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Abstract

On a star graph G, we consider a nonlinear Schrödinger equation with focusing nonlinearity of power type and an attrac-
tive Dirac’s delta potential located at the vertex. The equation can be formally written as i∂tΨ (t) = −�Ψ (t) − |Ψ (t)|2μΨ (t) +
αδ0Ψ (t), where the strength α of the vertex interaction is negative and the wave function Ψ is supposed to be continuous at the ver-
tex. The values of the mass and energy functionals are conserved by the flow. We show that for 0 < μ� 2 the energy at fixed mass
is bounded from below and that for every mass m below a critical mass m∗ it attains its minimum value at a certain Ψ̂m ∈ H 1(G).

Moreover, the set of minimizers has the structure M = {eiθ Ψ̂m, θ ∈ R}. Correspondingly, for every m < m∗ there exists a
unique ω = ω(m) such that the standing wave Ψ̂ωeiωt is orbitally stable. To prove the above results we adapt the concentration-
compactness method to the case of a star graph. This is nontrivial due to the lack of translational symmetry of the set supporting
the dynamics, i.e. the graph. This affects in an essential way the proof and the statement of concentration-compactness lemma and
its application to minimization of constrained energy. The existence of a mass threshold comes from the instability of the system
in the free (or Kirchhoff’s) case, that in our setting corresponds to α = 0.
© 2013

1. Introduction

In the present paper we study the minimization of a constrained energy functional defined on a star graph and
its application to existence and stability of standing waves for nonlinear Schrödinger propagation with an attractive
interaction at the vertex of the graph.

We recall that in our setting a star graph G is the union of N � 1 half-lines (edges) connected at a single vertex;
the Hilbert space on G is L2(G) = ⊕N

j=1 L2(R+). We denote the elements of L2(G) by capital Greek letters, while
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functions in L2(R+) are denoted by lowercase Greek letters. The elements of L2(G) can be represented as column
vectors of functions in L2(R+), i.e.

Ψ =
⎛⎝ ψ1

...

ψN

⎞⎠ .

We shall also use the notation ψi(x) ≡ (Ψ )i(x) ≡ Ψ (x, i). Notice that the set G has not to be thought of as embedded
in R

n, so it has no geometric properties such as angles between edges. When an element of L2(G) evolves in time,
to highlight the dependence on the time parameter t , we use both the notation Ψ (t) and the one with subscript t , for
instance Ψt .

In order to define a selfadjoint operator HG on G one has to introduce operators acting on the edges and to prescribe
a suitable boundary condition at the vertex that defines D(HG), see, e.g., [25]. A metric graph equipped with a
dynamics associated to a Hamiltonian of the form of HG is called quantum graph. On a quantum graph one can
consider the dynamics defined by the abstract Schrödinger equation given by

i∂tΨ (t) = HGΨ (t), Ψ ∈D(HG).

From a formal point of view the previous equation is equivalent to a system of N Schrödinger equations on the
half-line coupled through the boundary condition at the vertex.

Of course the graph could be more general than a star graph, with several (possibly infinite) vertices, bounded
edges connecting them (sometimes called bonds as suggested from chemistry applications) and unbounded edges, as
in the present case of star graphs or in the interesting case of trees with the last generation of edges of infinite length.

The analysis of linear dispersive equations on graphs, in particular of the Schrödinger equation, is a quite developed
subject with a wide range of applications from chemistry and nanotechnology to quantum chaos. We refer to [7,8,18,
26,27] for further information and bibliography.

On the contrary, the study of nonlinear equations on networks is in general a subject at its beginnings. Some results
concerning nonlinear PDE’s on graphs are given in [12] for reaction–diffusion equations (see references therein) and in
the recent paper [11] for the Hamilton–Jacobi equation (with reference to previous work on fully nonlinear equations).
As regards semilinear dispersive equations we mention the preliminary work on NLS in the cubic case in [13], and
for a different nonlinear dispersive equation related to long water waves, the BBM equation, the results given in [9].

One way to define a nonlinear Schrödinger dynamics (NLS) on a graph, mimicking the linear case, consists in
prescribing the NLS on every single edge and requiring its strong solution to satisfy a boundary condition at the
vertex at every time, i.e. imposing the solution to remain at any time in the domain of the generator of the linear
dynamics. In strong formulation, one obtains the equation

i∂tΨ (t) = HGΨ (t) + G
(
Ψ (t)

)
, Ψ (t) ∈D(HG),

where the nonlinearity G = (G1, . . . ,GN) : CN → C
N acts “componentwise” as Gi(ζ ) = g(|ζi |)ζi for a suitable

g : R+ → R and ζ = (ζ1, . . . , ζN ) ∈ C
N . More general nonlinearities of nonlocal type which couple different edges

are possible at a mathematical level, but they seem to be less interesting from the physical point of view.
The analysis of nonlinear propagation on graphs, as in the more standard case of Rn, proceeds along two main

lines of development: the study of dispersive and scattering behavior (see [1] and reference therein; see also [6]
for relevant work about dispersion on trees) and the study of bound states (see [2–4] and reference therein). In this
paper we concentrate on this last item. We shall focus on a concrete model and not on a general class specifying the
nonlinearity and the interaction at the vertex of the star graph, which means to give the function g and the selfadjoint
operator HG . Concerning the first, we treat a power nonlinearity of focusing type, i.e. g(z) = −|z|2μ, μ > 0. This
choice has two main reasons. It corresponds to the most usual models considered in the physical applications, and
moreover it allows to have some explicit and quantitative estimates needed in the proofs of our results which could be
difficult to obtain for general nonlinearities.

To motivate the choice of the linear part HG we begin to remark that the meaning of the boundary condition
is to describe suitable local interactions occurring between different components of the wavefunction on different
edges. For example, one could be interested in describing the effect of the presence of a localized potential well at
the vertex. This corresponds in the linear case to a confining potential admitting one or more bound states. In the
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case of a NLS on the line or more generally on R
n, the presence of a negative potential entails the existence of

trapped solitons located around the minima of the potential well. These trapped solitons, of the form Ψ (t) = Ψωeiωt

where ω belongs to some subset of the real line, are usually called standing waves, and are studied for example
in [20,22–24,34], to which we refer for information and further references concerning their existence, variational
properties, orbital and asymptotic stability. Here we address the analogous problem in the context of star graphs. To
fix the model we consider the so-called δ vertex, which is one of the most common in the applications to quantum
graphs.

We introduce preliminarily some notations and define several functional spaces on the graph.
The norm of L2-functions on G is naturally defined by

‖Ψ ‖2
L2(G)

:=
N∑

j=1

‖ψj‖2
L2(R+)

.

From now on for the L2 norm on the graph we drop the subscript and simply write ‖ · ‖. Accordingly, we denote by
(·,·) the scalar product in L2(G).

Analogously, given 1 � r � ∞, we define the space Lr(G) as the set of functions on the graph whose components
are elements of the space Lr(R+), and the norm is correspondingly defined by

‖Ψ ‖r
r =

N∑
j=1

‖ψj‖r
Lr (R+)

, 1 � r < ∞, ‖Ψ ‖∞ = max
1�j�N

‖ψj‖L∞(R+).

Besides, we need to introduce the spaces

H 1(G) ≡
N⊕

j=1

H 1(
R

+)
, H 2(G) ≡

N⊕
j=1

H 2(
R

+)
,

equipped with the norms

‖Ψ ‖2
H 1 =

N∑
i=1

‖ψi‖2
H 1(R+)

, ‖Ψ ‖2
H 2 =

N∑
i=1

‖ψi‖2
H 2(R+)

.

Notice that there is a slight abuse in the denominations Hi(G) for the above spaces, because their elements have no
Sobolev regularity at the vertex.

However they have boundary values on each edge, and we denote without comment the notation ψ(0+) = ψ(0) for
every ψ ∈ Hi(R+), i = 1,2. In the following, whenever a functional norm refers to a function defined on the graph,
we omit the symbol G.

We denote by H the Hamiltonian with δ coupling in the vertex of strength α, where α ∈ R. It is defined as the
operator in L2 with domain

D(H) :=
{

Ψ ∈ H 2 s.t. ψ1(0) = · · · = ψN(0),

N∑
k=1

ψ ′
k(0) = αψ1(0)

}
and action

HΨ =
⎛⎝ −ψ ′′

1
...

−ψ ′′
N

⎞⎠ .

In the present paper we will consider only the case of attractive δ interaction, i.e. α < 0. Sometimes to make explicit
the fact that α < 0 we set α = −|α|.

It is well known that the operator H is a selfadjoint operator on L2, see, e.g., [25]. Moreover for α < 0 the operator
H admits a single bound state associated to the eigenvalue −α2/N2, in this sense the δ interaction can be considered
as a singular potential well placed at the vertex.
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The definition of H and its scope is analogous to the case of the attractive δ potential on the line, widely used in
theoretical and applied physics to describe situations of strongly localized interactions such as trapping defects in an
elsewhere homogeneous medium. This is justified in view of the fact that the operator H is a norm resolvent limit of
regular Schrödinger operators on the star graph with regular potentials Vε scaling as a δ-like sequence picked at the
vertex (see, e.g., [17]).

This ends the construction and mathematical justification of the model, which is finally described by the equation

i∂tΨ (t) = HΨ (t) − ∣∣Ψ (t)
∣∣2μ

Ψ (t), Ψ ∈ D(H). (1.1)

From the point of view of physical applications the problem described by the above equation is interesting in
relation to the so-called Y-junctions or beam splitters in the study of Bose–Einstein condensates (see [33]). Other
problems related to nonlinear Schrödinger propagation on graphs are treated in [21,29,31], and more generally there
is a growing interest in nonlinear propagation on networks, both in nonlinear optics and in Bose condensates, which
are the main fields of application of the NLS.

From the mathematical point of view, several results on the nonlinear model (1.1) were given in a series of papers
(see [1–4]). In particular, it was proved in [4] that the dynamical system (1.1) has two conserved quantities, the mass

M[Ψ ] = ‖Ψ ‖2 (1.2)

and the energy

E[Ψ ] = 1

2

∥∥Ψ ′∥∥2 − 1

2μ + 2
‖Ψ ‖2μ+2

2μ+2 + α

2

∣∣ψ1(0)
∣∣2

. (1.3)

The energy domain E coincides with the domain of the quadratic form associated to the linear generator H , consisting
of H 1-functions on every edge with continuity at the vertex

E := {
Ψ ∈ H 1 s.t. ψ1(0) = · · · = ψN(0)

}
.

On this domain we show that the energy functional E is bounded from below if restricted to manifolds consisting of
functions Ψ of constant mass, and then we follow the Cazenave–Lions approach to orbital stability, see [16] (see also
[14,15]).

A related variational problem is studied in [4] which is a companion to the present work, where a variational
analysis of the standing waves and of their orbital stability is performed according to the Grillakis–Shatah–Strauss
method (see [22,23]). In such approach, given ω > 0 the functional to be minimized is the action

Sω[Ψ ] = E[Ψ ] + ω

2
M[Ψ ]

and a natural constraint is given by the Nehari manifold

0 = S′
ω[Ψ ]Ψ = ∥∥Ψ ′∥∥2 − ‖Ψ ‖2μ+2

2μ+2 + α
∣∣ψ1(0)

∣∣2 + ωM[Ψ ].
We are interested in characterizing the ground state of this system. By ground state we mean the minimizer Ψ̂

(if existing) of the energy E in E constrained to the manifold of the states with fixed mass m.
As noticed before, the classical method which allows to treat this kind of problems is the concentration-

compactness principle of Lions with its application to the NLS given in [16]. A study of ground states for NLS
on the line with several kind of defects (including the δ potential) making use of a concentration-compactness is given
in [5]. Nevertheless, the present situation needs some nontrivial modifications in the method, due to the fact that a
graph, and in particular a star graph, does not enjoy translational symmetry, nor other kinds of symmetry needed to
apply concentration-compactness in its direct form (see [32] for a very general presentation and applications of the
method). We will adapt the concentration-compactness lemma (as given in [14, Chaps. 1 and 8] and also in [15], which
we will take as reference formulation in the course of our treatment) modifying the statement and the proof to draw
our main conclusions on the minimum problem we are interested in. For more extended discussion on the novelties
of this approach, we refer to Section 3. Using the concentration-compactness lemma we prove the following result
which states the existence of the solution of the constrained minimization problem for small enough mass.
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Theorem 1. Fix α < 0, let m∗ be defined by

m∗ = 2
(μ + 1)1/μ

μ

( |α|
N

) 2−μ
μ

1∫
0

(
1 − t2) 1

μ
−1

dt, (1.4)

and denote

−ν = inf
{
E[Ψ ] s.t. Ψ ∈ E, M[Ψ ] = m

}
.

If 0 < μ < 2, assume m � m∗.

If μ = 2, assume m < min{m∗,
√

3
c̃
, π

√
3N

4 }, where c̃ is a positive constant that satisfies the Gagliardo–Nirenberg
inequality

‖Ψ ‖6
6 � c̃

∥∥Ψ ′∥∥2‖Ψ ‖4, for any Ψ ∈ H 1.

Then, 0 < ν < ∞ and there exists Ψ̂ such that M[Ψ̂ ] = m and E[Ψ̂ ] = −ν.

In fact for N = 2, 0 < μ < 2, i.e. the line with a δ defect in the subcritical case, no condition on mass m (or α) is
needed. So the statements in the theorem are true with m∗ = +∞. This is shown in Remark 4.2.

By the phase invariance of Eq. (1.1) one has that the family of ground states is given by

M = {
eiθ Ψ̂ , θ ∈ R

}
.

The explicit expression of Ψ̂ can be given. To this end, let us recall several results from [3] and [4]. For any ω > 0,
we label the soliton profile on the real line as

φω(x) = [
(μ + 1)ω

] 1
2μ sech

1
μ (μ

√
ωx). (1.5)

For any α < 0, j = 0, . . . , [N−1
2 ] ([x] denoting the integer part of x) and ω > α2

(N−2j)2 we define Ψω,j as

(Ψω,j )(x, i) =
{

φω(x − aj ), i = 1, . . . , j,

φω(x + aj ), i = j + 1, . . . ,N
(1.6)

with

aj = 1

μ
√

ω
arctanh

( |α|
(N − 2j)

√
ω

)
. (1.7)

The functions Ψω,j belong to D(H) and are the only solutions to the stationary equation

HΨω − |Ψω|2μΨω = −ωΨω. (1.8)

We say that Ψω,j has a “bump” (resp. a “tail”) on the edge i if (Ψω,j )(x, i) is of the form φω(x−aj ) (resp. φω(x+aj )).
The index j in Ψω,j denotes the number of bumps of the state Ψω,j . For this reason, we refer to the stationary state
Ψω,0 as the “N -tail state”. We remark that the N -tail state is the only symmetric (i.e. invariant under permutation of
the edges) solution of Eq. (1.8). For j � 1 there are

(
N
j

)
distinct solutions obtained by formulas (1.6) and (1.7) by

positioning the bumps on the edges in all the possible ways. For instance, if N = 3 then there are two stationary states,
a three-tail state and a two-tail/one-bump state. They are shown in Fig. 1.

Theorem 2. Let α < 0 and assume m � m∗ if 0 < μ < 2 and m < min{m∗,
√

3
c̃
, π

√
3N

4 } if μ = 2; then the minimizer

Ψ̂ coincides with the N -tail state defined by Ψω0,0 where ω0 is chosen such that M[Ψω0,0] = m.

Since the minimizer Ψ̂ is a stationary state, in order to prove Theorem 2 it is sufficient to show that Ψω0,0 has
minimum energy among the set of stationary states with same mass m, which is finite. In facts in Section 5 we shall
prove a more detailed statement; the energies of the stationary states, with frequencies ωj such that M[Ψωj ,j ] = m,
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Fig. 1. Stationary states for N = 3, α < 0.

are increasing in j , i.e. they can be ordered in the number of the bumps, see Lemma 5.2. Notice that the bounds on the
thresholds in m are different in the critical and subcritical case. More remarks on this are given in Section 5. Notice
that as a consequence we have that the ground state of the system is the only stationary state which is symmetrical
with respect to permutation of edges.

Finally, making use of the classical argument of Cazenave and Lions [16], from mass and energy conservation laws,
convergence of the minimizing sequences and uniqueness of the ground state up to phase shift shown in Theorem 1 and
Theorem 2, the orbital stability of the ground state follows. A detailed proof will not be given, being straightforward
extension of the previous outline.

Corollary 1. Let α < 0 and assume m � m∗ if 0 < μ < 2 and m < min{m∗,
√

3
c̃
, π

√
3N

4 } if μ = 2; then Ψω0,0 is
orbitally stable.

The paper is organized as follows. In Section 2 we recall several known results which will be needed in the proof
of Theorem 1. In Section 3 we prove the concentration-compactness lemma for star graphs. Section 4 is devoted to the
proof of Theorem 1. In Section 5 we analyze the frequency and energy of stationary states on the manifold of constant
mass and prove Theorem 2.

2. Preliminaries

In this section we fix some notation and recall several results mostly taken from [4]. We shall denote generic
positive constants by c, in the proof the value of c will not be specified and can change from line to line. The dual of
E will be denoted by E�. We shall denote the points of the star graph by x ≡ (x, j) with x ∈R

+ and j ∈ {1, . . . ,N}.

2.1. Well-posedness

We recall that Eq. (1.1) can be understood in the weak form given by

Ψ (t) = e−iH tΨ0 − i

t∫
0

e−iH(t−s)
∣∣Ψ (s)

∣∣2μ
Ψ (s) ds (2.1)

with Ψ0 ≡ Ψ (t = 0).
As in the standard NLS on the line, mass and energy, Eqs. (1.2) and (1.3), are conserved by the flow, see Prop. 2.2

in [4]. Moreover, if 0 < μ < 2, then Eq. (2.1) is well posed in the energy domain and the solution is global, see Cor. 2.1
in [4].
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2.2. Kirchhoff coupling

The vertex coupling associated to α = 0, is usually called free (on the line the interaction disappears) or Kirchhoff
coupling and plays a distinguished role. For this reason we shall denote by H 0 the corresponding operator defined by

D
(
H 0) :=

{
Ψ ∈ H 2 s.t. ψ1(0) = · · · = ψN(0),

N∑
i=1

ψ ′
i (0) = 0

}
,

H 0Ψ =
⎛⎝ −ψ ′′

1
...

−ψ ′′
N

⎞⎠ .

We also define the corresponding energy functional

E0[Ψ ] = 1

2

∥∥Ψ ′∥∥2 − 1

2μ + 2
‖Ψ ‖2μ+2

2μ+2 (2.2)

with energy domain D(E0) = E .

2.3. Gagliardo–Nirenberg inequalities

We shall use a version of Gagliardo–Nirenberg inequalities on the star graph. The following proposition is a direct
consequence of the Gagliardo–Nirenberg inequalities on the half-line see, e.g., [30, I.31].

Proposition 2.1 (Gagliardo–Nirenberg inequality). Let 2 � q � +∞, 1 � p � q and set a =
1
p

− 1
q

1
2 + 1

p

, then for any

Ψ ∈ H 1

‖Ψ ‖q � c
∥∥Ψ ′∥∥a‖Ψ ‖1−a

p .

2.4. Mass and energy on the half-line and on the line

For later convenience we introduce also the unperturbed energy and mass functional for functions belonging to
H 1(R+) and H 1(R). For the half-line we denote the functionals by MR+ and ER+ , respectively. They are defined by

MR+[ψ] = ‖ψ‖2
L2(R+)

,

E0
R+[ψ] = 1

2

∥∥ψ ′∥∥2
L2(R+)

− 1

2μ + 2
‖ψ‖2μ+2

L2μ+2(R+)
.

For the line we denote the mass end energy functionals by MR and ER, respectively. They are defined by

MR[ψ] = ‖ψ‖2
L2(R)

,

E0
R
[ψ] = 1

2

∥∥ψ ′∥∥2
L2(R)

− 1

2μ + 2
‖ψ‖2μ+2

L2μ+2(R)
.

Using the definition (1.5) and a change of variable, one obtains the following formulas:

∞∫
0

∣∣φω(x + ξ)
∣∣2

dx = (μ + 1)
1
μ

μ
ω

1
μ

− 1
2

1∫
tanh(ξμ

√
ω)

(
1 − t2) 1

μ
−1

dt, (2.3)

∞∫
0

∣∣φω(x + ξ)
∣∣2μ+2

dx = (μ + 1)
1+ 1

μ

μ
ω

1
μ

+ 1
2

1∫
tanh(ξμ

√
ω)

(
1 − t2) 1

μ dt. (2.4)
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The mass and energy functional evaluated on the soliton are given by

MR[φω] = 2MR+[φω] = 2
(μ + 1)

1
μ

μ
ω

1
μ

− 1
2

1∫
0

(
1 − t2) 1

μ
−1

dt, (2.5)

E0
R
[φω] = 2E0

R+[φω] = − (μ + 1)
1
μ

μ

2 − μ

2 + μ
ω

1
μ

+ 1
2

1∫
0

(
1 − t2) 1

μ
−1

dt, (2.6)

where we used the identity(
1

2
+ 1

μ

) 1∫
b

(
1 − t2) 1

μ dt = −b

2

(
1 − b2) 1

μ + 1

μ

1∫
b

(
1 − t2) 1

μ
−1

dt. (2.7)

It is well known that the function φω minimizes ER at fixed mass. More precisely, choose ω such that MR[φω] = m,
then φω is a minimizer of the problem

inf
ψ∈H 1(R)
MR[ψ]=m

E0
R
[ψ].

This also implies that φω , with ω such that MR+[φω] = m, is the solution to the problem

inf
ψ∈H 1(R+)
M

R+[ψ]=m

ER+[ψ].

To prove the last statement, assume that f ∈ H 1(R+) is such that MR+[f ] = m and

E0
R+[f ]� ER+[φω]

where ω is chosen to satisfy MR+[φω] = m. Then, denoted by f̃ the even extension of f , one would obtain

E0
R
[f̃ ] �E0

R
[φω]

where MR[f̃ ] = MR[φω] = 2m. Since φω is, up to a phase, the only minimizer of E0
R

at fixed mass, f must be equal
to φω up to a phase factor.

3. Concentration-compactness lemma

In this section we prove the concentration-compactness lemma, that will be the main tool in the proof of Theorem 1.
For any sequence {Ψn}n∈N such that M[Ψn] → m and ‖Ψn‖H 1 is bounded, the lemma states the existence of a

subsequence whose behavior is decided by the concentrated mass τ (see Section 3 for the precise definition). We distin-
guish three cases: τ = 0, 0 < τ < m and τ = m, corresponding respectively to vanishing, dichotomy or compactness,
which are the usual, well-known possibilities in the standard concentration-compactness theory. We remark that the
statement of the lemma concerns the existence of a subsequence only of {Ψn}n∈N having the behavior defined by
the value of the parameter τ . In other words, the lemma does not characterize all the subsequences of {Ψn}n∈N. The
novel point in the extension of the theory to sequences of functions defined on the star graph G, concerns the case
of compactness. Indeed, as in the standard case, a compact sequence can either remain essentially concentrated in
a finite region and then strongly converge, or escape towards the infinity. The lack of translational invariance in G
forces to distinguish these two cases, so we say that the subsequence is convergent if it converges to some function
Ψ ∈ E (case i1) of Lemma 3.3), and we say that the subsequence is runaway if the subsequence carries the whole
mass towards infinity along a single edge (case i2) in Lemma 3.3).

In the development of the concentration-compactness theory, we closely follow the roadmap of [14,15], generaliz-
ing at any step to the case of the star graph the corresponding result of the standard theory in R

n.
We start by defining the distance between points of the graph, then we introduce the concentration function and

analyze its properties.
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Let x = (x, j) and y = (y, k), with j, k = 1, . . . ,N and x, y ∈ R+, two points of the graph and define the distance

d(x, y) ≡ d
(
(x, j), (y, k)

) :=
{

|x − y| for j = k,

x + y for j 
= k.

We denote by B(y, t) the open ball of radius t and center y

B(y, t) := {
x ∈ G s.t. d(x, y) < t

}
,

and by ‖ · ‖B(y,t) the L2(G) norm restricted to the ball B(y, t), i.e. set y = (y, k) then

‖Ψ ‖2
B(y,t) =

∫
{x∈R+ s.t. |x−y|<t}

∣∣ψk(x)
∣∣2

dx +
N∑

j 
=k,j=1

∫
{x∈R+ s.t. x+y<t}

∣∣ψj(x)
∣∣2

dx.

For any function Ψ ∈ L2 and t � 0 we define the concentration function ρ(Ψ, t) as

ρ(Ψ, t) = sup
y∈G

‖Ψ ‖2
B(y,t). (3.1)

In the following proposition we show two important properties of the concentration function: that the sup at the
r.h.s. of Eq. (3.1) is indeed attained at some point of G and the Hölder continuity of ρ(Ψ, ·).

Proposition 3.1. Let Ψ ∈ L2 such that ‖Ψ ‖ > 0, then:

i) ρ(Ψ, ·) is non-decreasing, ρ(Ψ,0) = 0, 0 < ρ(Ψ, t)�M[Ψ ] for t > 0, and limt→∞ ρ(Ψ, t) = M[Ψ ].
ii) There exists y(Ψ, t) ∈ G such that

ρ(Ψ, t) = ‖Ψ ‖2
B(y(Ψ,t),t).

iii) If Ψ ∈ Lp for some 2 � p �∞, then∣∣ρ(Ψ, t) − ρ(Ψ, s)
∣∣� c‖Ψ ‖2

p|t − s| p−2
p for 2 � p < ∞ (3.2)

and ∣∣ρ(Ψ, t) − ρ(Ψ, s)
∣∣� c‖Ψ ‖2∞|t − s| for p = ∞ (3.3)

for all s, t > 0 and where c is independent of Ψ , s and t .

Proof. To prove i), ii) and (3.2) one closely follows the proof of Lem. 1.7.4 in [14]. The proof of (3.3) immediately
follows from the inequalities∣∣ρ(Ψ, t) − ρ(Ψ, s)

∣∣ � ‖Ψ ‖2
B(y(Ψ,t),t)\B(y(Ψ,t),s),

shown in Lem. 1.7.4 in [14], and

‖Ψ ‖2
B(y,t)\B(y,s) � N |t − s|‖Ψ ‖2∞,

that is obtained by using Cauchy–Schwarz and the definition of B(y, t). �
For any sequence Ψn ∈ L2 we define the concentrated mass parameter τ as

τ = lim
t→∞ lim inf

n→∞ ρ(Ψn, t). (3.4)

As pointed out in the introduction τ plays a key role in concentration-compactness lemma because it distinguishes the
occurrence of vanishing, dichotomy or compactness in H 1-bounded sequences. The following lemma, that replicates
Lem. 1.7.5 in [14] on a star graph, shows that τ can be computed as the limit of ρ on a suitable subsequence.
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Lemma 3.2. Let m > 0 and {Ψn}n∈N be such that: Ψn ∈ H 1,

M[Ψn] → m, (3.5)

and

sup
n∈N

∥∥Ψ ′
n

∥∥ < ∞. (3.6)

Then there exist a subsequence {Ψnk
}k∈N, a non-decreasing function γ (t), and a sequence tk → ∞ with the following

properties:

i) ρ(Ψnk
, ·) → γ (·) ∈ [0,m] as k → ∞ uniformly on bounded sets of [0,∞).

ii) τ = limt→∞ γ (t) = limk→∞ ρ(Ψnk
, tk) = limk→∞ ρ(Ψnk

, tk/2).

Proof. Follow the proof of Lem. 1.7.5 in [14]. �
We are now ready to prove the concentration-compactness lemma.

Lemma 3.3 (Concentration-compactness). Let m > 0 and {Ψn}n∈N be such that: Ψn ∈ E ,

M[Ψn] → m,

sup
n∈N

∥∥Ψ ′
n

∥∥ < ∞.

Then there exists a subsequence {Ψnk
} such that:

i) (Compactness) If τ = m, at least one of the two following cases occurs:
i1) (Convergence) There exists a function Ψ ∈ E such that Ψnk

→ Ψ in Lp as k → ∞ for all 2 � p � ∞.
i2) (Runaway) There exists j∗, such that for any j 
= j∗ and 2 � p �∞

‖ψnk,j‖Lp(R+) → 0, (3.7)

moreover for any t > 0

‖Ψnk
‖Lp(B(0,t)) → 0. (3.8)

ii) (Vanishing) If τ = 0, then Ψnk
→ 0 in Lp as k → ∞ for all 2 < p �∞.

iii) (Dichotomy) If 0 < τ < m, then there exist two sequences {Vk}k∈N and {Wk}k∈N in E such that

suppVk ∩ suppWk = ∅, (3.9)∣∣Vk(x, j)
∣∣ + ∣∣Wk(x, j)

∣∣ � ∣∣Ψnk
(x, j)

∣∣ for any j = 1, . . . ,N; x ∈R+, (3.10)

‖Vk‖H 1 + ‖Wk‖H 1 � c‖Ψnk
‖H 1, (3.11)

lim
k→∞M[Vk] = τ, lim

k→∞M[Wk] = m − τ, (3.12)

lim inf
k→∞

(∥∥Ψ ′
nk

∥∥2 − ∥∥V ′
k

∥∥2 − ∥∥W ′
k

∥∥2)� 0, (3.13)

lim
k→∞

(‖Ψnk
‖p
p − ‖Vk‖p

p − ‖Wk‖p
p

) = 0, 2 � p < ∞, (3.14)

lim
k→∞

∣∣∣∣Ψnk
(0, j)

∣∣2 − ∣∣Vk(0, j)
∣∣2 − ∣∣Wk(0, j)

∣∣2∣∣ = 0 for any j = 1, . . . ,N. (3.15)

Proof. Let {Ψnk
}k∈N, γ (·) and tk be the subsequence, the function and the sequence defined in Lemma 3.2.

Proof of i). Suppose τ = m. By Lemma 3.2 ii), for any m/2 < λ < m there exists tλ large enough such that
γ (tλ) > λ. Then by Lemma 3.2 i), for k large enough ρ(Ψnk

, tλ) > λ.
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Set yk(t) ≡ y(Ψnk
, t), where y(Ψnk

, t) was defined in Proposition 3.1 ii). For k large enough, we have that

d
(
yk(tm/2), yk(tλ)

)
� tm/2 + tλ. (3.16)

To prove (3.16), assume d(yk(tm/2), yk(tλ)) > tm/2 + tλ, then the balls B(yk(tm/2), tm/2) and B(yk(tλ), tλ) would be
disjoint, thus implying

M[Ψnk
] � ‖Ψnk

‖2
B(yk(tm/2),tm/2)

+ ‖Ψnk
‖2
B(yk(tλ),tλ) >

m

2
+ λ > m

which is impossible because M[Ψnk
] → m. Next we distinguish two cases: yk(tm/2) bounded and yk(tm/2) unbounded.

Case yk(tm/2) bounded. We first recall that Ψnk
(·, j) ∈ H 1(R+), then by [10, Th. VIII.5] we can extend each

Ψnk
(·, j) to an even function Ψ̃nk

(·, j) ∈ H 1(R), in such a way that the sequence Ψ̃nk
(·, j) is uniformly bounded in

H 1(R). Applying [15, Cor. 5.5.2 and Lem. 5.5.3, see also Th. 5.1.8] to each sequence {Ψ̃nk
(·, j)}k∈N we get that there

exist Ψ̃ (·, j) ∈ H 1(R) such that, up to taking a subsequence, Ψ̃nk
(·, j) → Ψ̃ (·, j) in L2([−A,A]) for any A > 0.

Restricting each Ψ̃nk
(·, j) and Ψ̃ (·, j) to R+ we get that there exists Ψ ∈ H 1 and a subsequence, which we still

denote by {Ψnk
}k∈N, such that Ψnk

→ Ψ in L2(B(y, t)), for any fixed y and t . Moreover, again by [15, Lem. 5.5.3],

we have that Ψ̃nk
(·, j) converges to Ψ̃ (·, j) weakly in H 1(R). Then by the Rellich–Kondrashov theorem [28, Th. 8.9],

Ψ̃nk
(0, j) converges to Ψ̃ (0, j). Since Ψnk

∈ E one has Ψ̃nk
(0, j) = Ψ̃nk

(0, j ′), then the same is true also for Ψ̃ (0, j),
thus implying Ψ ∈ E . The function Ψ might be the null function, next we show that for yk bounded this is not the

case. We prove indeed that M[Ψ ] = m and therefore Ψnk
→ Ψ in L2. Since, by (3.16), yk(tλ) is bounded, up to

choosing a subsequence which we still denote by Ψnk
, we can assume that yk(tλ) → y∗(tλ) and yk(tm/2) → y∗(tm/2).

Then, fixed ε > 0, for k large enough we have d(y∗(tm/2), yk(tm/2)) � ε, so that, by (3.16) and the triangle inequality,
d(y∗(tm/2), yk(tλ)) � ε+ tm/2 + tλ. Setting T = 2(ε+ tm/2 + tλ) we certainly have that B(yk(tλ), tλ) ⊆ B(y∗(tm/2), T )

so that

‖Ψnk
‖2
B(y∗(tm/2),T ) � ‖Ψnk

‖2
B(yk(tλ),tλ) = ρ(Ψnk

, tλ) > λ. (3.17)

Then by inequality (3.17) and since

M[Ψ ] � ‖Ψ ‖2
B(y∗(tm/2),T ) = lim

k→∞‖Ψnk
‖2
B(y∗(tm/2),T )

we have that M[Ψ ] � λ. As we can choose λ arbitrarily close to m, we get M[Ψ ] � m. On the other hand, by weak
convergence, we have that

M[Ψ ] � lim inf
k→∞ M[Ψnk

] = m.

So that M[Ψ ] = m and by [15, Lem. 5.5.3] we get Ψnk
→ Ψ in L2. The convergence in Lp for 2 < p � ∞ follows

from Gagliardo–Nirenberg inequality.
Assume now that yk(tm/2) is unbounded. We shall adapt the argument used in the case of yk(tm/2) bounded. Denote

yk(tm/2) = (yk(tm/2), jk(tm/2)). Up to choosing a subsequence which we still denote by Ψnk
, we can assume that there

exists j∗ such that jk(tm/2) = j∗ and yk(tm/2) → ∞. Set Tmax > 4 max{tλ, tm/2} and notice that, due to (3.16), the
sequence yk(tλ) diverges on the j∗-th edge. Define ψ̃nk

∈ L2(R+) by

ψ̃k(x) = ψj∗,nk

(
x + yk(tm/2) − Tmax

)
.

We notice that for k large enough

ρ(Ψnk
, tλ) = ‖Ψnk

‖2
B(yk(tλ),tλ) = ‖ψj∗,nk

‖2
L2((yk(tλ)−tλ,yk(tλ)+tλ))

, (3.18)

then by an argument similar to the one used above we have that, for T = 2(tm/2 + tλ) and using the fact that Tmax > T ,

‖ψ̃k‖2
L2((Tmax−T ,Tmax+T ))

� ‖ψj∗,nk
‖2
L2((yk(tλ)−tλ,yk(tλ)+tλ))

> λ

where in the latter inequality we used Eq. (3.18). Applying [15, Cor. 5.5.2 and Lem. 5.5.3] to R+, we get that there
exists ψ ∈ H 1(R+) and a subsequence, which we still denote by {ψ̃k}k∈N, such that ψ̃k → ψ in L2((Tmax − T ,

Tmax + T )), for any fixed Tmax > T . Then, following what was done in the case yk bounded, we prove that
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‖ψ‖2
L2(R+)

= m and by [15, Lem. 5.5.3] we get ψ̃k → ψ in L2(R+). Also in this case the convergence ψ̃k → ψ

in Lp(R+) for 2 < p � ∞ follows from Gagliardo–Nirenberg inequalities.
To get (3.7) and (3.8) for p = 2 we notice that for any ε > 0 and k large enough M[Ψnk

] < m + ε. Set λ = m − ε.
From the discussion above in the unbounded case we deduce that for any t and k large enough yk(tm/2) − Tmax > t ,
moreover

∞∫
t

∣∣ψnk,j
∗(x)

∣∣2
dx �

∞∫
yk(tm/2)−Tmax

∣∣ψnk,j
∗(x)

∣∣2
dx = ‖ψ̃k‖L2(R+) > λ = m − ε.

Then, by

M[Ψnk
] =

∑
j 
=j∗

‖ψnk,j‖2
L2(R+)

+
t∫

0

∣∣ψnk,j
∗(x)

∣∣2
dx +

∞∫
t

∣∣ψnk,j
∗(x)

∣∣2
dx < m + ε

we get

∑
j 
=j∗

‖ψnk,j‖2
L2(R+)

+
t∫

0

∣∣ψnk,j
∗(x)

∣∣2
dx < 2ε.

The limits (3.7) and (3.8) for p > 2 follow by Gagliardo–Nirenberg inequalities.
To prove ii) one proceeds like in the proof of point ii) in Prop. 1.7.6 in [14].
Proof of iii). Let θ and ϕ be two even cut-off functions such that θ,ϕ ∈ C∞(R), 0 � θ , ϕ � 1 and

θ(t) =
{

1, 0 � |t |� 1/2,

0, |t | � 3/4,
ϕ(t) =

{
0, 0 � |t | � 3/4,

1, |t | � 1.

Take tk such that limk→∞ ρ(Ψnk
, tk) = τ and set y(tk) ≡ y(Ψnk

, tk), where y(Ψnk
, t) was defined in Proposition 3.1 ii).

We shall write y(tk) = (y(tk), j (tk)). Define the following cut-off functions

θk(x) = θ

(
x − y(tk/2)

tk

)
, ϕk(x) = ϕ

(
x − y(tk/2)

tk

)
and

θ̃k(x) = θ

(
x + y(tk/2)

tk

)
, ϕ̃k(x) = ϕ

(
x + y(tk/2)

tk

)
.

Let Vk = (Vk(·,1), . . . , Vk(·,N)) be defined by

Vk

(
x, j (tk/2)

) = θk(x)Ψnk

(
x, j (tk/2)

)
,

Vk(x, l) = θ̃k(x)Ψnk
(x, l) for any l 
= j (tk/2).

Moreover, let Wk = (Wk(·,1), . . . ,Wk(·,N)) be defined by

Wk

(
x, j (tk/2)

) = ϕk(x)Ψnk

(
x, j (tk/2)

)
,

Wk(x, l) = ϕ̃k(x)Ψnk
(x, l) for any l 
= j (tk/2).

We remark that Vk (Wk resp.) coincides with Ψnk
in the ball B(y(tk/2), tk/2) (in the set G\B(y(tk/2), tk) resp.) and

Vk = 0 (Wk = 0 resp.) in the set G\B(y(tk/2),3tk/4) (in the ball B(y(tk/2),3tk/4) resp.).
From this point the proof proceeds as proof of Proposition 1.7.6 in [14]. The only additional point to be proved is

formula (3.15), that can be done as follows: set Zk ≡ Ψnk
−Vk −Wk and then prove, as in [14] again, that M[Zk] → 0.

Since ‖Zk‖H 1 � c, one gets ‖Zk‖L∞ → 0 by Gagliardo–Nirenberg inequality. Therefore∣∣Ψnk
(0, j)

∣∣2 ≡ ∣∣Zk(0, j) − Vk(0, j) − Wk(0, j)
∣∣2 → ∣∣Vk(0, j) + Wk(0, j)

∣∣2 = ∣∣Vk(0, j)
∣∣2 + ∣∣Wk(0, j)

∣∣2
,

from which (3.15). �
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4. Constrained energy minimization

In this section we prove that for a small enough mass there exists a solution to the constrained energy mini-
mization problem. The proof is inspired by the work of Cazenave and Lions for the NLS in R, see in particular
Prop. 8.3.6 in [14]. Nevertheless, due to the lack of translational invariance and to the presence of a singular potential
well in the vertex, several nontrivial changes will be necessary. Some adjustments were already implemented in the
concentration-compactness lemma, to resolve the ambiguity of the case τ = m. To prove Theorem 1, another major
adjustment will be necessary, i.e. we have to prove that runaway subsequences are not minimizing if the mass is small
enough. To prove the existence of a minimizer of E, we use the concentration-compactness result as follows. We
assume that {Ψn}n∈N is such that M[Ψn] → m, ‖Ψn‖H 1 is bounded and {Ψn}n∈N is a minimizing sequence for the
energy functional, thus any subsequence of {Ψn}n∈N is a minimizing sequence as well. By using the energy functional
we prove that the concentrated mass parameter τ of a minimizing sequence must equal m, so that for minimizing
sequences the vanishing and dichotomy cases cannot occur. Then, if {Ψn}n∈N is a minimizing sequence, we are in the
compactness case. In order to distinguish between the two subcases of convergence and runaway, we prove that there
exists a critical value of the mass m∗ such that if m < m∗ then the infimum of the energy functional is attained by
convergent sequences. The explicit expression of m∗ comes from the knowledge of the stationary states of Eq. (1.1)
obtained in [3]. If a minimizing sequence is runaway, then we find that there is no minimum of the energy but only
an infimum value, as runaway sequences weakly converge to 0. An example of this behavior for cubic nonlinearity
(μ = 1) and for the case α = 0 (the so-called Kirchhoff or free quantum graph) was explicitly worked out in [2]. Here
it is shown that the phenomenon is more general and that a sufficiently deep potential well at the vertex, i.e. α negative
enough, is needed in order to prevent a minimizing sequence from escaping to infinity. We remark that apart from the
explicit estimate of the bound on the threshold, made possible by the choice of a delta vertex, the behavior discovered
and studied here appears to be simple and general.

Proof of Theorem 1. We prove first that 0 < ν < ∞. Take Ψ ∈ E such that M[Ψ ] = m and define Ψλ =
(ψλ,1, . . . ,ψλ,N ) with ψλ,j (x) = λ

1
2 ψj(λx). Then Ψ ∈ E , M[Ψλ] = m, and

E[Ψλ] = λ2

2

∥∥Ψ ′∥∥ − λμ

2μ + 2
‖Ψ ‖2μ+2

2μ+2 + λα

2

∣∣Ψ (0)
∣∣2

.

It is then clear that one can take λ small enough so that E[Ψλ] < 0, then ν > 0.
To prove that ν < +∞ we use first Gagliardo–Nirenberg inequalities which give

‖Ψ ‖2μ+2
2μ+2 � c

∥∥Ψ ′∥∥μ‖Ψ ‖2+μ

and ∣∣ψj(0)
∣∣2 � ‖Ψ ‖2∞ � c

∥∥Ψ ′∥∥‖Ψ ‖.
Then, by M[Ψ ] = m we have

E[Ψ ] � 1

2

∥∥Ψ ′∥∥2 − m
2+μ

2

2μ + 2
c
∥∥Ψ ′∥∥μ − c

√
m

|α|
2

∥∥Ψ ′∥∥. (4.1)

We notice that for any a, c > 0, b � 0 and 0 < s < 2 there exist δ,β > 0 such that ax2 − bxs − cx > δx2 − β for any
x � 0. Thus, for any 0 < μ < 2, choose s = μ and from (4.1)

E[Ψ ] � δ
∥∥Ψ ′∥∥2 − β, (4.2)

so that ν � β .
In the critical case μ = 2, provided that m <

√
3c̃−1 one can set s = 0 and finally get (4.2).

Then, we conclude that for any 0 < μ � 2 one has 0 < ν < ∞.
In the remaining part of the proof we shall prove that for m < m∗ minimizing sequences have a convergent subse-

quence.
We can consider a slightly more general setting taking {Ψn}n∈N be such that M[Ψn] → m and E[Ψn] → −ν.

We shall prove that exists Ψ̂ ∈ H 1(G) such that M[Ψ̂ ] = m, E[Ψ̂ ] = −ν and Ψn → Ψ̂ in H 1(G).
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We can assume that E[Ψn] � −ν/2 then by inequality (4.2), up to taking a subsequence, we have that {Ψn} is
bounded in H 1, moreover the following lower bound holds true

1

μ + 1
‖Ψn‖2μ+2

2μ+2 + |α|∣∣ψn,1(0)
∣∣2 � ν. (4.3)

Next we use Lemma 3.3 and prove that vanishing and dichotomy cannot occur for Ψn. Set τ =
limt→∞ lim infn→∞ ρ(Ψn, t). First we prove that vanishing cannot occur. If τ = 0, then by Lemma 3.3 there would
exist a subsequence Ψnk

such that ‖Ψnk
‖Lp → 0 for all 2 < p �∞ but this would contradict (4.3).

To prove that dichotomy cannot occur, suppose 0 < τ < m, then by Lemma 3.3 there exist Vk and Wk in E satisfying
(3.9)–(3.15). In particular, summing up (3.13), (3.14), (3.15), one obtains

lim inf
k→∞

(
E[Ψnk

] − E[Vk] − E[Wk]
)
� 0,

which implies

lim sup
k→∞

(
E[Vk] + E[Wk]

)
� −ν. (4.4)

On the other hand, proceeding like in the proof of Proposition 8.3.6 in [14], one finally gets

lim inf
k→∞

(
E[Vk] + E[Wk]

)
> −ν, (4.5)

that contradicts (4.4) and thus disproves 0 < τ < m. The only additional ingredient w.r.t. [14] is that in order to prove
that lim infk→∞ ‖Ψnk

‖2μ+2
2μ+2 
= 0 one has to notice that lim infk→∞ ‖Ψnk

‖2μ+2
2μ+2 = 0, together with ‖Ψnk

‖H 1 bounded
and Gagliardo–Nirenberg inequality, implies lim infk→∞ |Ψnk

(0,1)| = 0 and then contradict inequality (4.3).
Summarizing, according to Lemma 3.3 it must be τ = m.
Now we prove that for m < m∗ the minimizing sequence is not runaway. Here the limitation on the mass plays a

role for the first time. By absurd suppose that Ψn is runaway. Then we have that ψi,n(0) → 0 by Lemma 3.3 and this
implies

lim
n→∞E[Ψn] − E0[Ψn] = 0 (4.6)

where E0 is the energy functional corresponding to the Kirchhoff condition in the vertex, see Eq. (2.2). By equal-
ity (4.6) it must be

−ν � inf
Ψ ∈E

M[Ψ ]=m, Ψ 
=0

E0[Ψ ]. (4.7)

We shall provide a lower bound of infE0[Ψ ] by means of the rearrangements and then, by a trial function, we show
that (4.7) is false giving an absurd. To this aim, we use the symmetric rearrangement theory for graphs, introduced in
[19] for finite graphs, and adapted in [4] to the case of infinite star graphs. According to such theory, denoted by Ψ ∗
the symmetrically rearranged function of Ψ , the following estimates hold

‖Ψ ‖ = ∥∥Ψ ∗∥∥, ‖Ψ ‖2μ+2 = ∥∥Ψ ∗∥∥
2μ+2

and ∥∥Ψ ′∥∥2 � 4

N2

∥∥Ψ ∗ ′∥∥2
.

Therefore, for a nontrivial Ψ such that Ψ ∈ E and M[Ψ ] = m, we see that Ψ ∗ ∈ E due to its symmetry, M[Ψ ∗] = m

and

E0[Ψ ] � 4

N2

1

2

∥∥Ψ ∗ ′∥∥2 − 1

2μ + 2

∥∥Ψ ∗∥∥2μ+2
2μ+2.

Since rearrangements maintain the mass constraint, the previous inequality implies

inf
Ψ ∈E

M[Ψ ]=m

E0[Ψ ] � inf
Ψ ∈E, M[Ψ ]=m

4

N2

1

2

∥∥Ψ ′∥∥2 − 1

2μ + 2
‖Ψ ‖2μ+2.
Ψ symmetric
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Taking into account the symmetry requirement this last problem reduces to N copies of a problem on the half-line

inf
Ψ ∈E, M[Ψ ]=m

Ψ symmetric

4

N2

1

2

∥∥Ψ ′∥∥2 − 1

2μ + 2
‖Ψ ‖2μ+2

2μ+2 = N inf
ψ∈H 1(R+)

M
R+[ψ]=m/N

4

N2

1

2

∥∥ψ ′∥∥2
L2(R+)

− 1

2μ + 2
‖ψ‖2μ+2

L2μ+2(R+)
.

It is convenient to rescale the problem by means of the unitary transform ψ(·) �→ λ1/2ψ(λ·). In this way we have to
minimize the functional

4

N2

λ2

2

∥∥ψ ′∥∥2
L2(R+)

− λμ

2μ + 2
‖ψ‖2μ+2

L2μ+2(R+)
.

Choosing λ such that 4
N2 λ2 = λμ we reconstruct the structure of ER+ and arrive at the following inequality

inf
Ψ ∈E

M[Ψ ]=m

E0[Ψ ] � N

(
N

2

) 2μ
2−μ

inf
ψ∈H 1(R+)

M
R+[ψ]=m/N

ER+[ψ]

which is a minimization problem for unperturbed energy on the half-line. Recalling that the solution of the constrained
energy minimization problem on the half-line is given by the half soliton with frequency ω̃ such that MR+[φω̃] = m/N

we obtain

inf
Ψ ∈E

M[Ψ ]=m

E0[Ψ ] � −N

2

(
N

2

) 2μ
2−μ

ω̃
1
μ

+ 1
2
(μ + 1)

1
μ

μ

2 − μ

2 + μ

1∫
0

(
1 − t2) 1

μ
−1

dt (4.8)

with ω̃ defined by

m

N
= (μ + 1)

1
μ

μ
ω̃

1
μ

− 1
2

1∫
0

(
1 − t2) 1

μ
−1

dt,

where we used identities (2.5) and (2.6).
We can write the r.h.s. in a more compact way, showing also that it does not actually depend on N . Let ωR be the

frequency of a soliton of mass m, by Eq. (2.5), one has

m = 2
(μ + 1)

1
μ

μ
ω

1
μ

− 1
2

R

1∫
0

(
1 − t2) 1

μ
−1

dt,

from which it follows that

ωR

ω̃
=

(
N

2

) 2μ
2−μ

. (4.9)

Taking into account (4.8) and (4.9) we have

inf
Ψ ∈E

M[Ψ ]=m

E0[Ψ ] � −ω
1
μ

+ 1
2

R

(μ + 1)
1
μ

μ

2 − μ

2 + μ

1∫
0

(
1 − t2) 1

μ
−1

dt = −1

2

2 − μ

2 + μ
ωRm. (4.10)

This is the lower bound we were interested in. Notice that the r.h.s. coincides with the energy of a soliton on the line
with mass m.

Now we compute the energy functional E on a trial function. As trial function we choose the N -tail state Ψω,0.
First we fix the frequency ω = ω0, where ω0 is such that M[Ψω0,0] = m. By Eq. (2.3) we get

M[Ψω,0] = N
(μ + 1)

1
μ

μ
ω

1
μ

− 1
2

1∫
|α|√

(
1 − t2) 1

μ
−1

dt. (4.11)
N ω
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The r.h.s. of (4.11) as a function of ω defined on the domain [α2/N2,∞) is positive, increasing and the range is [0,∞)

in the subcritical case while in the critical case the range is [0, π
√

3N
4 ). See also Section 5. Therefore the equation

m = N
(μ + 1)

1
μ

μ
ω

1
μ

− 1
2

1∫
|α|

N
√

ω

(
1 − t2) 1

μ
−1

dt

has a unique solution ω0 for every m > 0 such that ω0 > α2/N2. A straightforward calculation based on formulas
(2.3)–(2.7) gives

E[Ψω0,0] = −ω0
m

2
+ μ

2μ + 2
‖Ψω,0‖2μ+2

2μ+2

= −1

2

2 − μ

2 + μ
ω0m − 1

2

(μ + 1)
1
μ

μ + 2
μ|α|

(
ω0 − α2

N2

) 1
μ

. (4.12)

Now we prove that, if m < m∗, then

inf
Ψ ∈E

M[Ψ ]=m

E0[Ψ ] > E[Ψω0,0]. (4.13)

Due to (4.10) and (4.12) it is sufficient to show that

ω0 > ωR.

Notice that the condition m < m∗ is equivalent, see (1.4), to

ωR <
α2

N2
.

Since we have ωR < α2

N2 < ω0, then (4.13) is proved. This is absurd since by (4.7) we have

E[Ψω0,0]� −ν � inf
Ψ ∈E

M[Ψ ]=m

E0[Ψ ] > E[Ψω0,0].

Then Ψn is not runaway and therefore it is convergent, up to subsequences, to Ψ̂ in Lp(G) for p � 2. In particular,
M[Ψ̂ ] = m. Moreover taking into account also the weak lower continuity of the H 1 norm we have

E[Ψ̂ ] � lim
n→∞E[Ψn] = −ν

which implies that E[Ψ̂ ] = −ν. Since E[Ψ̂ ] = limn→∞ E[Ψn] then ‖Ψ̂ ′‖ = limn→∞ ‖Ψ ′
n‖ and we have proved that

Φn → Ψ̂ in H 1. �
Remark 4.1. The condition m < m∗ has the advantage to be explicit, however we stress that it is not optimal. Indeed,
for any m such that (4.13) is satisfied, the proof given holds true. By careful inspection of (4.13) this is true for m = m∗
and by continuity also for some m > m∗.

Remark 4.2. Notice that for N = 2 and 0 < μ < 2, the following relation holds true

(
ω0

ωR

) 2−μ
2μ

∫ 1
|α|√

ω

(1 − t2)
1
μ

−1
dt∫ 1

0 (1 − t2)
1
μ

−1
dt

= 1. (4.14)

It follows immediately that ω0 > ωR and thanks to formulas (4.10) and (4.12) condition (4.13) holds for any m > 0
and no threshold is needed to assure the validity of Theorem 1. For N > 2 a mass threshold guarantees the existence
of energy minimum.
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5. Energy ordering of the stationary states

In this section we study the energy ordering of the stationary states for fixed mass in critical and subcritical regime.
In both cases we prove that the energy of the stationary states at fixed mass is increasing in the number of bumps.
Therefore, among the stationary states with equal mass, the N -tail state has minimal energy, see Theorem 2. In the
critical case a new restriction on m appears. First we analyze the subcritical case.

5.1. Energy ordering of the stationary states: subcritical nonlinearity

We consider as usual the case α < 0 only. We define the functions Mj(ω) = M[Ψω,j ]. A straightforward calculation
gives

Mj(ω) = (μ + 1)
1
μ

μ
ω

1
μ

− 1
2

[
−(N − 2j)

|α|
(N−2j)ω

1
2∫

0

(
1 − t2) 1

μ
−1

dt + NI

]

= (μ + 1)
1
μ

μ
ω

1
μ

− 1
2

[
(N − 2j)

1∫
|α|

(N−2j)ω
1
2

(
1 − t2) 1

μ
−1

dt + 2jI

]
(5.1)

where

I =
1∫

0

(
1 − t2) 1

μ
−1

dt.

We recall that Ψω,j is defined for ω ∈ (
|α|2

(N−2j)2 ,∞). Notice that the stationary states, apart from the N -tail state, have
a minimal mass, that is the range of the functions Mj , denoted as RanMj , is separated from zero. In fact, we have
that

RanMj = Mj

( |α|2
(N − 2j)2

,∞
)

=
[

2jI
(μ + 1)

1
μ

μ

( |α|
(N − 2j)

) 2−μ
μ

,∞
)

.

First we compare the frequency of the stationary states on the manifold M[Ψ ] = m.

Lemma 5.1 (Frequency ordering). Let 0 < μ < 2 and take Ψω,j defined by (1.6) and (1.7). Assume that

m � 2j

( |α|
(N − 2j)

) 2−μ
μ (μ + 1)

1
μ

μ

1∫
0

(
1 − t2) 1

μ
−1

dt, (5.2)

then there exists ωj such that M[Ψωj ,j ] = m. Moreover, assume that condition (5.2) is satisfied for j +1 (and therefore
for j ). The following possibilities hold:

– if 0 < μ < 1 then

ωj+1 < ωj ; (5.3)

– if μ = 1, then ωj is independent of j and

ωj ≡ ω∗ = (m + 2|α|)2

4N2
; (5.4)

– if 1 < μ < 2, then

ωj+1 > ωj . (5.5)
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Proof. The frequency ωj is the solution to the equation m = Mj(ωj ), then for each j the equation Mj(ω) = m has

solution only if m � 2jI
(μ+1)

1
μ

μ
(

|α|
(N−2j)

)
2−μ
μ , which proves the first part of the lemma. Next we note that the functions

Mj are strictly increasing. Moreover, for any ω � |α|2
(N−2(j+1))2

Mj+1(ω) − Mj(ω) = − (μ + 1)
1
μ

μ
ω

1
μ

− 1
2

[ |α|√
ω∫

0

(
1 − t2

(N − 2(j + 1))2

) 1
μ

−1

−
(

1 − t2

(N − 2j)2

) 1
μ

−1

dt

]
.

Since the function(
1 − t2

(N − 2(j + 1))2

) 1
μ

−1

−
(

1 − t2

(N − 2j)2

) 1
μ

−1

is negative for 0 < μ < 1 and positive for 1 < μ < 2, one has that Mj+1(ω) > Mj(ω) for 0 < μ < 1 and Mj+1(ω) <

Mj(ω) for 1 < μ < 2. Together with the fact that Mj are strictly increasing functions, this provides the ordering (5.3)
and (5.5).

Formula (5.4) is obtained by setting μ = 1 into equation Mj(ω) = m and through a straightforward calculation,
see also [3]. �
Lemma 5.2 (Energy ordering). Let 0 < μ < 2, and m be such that condition (5.2) is satisfied for j + 1. Then

E[Ψωj ,j ] < E[Ψωj+1,j+1]. (5.6)

Proof. After some straightforward calculation using (2.3), (2.4) and (2.7), one gets the formula

E[Ψωj ,j ] = − 1

2(μ + 2)

[
mωj(2 − μ) + |α|μ(μ + 1)

1
μ

(
ωj − |α|2

(N − 2j)2

) 1
μ
]
. (5.7)

Let us set

�j = E[Ψωj+1,j+1] − E[Ψωj ,j ].
We aim at proving that �j > 0. One has

�j = −m(2 − μ)

2(μ + 2)
(ωj+1 − ωj )

− |α|μ(μ + 1)
1
μ

2(μ + 2)

[(
ωj+1 − |α|2

(N − 2(j + 1))2

) 1
μ −

(
ωj − |α|2

(N − 2j)2

) 1
μ
]
. (5.8)

Let us analyze separately the cases 0 < μ � 1 and 1 < μ < 2.
We start with the case 0 < μ � 1, the easiest one. By Lemma 5.1 one has that (ωj+1 − ωj ) < 0 (equality holds

only for μ = 1). From which it also follows that(
ωj+1 − |α|2

(N − 2(j + 1))2

) 1
μ −

(
ωj − |α|2

(N − 2j)2

) 1
μ

< 0.

Noting that �j is the sum of two positive terms, we obtain (5.6) for 0 < μ � 1.
The case 1 < μ < 2 is more difficult. To prove (5.6) we start from Eq. (5.1) and recall that the frequency ωj satisfies

the equality m = Mj [ωj ], i.e.

m = (μ + 1)
1
μ

μ
ω

1
μ

− 1
2

j

[
(N − 2j)

1∫
|α|

(N−2j)ω

1
2

(
1 − t2) 1

μ
−1

dt + 2jI

]
.

j
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Taking the left and right derivative with respect to m, after some straightforward calculation we obtain

d

dm
ωj = 2μωj

[
m(2 − μ) + |α|(μ + 1)

1
μ

(
ωj − |α|2

(N − 2j)2

) 1
μ

−1]−1

.

Then, taking the derivative of E[Ψωj ,j ] in Eq. (5.7) and using the last identity, we obtain:

d

dm
E[Ψωj ,j ] = − 2 − μ

2(2 + μ)
ωj − 1

2(2 + μ)

[
m(2 − μ) + |α|(μ + 1)

1
μ

(
ωj − |α|2

(N − 2j)2

) 1
μ

−1]
ω′

j

= −ωj

2
.

Together with (5.5), latter formula implies that for 1 < μ < 2, �j is decreasing in m:

d

dm
�j = −1

2
(ωj+1 − ωj ) < 0.

Then to prove (5.6) it is enough to prove that �j > 0 for m → ∞. To prove the latter statement we start by Eq. (5.1)

and notice that ωj → ∞ as m → ∞, moreover by the expansion
∫ 1
x
(1 − t2)

1
μ

−1 = I − x + 1
3 ( 1

μ
− 1)x3 + O(x5),

we obtain

m

NC
= ω

1
μ

− 1
2

j

[
1 − |α|

NI
ω

− 1
2

j + 1

3NI

(
1

μ
− 1

) |α|3
(N − 2j)2

ω
− 3

2
j + O

(
ω− 5

2
)]

, (5.9)

where C = (μ+1)
1
μ

μ
I . For m → ∞, ωj has the following expansion:

ωj =
(

m

NC

) 2μ
2−μ

[
1 + aj

(
m

NC

)− μ
2−μ + bj

(
m

NC

)− 2μ
2−μ + cj

(
m

NC

)− 3μ
2−μ + O

(
m

− 4μ
2−μ

)]
. (5.10)

To compute the coefficients aj , bj and cj we rewrite Eq. (5.9) in the form(
m

NC

) 2μ
2−μ = ωj

[
1 − |α|

NI
ω

− 1
2

j + 1

3NI

(
1

μ
− 1

) |α|3
(N − 2j)2

ω
− 3

2
j + O

(
ω− 5

2
)] 2μ

2−μ

,

and use formula (5.10) at the r.h.s. The r.h.s. has an expansion in powers ( m
NC

)
− jμ

2−μ with j = −2,−1,0,1, . . . . The
condition that the terms with j = −1,0,1 equal zero gives the coefficients aj , bj and cj . A lengthy but straightforward
calculation shows that the coefficients aj and bj are independent of j . This is due to the fact that the first term in
Eq. (5.9) does not depend on j . More precisely, one obtains:

aj ≡ a = 2μ

2 − μ

|α|
NI

; bj ≡ b = μ

2 − μ

|α|2
N2I 2

; cj = c − 2(1 − μ)

2 − μ

1

3NI

|α|3
(N − 2j)2

,

where c does not depend on j . The explicit expression is not relevant since it will cancel out (see below). Using the
expansion (5.10) in Eq. (5.8) and taking into account the fact that the coefficients aj ≡ a and bj ≡ b do not depend
on j we obtain the following expansion for �j

�j = − (2 − μ)

2(2 + μ)
(NC)

1+ 2μ−2
2−μ (cj+1 − cj )m

− 2μ−2
2−μ

+ |α|(μ + 1)
1
μ

2(μ + 2)
(NC)

2μ−2
2−μ

( |α|2
(N − 2(j + 1))2

− |α|2
(N − 2j)2

)
m

− 2μ−2
2−μ + O

(
m

− 3μ−2
2−μ

)
= (μ + 1)

1
μ

2(μ + 2)
|α|3(NC)

2μ−2
2−μ

( |α|2
(N − 2(j + 1))2

− |α|2
(N − 2j)2

)(
2

3μ
+ 1

3

)
m

− 2μ−2
2−μ + O

(
m

− 3μ−2
2−μ

)
where in the latter equality we used the definition of cj and the fact that I = μ

(μ+1)
1
μ

C. The latter equality shows that

for m large enough �j is positive for any 0 < μ < 2, and the proof of the lemma is concluded. �
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Lemma 5.2 shows that among the stationary states on the manifold M[Ψ ] = m the N -tail state has minimum energy
and therefore for 0 < μ < 2 the proof of Theorem 2 immediately follows.

Remark 5.3. For μ = 1 the energy spectrum at fixed mass can be explicitly computed:

E[Ψω,j ] = −N

3
ω

3
2 + 1

3

|α|3
(2j − N)2

.

Taking into account the mass constraint we have

E[Ψω∗,j ] = − 1

24

(m + 2|α|)3

N2
+ 1

3

|α|3
(2j − N)2

.

The energy of the ground state is given by

E[Ψω∗,0] = − 1

24N2
m

(
m2 + 6m|α| + 12|α|2).

Remark 5.4. Notice that the manifold M[Ψ ] = m for m < m∗ may not contain all the stationary states, due to the fact
that their masses have a lower bound, as discussed above. The N -tail state always belongs to the constraint manifold
since its mass has no lower bound. Since m∗ actually depends on α, by inspection it turns out that for small |α| the
constraint manifold contains only the N-tail state while for large |α| all the stationary states belong to the constraint
manifold, i.e. the equation Mj(ω) = m defines the frequency ωj . As a matter of fact, for the proof of our theorems we
could fix m and require α to be sufficiently negative. Analogous remarks also apply to the critical case.

5.2. Energy ordering of the stationary states: critical nonlinearity

In this section we study the energy ordering of the stationary states for fixed mass and μ = 2.
In the critical case the mass functions can be explicitly computed and we have

Mj(ω) =
√

3

2

[
−(N − 2j)

|α|
(N−2j)ω

1
2∫

0

(
1 − t2)− 1

2 dt + NI

]

=
√

3

2

[
−(N − 2j) arcsin

( |α|
(N − 2j)ω

1
2

)
+ Nπ

2

]
where we used the fact that I = ∫ 1

0 (1 − t2)− 1
2 dt = π/2. We note that

RanMj =
[
j
π

√
3

2
,
N

2

π
√

3

2

)
.

In the critical case all the mass functions are bounded from above, therefore for large m the frequencies ωj are not
defined. This is the reason of the further mass limitation appearing in Theorems 1 and 2.

Lemma 5.5 (Frequency ordering (μ = 2)). Let μ = 2 and take Ψω,j defined by (1.6) and (1.7). Assume that

j
π

√
3

2
� m <

N

2

π
√

3

2
, (5.11)

then there exists ωj such that M[Ψωj ,j ] = m. Moreover, if m is such that (5.11) is satisfied for j + 1 (therefore also
for j ) then:

ωj+1 > ωj . (5.12)
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Proof. We recall that ω ∈ (
|α|2

(N−2j)2 ,∞), the frequency ωj is the solution to the equation m = Mj(ωj ), then for each

j the equation Mj(ω) = m has solution if and only if j π
√

3
2 � m < N

2
π

√
3

2 , which proves the first part of the theorem.
To prove the second part of the theorem we solve the equation m = Mj(ωj ) for ωj and obtain

ωj = |α|2

(N − 2j)2 sin(π
2

N− 4m

π
√

3
N−2j

)2

.

And the ordering (5.12) is proved by noticing that the function

f (x) = |α|
(N − 2x) sin(π

2

N− 4m

π
√

3
N−2x

)

is increasing whenever the argument of the sin is in (0,π/2). This is our case because of the constraint (5.11), as it is
easily seen by taking the derivative with respect to x

f ′(x) = 2|α|
(N − 2x)2 sin(π

2

N− 4m

π
√

3
N−2x

)2

(siny − y cosy)

∣∣∣∣
y= π

2

N− 4m

π
√

3
N−2x

,

then f ′(x) > 0 by the inequality siny − y cosy > 0 which holds true for any 0 < y < π/2. �
Lemma 5.6 (Energy ordering (μ = 2)). Let μ = 2 and assume that (5.11) is satisfied for j + 1. Then,

E[Ψωj ,j ] < E[Ψωj+1,j+1].

Proof. After some straightforward calculation one gets the formula

E[Ψωj ,j ] = −|α|√3

4

(
ωj − |α|2

(N − 2j)2

) 1
2 = −

√
3

4

|α|2
(N − 2j)

(
1

sin(π
2

N− 4m

π
√

3
N−2j

)2

− 1

) 1
2

where we used the explicit formula for ωj . Taking the derivative of the function

f (x) = −
√

3

4

|α|2
(N − 2x)

(
1

sin(π
2

N− 4m

π
√

3
N−2x

)2

− 1

) 1
2

we have that

f ′(x) =
√

3

4

|α|2
(N − 2x)2

2

( 1
(sin y)2 − 1)

1
2

1

(siny)2

(
(siny)2 − 1 + y

tany

)∣∣∣∣
y=( π

2

N− 4m

π
√

3
N−2x

)

and the energy ordering is a consequence of the fact that f ′(x) > 0, which follows from the inequality (siny)2 − 1 +
y

tan y
> 0 and is true for any 0 < y < 1. �

This ends the proof of Theorem 2.
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