definition and (c),

lim
Ω�y→x0

Hf (y) = lim
Ω�y→x0

Hf̃ (y) = f (x0). �
8. Characterizations of semiregular points

Similarly to regular points, semiregular points can be characterized by a number of equivalent conditions. This will
be done in Theorem 8.4, but before that we obtain the following characterizations of relatively open sets of semiregular
points.

Theorem 8.1. Let V ⊂ ∂Ω be relatively open. Then the following are equivalent:

(a′) The set V consists entirely of semiregular points.
(b′) The set V does not contain any regular point.
(c′) It is true that Cp(·)(V ) = 0.
(d′) The set Ω ∪ V is open in Rn, and every bounded p(·)-harmonic function in Ω has a p(·)-harmonic extension

to Ω ∪ V .
(e′) The set Ω ∪ V is open in Rn, |V | = 0, and every bounded superharmonic function in Ω has a superharmonic

extension to Ω ∪ V .
(f′) For every f ∈ C(∂Ω), the p(·)-harmonic extension Hf depends only on f |∂Ω\V (i.e. if f,h ∈ C(∂Ω) and f = h

on ∂Ω \ V , then Hf ≡ Hh).

Together with the implication (a) ⇒ (e) in Theorem 8.4 this theorem shows that the set S of all semiregular
boundary points can be characterized as the largest relatively open subset of ∂Ω having any of the properties above.
Equivalently, it can be written e.g. as

S =
⋃{

V ⊂ ∂Ω: Cp(·)(V ) = 0 and V is relatively open
}
. (8.1)

By (d′) we also see that S is contained in the interior of Ω , i.e. S ⊂ ∂Ω \ ∂Ω . Note however that it can happen that
S �= ∂Ω \ ∂Ω , as the following examples show.

Example 8.2. Let Cp(·)({x}) > 0 and G � x, where G is a bounded open set, and let Ω := G \ {x}. Then x is regular
with respect to Ω , by the Kellogg property, but x ∈ ∂Ω \ ∂Ω , cf. Example 8.6.

Example 8.3. Let n = 2 and p ≡ 2. Let further Ω be the slit disc B((0,0),1) \ ((−1,0] × {0}). It is well known that
Ω is regular, and hence S =∅. However, ∂Ω \ ∂Ω = (−1,0] × {0}.

The strong minimum principle says that if Ω is connected, u is superharmonic in Ω and u attains its minimum
in Ω , then u is constant in Ω . The proof of the implication (d′) ⇒ (a′) is considerably easier when the strong minimum
principle is available, but it is not known if it holds in our generality. The strong minimum principle for the variable
exponent case was obtained by Fan, Zhao, and Zhang [15] under the assumption that p ∈ C1(Ω). Theorem 5.3 in
Harjulehto, Hästö, Latvala, and Toivanen [17] shows that the strong minimum principle holds also under the weaker
assumption that p satisfies a Dini-type condition, see (5.1) in [17].
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Proof of Theorem 8.1. (a′) ⇒ (b′) This is trivial.
(b′) ⇒ (c′) This follows directly from the Kellogg property (Theorem 1.1).
(c′) ⇒ (e′) Let x ∈ V and let G be a connected neighbourhood of x, such that G ∩ ∂Ω ⊂ V . By Lemma 6.5 sets of

zero p(·)-capacity cannot separate space, and hence G \ ∂Ω must be connected. Since G \ ∂Ω = (G ∩ Ω) ∪ (G \ Ω)

and G ∩ Ω �= ∅, we get that G ⊂ Ω . As G ∩ ∂Ω ⊂ V , this implies that G ⊂ Ω ∪ V . Since x ∈ V was arbitrary,
we conclude that Ω ∪ V is open. That |V | = 0 follows directly from the fact that Cp(·)(V ) = 0. The extension is now
provided by Theorem 6.2.

(e′) ⇒ (d′) Let u be a bounded p(·)-harmonic function on Ω . By assumption, u has a superharmonic extension U

to Ω ∪V . Also −u has a superharmonic extension W to Ω ∪V . Thus −W is a subharmonic extension of u to Ω ∪V .
By Proposition 6.4, U = −W is p(·)-harmonic.

(c′) ⇒ (f′) Let f,h ∈ C(∂Ω) with f = h on ∂Ω \ V . Then η := h − f ∈ C(∂Ω) and η = 0 on ∂Ω \ V .
Let fj ∈ Lipc(R

n) ⊂ W 1,p(·)(Rn) converge uniformly to f on ∂Ω . (Here Lipc(R
n) consists of Lipschitz functions

on Rn with compact support.) Let also η′
j ∈ Lipc(R

n) be such that |η′
j − η| < 1/j on ∂Ω . Letting ηj = (η′

j − 1/j)+ −
(η′

j + 1/j)− we see that ηj = 0 on ∂Ω \ V and ηj → η uniformly on ∂Ω .

As Cp(·)(V ) = 0, Lemma 2.4 shows that ηj ∈ W
1,p(·)
0 (Ω) and thus Hfj = H(fj + ηj ). As fj + ηj → f + η = h

and fj → f uniformly on ∂Ω , Lemma 5.3 implies H(fj + ηj ) → Hh and Hfj → Hf in Ω , i.e. Hh = Hf .
(f′) ⇒ (b′) Let x0 ∈ V . As V is relatively open in ∂Ω , there exists r > 0 such that B(x0, r) ∩ ∂Ω ⊂ V . Define

f (x) = (1 − d(x, x0)/r)+. Then f ∈ Lipc(R
n) and f = 0 on ∂Ω \ V . Using (f′) we conclude that Hf = H0 = 0 in

Ω . Since f (x0) = 1, this shows that x0 is not regular.
(d′) ⇒ (a′) Let x0 ∈ V and f ∈ C(∂Ω). Since Hf has a p(·)-harmonic extension u to Ω ∪ V , it follows that

lim
Ω�y→x0

Hf (y) = lim
Ω�y→x0

u(y) = u(x0), (8.2)

and thus the limit in the left-hand side always exists. It remains to show that x0 is irregular.
As V is relatively open in ∂Ω , there exists r > 0 such that B(x0, r) ∩ ∂Ω ⊂ V . Define h(x) = (1 − d(x, x0)/r)+.

By assumption, Hh has a p(·)-harmonic extension U to Ω ∪ V . We shall show that U ≡ 0 in Ω ∪ V , as then

lim
Ω�y→x0

Hh(y) = lim
Ω�y→x0

U(y) = 0 �= 1 = h(x0),

i.e. x0 is irregular.
As 0 � h� 1, we see that 0 � Hh� 1 and also 0 � U � 1. By the Kellogg property (Theorem 1.1),

lim
Ω�y→x

U(y) = lim
Ω�y→x

Hh(y) = h(x) = 0

q.e. in ∂(Ω ∪ V ) = ∂Ω \ V , i.e. for all x ∈ ∂(Ω ∪ V ) \ E, where Cp(·)(E) = 0. Moreover, (8.2) applied to h and
yj ∈ V instead of f and x0 implies that

0 � lim sup
j→∞

U(yj )� lim sup
Ω�y→x

U(y) = 0,

whenever yj ∈ V converge to some x ∈ ∂(Ω ∪ V ) \ E. Hence,

lim
Ω∪V �y→x

U(y) = h(x) = 0

for x ∈ ∂(Ω ∪V ) \E. Note that we cannot use the comparison principle (Lemma 3.10) directly to prove that U ≡ 0 in
Ω ∪V , since we do not know that U ∈ W

1,p(·)
0 (Ω ∪V ). (We know that U ∈ W

1,p(·)
loc (Ω ∪V ) and that U ∈ W 1,p(·)(Ω),

but since it could a priori happen that |V \ Ω| > 0, we cannot, at this point, even deduce that U ∈ W 1,p(·)(Ω ∪ V ).)
Let 0 < ε < 1 and find an open set G ⊃ E such that Cp(·)(G) < ε. Let also ϕ ∈ W 1,p(·)(Rn) be such that 0 � ϕ � 1,

ϕ ≡ 1 on G and∫
Rn

(
ϕp(x) + |∇ϕ|p(x)

)
dx � ε. (8.3)

For every x ∈ ∂(Ω ∪ V ) \ E there exists a ball Bx � x such that 0 � U < ε in 2Bx ∩ (Ω ∪ V ). Exhaust Ω ∪ V by
open sets
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Ω1 ⊂ Ω2 ⊂ · · ·�
∞⋃

j=1

Ωj = Ω ∪ V.

Then

Ω ∪ V ⊂
∞⋃

j=1

Ωj ∪ G ∪
⋃

x∈∂(Ω∪V )\E
Bx.

By compactness, there exists j > 1/ε such that

∂Ωj ⊂ G ∪
⋃

x∈∂(Ω∪V )\E
Bx.

Then 0 � U � ε on ∂Ωj \ G and as ϕ � χG, we obtain U � ε + ϕ on ∂Ωj . Since U ∈ W 1,p(·)(Ωj ), it is its own
p(·)-harmonic extension in Ωj , i.e. U = HΩj

U . If we let v = HΩj
ϕ, then U � ε + v in Ωj , by the comparison

principle (Lemma 3.10). The Poincaré inequality (Theorem 8.2.4 in Diening, Harjulehto, Hästö, and Růžička [13]),
applied to v − ϕ ∈ W

1,p(·)
0 (Ωj ) and some ball B ⊃ Ωj , yields

‖v − ϕ‖Lp(·)(B) � CB

∥∥∇(v − ϕ)
∥∥

Lp(·)(B)
� CB

(‖∇v‖Lp(·)(B) + ‖∇ϕ‖Lp(·)(B)

)
. (8.4)

Since v = HΩj
ϕ, we conclude from (2.2) and (8.3) that

‖∇v‖Lp(·)(B) �
(∫

B

∣∣∇v(x)
∣∣p(x)

dx

)1/p+

�
(∫

B

∣∣∇ϕ(x)
∣∣p(x)

dx

)1/p+

.

Inserting this into (8.4), together with (2.2) again and (8.3), gives

‖v‖Lp(·)(Ωj ) � ‖ϕ‖Lp(·)(B) + ‖v − ϕ‖Lp(·)(B)

�
(∫

B

∣∣ϕ(x)
∣∣p(x)

dx

)1/p+

+ 2CB

(∫
B

∣∣∇ϕ(x)
∣∣p(x)

dx

)1/p+

� 3CBε1/p+
.

Here we assume that CB � 1. It follows that

‖U‖Lp(·)(Ωj ) � ‖ε + v‖Lp(·)(Ωj ) � ε‖1‖Lp(·)(Ω) + 3CBε1/p+
.

Letting ε → 0 (and thus j → ∞) implies ‖U‖Lp(·)(Ω∪V ) = 0, and hence U ≡ 0 in Ω ∪ V . �
We are now ready to characterize semiregular boundary points in several different ways. Note that (b) below shows

that semiregularity is a local property, even though we have not shown that regularity is a local property. The latter
however follows from the Wiener criterion, whose usage we have avoided in this paper. It thus also follows that
strong irregularity is a local property. It would be nice to have a simpler and more direct proof (without appealing to
the Wiener criterion) that regularity is a local property. Such proofs are available in the constant p case, using barrier
characterizations, see Theorem 9.8 and Proposition 9.9 in Heinonen, Kilpeläinen, and Martio [22] for the weighted Rn

case, and Theorem 6.1 in Björn and Björn [8] (or [9, Theorem 11.11]) for metric spaces.

Theorem 8.4. Let x0 ∈ ∂Ω , δ > 0 and d(y) = d(y, x0). Then the following are equivalent:

(a) The point x0 is semiregular.
(b) The point x0 is semiregular with respect to G := Ω ∩ B(x0, δ).
(c) There is no sequence {yj }∞j=1 such that Ω � yj → x0, as j → ∞, and

lim
j→∞Hf (yj ) = f (x0) for all f ∈ C(∂Ω).

(d) It is true that x0 /∈ {x ∈ ∂Ω: x is regular}.
(e) There is a neighbourhood V of x0 such that Cp(·)(V ∩ ∂Ω) = 0.
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(f) There is a neighbourhood V of x0 such that Cp(·)(V \ Ω) = 0.
(g) The point x0 is irregular and there is a neighbourhood V of x0 such that every bounded p(·)-harmonic function

in Ω has a p(·)-harmonic extension to Ω ∪ V .
(h) There is a neighbourhood V of x0 such that V ⊂ Ω and every bounded p(·)-harmonic function in Ω has a

p(·)-harmonic extension to Ω ∪ V .
(i) There is a neighbourhood V of x0 such that |V \ Ω| = 0 and every bounded superharmonic function in Ω has a

superharmonic extension to Ω ∪ V .
(j) There is a neighbourhood V of x0 such that for every f ∈ C(∂Ω), the p(·)-harmonic extension Hf depends only

on f |∂Ω\V (i.e. if f,h ∈ C(∂Ω) and f = h on ∂Ω \ V , then Hf ≡ Hh).
(k) It is true that for some positive integer j ,

lim
Ω�y→x0

H(jd)(y) > 0.

(l) It is true that for some positive integer j ,

lim inf
Ω�y→x0

H(jd)(y) > 0.

Remark 8.5. Note that (c) says that if x0 is strongly irregular, then the sequence {yj }∞j=1 occurring in (1.2) can be
chosen independently of f ∈ C(∂Ω).

Proof. (d) ⇔ (e) ⇔ (j) ⇒ (a) This follows directly from Theorem 8.1, with V in Theorem 8.1 corresponding to
V ∩ ∂Ω here.

(a) ⇒ (k) The limit

cj := lim
Ω�y→x0

H(jd)(y)

exists for j = 1,2, . . . . If cj were 0 for j = 1,2, . . . , then x0 would be regular, by Theorem 7.1, a contradiction. Thus
cj > 0 for some positive integer j .

(k) ⇒ (l) ⇒ (c) This is trivial.
¬(d) ⇒ ¬(c) For each j � 1, B(x0,1/j2)∩ ∂Ω contains a regular boundary point xj . Let fj = jd ∈ C(∂Ω). Then

we can find yj ∈ B(xj ,1/j) ∩ Ω so that

1

j
>

∣∣fj (xj ) − Hfj (yj )
∣∣.

Since 0 � fj (xj )� 1/j , we have Hfj (yj ) � 2/j . Moreover, yj → x0 as j → ∞.
Let now f ∈ C(∂Ω). Without loss of generality we may assume that |f |� M < ∞ and that f (x0) = 0. Let ε > 0.

Then we can find k such that

|f | � ε on B(x0,1/k) ∩ ∂Ω.

For j � Mk we have fj � M on ∂Ω \ B(x0,1/k) and hence |f | � ε + fj on ∂Ω . It follows that for j � Mk,

Hf (yj ) � ε + Hfj (yj )� ε + 2

j
→ ε, as j → ∞

and

Hf (yj ) � −ε − Hfj (yj ) � −ε − 2

j
→ −ε, as j → ∞.

Letting ε → 0 gives limj→∞ Hf (yj ) = 0, i.e. (c) fails.
(e) ⇔ (b) Note first that (e) is equivalent to the existence of a neighbourhood W of x0 with Cp(·)(W ∩ ∂G) = 0.

But this is equivalent to (b), by the already proved equivalence (e) ⇔ (a) applied to G instead of Ω .
(e) ⇒ (f) By Theorem 8.1, (c′) ⇒ (e′), the set Ω ∪ (V ∩ ∂Ω) is open, and we can use this as our set V in (f).
(f) ⇒ (e) This is trivial.
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(f) ⇔ (h) ⇔ (i) In all three statements it follows directly that V ⊂ Ω . Thus their equivalence follows directly from
Theorem 8.1, with V in Theorem 8.1 corresponding to V ∩ ∂Ω here.

(h) ⇒ (g) The first part is obvious and we only need to show that x0 is irregular, but this follows from the already
proved implication (h) ⇒ (a).

(g) ⇒ (a) Let f ∈ C(∂Ω). Then Hf has a p(·)-harmonic extension U to Ω ∪ V for some neighbourhood V of x0.
It follows that

lim
Ω�y→x0

Hf (y) = U(x0),

and thus the limit in the left-hand side always exists. Since x0 is irregular it follows that x0 must be semiregular. �
We end this paper with some examples of semiregular and strongly irregular boundary points.

Example 8.6 (The punctured ball). Let Ω = B(x0, r) \ {x0}. Then x0 is semiregular if Cp(·)({x0}) = 0, and regular
otherwise. Indeed, when Cp(·)({x0}) = 0 this follows from Theorem 8.1, and is also a special case of Proposition 8.7
below, while if Cp(·)({x0}) > 0 it follows from the Kellogg property (Theorem 1.1). The remaining boundary points
are all regular by the sufficiency part of the Wiener criterion, or some weaker version of it.

Proposition 8.7. Let K be a compact set with Cp(·)(K) = 0. Then there is a domain Ω such that K is the set of
semiregular boundary points and all other boundary points are regular.

Proof. Let B be an open ball containing K and let Ω = B \ K . Then K is an open subset of ∂Ω and as Cp(·)(K) = 0
it follows from Theorem 8.1 that K consists entirely of semiregular points. By the sufficiency part of the Wiener
criterion, or some weaker version of it, all other boundary points are regular. �
Proposition 8.8. Assume that p+ � n. Let K1 and K2 be two disjoint compact subsets of Rn with Cp(·)(K1) =
Cp(·)(K2) = 0. Then there is a domain Ω such that K1 is the set of semiregular boundary points, K2 is the set of
strongly irregular boundary points, and all other boundary points are regular.

The proof of this is very similar to the proof of the corresponding result for the constant p case, as given for
Theorem 4.1 in A. Björn [7], and we leave it to the interested reader to verify. Here we need to use the Wiener criterion.
An essential fact also used in the proof is that points have zero capacity, which is the reason for the requirement
p+ � n. Whether the result is true without this condition is not clear, see Section 5 in [7].
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