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Abstract

Our first purpose is to extend the results from [14] on the radial defocusing NLS on the disc in R
2 to arbitrary smooth (defocusing)

nonlinearities and show the existence of a well-defined flow on the support of the Gibbs measure (which is the natural extension of
the classical flow for smooth data). We follow a similar approach as in [8] exploiting certain additional a priori space–time bounds
that are provided by the invariance of the Gibbs measure.

Next, we consider the radial focusing equation with cubic nonlinearity (the mass-subcritical case was studied in [15]) where the
Gibbs measure is subject to an L2-norm restriction. A phase transition is established. For sufficiently small L2-norm, the Gibbs
measure is absolutely continuous with respect to the free measure, and moreover we have a well-defined dynamics. For sufficiently
large L2-norm cutoff, the Gibbs measure concentrates on delta functions centered at 0. This phenomenon is similar to the one
observed in the work of Lebowitz, Rose, and Speer [13] on the torus.
© 2013

1. Introduction

The purpose of this work is to establish global well-posedness results for the initial value problems associated to
the defocusing (−) and focusing (+) nonlinear Schrödinger equation,{

iut + �u ∓ |u|αu = 0,

u|t=0 = φ
(1)

with α ∈ 2N in the defocusing case, posed on the two-dimensional unit ball B2 ⊂R
2, and with α = 4

d
in the focusing

case, posed on the d-dimensional unit ball Bd ⊂R
d , d � 2. In both cases, we prescribe Dirichlet boundary conditions

u(t) = 0 on ∂Bd for all t ∈ R.
In order to obtain results globally in time we will appeal to a probabilistic viewpoint, invoking the construction of

an invariant Gibbs measure developed in the setting of nonlinear dispersive equations in the works [3–5]. To motivate
our discussion below, let us first recall that a Hamiltonian system of the form
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d

dt

[
pi

qi

]
i=1,...,n

=
[−∂H/∂qi

∂H/∂pi

]
i=1,...,n

(2)

with H = H(p1,p2, . . . , pn, q1, q2, . . . , qn) is subject to the following invariance property: the Gibbs measure

e−H(p,q)dL2n(p, q)

satisfies∫
A

e−H(p,q) dL2n(p, q) =
∫

{(p(t),q(t)): (p(0),q(0))∈A}
e−H(p(t),q(t)) dL2n

(
p(t), q(t)

)
(3)

for every measurable set A ⊂ R2n and t ∈ R, where L2n denotes Lebesgue measure and we use the abbreviation
p = (p1, . . . , pn), q = (q1, . . . , qn).

The relevance of this observation to our present study is that the equation in (1) is of the form iut = ∂H/∂u, with
conserved Hamiltonian

H(φ) = 1

2

∫
B

|∇φ|2 dx ± 1

α + 2

∫
B

|φ|α+2 dx.

In order to access the invariance (3) of the Gibbs measure in this infinite dimensional setting, we shall consider a
sequence of finite-dimensional projections of the problem (1), namely{

iut + �u ∓ PN

(|u|αu
)= 0,

u|t=0 = PNφ
(4)

for every integer N � 1, where PN denotes the frequency truncation operator defined via the relation

PN

(∑
n∈N

anen(x)

)
=

∑
{n∈N: zn�N}

anen(x),

with (en) the sequence of radial eigenfunctions and (z2
n) the sequence of associated eigenvalues of −� with vanishing

Dirichlet boundary conditions.
Solutions uN to (4) exist globally in time and can be represented as

uN(t, x) =
∑

{n∈N: zn�N}
un(t)en(x),

and the equation may be written in the form (2) with

pi = Re
(
un(t)

)
, qi = Im

(
un(t)

)
.

The Hamiltonian associated to the finite-dimensional projected problem (4) is then

HN(φ) = 1

2

∑
zn�N

z2
n

∣∣φ̂(n)
∣∣2 ± 1

α + 2

∫
B

∣∣PNφ(x)
∣∣α+2

dx.

Furthermore, the flow map

φN �→ uN(t)

leaves invariant the Gibbs measure μG corresponding to (4) defined by

dμG = e−HN(φ) dφ = e
∓ 1

α+2 ‖PNφ‖α+2

L
α+2
x dμ

(N)
F , (5)

with μ
(N)
F denoting the free probability measure induced by the mapping

ω �→ 1

π

∑
{n∈N: zn�N}

gn(ω)

zn

en, ω ∈ Ω

where (gn) is a sequence of normalized independent Gaussian random variables on a probability space (Ω,p,M).
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As noted in [3,6], when writing (5) one must take care to ensure (i) the μF -a.s. existence of the norm ‖PNφ‖
Lα+2

x

and (ii) the integrability of the density e
∓ 1

α+2 ‖PNφ‖α+2

L
α+2
x with respect to the measure μF . In both the defocusing and

focusing cases, the first condition is satisfied as a consequence of estimates on the eigenfunctions. On the other hand,
while the second condition is trivial in the defocusing setting, it is not satisfied in general when focusing interactions
are present.

In the setting of focusing periodic NLS on the one-dimensional torus, the non-integrability of the density was
overcome in the work of Lebowitz, Rose, and Speer [13] by restriction to a ball in the conserved L2

x norm. In particular,
one fixes ρ > 0 and considers

dμG = e

1
α+2 ‖PNφ‖α+2

L
α+2
x χ{‖PNφ‖

L2
x
<ρ}(φ)dμ

(N)
F

which is again invariant under the evolution and can be normalized to a well-defined measure for all α � 4 (the case
α = 4 requires ρ sufficiently small).

1.1. Main results of the present work

In recent works [8,9] (see also [7]), we addressed the Cauchy problems corresponding to (1) for the defocusing
nonlinear wave and Schrödinger equations on the unit ball of R3, establishing global well-posedness results for radial
solutions with random initial data according to the support of the Gibbs measure (almost surely in the randomization)
(see also [11]).

We say that functions u,uN : I × Bd → C are solutions of (1), (4), respectively, if they belong to the class
Ct(I ;Hσ

x (Bd)) for some σ < 1
2 and satisfy the associated integral equations

u(t) = φ ± i

t∫
0

ei(t−τ)�
[∣∣u(τ)

∣∣αu(τ)
]
dτ, t ∈ I, (6)

and

uN(t) = PNφ ± i

t∫
0

ei(t−τ)�PN

[∣∣u(τ)
∣∣αu(τ)

]
dτ, t ∈ I. (7)

To proceed with our discussion, recall that we consider the sequence of finite-dimensional projections (4). Our
estimates will typically be uniform in the truncation parameter N . To accommodate this, we will often make use of
the probability measure μF induced by the mapping

ω �→ φ(ω) := 1

π

∑
n∈N

gn(ω)

zn

en.

Note that with this notation, one has μ
(N)
F = PN [μF ]. Moreover, for each N � 1, the support of the Gibbs measure

μG corresponds to the set{
PNφ(ω): ω ∈ Ω

}
.

With this probabilistic framework in mind, our first main result, concerning the defocusing problem, takes the
following form:

Theorem 1.1. Fix α ∈ 2N. With the above notations, for N ∈ N, ω ∈ Ω , let uN denote the solution to (4) in the
defocusing case on the two-dimensional unit ball with initial data PNφ = PNφ(ω). Then almost surely in Ω , for every
0 < T < ∞ there exists u∗ ∈ Ct([0, T );Hs

x (B2)), s < 1
2 such that uN converges to u∗ in Ct([0, T );Hs

x (B2)).

We remark that Theorem 1.1 was announced in [7]. The restriction on the nonlinearity to α ∈ 2N is by no means
essential, and serves only to simplify the estimates on the nonlinearity, avoiding technicalities due to fractional powers.
The case α < 4 was treated in [14].
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The proof of Theorem 1.1 further develops the method of [8] and consists of an analysis of convergence properties
of solutions to the truncated equations (4). In order to perform this analysis, we will make use of three key ingredients:

(i) A detailed study of embedding properties associated to the Fourier restriction spaces Xs,b (see Lemma 2.3 and
Lemma 2.5).

(ii) A probabilistic estimate demonstrating how the randomization procedure leads to additional L
p
x L

q
t control, al-

most surely in the probability space (see Proposition 3.2).
(iii) A bilinear estimate of the nonlinearity enabling one to estimate interactions of high and low frequencies, allowing

for a paraproduct-type analysis in the present setting (see Proposition 4.1).

The embeddings established in Lemma 2.3 and Lemma 2.5 use frequency decomposition techniques, exploiting
the product structure inherent in the L4

t norm and the Plancherel identity. A technical tool used to estimate the fre-
quency interactions at this stage are arithmetic estimates for the counting of lattice points on circles (see in particular
Lemma 2.1).

On the other hand, the probabilistic L
p
x L

q
t bounds of Proposition 3.2 make essential use of the fact that uN is a

solution of (4). More precisely, the improvement in integrability follows from the invariance of the Gibbs measure
and bounds for functions belonging to its support.

Turning to the bilinear estimate Proposition 4.1, the Xs,b norm of certain products in the Duhamel formula are
estimated by Xs,b and L2

t H
γ
x norms (γ > 0 small) of its factors – this involves appropriate high and low frequency

localizations. The proof of this proposition is in the flavor of similar estimates in the R
d setting, with the additional

component that the usual convolution identities are replaced with estimates on the correlation of eigenfunctions.
To conclude the proof of Theorem 1.1, the ingredients (i), (ii) and (iii) are combined in order to show that the

approximate solutions uN -almost surely converge in the space Xs,b via a bootstrap-type argument. We refer the reader
to Section 5 for the full details of the argument.

Our second main result, treating the focusing problem, is as follows.

Theorem 1.2. Set α = 2. For each N ∈ N, ω ∈ Ω let uN denote the solution to (4) in the focusing case on the
two-dimensional unit ball with initial data PNφ = PNφ(ω) and subject to an appropriate L2-norm restriction. Then
for every 0 < T < ∞, there exists almost surely u∗ ∈ Ct([0, T );Hs

x (B2)), s < 1
2 , such that uN converges to u∗ in

Ct([0, T );Hs
x (B2)).

The main additional issue in the proof of Theorem 1.2 is to show the μF -integrability of the map

φ �→ e

1
α+2 ‖φ‖α+2

L
α+2
x χ{‖PNφ‖

L2
x
<ρ}(φ)

provided that ρ > 0 is chosen sufficiently small. This result is stated in Proposition 6.1, and ensures a bound on the
L2

x -truncated Gibbs measures

dμ
(N)
G = e

1
α+2 ‖φ‖α+2

L
α+2
x χ{‖PNφ‖

L2
x
<ρ}(φ)dμ

(N)
F .

Once we have the invariant measure at our disposal, the convergence of the solutions of the truncated equations follows
from the same argument as in the defocusing case for α = 2, leading to a well-defined dynamics on the support of the
modified Gibbs measure.

For subscritical nonlinearity α < 2, the corresponding result was established in [15] (with arbitrary L2-truncation).
In Remark 6.4 in Section 6, we will also comment on what happens for larger L2-norm restriction ρ.

1.2. Outline of the paper

The remainder of this paper is structured as follows: in Section 2 we establish our notation and recall the definitions
of the function spaces which will be used in the remainder of the paper. Section 3 is then devoted to the proof of a
probabilistic estimate for solutions corresponding to initial data in the support of the Gibbs measure. In Section 4,
we establish a key bilinear estimate on the nonlinearity, while the proof of Theorem 1.1 is contained in Section 5.
We conclude by establishing Theorem 1.2 in Section 6.
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2. Preliminaries

2.1. Notation

Let us now establish some brief notational conventions. Unless otherwise indicated, we will use the conventions
n ∈ N, m ∈ Z, while capital letters K , N and M shall denote dyadic integers of the form 2k , k � 0. Throughout our
arguments we will frequently make use of a dyadic decomposition in frequency, writing

f (x) =
∑
n

f̂ (n)en(x) =
∑
N�1

∑
n∼N

f̂ (n)en(x),

where for each dyadic integer N , the condition n ∼ N is characterized by N � n < 2N (likewise, we say m ∼ M if
M � |m| � 2M). We shall also use the notation 〈x〉 = (1 + |x|2)1/2.

For each n ∈ N, let zn ∈ R \ {0} be such that z2
n is the nth eigenvalue of the Dirichlet Laplacian on B2, and recall

that zn satisfies

zn = π

(
n − 1

4

)
+ O

(
1

n

)
. (8)

Following the usual convention, we will often refer to (zn) as the sequence of frequencies for functions defined on the
ball B2. Moreover, let en denote the nth radial eigenfunction, corresponding to the eigenvalue z2

n. One then has

‖en‖L
p
x
� 1, p ∈ [2,4),

‖en‖L
p
x
� log(2 + n)1/4, p = 4,

‖en‖L
p
x
� n

1
2 − 2

p , p ∈ (4,∞). (9)

We now state a basic probabilistic estimate for Gaussian random variables. In particular, if (gn) is a sequence of
independent (normalized) complex Gaussians, then we have∥∥∥∥∑

n

αngn(ω)

∥∥∥∥
Lq(dω)

� √
q

(∑
n

|αn|2
)1/2

. (10)

Moreover, if X(ω) is a Gaussian process with values in some normed space (E,‖ · ‖), of finite expectation
Eω[‖X‖], it follows that∫

e
c(

‖X‖
E[‖X‖] )2

< C

and hence

Pω

[‖X‖ > tEω

[‖X‖]]� e−ct2
, t > 1. (11)

The results and analysis in this section appear basically in [14] and are repeated here in a form suitable for our
presentation and in the interest of being self-contained.

2.2. Arithmetic estimates

As usual in the study of nonlinear Schrödinger equations on bounded domains (e.g. the case of tori treated in [3,
4]) an essential component of our analysis will rely upon arithmetical bounds for the sequence of frequencies. In
particular, we shall use the following:

Lemma 2.1. There exists c > 0 such that for every R > R1 � 1 and all boxes Q ⊂R
2 of size R1, we have∣∣{(n1, n2) ∈ Z

2: n2
1 + n2

2 = R2, (n1, n2) ∈ Q
}∣∣� exp

(
c

logR1

log logR1

)
. (12)
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Proof. Let R1 < R be given. Suppose first that R1 and R satisfy R1/3 � R1. Note that factorization in the Gaussian
integers Z+ iZ implies the bound∣∣{(n1, n2) ∈ Z

2: n2
1 + n2

2 = R2}∣∣� exp
(∣∣{Gaussian prime factors of R2}∣∣)< exp

logR

log logR
. (13)

Since logR ∼ logR1, the inequality (12) now follows from (13).
On the other hand, suppose that R1 � R1/3. It then follows by Jarnick’s theorem for lattice points on circles that

the left-hand side of (12) is at most 2, which gives the claim in this case. �
Lemma 2.2. Let z2

n be the nth eigenvalue of the Dirichlet Laplacian on B2 and let Q ⊂ R
2 be a box of size R1. Then

for any � ∈ R+,∣∣{(n1, n2) ∈ Z
2:
∣∣z2

n1
+ z2

n2
− �

∣∣< 1, (n1, n2) ∈ Q
}∣∣� exp

(
c

logR1

log logR1

)
.

Proof. According to (8), z2
n = π2(n − 1

4 )2 + O(1). Therefore the equation |z2
n1

+ z2
n2

− �| < 1 implies∣∣∣∣π2
(

n1 − 1

4

)2

+ π2
(

n2 − 1

4

)2

− �

∣∣∣∣< O(1),∣∣∣∣(4n1 − 1)2 + (4n2 − 1)2 − 16�

π2

∣∣∣∣< O(1)

and we can apply Lemma 2.1 setting n′
1 = 4n1 − 1, n′

2 = 4n2 − 1. �
2.3. Description of the Xs,b spaces

Fix I = [0, T ) with 0 < T < 1
2 , and let Xs,b(I ) denote the class of functions f : I × B →C representable as

f (t, x) =
∑
n,m

fn,men(x)e(mt), (t, x) ∈ I × B (14)

for which the norm

‖f ‖s,b := inf

(∑
n,m

〈zn〉2s
〈
z2
n − m

〉2b|fn,m|2
)1/2

is finite, with the infimum taken over all representations (14), cf. [1,2]. Throughout the remainder of the paper, we
will assume 0 < T < 1

2 , unless otherwise indicated.
We now give two lemmas expressing some embeddings of the space Xs,b which will be essential components of

our analysis below. Similar estimates appear already in [14] (see in particular [14, Proposition 4.1]).

Lemma 2.3. Let 1
4 < b < 1 and 2 � p < 4 be given. Then, letting PIf =∑

zn∈I f̂ (n)en, we have for ε > 0, f ∈ S
and intervals I ⊂R,

‖PIf ‖L
p
x L4

t
�
{

|I |ε‖PIf ‖0,b for b > 1
2 ,

|I |1−2b+ε‖PIf ‖0,b for b < 1
2 .

(15)

Proof. We begin by establishing the first inequality in (15), for which we shall compute the norm directly.
Fix ε > 0 and write

PIf (t, x) =
∑
m∈Z
z ∈I

f̂ (m,n)en(x)e(mt) =
∑
m

(∑
zn∈I

f̂
(
m + [

z2
n

]
, n
)
en(x)e

(
z2
nt
))

e(mt).
n
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Performing a dyadic decomposition into intervals m ∼ M , we obtain

‖PIf ‖L
p
x L4

t
�
∑
M

‖fM‖L
p
x L4

t

with

fM =
∑

m∼M

∑
zn∈I

f̂
(
m + [

z2
n

]
, n
)
en(x)e

(
z2
nt
)
e(mt).

We then have

‖fM‖L
p
x L4

t
�
∑

m∼M

∥∥∥∥∑
�

∑
zn,zn′ ∈I

|z2
n+(zn′ )2−�|<1

f̂
(
m + [

z2
n

]
, n
)
f̂
(
m + [

(zn′)2], n′)en(x)en′(x)ei�t

∥∥∥∥1/2

L
p/2
x L2

t

�
∑

m∼M

∥∥∥∥(∑
�

∣∣∣∣ ∑
zn,zn′ ∈I

|z2
n+(zn′ )2−�|<1

f̂
(
m + [

z2
n

]
, n
)
f̂
(
m + [

(zn′)2], n′)en(x)en′(x)

∣∣∣∣2)1/2∥∥∥∥1/2

L
p/2
x

, (16)

where in obtaining the last inequality we have used the Plancherel identity in the t variable.
Using the Cauchy–Schwarz inequality and Lemma 2.2,

(16) �
∑

m∼M

(
sup

�

∑
zn,zn′ ∈I

|z2
n+(zn′ )2−�|<1

1

)1/4∥∥∥∥(∑
zn∈I

∣∣f̂ (m + [
z2
n

]
, n
)∣∣2en(x)2

)∥∥∥∥1/2

L
p/2
x

�
∑

m∼M

|I |ε
(∑

zn∈I

∣∣f̂ (m + [
z2
n

]
, n
)∣∣2∥∥en(x)

∥∥2
L

p
x

)1/2

�
∑

m∼M

|I |ε
(∑

zn∈I

∣∣f̂ (m + [
z2
n

]
, n
)∣∣2)1/2

where to obtain the last inequality we used the eigenfunction estimate (9).
Invoking the Cauchy–Schwarz inequality once more,

(16) � |I |εM 1
2

( ∑
m∼M

∑
zn∼I

∣∣f̂ (m + [
z2
n

]
, n
)∣∣2)1/2

= |I |εM 1
2

( ∑
zn∼I

m−z2
n∼M

∣∣f̂ (m,n)
∣∣2)1/2

� |I |εM 1
2 −b‖PIf ‖0,b. (17)

On the other hand to obtain the second inequality in (15), a similar calculation yields

‖fM‖L
p
x L4

t
�
∑
zn∈I

∥∥∥∥ ∑
m∼M

f̂
(
m + [

z2
n

]
, n
)
e(mt)

∥∥∥∥
L4

t

∥∥en(x)
∥∥

L
p
x

� M
1
4
∑
zn∈I

( ∑
m−z2

n∼M

∣∣f̂ (m,n)
∣∣2)1/2

� |I |1/2M
1
4 −b‖PIf ‖0,b. (18)

Thus from (17), (18)

‖fM‖L
p
x L4

t
� min

{|I |εM 1
2 −b, |I | 1

2 M
1
4 −b

}‖PIf ‖0,b

and summation in M gives the desired estimates. �
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Remark 2.4. The estimates obtained in Lemma 2.3 also allow us to conclude

‖f ‖L
p
x L4

t
� C‖f ‖ε,b for b � 1/2 and p � 4

and

‖f ‖L
p
x L4

t
� C‖f ‖1−2b+ε,b for 1/4 < b < 1/2.

Indeed, appealing to the decomposition f =∑
N P[N,2N)f with N � 1 dyadic and applying (15) on each interval

I = [N,2N) (with ε̃ = ε/2), we obtain

‖f ‖L
p
x L4

t
�
∑
N

Nε/2‖P[N,2N)f ‖0,b �
∑
N

N−ε/2‖f ‖ε,b � ‖f ‖ε,b

for b � 1/2. An identical calculation with an application of the second inequality in (15) in place of the first inequality
of (15) gives the claim for 1/4 < b < 1/2.

As a consequence of Lemma 2.3, we have the following estimates on the nonlinear term of the Duhamel for-
mula (7).

Lemma 2.5. For each interval I ⊂R and every b > 1
2 , ε > 0, there exists C = C(b, ε) > 0 such that∥∥∥∥∥PI

( t∫
0

ei(t−τ)�f (τ) dτ

)∥∥∥∥∥
0,b

� C|I |2b−1+ε‖f ‖
L

4
3 +ε

x L
4
3
t

. (19)

Moreover, the inequality∥∥∥∥∥
t∫

0

ei(t−τ)�f (τ) dτ

∥∥∥∥∥
0,b

� C
∥∥(√−�)2b−1+εf

∥∥
L

4
3 +ε

x L
4
3
t

(20)

also holds for all f ∈ S .

Proof. We begin by showing (19), invoking the representation

f (t, x) =
∑
m,n

f̂ (m,n)en(x)e(mt)

and observing that the left-hand side of (19) is∥∥∥∥∥ ∑
m∈Z
zn∈I

t∫
0

ei(t−τ)z2
n f̂ (m,n)en(x)eimτ dτ

∥∥∥∥∥
0,b

=
∥∥∥∥ ∑

m∈Z
zn∈I

f̂ (m,n)en(x) · e(mt) − e(z2
nt)

i(m − z2
n)

∥∥∥∥
0,b

�
( ∑

m∈Z
zn∈I

|f̂ (m,n)|2
〈m − z2

n〉2(1−b)

)1/2

+
(∑

zn∈I

∣∣∣∣∑
m

f̂ (m,n)

m − z2
n

∣∣∣∣2)1/2

�
( ∑

m∈Z
zn∈I

|f̂ (m,n)|2
〈m − z2

n〉2(1−b)

)1/2

= ‖PIf ‖0,−(1−b) (21)

where we have used Cauchy–Schwarz to obtain the second inequality.
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By duality arguments followed by Hölder’s inequality combined with Lemma 2.3, we then have

‖PIf ‖0,−(1−b) = sup

{∣∣∣∣∫ PIf (t, x)PI g(t, x) dt dx

∣∣∣∣: g ∈ L2, ‖PIg‖0,1−b � 1

}
� ‖f ‖

L
4
3 +ε

x L
4
3
t

‖PIg‖
L

4+3ε
1+3ε
x L4

t

� |I |1−2(1−b)+ε‖f ‖
L

4
3 +ε

x L
4
3
t

‖PIg‖0,1−b

� |I |2b−1+ε‖f ‖
L

4
3 +ε

x L
4
3
t

. (22)

The inequality (19) now follows by combining (21) and (22).
The proof of (20) proceeds in a similar manner. Arguing as above and using Remark 2.4, we obtain∥∥∥∥∥ ∑

m∈Z
n∈N

t∫
0

ei(t−τ)z2
n f̂ (m,n)en(x)eimτ dτ

∥∥∥∥∥−(2b−1+ε),b

� ‖f ‖−(2b−1+ε),−(1−b)

� sup
{‖f ‖

L
4
3 +ε

x L
4
3
t

‖g‖
L

4+3ε
1+3ε
x L4

t

: ‖g‖2b−1+ε,1−b � 1
}

� ‖f ‖
L

4
3 +ε

x L
4
3
t

‖g‖2b−1+ε,1−b

� ‖f ‖
L

4
3 +ε

x L
4
3
t

from which the desired inequality (20) follows immediately. �
3. Probabilistic estimates

In this section, we establish a collection of essential probabilistic estimates which will enable us to obtain long-time
control over solutions to (4). We remark that these estimates are uniform in the truncation parameter N ; this uniformity
is important in the convergence proof of the next section.

We begin by establishing an almost sure bound on initial data belonging to the support of the Gibbs measure μG.

Lemma 3.1. Fix s < 1
2 . Then we have the bound

μF

({
φ: N

1
2 −s

0 ‖P�N0φ‖Hs
x

> λ
})

� exp
(−λc

)
(23)

for all N0 � 1 sufficiently large, where φ = φ(ω) =∑
n∈N

gn(ω)
zn

en.

Proof. Fix q1 � 2 to be determined. The Tchebyshev and Minkowski inequalities together with the estimate (10) then
imply that the left-hand side of (23) is bounded by

N
( 1

2 −s)q1

0

λq1
‖P�N0φ‖q1

L
q1
ω (dμF ;Hs

x )
�

N
( 1

2 −s)q1

0

λq1

∥∥∥∥∥
∞∑

n=N0

gn(ω)

z
(1−s)
n

en

∥∥∥∥∥
q1

L2
x(L

q1
ω (dμF ))

�
(

N
1
2 −s

0
√

q1

λ

)q1
( ∞∑

n=N0

‖en(x)‖2
L2

x

z
2(1−s)
n

)q1/2

�
(

N
1
2 −s

0
√

q1

λ

)q1
( ∞∑

n=N0

z−2(1−s)
n

)q1/2

�
(√

q1
)q1

, (24)

λ
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where the summation in the third line is bounded by N−1+2s
0 for N0 sufficiently large, as a consequence of the

asymptotic representation (8) for the sequence of eigenvalues (zn). Optimizing (24) in q1, we obtain the desired
estimate (23). �

In particular, we note that Lemma 3.1 includes a description of the decay present when considering the restriction of
φ to high frequencies. The next proposition is an essential ingredient and combines this type of probabilistic estimate
with the invariance of the Gibbs measure μG under the finite-dimensional evolution to obtain certain space–time
bounds of large deviation type.

Proposition 3.2. Let T > 0 be given. Then for every 0 � σ < 1
2 , 2 � p < 2

σ
and q < ∞,

EμF

[∥∥(√−�)σ uφ

∥∥
L

p
x L

q
t

]
< C(σ,p,q,T )

where uN = u
(φ)
N is the solution of (4) corresponding to initial data PNφ and the L

q
t norm is taken on the interval

[0, T ). In fact, there is the stronger distributional inequality

μF

({
φ:
∥∥(√−�)σ uN

∥∥
L

p
x L

q
t
> λ

})
� exp

(−λc
)
, λ > 0, N � 1,

for some c > 0.

Proof. Fix λ1 > 0 to be determined later in the argument. Then, denoting u = u
(φ)
N , we have

μF

({
φ:
∥∥(√−�)σ u

∥∥
L

p
x L

q
t
> λ

})
� e

1
2+α

λ2+α
1 μG

({
φ:
∥∥(√−�)σ u

∥∥
L

p
x L

q
t
> λ

})
+ μF

({
φ:
∥∥(√−�)σ u

∥∥
L

p
x L

q
t
> λ

}∩ {φ: ‖φ‖
L2+α

x
> λ1

})
=: (I) + (II). (25)

To estimate term (I), we observe that for every q1 � max{p,q} the Tchebyshev inequality and Minkowski inequal-
ity for integrals allow us to bound

μG

({
φ:
∥∥(√−�)σ u

∥∥
L

p
x L

q
t
> λ

})
by

1

λq1

∫ ∥∥(√−�)σ u
∥∥q1

L
p
x L

q
t
dμG(φ) �

(
T 1/q

λ

)q1∥∥∥∥(√−�)σ φ
∥∥

L
p
x

∥∥q1
Lq1 (dμG)

�T

(√
q1

λ

)q1
∥∥∥∥( ∑

zn�N

|en(x)|2
z

2(1−σ)
n

)1/2∥∥∥∥q1

L
p
x

(26)

where we use the invariance of the Gibbs measure μG under the truncated evolution (4). Using Minkowski’s inequality
(since p � 2), we then have

(26) �
(√

q1

λ

)q1
( ∑

zn�N

‖en(x)‖2
L

p
x

z
2(1−σ)
n

)q1/2

. (27)

Now, recalling the eigenfunction bounds (9), we have the bound

∑
n∈N

n
1− 4

p

z
2(1−σ)
n

� C0 + C1

∑
n�N0

n
−(1−2σ)− 4

p < ∞, (28)

where we have used the hypothesis p < 2 .

σ
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Combining (28) with (27) gives

μG

({
φ:
∥∥(√−�)σ u

∥∥
L

p
x L

q
t
> λ

})
�
(√

q1

λ

)q1

(29)

where the implicit constant is independent of N . Optimizing (29) in q1 then implies the bound

(I) � exp

(
1

2 + α
λ2+α

1

)
exp

(−λ2/(2e)
)
. (30)

To estimate term (II), we fix q2 > 2 + α and again apply the Tchebyshev and Minkowski inequalities to bound the
term

μF

({
φ: ‖φ‖

L2+α
x

> λ1
})

by

1

λ
q2
1

∫
‖φ‖q2

L2+α
x

dμF (φ) � 1

λ
q2
1

∥∥‖φ‖Lq2 (dμF )

∥∥q2

L2+α
x

�
(√

q2

λ1

)q2
∥∥∥∥(∑

n

|en(x)|2
z2
n

)1/2∥∥∥∥q2

L2+α
x

�
(√

q2

λ1

)q2
(∑

n

‖en(x)‖2
L2+α

x

z2
n

)q2/2

.

Appealing to the eigenfunction bounds (9) and the asymptotic representation (8) for zn, we estimate

∑
n∈N

n1− 4
2+α

z2
n

� C0 +
∑

n�N0

n−1− 4
2+α < ∞

for N0 sufficiently large. As a consequence we obtain

μF

({
φ: ‖φ‖

L2+α
x

> λ1
})

�
(√

q2

λ1

)q2

.

Minimizing the right-hand side over admissible values of q2 we get the bound

(II) � exp
(−λ2

1/(2e)
)
. (31)

Combining (25) with (30) and (31) and optimizing in λ1 then gives

μF

({
φ:
∥∥(√−�)σ u

∥∥
L

p
x L

q
t
> λ

})
� exp

(−cλ
4

2+α
)

as desired. This completes the proof of Proposition 3.2. �
We will also require a slight refinement of Proposition 3.2 which is a consequence of similar arguments, and allows

for more precise estimates.

Proposition 3.3. Let T , σ , p, q and (uN) be as in Proposition 3.2. Then for all M,N � 1 with M < N , one has the
distributional inequality

μ
(N)
F

({
φN :

∥∥(√−�)σ (uN − PMuN)
∥∥

L
p
x L

q
t
> λ

})
< e−(θλ)c

where we have set θ = T
− 1

q M
2
p

−σ .
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4. Bilinear estimate on the nonlinearity

We now establish a bilinear estimate on the nonlinear term in the Duhamel formula (7) which controls interactions
between high and low frequency components of the nonlinearity.

Proposition 4.1. Fix 0 � s � 1, b > 1
2 and N ∈ Z+. Then for every μ > 0 we have the inequality∥∥∥∥∥

t∫
0

ei(t−τ)�(fg)(τ ) dτ

∥∥∥∥∥
s,b

� ‖f ‖s,b

∥∥(√−�)5(2b−1)+μg
∥∥

L2
xL2

t
(32)

for every f and g representable as

f (t, x) =
∑

n>N,m∈Z
f̂ (n,m)en(x)e(mt),

g(t, x) =
∑

n�N,m∈Z
ĝ(n,m)en(x)e(mt).

Proof. It suffices to establish (32) for s = 0. Since

‖DF‖0,b ∼ ∥∥(−�)1/2F
∥∥

0,b
= ‖F‖1,b

the statement then clearly follows for s = 1 and we can then interpolate.
Let μ > 0 be given. We begin by writing

g =
∑
K<N

gK with gK(t, x) =
∑
n∼K
m∈Z

ĝ(m,n)en(x)e(mt).

Fix K � 1 a dyadic integer, and estimate∥∥∥∥∥
t∫

0

ei(t−τ)�fgK(τ) dτ

∥∥∥∥∥
0,b

. (33)

Set K1 = K5 and let J denote a partition of Z in intervals I of size K1. Write

fgK =
∑

I,I ′∈J
dist(I,I ′)�K1

PI ′(PI fgK) +
∑

I,I ′∈J
dist(I,I ′)>K1

PI ′(PI fgK) =: (I) + (II).

By construction, the contribution of (I) in (33) is clearly bounded by[∑
I∈J

∥∥∥∥∥PI

( t∫
0

ei(t−τ)�(PĨ fgK)(τ ) dτ

)∥∥∥∥∥
2

0,b

]1/2

(34)

with Ĩ = I or Ĩ ∈ J a neighbor of I . Applying Lemma 2.5 to each term of (34) gives the estimate

K2b−1+ε
1

(∑
I∈J

‖PĨ fgK‖2

L
4
3 +ε

x L
4
3
t

)1/2

� K2b−1+ε
1 ‖gK‖

L2+ε′
x L2

t

(∑
I∈J

‖PIf ‖2
L4−ε

x L4
t

)1/2

and since by Lemma 2.3

‖PIf ‖
L4−ε

x L4
t
� Kε

1‖PIf ‖0,b

we obtain

K2b−1+2ε+ε′ ‖f ‖0,b‖gK‖L2 � K5(2b−1)+μ‖f ‖0,b‖gK‖L2 . (35)
1 x,t x,t
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Next we estimate the contribution of (II) in (33), which will appear as an error term. This contribution may certainly
be bounded by ‖(II)‖L2

x,t
. Fix t and write f (x, t) =∑

n�1 fnen(x). Clearly, we obtain by duality∥∥∥∥ ∑
I,I ′∈J

dist(I,I ′)>K1

PI ′(PI fgK)

∥∥∥∥
L2

x

� max∑
n�1 |an|2�1

( ∑
|n−n′|>K1

|fn||an′ |∣∣〈engK, en′ 〉∣∣)1/2

=
∑

n,n′�1

|fn||an′ |Mn,n′ (36)

where we have denoted

Mn,n′ = ∣∣〈engK, en′ 〉∣∣χ|n−n′|>K1 . (37)

We therefore need to estimate the norm ‖M‖�2(Z+)→�2(Z+) of the matrix M . We will rely on the Shur bound

‖M‖� sup
n

(∑
n′

|Mn,n′ |
)

(since M is symmetric).
It remains to bound 〈engK, en′ 〉. Write∣∣z2

n − z2
n′
∣∣ ∣∣〈engK, en′ 〉∣∣= ∣∣〈�engK, en′ 〉 − 〈engK,�en′ 〉∣∣

and integrate by parts, using the Dirichlet boundary condition on B2 to obtain the bound∣∣〈∇en · ∇gK, en′ 〉∣∣+ ∣∣〈en�gK, en′ 〉∣∣.
Hence, for |n − n′| � 1, we have∣∣〈engK, en′ 〉∣∣� (n + n′)−1∣∣n − n′∣∣−1(∣∣〈∇en · ∇gK, en′ 〉∣∣+ ∣∣〈en�gK, en′ 〉∣∣). (38)

Therefore, fixing n ∈ Z+,∑
n′

Mn,n′ �
∑

{s: 2s>K1}
2−s

∑
{n: |n−n′|∼2s }

(
n + n′)−1(∣∣〈∇en · ∇gK, en′ 〉∣∣+ ∣∣〈en�gK, en′ 〉∣∣)

�
∑

{s: 2s>K1}

2−s/2

n

[∑
n′�1

(∣∣〈∇en · ∇gK, en′ 〉∣∣2 + ∣∣〈en�gK, en′ 〉∣∣2)]1/2

�
K

−1/2
1

n

(‖∇en · ∇gK‖L2
x
+ ‖en�gK‖L2

x

)
where we used Cauchy–Schwarz and Parseval. The above quantity is then bounded by a multiple of

K
−1/2
1

n

(‖∇en‖L2
x
‖∇gK‖L∞

x
+ ‖�gK‖L2

x

)
� K2

K
1/2
1

∥∥g(t)
∥∥

L2
x
< K−1

∥∥g(t)
∥∥

L2
x

where we have used the choice of K1.
This proves that

(36) � 1

K

∥∥g(t)
∥∥

L2
x

(∑
n�1

|fn|2
)1/2

= 1

K

∥∥f (t)
∥∥

L2
x

∥∥g(t)
∥∥

L2
x

and ∥∥(II)∥∥
L2

x,t
� 1 ‖f ‖L2

x,t
‖g‖L2

x,t
. (39)
K
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Summing (35), (39) over dyadic K gives the estimate

‖f ‖0,b

∥∥(√−�)5(2b−1)+μg
∥∥

L2
x,t

as desired. �
Remark 4.2. Note that the second factor on the right-hand side of (32) involves a classical space–time norm (rather
than Xs,b-type norms). This will be important in the next section.

5. Proof of Theorem 1.1: convergence of the solutions of the truncated equations

In this section we establish Theorem 1.1 for radial NLS on the 2D ball and prove convergence of the sequence
(uN) in the space Xs,b, almost surely in ω ∈ Ω . Convergence in the space CtH

s
x then follows from the embedding

Xs,b ↪→ L∞
t H s

x .

Proof of Theorem 1.1. Let 0 < s < 1
2 and T > 0 be given. We first establish the μF -almost sure convergence of

solutions (uNk
) with Nk = 2k . Moreover, up to a covering argument partitioning the time interval, we may assume

without loss of generality that T < 1
2 .

Let σ ∈ (0, 1
2 ), 1 � r < 2

σ
and 1 � p,q < ∞ be fixed parameters to be determined later in the argument. Fix

N0 < N1, and for each ω ∈ Ω , let uN0 , uN1 be the solutions of the truncated equation (4) with corresponding initial
data PN0φ

(ω) and PN1φ
(ω).

Let BN0 > 0 also be a parameter to be determined later satisfying BN0 � N
γ

0 for some γ > 0. Then, invoking (23)
and Proposition 3.2, there exists a set Ω(N0,N1) with

μF

(
Ω(N0,N1)

)
� exp

(−Bc
N0

)
(40)

such that for all ω ∈ Ω \ Ω(N0,N1) one has the bounds∥∥PN1φ
(ω) − PN0φ

(ω)
∥∥

Hs
x
� N

s− 1
2

0 , (41)

together with

max
{‖uN0‖L

p
x L

q
t
,‖uN1‖L

p
x L

q
t

}
< BN0 , (42)

and

max
{∥∥(√−�)σ uN0

∥∥
Lr

xL
q
t
,
∥∥(√−�)σ uN1

∥∥
Lr

xL
q
t

}
< BN0 . (43)

Fixing ω ∈ Ω \ Ω(N0,N1), we now estimate the Xs,b([0, T ]) norm of the difference uN1 − uN0 . For this, we will
use an iterative argument on short time intervals. In particular, fixing a small value η = η(N0) > 0, and partitioning
the interval [0, T ] into T/η intervals [ti , ti+1), with ti+1 − ti = η, we write

uN1(t) − uN0(t) = ei(t−ti )�
(
uN1(ti) − uN0(ti)

)
− i

t∫
ti

ei(t−τ)�
[
PN1

(|uN1 |αuN1

)
(τ ) − PN0

(|uN1 |αuN1

)
(τ )
]
dτ

− i

t∫
ti

ei(t−τ)�PN0

[|uN1 |αuN1 − |uN0 |αuN0(τ )
]
dτ (44)

for t ∈ [ti , ti+1).
We now estimate the Xs,b norms of each term in (44). In what follows, all Xs,b and L

p
t norms will be taken on the

time interval [ti , ti+1), unless otherwise indicated.
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Using the unitarity of the linear propagator and the definition of the Xs,b norm, the first term is estimated as∥∥ei(t−ti )�
(
uN1(ti) − uN0(ti)

)∥∥
s,b

�
∥∥uN1(ti) − uN0(ti)

∥∥
Hs

x
. (45)

On the other hand, to estimate the second term in (44), we fix s′ ∈ (s,1/2) and invoke Lemma 2.5, and the fractional
product rule, which give the bound∥∥∥∥∥

t∫
ti

ei(t−τ)�
[
PN1

(|uN1 |αuN1

)
(τ ) − PN0

(|uN1 |αuN1

)
(τ )
]
dτ

∥∥∥∥∥
s,b

�N
−(s′−s)
0

∥∥(√−�)2b−1+s′+ε |uN1 |αuN1

∥∥
L

4
3 +ε

x L
4
3
t

�N
−(s′−s)
0 ‖uN1‖α

L
r1
x L

4(α+1)
3

t

∥∥(√−�)2b−1+s′+εuN1

∥∥
L

r2
x L

4(α+1)
3

t

�N
−(s′−s)
0 Bα+1

N0
, (46)

provided that b is chosen sufficiently close to 1
2 , ε > 0 is chosen sufficiently small, and σ is chosen large enough to

ensure that

2b − 1 + s′ + ε < σ,

and the values r1, r2 � 1 satisfy r1 � p and r2 � r together with 4(α+1)
3 < q and

3

4 + 3ε
= α

r1
+ 1

r2
.

Combining the estimates (45) and (46), we obtain

‖uN1 − uN0‖Xs,b([ti ,ti+η)) �
∥∥uN1(ti) − uN0(ti)

∥∥
Hs

x
+ N

−(s′−s)
0 Bα+1

N0

+
∥∥∥∥∥

t∫
ti

ei(t−τ)�PN0

[|uN1 |αuN1 − |uN0 |αuN0(τ )
]
dτ

∥∥∥∥∥
s,b

. (47)

On the other hand, from the assumption that α is an even integer we obtain the expansion

|uN1 |αuN1 − |uN0 |αuN0 = (uN1 − uN0)F+(uN0, uN1 , uN0, uN1 ) + (uN1 − uN0 )F−(uN0 , uN1, uN0 , uN1 )

with F+, F− homogeneous polynomials of degree α.
We will only estimate the F+ term; the estimate for the F− term is identical. Performing dyadic decompositions in

frequency, we obtain∥∥∥∥∥
t∫

ti

ei(t−τ)�PN0

[
(uN1 − uN0)F+

]
(τ ) dτ

∥∥∥∥∥
s,b

�
∑
K

∥∥∥∥∥
t∫

ti

ei(t−τ)�PN0

[(
P>K(uN1 − uN0)

)
PK<·�2KF+

]
(τ ) dτ

∥∥∥∥∥
s,b

+
∑
K

∥∥∥∥∥
t∫

ti

ei(t−τ)�PN0

[(
P�K(uN1 − uN0)

)
PK<·�2KF+

]
(τ ) dτ

∥∥∥∥∥
s,b

=:
∑
K

(I)K + (II)K. (48)

To estimate the terms (I)K , fix ε > 0 small and note that by applying Proposition 4.1 followed by the fractional
product rule we obtain
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∥∥∥∥∥
t∫

ti

ei(t−τ)�PN0

[(
P>K(uN1 − uN0)

)
PK<·�2KF+

]
(τ ) dτ

∥∥∥∥∥
s,b

� K−ε‖uN1 − uN0‖s,b

∥∥(√−�)5(2b−1)+2εPK<·�2KF+
∥∥

L2
t,x

� K−εη1/4‖uN1 − uN0‖s,b‖u‖α−1
L

8(α−1)
t,x

∥∥(√−�)5(2b−1)+2εu
∥∥

L8
t,x

� K−εη1/4Bα
N0

‖uN1 − uN0‖s,b (49)

for ε > 0 sufficiently small and b > 1
2 close enough to 1

2 to ensure 8 < 2
5(2b−1)+ε

.
Turning to (II)K , we argue in a similar manner. In particular, again fix ε > 0 small and note that by Lemma 2.5,

the Hölder inequality and the fractional product rule, one has∥∥∥∥∥
t∫

ti

ei(t−τ)�PN0

[(
P�K(uN1 − uN0)

)
PK<·�2KF+

]
(τ ) dτ

∥∥∥∥∥
s,b

� K−ε‖uN1 − uN0‖L2
t L

2
x

∥∥(√−�)2b−1+s+2εF+
∥∥

L4
t,x

� K−εη1/2‖uN1 − uN0‖L∞
t L2

x
‖u‖α−1

L

4(4+ε′)(α−1)

ε′
x L

8(α−1)
t

∥∥(√−�)2b−1+s+2εu
∥∥

L4+ε′
x L8

t

� K−εη1/2Bα
N0

‖uN1 − uN0‖s,b (50)

for every dyadic K � 1, provided the values ε, ε′ and b are chosen sufficiently small to ensure 4 + ε′ < 2
2b−1+s+2ε

.
Combining (47), (48), (49) and (50) and evaluating the summation over K then gives the bound

‖uN1 − uN0‖s,b �
∥∥uN1(ti) − uN0(ti)

∥∥
Hs

x
+ N

−(s′−s)
0 Bα+1

N0
+ η1/4Bα

N0
‖uN1 − uN0‖s,b, (51)

so that choosing

η = cB−4α
N0

and BN0 = (c logN0)
1

4α

with c > 0 sufficiently small (depending on the implicit constant) gives the estimate

‖uN1 − uN0‖s,b �
∥∥uN1(ti) − uN0(ti)

∥∥
Hs

x
+ N

−(s′−s)/2
0 . (52)

It now remains to estimate the Hs
x norm appearing on the right side of (52). We argue iteratively, recalling the

initial-time bound on uN1 − uN0 given by (41) and successively applying (52) to yield the bound

‖uN1 − uN0‖L∞
t ([0,T );Hs

x ) � CT/ηN
−(s′−s)/4
0 . (53)

Substituting (53) into (52) and using the above choice of BN0 , we obtain the estimate

‖uN1 − uN0‖Xs,b([ti ,ti+1))
�N

−(s′−s)/4
0 (54)

for all subintervals [ti , ti+1] ⊂ [0, T ]. By a covering argument, one immediately gets

‖uN1 − uN0‖Xs,b([0,T ]) �T N
−(s′−s)/8
0 (55)

for all initial data φ(ω) with ω ∈ Ω \ Ω(N0,N1).
Now, letting Nk = 2k and setting

Ω0 :=
⋂
J�1

⋃
j�J

Ω(Nj ,Nj+1),

we obtain that (uNk
) is a Cauchy sequence in Xs,b([0, T ]) for all ω ∈ Ω \ Ω0. Moreover, recalling the bound (40),

we have
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μF (Ω0) �
∑
j�J

exp
(−c logN

c/4α
j

)
(56)

for all J � 1, and thus μF (Ω0) = 0. The sequence (uNk
) then converges in Xs,b([0, T ]) μF -almost surely.

In order to conclude convergence of the full sequence (uN) a slightly more refined analysis is required. The essen-
tial difficulty is a consequence of the dependence of the excluded sets of initial data Ω(Nj ,Nj+1) on Nj and Nj+1,
since without passing to the subsequence (uNk

) we cannot immediately conclude the convergence on the right side
of (56).

In this case, fix a parameter C(p) � 1 to be determined, and note that for each N0 � 1, we may consider

M = (logN0)
C(p)

and replace the set Ω \ Ω(N0,N1) chosen in (40)–(43) by

Ω ′(N0) =
{
ω ∈ Ω:

∥∥φ(ω) − PN0φ
(ω)
∥∥

Hs
x
� N

s− 1
2

0 , ‖uN0‖L
p
x L

q
t
< BN0 ,∥∥(√−�)σ uN0

∥∥
Lr

xL
q
t
< BN0 , max

N0�N<2N0

‖uN − PMuN‖L
p
x L

q
t
< 1,

max
N0�N<2N0

∥∥(√−�)σ (uN − PMuN)
∥∥

Lr
xL

q
t
< 1

}
.

Recalling Proposition 3.2 and Proposition 3.3, we then have

μF

(
Ω \ Ω ′(N0)

)
< e−(BN0 )c + 2N0e

−(M
2
p −σ

)c

so that by choosing C(p) sufficiently large we obtain

μF

(
Ω \ Ω ′(N0)

)
< 3e−(BN0 )c .

Now, note that for N0 � N1 < 2N0 we have

‖uN1‖L
p
x L

q
t
� ‖uN1 − PMuN1‖L

p
x L

q
t
+ ∥∥PM(uN1 − uN0)

∥∥
L

p
x L

q
t
+ ‖uN0 − PMuN0‖L

p
x L

q
t
+ ‖uN0‖L

p
x L

q
t

� 2 + T 1/q
∥∥PM(uN1 − uN0)

∥∥
L∞

t,x
+ BN0 � 2 + T 1/qM1−s‖uN1 − uN0‖s,b + BN0

� (logN0)
C‖uN1 − uN0‖s,b + 2BN0

and ∥∥(√−�)σ uN1

∥∥
Lr

xL
q
t
�
∥∥(√−�)σ (uN1 − PMuN1)

∥∥
Lr

xL
q
t
+ ∥∥(√−�)σ PM(uN1 − uN0)

∥∥
Lr

xL
q
t

+ ∥∥(√−�)σ (uN0 − PMuN0)
∥∥

Lr
xL

q
t
+ ∥∥(√−�)σ uN0

∥∥
Lr

xL
q
t

� 2 + T 1/qMσ
∥∥PM(uN1 − uN0)

∥∥
L∞

t,x
+ BN0

� 2 + T 1/qM1+σ−s
∥∥PM(uN1 − uN0)

∥∥
s,b

+ BN0

� (logN0)
C‖uN1 − uN0‖s,b + 2BN0 .

For ω ∈ Ω ′(N0), the analogue of (51) then becomes

‖uN1 − uN0‖s,b �
∥∥uN1(ti) − uN0(ti)

∥∥
Hs

x
+ η1/4Bα

N0
‖uN1 − uN0‖s,b

+ (logN0)
Cα‖uN1 − uN0‖α+1

s,b + N
−(s′−s)
0 Bα+1

N0
.

It then follows that

‖uN1 − uN0‖s,b �
∥∥uN1(ti) − uN0(ti)

∥∥
Hs

x
+ (logN0)

Cα‖uN1 − uN0‖α+1
s,b + N

− 1
2 (s′−s)

0

and thus (52)–(55) hold as before. �
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Remark 5.1. As we pointed out, our assumption that α ∈ 2Z+ in (1) is merely technical, though we would assume
α � 2 for smoothness reasons. Alternatively, one could consider nonlinearities of the form

F(u) = ∓(1 + |u|2)α/2
u, α > 0 (57)

(cf. [15]).
The method described above may be carried out in higher dimension, leading to the analogue of Theorem 1.1 for

the radial defocusing NLS on Bd

iut + �u − (
1 + |u|2)α/2

u = 0 (58)

provided α < 2
d−2 .

In 3D, the counterpart of Theorem 1.1 for the defocusing cubic NLS

iut + �u − |u|2u = 0 (59)

was established in [9] and seems to require a more delicate analysis.

6. The mass-critical focusing case

In this section we complete the proof of Theorem 1.2. As noted in the introduction, the essential ingredient is con-
tained in the following proposition, which shows that restriction to a sufficiently small L2

x ball leads to the construction
of a well-defined Gibbs measure.

Proposition 6.1. The measure

exp

(∫
B2

|φ|4 dx

)
χ{‖φ‖

L2
x
<ρ}(φ)dμF (φ)

is a bounded measure, provided that ρ > 0 is chosen sufficiently small.

Proof. Fix ρ > 0 to be determined. To establish the proposition, it suffices to show that there exists C > 1 such that
for every λ � 1, we have

μF

({
φ: ‖φ‖L4

x
> λ, ‖φ‖L2

x
< ρ

})
� e−Cλ4

. (60)

This will be possible by choosing ρ sufficiently small.
To estimate the left-hand side of (60), we begin by writing∥∥∥∥∑

n�1

gn(ω)

zn

en

∥∥∥∥
L4

x

�
∑
M�1

∥∥∥∥ ∑
n∼M

gn(ω)

zn

en

∥∥∥∥
L4

x

(61)

where the summation in M is taken over dyadic integers.
For each M � 1 dyadic, choose j ∈ Z such that M ∼ 2j (λ/ρ)2, and define

σM = 1

j2
.

Then ∑
M�1

σM � 1

and therefore the condition∥∥∥∥∑
n�1

gn(ω)

zn

en

∥∥∥∥
L4

x

> λ (62)

implies
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∥∥∥∥ ∑
n∼M

gn(ω)

zn

en

∥∥∥∥
L4

x

� σMλ (63)

for some M � 1.
To proceed, we consider an additional spatial decomposition, writing∥∥∥∥ ∑

n∼M

gn(ω)

zn

en

∥∥∥∥4

L4
x

�
∑
k�0

∥∥∥∥ ∑
n∼M

gn(ω)

zn

en

∥∥∥∥4

L4
x(|x|∼2kM−1)

+
∥∥∥∥ ∑

n∼M

gn(ω)

zn

en

∥∥∥∥4

L4
x(|x|�M−1)

.

The condition (62) implies that for some 0 � k � logM we have∥∥∥∥ ∑
n∼M

gn(ω)

zn

en

∥∥∥∥
L4

x(|x|∼2kM−1)

� σMλ

(k + 1)1/2
. (64)

Let (an)M�n<2M be a sequence of arbitrary complex coefficients. One then has, using the Bessel function asymp-
totics, the estimate∥∥∥∥ ∑

n∼M

anen

∥∥∥∥4

L4
x(|x|∼2kM−1)

�
∫

r∼2kM−1

∣∣∣∣ ∑
n∼M

ane
iznr

∣∣∣∣4 dr

r
+ 1

M4

(∑
n∼M

|an|
)4 ∫

r∼2kM−1

dr

r5

� 2−kM

t∫
0

∣∣∣∣ ∑
n∼M

ane
2πiznr

∣∣∣∣4 dr + 16−kM2
(∑

n∼M

|an|2
)2

� 2−kM2
(∑

n�1

|an|2
)2

,

taking an = gn(ω)
zn

in this bound, it follows that if in addition to (62) we assume ‖φ‖L2
x
< ρ, then∥∥∥∥ ∑

n∼M

gn(ω)

zn

en

∥∥∥∥
L4

x(|x|∼2kM−1)

� 2−k/4M1/2ρ. (65)

Together with (64), this implies that for M and k satisfying (63) and (64) we have

M >

(
λ

ρ

)2 2k/2

k + 1
σ 2

M

and thus

j42j >
2k/2

k + 1

so that k � j . In particular, we can therefore let j � 0 when writing M ∼ 2j ( λ
ρ
)2.

We now assemble the above ingredients into the desired probabilistic estimate (60), for which we will make use of
the estimate (11) for Gaussian processes. Noting that the bound |en(x)| � |x|−1/2 implies

Eω

[∥∥∥∥ ∑
n∼M

gn(ω)

zn

en

∥∥∥∥
L4

x(|x|∼2kM−1)

]
∼
∥∥∥∥( ∑

n∼M

e2
n

n2

)1/2∥∥∥∥
L4

x(|x|∼2kM−1)

∼
(∑

n∼M

1

n2

)1/2

∼ 1√
M

(66)

apply (11) with

X(ω) =
∑
n∼M

gn(ω)

zn

en and ‖ · ‖ = ‖ · ‖L4
x(|x|∼2kM−1).

By (66), we have E[‖X‖] ∼ 1√
M

and we take, according to (64)

t =
√

MσMλ

(k + 1)1/2
∼ 2j/2λ2

(k + 1)1/2j2ρ
� 1

since k � j .
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We therefore conclude

Pω

[∥∥∥∥ ∑
n∼M

gn(ω)

zn

en

∥∥∥∥
L4

x(|x|∼2kM−1)

� σMλ

(k + 1)1/2

]
� e

−c 2j

(k+1)j4 ρ−2λ4

. (67)

We now take the sum of (67) over j � 0 and 0 � k � j , giving

μF

({
φ: ‖φ‖L4

x
> λ, ‖φ‖L2

x
< ρ

})
� e−cρ−2λ4

< e−Cλ4

as desired for ρ small enough. �
Remark 6.2. As we will show in Remark 6.4, the truncated Gibbs measure as defined in Proposition 6.1 becomes
unbounded for ρ taken sufficiently large. We did not address here the issue of what is the optimal value of ρ for
Proposition 6.1 to hold, which is an interesting question since it corresponds to a phase transition. Note that this
problem was not even settled for d = 1 (cf. [13]).

Remark 6.3. In the d-dimensional setting, a similar argument applies for α = 4
d

, providing normalized Gibbs mea-
sures

e

1
α+2 ‖φ‖α+2

L
α+2
x χ{‖φ‖

L2
x
<ρ}μF (dφ) (68)

for ρ sufficiently small (in the mass-subcritical case α < 4
d

, ρ can be taken arbitrarily).
Of course, one may replace the Hamiltonian by∫

Bd

[|∇φ|2 − (
1 + |φ|2) α

2 +1]
dx

with α as above, and consider the corresponding NLS

iut + �u + u
(
1 + |u|2)α/2 = 0. (69)

One obtains then the analogue of Theorem 1.2, provided moreover α < 2
d−2 according to the comment at the end

of Section 5.

Remark 6.4. Returning to Remark 6.2, the phenomenon is similar to the case d = 1, α = 4, described in [13] (see
also [10] for results on T

2, though the situation there is different).
For sufficiently large ρ, the measures

dμ
(N)
G = e

1
4 ‖φN‖4

L4
x χ{‖φN‖

L2
x
<ρ} dμ

(N)
F (70)

become unbounded. A priori, this may not rule out the possibility that their normalization has an interesting limit
distribution with perhaps a well-defined Schrödinger dynamics. But this turns out not to be the case. The distribution
μ

(N)
G concentrates indeed on functions φN for which

‖φN‖
L2

x(|x|<O( 1
N

))
= O(ρ) (71)

and hence, in the limit, |φN |2 exhibits a delta function behavior at x = 0.
Note that for such functions

H(φN) =
∫
B2

[
|∇φN |2 − 1

4
|φN |4

]
< CN2‖φN‖2

L2
x
− cN2‖φN‖4

L2
x(|x|<O( 1

N
))

< −CN2ρ4 < 0 (72)

for ρ sufficiently large. Invoking Kavian’s extension of Glassey’s theorem (see [12]), it follows that the solution to the
Cauchy problem
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{
iut + �u + u|u|2 = 0,

u|t=0 = φN

blows up in finite time.
Let us verify (71), taking for ρ a sufficiently large fixed constant. We prove that

log
∥∥μ(N)

G

∥∥∼ ρ4N2. (73)

Since clearly ‖φN‖L4
x
� N1/2‖φN‖L2

x
� ρN1/2, the upper bound in (73) is clear. Conversely, write∥∥μ(N)

G

∥∥> e
c
4 ρ4N2

μ
(N)
F

({
φN : ‖φN‖L2

x
< ρ, ‖φN‖L4

x
> cρN1/2}). (74)

Since |φN(0)| � N1/2‖φN‖L4
x
, we have

μ
(N)
F

({
φN : ‖φN‖L2

x
< ρ, ‖φN‖L4

x
> cρN1/2})

� mes

({
ω:

N∑
n=1

|gn(ω)|2
z2
n

< ρ2 and

∣∣∣∣∣
N∑

n=1

gn(ω)

zn

en(0)

∣∣∣∣∣> c′ρN

})
� mes

({
ω:
∣∣g1(ω)

∣∣, . . . , ∣∣g[N/2](ω)
∣∣< 1 and g[N/2]+1(ω), . . . , gN(ω) ∼ c′′ρ

√
N
})

> e−Cρ2N2
. (75)

Hence, (73) follows from (74), (75) by taking ρ large enough.
It is obvious from (73) that μ

(N)
G is concentrated on functions φN for which

‖φN‖L4
x
∼ ρN1/2. (76)

Finally, assuming φN satisfies (76), we verify (71).
Write

‖φN‖4
L4

x
�

∑
{k: 2k<N}

∫
|x|∼2k/N

∣∣φN(x)
∣∣4 dx �

∑
k

‖φN‖2
L∞

x (|x|∼2k/N)
‖φN‖2

L2
x(|x|∼2k/N)

and

‖φN‖L∞
x (|x|∼2k/N) �

N∑
n=1

∣∣φ̂N (n)
∣∣‖en‖L∞

x (|x|∼2k/N) �
√

N

2k

N∑
n=1

∣∣φ̂N (n)
∣∣

� N2−k/2‖φN‖L2
x
� ρ2−k/2N.

Hence, (76) clearly implies (71).
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