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Abstract

We study the limit at infinity of the travelling waves of finite energy in the Gross—Pitaevskii equation in dimension larger
than two: their uniform convergence to a constant of modulus one and their asymptotic decay.
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Résumé

Nous étudions la limite a I'infini des ondes progressives d’'énergie finie pour les équations de Gross—Pitaevskii en dimension
supérieure ou égale a deux : leur convergence uniformeuergonstante de module un et leur comportement asymptotique.
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Introduction
In this article, we focus on the travelling waves in the Gross—Pitaevskii equation
i3,u=Au+u(1—|u|2) Q)

of the formu(z, x) = v(x1 —ct, ..., xy): the parameter > 0 is the speed of the travelling wave. The profilénen
satisfies the equation

icalv—i—Av—i—v(l— |v|2)=0. (2)
The Gross—Pitaevskii equation is a physical model for srgraductivity and superfluidity associated to the energy

1 1
E(v):E/|Vv|2+Z/(l—|v|2)2=/e(v). )
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The non-constant travelling waves of finite energy pdayimportant role in the long time dynamics of general
solutions and were first considered by C.A. Jones and P.H. Roberts [11]: they conjectured that they only exist
whenc < +/2 and that they are axisymmetric around axis They also proposed an asymptotic development at
infinity for the travelling waves up ta multiplicative constant of modulus one. In particular, in dimension two,
they conjectured that
vix)—1 ~ le (4)
=00 x2 4 (1— §)x5

and in dimension three, that
R T P o S et (5)
X|=>+o0 (xl + (11— %)(xz +X3))3/2
where the real number is the so-called stretched dipole coefficient.
The non-existence of non-constant travelling waves of finite energy for the casé2 was recently established
in [10]. Therefore, we will suppose throughout that@ < /2. Concerning existence, F. Béthuel and J.C. Saut[1,
2] first showed the existence of travelling waves in dimension two whisrsmall, and also gave a mathematical
evidence for their limit at infinity.

Theorem. In dimension two, a travelling wave for the Gross—Pitaevskii equation of finite energy and of speed
0 < ¢ < +/2 satisfies up to a multiplicative constant of modulus one

v(x) — .
|x]—4o00

In dimensionN > 3, F. Béthuel, G. Orlandi and D. Smets [3] showed their existence wheismall, and in
every dimension, A. Farina [8] proved a universal bound for their modulus.

In this paper, we complement the previous analysis by proving the convergence of the travelling waves at infinity
in dimensionN > 3 (see also [9]) and by giving a first estimate of their asymptotic decay, which is consistent with
the conjectures (4) and (5) of C.A. Jones and P.H. Roberts [11].

More precisely, we are going to prove the following theorem.

Theorem 1.In dimensionN > 3, a travelling wavev for the Gross—Pitaevskii equation of finite energy and of
speed < ¢ < +/2 satisfies up to a multiplicative constant of modulus one

v(ix) — L
|x|——+o00

Moreover, in dimensiotV > 2, the functionx — |x|V~1(v(x) — 1) is bounded oR”" .

Remark. In view of conjectures (4) and (5) of C.A. Jones and P.H. Roberts [11], it is likely that Theorem 1 yields
the optimal decay rate far— 1.

However, we do not know if there is some argument wipcevents the solutions tdecay faster as it is the
case for constant solutions. Actually, it is commonly conjectured that Theorem 1 gives the optimal decay rate of
the travelling waves which are non-constant and axisymmetric aroundaxis

We deduce immediately from Theorem 1 some integrability propertiesfot.

Corollary 2. The functiorv — 1 belongs to all the spacds’ (R") for

N -
——— < p < 4o0.
N—1"7
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Remark. We conjecture that the functian— 1 does not belong tﬁ% (RM) unless it is constant.

Corollary 2 has interesting consequences in dimenaion 3 because, in this case, the functior 1 belongs
to the spacd.2(R"), and therefore, in view of the energy bound, to the sp@eeR"): thus, the function

(x,t)>v(x1—ct,x2,...,XN)
is solution inCO(R, 1+ H1(R")) of the Cauchy problem associated to equation (1) with the initial data
u(0, x) =v(x).

The next theorem due to F. Béthuel and J.C. Saut [1] asserts that Eq. (1) is well-posed in this space.

Theorem.Letvg € 1+ HY(RY). There is a unique solutione CO(R, 1+ HL(RN)) of Eq.(1).
Moreover, the energy is conserved and the solutieandepends continuously on the initial datg

Therefore, we are now able to study the stability of a travelling wave in the spaée'{R" ), and to understand
better the long time dynamics of the time-dependent Gross—Pitaevskii equation.

The proof of Corollary 2 being an immediate consequence of Theorem 1, the paper is organized around the
proof of Theorem 1.

In the first part, we study the local smoothness and the Sobolev regularity of a travelling wave

Theorem 3.1If v is a solution of finite energy of E2) in L%C(RN), then,v is C*°, bounded, and the functions

n:=1—|v|2 and Vv belong to all the space®* 7 (RV) for k e Nand1 < p < +oc.

Remark. We do not know if the functions andVv belong to some spacég*1(R"): we will only show that all
the derivatives ofy are in LL(R"). In fact, it is commonly conjectured thatand Vv do not belong taL1(RY)
except for the constant case, but that all their derivatives até(@®") (see for example the article of C.A. Jones
and P.H. Roberts [11] for more details).

By a bootstrap argument adapted from the articles of F. Béthuel and J.C. Saut [1,2], we first pravesthat
C* onR" and thaty and Vv belong to all theL”-spaces for X p < +oo: it follows that the modulug of v
converges to 1 at infinity (see Lemma 14 in Section 1.2). In particular, there is some real mgdoeh that

1
P23 on‘B,(0, Ro).

We then construct a lifting of v on“B, (0, Ro), i.e. a function inC*°(° B, (0, Ro), R) such that
v= ,oeig.
The construction is actually different in dimensidvn= 2, where it involves to determine the topological degree of
the function® at infinity, and in dimensio&V > 3 (see Lemma 15 in Section 1.2).
We next compute new equations for the new functigremd Vo: those functions are more suitable to study

the asymptotic decay of. In order to do so, sincé is not defined orR", we introduce a cut-off function
¥ € C*°(RY, [0, 1]) such that

v =0 onB,(0,2Rp),
v =1 on°B,(0,3Ro).

All the asymptotic estimates obtained subsequently will be independent of the chalcelbe functions; and
Y6 then satisfy the equations

A% —2An+ c29Z ;n = —AF — 2c1div(G) (6)
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and

A(6) = %am +div(G), (7)
where

F =2|Vv|? 4 2% — 2cid1v.v — 2c1(¥6) (8)
and

G =iVv.w+ V(o). (9)

An important aspect of Egs. (6) and (7) is the fact thadnd G behave like quadratic functions gfand Vv at
infinity: it allows to apply the bootstrap argumentin Lemma 6.

Remark. In this paragraph, we try to motivate the introduction of the liftthgWithout lifting, Eqs. (6) and (7)
may be written as

{ A2 —2An+ CZSiln = —AF — 2cd1div(G),
11+ div(G) =0,
where

{ IE =2|Vv|2+ 22 — 2cid1v.v,
G =iVv.v.
However,Nf andG do not behave like guadratic functions pfand Vv at infinity: for instance, at infinity, the
functionG is given by
G =—p°Vo

and behaves like- V6. It seems rather difficult to determine the asymptotic decaywith such an equation.

Starting with Egs. (6) and (7), we can develop an argument due to J.L. Bona and Yi A. Li [4], and A. de Bouard
and J.C. Saut [6] (see also the articles of M. Maris [13,14] for many more details): it relies on the transformation
of a partial differential equation in a convolution equation. Actually, Egs. (6) and (7) can be written as

N
n:Ko*F+ZCZKj*Gj, (10)
j=1

whereKo andK ; are the kernels of Fourier transformation,

HE

KO = e ez -
respectively,
B0 =gz Zﬁjé— 27’ (12
and foreveryj € {1, ..., N},
c N N
a,'(l//e)zéK,*F+c22Lj,k*Gk+ZR,-,k*Gk, (13)

k=1 k=1
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whereL; ; andR;  are the kernels of Fourier transformation,

E28&;

L) = ; 14

8 = e 1 2612 — 282) ()
respectively,

m(s>=%. (15)

Egs. (10) and (13) seem more involved than Eq. (2), but are presumably more adapted to study the Sobole

regularity of the functiong andVv, as well as their decay properties. &&dl, concerning regularity, we complete

the proof of Theorem 3 by showing that the kerngls K;, L; andR;; are LP-multipliers for 1< p < +ooc:

it follows from Lizorkin’s theorem [12] and standard arguments on Riesz operators (see for instance the books of

J. Duoandikoetxea [7], and E.M. Stein and G. Weiss [17]). We can then deduce from Egs. (10) and (13) that the

functionsy andVv belong to all the spacag*? (RV) for k e Nand 1< p < 2 (see Proposition 18 in Section 1.3).
Finally, we infer from Theorem 3 the convergence of the travelling waves towards a constant of modulus one at

infinity (see also [9]).

Corollary 4. In dimensionN > 3, a travelling wavev for the Gross—Pitaevskii equation of finite energy and of
speed < ¢ < +/2 satisfies up to a multiplicative constant of modulus one

v(x) — .
|x|—4o00

As mentioned, Egs. (10) and (13) are also presuynaire adapted to study the asymptotic decay of the
functionsn and V. In order to clarify this claim, let us study a simple example: consider a convolution equation
of the form

g=K=xf,

where we suppose that the functiokisand f are smooth functions. We want tstamate the algebraic decay of
the functiong, i.e. to determine all the indicesfor which it belongs to the space

MP®RY) = {u:R" > C| e | oo vy = SUB %1% | (x)

, X € RN} < +oo},
in function of the algebraic decay &f and f. We have the following lemma.

Lemma 5. Assumek and f are continuous functions oR" which are in the spacaflgf(RN), respectively
MZ(RY), whereay > N andaz > N. Then, the functiog belongs to the spacl°(R") for & < min{a, a2}

Proof. The proof of Lemma 5 llees on Young's inequalities

VxRV, [xl%[so)| <|x|°‘/\1<<x—y>|\f<y>\dy
RN
<A/(|x—y|“\l<(x—y)|!f(y)\+|K(x—y)||y|“\f(y)\)dy
RN
< A(”K”MgO(RN)”f”Ll(RN) + ||K||L1(RN)||f||M§°(RN))‘

Sincea; > N andaz > N, K and f belong toL}(R"): thus, if & < min{e, a2}, the last term is finite and the
functiong belongs to the spade°(RY). O
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The assumptiong; > N anda2 > N are quite restrictive, but we can generalize this method by using Young'’s
inequalities involving not only thé&—L> estimate, but thé&.”—L?" estimate, and determe the algebraic decay
of functions which satisfy such a convolution equation.

Our situation is close to the previous example. Indeed, Egs. (10) and (13) are of the form

(7. V0)) = K * F (1, V(0)),

whereF behaves like a quadratic function in terms of the variablasdV (y6).
In order to understand what happens in this case, we consider the non-linear model

f=Kxf?
where f andK are both smooth functions. We get

Lemma 6. AssumeK and f are continuous functions oR" which are in the spacaflgf(RN), respectively
Mgg(RN), wherea; > N, az > N/2anda; > a2. Then, the functiorf belongs to the spacS°(RY) for o < a;.

Proof. The proof of Lemma 6 alsaefies on Young's inequalities

Vi eRY, x| f(0)] < |x|°‘/\1<<x —pllf Py
RN

< A/(|x — VK &= || fO)P+ K= )|y ) [F) dy
RN
< A(IK llagge @ 1 f 172y + 1K aceny L 120 vy )-
2

Sincea; > N andas > N/2, K and f belong toL1(RV) and L2(RV): thus, ifo < min{a1, 205}, the last term is
finite and the functiory belongs to the spadeS°(RY). By iterating this step, the functiofi belongs to the space
MRV if a < min{ag, 2Xay) for everyk e N, ie. fora <or. O

Lemma 6 provides a striking optimal decay progéddr super linear equations. Indeed, assumihgossesses
somealgebraic decay, then, jf is moreover solution of such a convolutiequation, it decays as fast as the kernel.
However, some decay gf must be establishditst, in order to initiate the inductive argument.

Turning back to the functions andV(¥6) and convolution Egs. (10) and (13), the situation is a little more
involved, since we have a system of equations and since the kernels are singular at the origin. However, the
conclusion is similarthe decay of the solution is determined by the decay of the kernel

Thus, in our case, we will determine the decay at infinity of the kerkg|sK;, L; x andR; x, somedecay at
infinity for the functionsy andV (¥6), before getting their optimal decéy the previous inductive argument.

In view of the previous discussion, the second part of the paper will be devoted to the analysis of the kernels
Ko, K, Lj andR; ;: we will estimate their algebraic decay at thegimi where they are singular, and at infinity.

It relies on three different arguments.

e We first use anL'-L> inequality, which generalizes the classical one between a function and its Fourier

transformation: it follows from the next lemma which is presumably well-known to the experts.

Lemma 7.Let0 < s < 1 and f € S(RV). Then, the function — [x|* f(x) is in CORY) := {g € CORN) |
2(x) = x|-+00 0}, and satisfies for every e RV,

; fO) = f@ iy
x| f(x):IN/ T Ydydz, (16)

RN RN
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where we denote
+o0

N_q -1
IN=—<(271)N+1/(11§l(Zﬂu)—];(Zﬂ)u%_l>u_%_sdu) >0,
0

2

and wherel%_1 is the Bessel function defined by

S (—1)"142"

u
VueR, Jy_ (u)=<—> S
71 2 ;4'1n!r(n+%)

We deduce from Lemma 7 the following theorem.

Theorem 8.LetN —2 <« < N,n e Nand(j, k) € {1, ..., N}2. The functiong” Ko, d"K;andd"L; belongto
M, RN).

e We then prove independently that all those fuoieti are bounded even in the critical case, i.e. whenN.
This is done by another duality argumentSiitR”"), and by a standard integration by parts.

Theorem 9.Letn e N and(j, k) € {1, ..., N}2. The functiong" Ko, d"K; andd"L; belong toM’ (RM).
Remark. We conjecture Theorem 9 is optimal, i.e. the functiptfs™d" Ko, |.|1*t"d" K j and|.|**"d" L ; ; are not
bounded oR" fora > N.

o Finally, we study what we shall call the composed Riesz kernels, i.e. the kétpgl$Ve exactly know their
form by standard Riesz operator theory (see for example the books of J. Duoandikoetxea [7], and E.M. Stein anc
G. Weiss [17]). Iff is a smooth function and if we denadg, = R; x = f forevery(j, k) e {1,..., N}2, we have
the formula

8jkly> = Nyjy
VreRY, gjx(x)=Aw / ’MTz’ﬂx—y)dy
lyl>1
8;klyI? = Nyjy
ay [ HEECZI (f - ) = f) dy, 17)
lyI<1

Therefore, in this section, we do not study the decay of the keRiglsat infinity, but directly, the decay of the
functionsg; i, when the functiory belongs taL1(R") and the functions.|* f and|.|*V f are bounded for some
positive numbet.

In the third part, we turn to the decay of the functigrendVv at infinity: we first give a refined energy estimate
due to F. Béthuel, G. Orlandi and D. Smets [3].

Lemma 10. Let v, a solution of finite energy of E¢2) in L%C(RN). For every0 < ¢ < /2, there is a strictly
positive constant,. such that the function
R — R% / e(v)
B(O,R)¢

is bounded orR ...
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It is the starting point of the whole study of the decay @t infinity. Indeed, it enables to progemealgebraic
decay for the functions andVv, which leads to the following theorem by the inductive method yet mentioned.

Theorem 11.Leta € NV, Then, the functions, V(0) and Vv satisfy

(0, 9%V (¥0), 3Vv) € MY (RV)3,
9*Vn e My, ,(RN).

Remark. The key result of Theorem 11 is that the algebraic decay of the funcjiovig andV (y/0) is imposed
by the kernels of the equations they satisfy: we believe that Theorem 11 is optinaakf@, but not for higher
derivatives. The function*n, 3*V (y6) anda* Vv are commonly supposed to beIongM;tfHal(RN).

As mentioned, we can deduce from Theorem 11 some integrability for the derivatives of the function
Corollary 12. Leta € NV, Then,0*Vn e LL(RN).

The proof of Corollary 12 being an immediate consequence of Theorems 3 and 11, we will omit it, and instead,
we will conclude the paper by proving the asymptotic estimate of Theoremul-fat.

1. Regularity and convergence at infinity of travelling waves for the Gross—Pitaevskii equation

The first part is devoted to the proofs of Theorem 3 and Corollary 4, i.e. to determine the Sobolev regularity and
the convergence at infinity of a travelling waveof finite energy and of speed<Q¢ < +/2 in dimensionN > 2
(see also [9]).

The proofs essentially stem from the articles of F. Béthuel and J.C. Saut [1,2], and are based on Egs. (10
and (13): we first determine the Sobolev regularitynofind Vv for Sobolev exponentp € [2, +o0]. We then
derive properly Egs. (10) and (13) by introducing some liftihgf v. This yields the Sobolev regularity @fand
Vu for Sobolev exponentg €11, 2[ by using some Fourier multiplier theory. At last, Corollary 4 follows from a
general argument connecting the existence of a limit at infinity for some function with its Sobolev regularity (see
Proposition 19 in Section 1.4).

1.1. LP-integrability for2 < p < +o0

We first prove the Sobolev regularity af and Vv for Sobolev exponentp € [2, +o0]. The following
proposition holds even if > +/2.

Proposition 13.1f v is a solution of finite energy of EQ) in Llloc(RN), then the function is C*°, bounded, and
the functions; and Vv belong to all the space®’*? (RV) for k e N and2 < p < +oo0.

Proof. We only prove Proposition 13 in dimension three becdhegeneral proof is identical with small changes
of Sobolev indices. The proof is adapted from the article of F. Béthuel and J.C. Saut [1], where it is written in
dimension two. It is based on a bootstrap argument.
We first consider a poinf in R3 and we denot&2, the unit ball with centeto. Then, we consider the solutions
v1 andvz of the equations

Avi1=0 ong2,
V1=V onos2,
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and

—Ava=v(1— |v|®) +icdv:=g(v) ong,

vp=0 onoas2.
Since the energ¥ (v) of v is finite, v is uniformly bounded irL4(£2), which means that the norm efin L*(£2) is
finite and bounded by a constant which only depends and E (v), but not onzg. Thus,v(1 — |v|?) is uniformly
bounded inL%(Q), and likewise,d1v is also uniformly bounded inL%(Q), such asg(v). By standard elliptic

theory,vz is then uniformly bounded iW2>%(Q), and by Sobolev embeddings,is uniformly bounded irL.4(£2).
If we denotew, the ball with centeto and with radius%, then, by Cacdppoli inequalitiesps is uniformly

bounded inW? 3 (w): thus, v is uniformly bounded ifW?2 3 (w), and, by Sobolev embeddings, (o).
Furthermore, we compute

Vie(l.2.3), 8;8(v)=0d;v(1— |v[?) - 2(w.9;v)v +icdF ;v.

So, 9;¢(v) is uniformly bounded inL%(a)), and by standard elliptic theoryp and v are uniformly bounded

in W3~é(a)). Finally, by Sobolev embeddings once moveis uniformly bounded ir‘CO’%(w): therefore,v is
continuous and bounded @?.
However, its gradienty = Vv satisfies

2 2
—Aw —icoiw + (% + 2>w = w(l— |v|2) —2(v.w)v + <% + Z)w =h(w),

andh(w) belongs toL?(R3), which proves thaty belongs toH?(R3). So,w is continuous and bounded, and by
iterating, we conclude thatis C*°, bounded and that all its derivatives belong to the sp&é€&3) andL> (R3).
Proposition 13 then follows from a standard interpolation betwe&sspaces. O

Remark. Proposition 13 shows that every weak solution pité energy of Eq. (2) is a classical solution.
1.2. Convolution equations

In this section, we establish the convolution equations, i.e. Egs. (10) and (13): we will use them to complete the
study of the Sobolev regularity of the travelling veay and to determine their decay at infinity.

We first construct a lifting of v: in order to do so, we first prove thatdoes not vanish at infinity. It follows
from Propogion 13.

Lemma 14.The modulug of v and all its derivative$* v satisfy
p(x) — 1,

[x|—+00
%v(x) — O
|x|—>4o00

Remark. Lemma 14 holds even if > +/2.

Proof. Indeed, on one hana,is bounded and lipschitzian by Proposition 13, js uniformly continuous on
RY: as [y n? is finite, we get

nx) — 0,
|x|—=+4o00

which gives
px) — L

[x]—+o00



600 P. Gravejat / Ann. I. H. Poincaré — AN 21 (2004) 591-637

On the other handyv belongs to all the spacég®? (R") for everyk e N andp € [2, +00], $0,0%v is uniformly
continuous and satisfies

/ 10%]? < 400,
RN

and we get likewise

%v(x) — O O

[x]—+o00
Thereforep does not vanish at the neighbourhood of infinity, and we can construct a smooth liftinhefe.

Lemma 15.There is some real numb&gy > 0 and a functiord € C*°(°B, (0, Rp), R) such that

v=pe'? on°B,(0, Ro).

Remark. Lemma 15 holds even if > +/2.

Proof. By Lemma 14, there is some real numi®yr> 0 such thap satisfies
o= % on‘B, (0, Ro).

Thus, the map/|v| is aC> function from¢ B, (0, Ro) to the circleS?.
In dimensionV > 3, the fundamental groupy (SV 1) of the spher&V—1 is reduced tq0}, and therefore, there
is a functiord € C*°(°B, (0, Rp), R) such that

v= |v|ei9 = peig.
In dimension N = 2, the fundamental groupy(S) of the circle St is Z: so, there is a functior® e
C*®(°B,(0, Ro), R) such thatv is equal to|v|e!® on B, (0, Ro), if and only if the topological degree af on
the circleS(0, Ro) is 0.

Let us denotel € Z, the topological degree af on this circle. Sincew does not vanish ofiB, (0, Rp), d is the
degree ofv on each circleS(0, R) for everyR > Rg, and we get

ZﬂdR=—/ (| I)(s) R / 10:v®)-v@) o
S(O,R)

[v(&)] lv(&)|?
S(O,R)
whence
| < 1 / |8rU(§)|d§_<i / |Vv($)|d$< i( / |Vv(§‘)|2d€:>l/2
S 27R lv(&)| S 7R VxR ’
S(O,R) S(O,R) S(O,R)

SinceVv belongs taL2(RY), there is some real numbg&r> max1, Ro} such that

/ IVoe)|%de < 1.
S(O,R)
which gives

2
ld| <= <1
g
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Asd € Z, ityields
d =0,

and there is a functiofr € C*°(° B, (0, Rp), R) such that
V= ,oem. O

Now, we can compute Egs. (6) and (7) &A : thus, we introduce a cut-off functiop € C*°(R", [0, 1]) such
that

¥ =0 0nB,(0,2Ro),
¥ =1 0n°B,(0,3Ro),

and we then prove

Proposition 16.1f v := v1 +iv2 is a solution of finite energy of ER) in L%C(RN), the functiong; and 6 satisfy
the equations

A% —2An+ 02812’171 =—AF — 2¢01div(G), (6)
and

AW0) = S0 +dV(G). (7)
where

F =2|Vv|? + 27° + 2c(v191v2 — v2d1v1) — 2c91(6) (8)
and

G = —v1Vv2 + 2V + V(¥6). 9)

Remark. Proposition 16 holds evendf> v/2.

Proof. Denotingv = vy + iv2, we have by Eq. (2)
Av1—081v2+v1(1— |v|2) =0, (18)
Av2+081v1+v2(1— |v|2) =0. (19)
We then compute
A%y —2An+ 6‘28]%177 = —2A|Vv|? = 2A(v.Av) — 2An + 6‘28]%177.
By Egs. (18) and (19), we have on one hand
v.Av =v1Av1 + v2Av2 = c(v101V2 — v201V1) — |v|2n,
and on the other hand,
c01n = —2¢(v101v1 + v201v2) = 2(Avov1 — Aviv2) = 2div(Vvovr — Vogvg). (20)
Therefore, we get
A%y — 280+ c297 1 = —2A|Vo[? — 2A7% — 2 A (v1d1v2 — v201v1) + 2cd1diV(v1 Vg — V1)
= —A(2|Vv|? + 2% + 2c(v191v2 — v20101) — 2c01(¥6))
+ 2¢01 div(v1Vv2 — vV — V(wé))
= —AF — 2c31div(G),
which gives Eq. (6).
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For Eq. (7), we introduce the functiaf® in Eq. (20) and we get

c . Cc .
A(Yo) = 531" + div(Vvive — Vuovs + V(¥0)) = 581" +div(G). O

Finally, so as to study Egs. (6) and (7), we transform them in convolution equations.

Proposition 17.The functiong; and V(¥ 0) satisfy the equations

N
772K0*F+2€ZK1'*G./, (10)
j=1
c N N
a.,(lpe):EK,*F+c22Lj,k*Gk+ZRj,k*Gk, (13)
k=1 k=1

whereKo, K, L; andR;  are the kernels of Fourier transformation,

HE

Ko(&) = , 11
o8 = s 22— 22 an
— &1&;

K = , 12
i® 614 4 2|g|2 — c22 (12)
— 288

L; = , 14
8 = e 1 2812 — 282) a4
Iﬁ(s):%. (15)

Though Egs. (10) and (13) look rather involved than Eq. (2), they simplify a lot the study of the regularity and
of the decay ob in the next sections.

1.3. L?-integrability forl < p < 2
In this section, we achieve the proof of Themr8 by proving the following proposition in the case: v/2.

Proposition 18.If v is a solution of finite energy of ER) in L%C(RN), then the functions and Vv belong to all
the spacesv*?(R"Y) fork e Nandl < p < 2.

Proof. The proof is adapted from an article of F. Béthuel and J.C. Saut [2] and based on Egs. (10) and (13). We
first study the Sobolev regularity of the functioAsandG for Sobolev exponentg € [1, +o¢].

Step 1.F and G belong to all the space®*?(R") for k e Nand1 < p < +oo.

By formulae (8) and (9)F andG are equal to
F = 2|Vv|? + 2% + 2¢(v101v2 — v201v1) — 2¢01(Y6)
and

G = —v1Vv2 + v2Vur 4+ V(¥6).
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So, by Proposition 13, they ar€* on R", and it is sufficient to prove that they belong to all the spaces
Wk-P (B, (0, 3Rg)) for k e N and 1< p < +oo.
On the set B, (0, 3Rp), F is equal to

F = 2|Vv|? + 2n% — 2cnos0.

On one hand, bProposition 13y and Vv belong to all the space&*?(RV) for k € N and 2< p < +oo.
On the other hand is higher than% on the set B, (0, 3Rp) by definition of Ry (see the proof of Lemma 15),
andv belongs to all the spac@g® > (R") for k € N: therefore, the maF (/0), given by
iv.Vv
Vo) = o

at infinity, also belongs to all the spac#%-? (° B, (0, 3Rp)) for k € N and 2< p < +oo.
As F is a quadratic function oy, V(¥6) and Vv, it is in all the space*?(°B,(0, 3Rg)) for k € N and
1< p<+oo.
Likewise, the functiorG is given by
G =nV(y0)

on the set'B,(0, 3Rp), and it is also a quadratic function g@fand V(¥/0): thus, G belongs to all the spaces
Wk-P(¢B,(0, 3Ro)) for k e N and 1< p < +o0.
We then establish a first property of the Gross—Pitaevskii ke®igl«K ;, L; r andR; .

Step 2.The functiono, K ;, L; x and R, ; are L”-multipliers forl < p < +oo.
Step 2 follows from Lizorkin’s theorem [12].

Lizorkin’s theorem. Let K a bounded function i€™ (R \ {0}) and assume

N
ki ~
[T LK () e LXRY)
j=1
as soon agky, ..., ky) € {0, 1}V satisfies

N
0< ) kj<N.
j=1

Then,K is a L”-multiplier for 1 < p < +oo.
By a straightforward computatiorko, K; and L, satisfy all the hypothesis of Lizorkin’s theorem, and so,
they areL?-multipliers for 1< p < +o0.

By standard Riesz operator theory, the functiaﬁﬁ are L”-multipliers too (see for example the books of
J. Duoandikoetxea [7] and E.M. Stein and G. Weiss [17]).

Step 3.y and V(y0) belong to all the space®*?(R") fork e Nand1l < p < 2.

By Steps 1 and 2, and Egs. (10) and (18andV(¥6) belong toL? (RY) for 1 < p < 2. We then iterate the
proof for all the derivatives of andV (y0) using the equations
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N
0"n=Ko*0"F +2c Y K;*0°Gj, (21)
j=1
c N N
89 (V) = 5K * 0°F + Y Ljxx0“Gr+ Y Rjxx9°G, (22)
k=1 k=1

for everya € NV, By Step 19 F andd® G belong to all the spacds” (R") for 1 < p < 4+oc0: Step 3 then follows
from Step 2 and Egs. (21) and (22).

Step 4.Vv belongs to all the space&*?(RV) fork e Nandl < p < 2.

The functionv beingC> onRY by Proposition 13, it is sufficient to prove th&w belongs to all the spaces
Wk-P(¢B,(0,3Rp)) fork e Nand 1< p < 2.

In order to do so, we first claim thatp belongs to the spacé&*?(°B,(0,3Rp)) for k e Nand 1< p < 2:
indeed,p is given by

p=yv1=n.

By Lemma 14, is higher than?1 on the set B, (0, 3Rp), so, by Step 3 and by the”-chain rule theoremy p
belongs to all the spacég*? (°B, (0, 3Rp)) for k e Nand 1< p < 2.

Thus, p and V(y0) belong to all the space&* > (B, (0, 3Rp)) for k € N, andVp and V(¥6) belong to all
the spaces$V*-?(°B, (0, 3Rp)) for k e N and 1< p < 2: sinceVu is given by

Vv =Vpe'? +ipV(yo)e?

at infinity, by Leibnitz’s formula and by the”-chain rule theoren¥ v belongs to all the spacég®? (¢ B, (0, 3Ro))
forkeNandl<p<2. O

1.4. Convergence at infinity in dimensiodh> 3

We now deduce Corollary 4 from Theorem 3: indeed, by the following proposition, the convergence at infinity
of a travelling wavey follows from its regularity.

Proposition 19. Let v € C?(R"), and suppose tha¥ > 3 and that the gradient of belongs to the spaces
wiroRNy and Wiy (RY), where
l<po<N—-1<p1<+oo.

Then, there is a constant, € C such that

v(x) —  VUso.
|x|——+o00

Proof. Proposition 19 relies on a radial construction of the limit: we focus on the function@, ), ¢ defined by
Ve e SN u. (&) = v(ré).

We first prove their convergence almosegmwhere towards a measurable functigg on SV~1 whenr tends
to +o00. Then, we show the uniformity of this convergence by a standard embedding theorem involving Lorentz
spaces, and we conclude by showing tihgtis a constant function.
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At first, we construct the limit,: we compute

400 —+00 % +00 N1 i
/ /‘Srv(r§)|drdcr< / </|Vv(r$)}p°erdr> (/‘rl’O‘1 dr) do
1 1

s§N-1 SN-1

1
< AN,po( / |Vo(x)|7 dx) " < oo,
¢B,(0,1)
and therefore,
+00

/|8rv(r§)|dr <400 a.e.
1

Hence, there is a measurable functign on S¥—1 such that
v (§) — vee(§) ae.
r——+00

We now claim

Lemma 20. v is the limitin L= (SY 1) of the functiongv, ),~o whenr tends to+oo, i.e.

”Ur — Voo ”LOO(SN_l) r~>_<|)»oo O

Indeed, denote

VYp €[po, p1l, ‘v’r>O,Ip(r)=rN*l / |Vv(r$)‘pda.

s§N-1

The function!, is C* onR* and its derivative satisfies

Vr>0, || <N -1rV2 / \Vore)|P do + prVt / |Vv(r$)|p_1|8er(r§)| do,
N-1

SN-1 S
SO,
+00
-1
/ [Ty @) dr < ANV, oy + IV gy 19Vl ) < o0
0

Hence,l,, has a limit at+-oo, and since

+00

/ Ip(rydr = ||Vv||ZP(RN) < 400,
0

this limit is zero.
Furthermore, we notice that

IVoere) > = |0,008) >+ 72 VS 0. )%,
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whereVSN*lvr denotes the gradient of the functionon the spher&V—1, It yields

A [ @l ds o (3)

r—>+00
SN-1

So, we know at least partly the”-convergence of the gradients of the functianswe now estimate thé.?-
convergence of the functionsg to prove their uniform convergence by using embedding theorems.
Thus, if po < g < min{p1, N}, we get for every > 0,

+0o0 q
/ (/‘Srv(séﬂds) do

/ 1) — 100 (®)|" do <
SN—l

s§N-1 r
400
g—1\"" -N 4 N-1
< N o rt |Vv(s$)| s dsdo
q SN-1 r
< ANGIVOIT, gry ™. (24)

By assertions (23) and (24), the functionsconverge tovs, in L7(SN~1) for everyq € [po, min{p1, N}[, and
their gradient converge to 0 ih?(S¥—1) for everyg € [po, N — 1]: hence, the functions, converge tovs, in
wl4a(SN-1) for everyq € [po, N — 1], and since their gradient converge to 0, the gradientoin D' (S¥ 1) is
0, i.e. the function, is constant.

Actually, by standard Sobolev embedding theorem, the spaiéggSY 1) do not embed ir.>° (SN 1) for any
g € [po, N — 1]: that is the reason why we introduce the Lorentz spgaltel-1(SV-1).

At first, let us recall briefly the definition of this space: we consider a measurable funtor§" 1 and we
define its distribution function ; by

V>0, Ar(0) :=u({§ esV1,

f®|>1}).
wherep is the standard measure®Y 1, and its decreasing rearrangemgitby
Vi >0, f*(t):=inf{s>0, As(s) <t}
The Lorentz spacg¥ ~11(S¥-1) is the set of all measurable functiofissuch that
+00
I fllpv-1agn-1y := / tﬁ_lf*(t) dt < +o00.
0
The interest of this space relies on the theorem of A. Cianchi and L. Pick [5].

Cianchi and Pick’s theorem.Denote
W(LN—l,l(SN—l)) ={ue LN-L1gN-1y vs' 1, e LN—l,l(SN—l)}'
Then,
WESNY) e LSV,
i.e. there is some consta@t> 0 such that for every functiofi ¢ W (LY -11(SN-1y),

1 llzeen- < OO lv-ragv-s + [V F ] v aagnon)-
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Remark. In fact, A. Cianchi and L. Pick [5] proved a stronger result (Theorem 3.5 and Remark 3.7 there), which
is not used here, but which explains why we introduce the Lorentz gpicé(SV—1).
Let X, a rearrangement-invariant Banach function space on the spiiefe and denote

WX) ={uex,v¥" uex).
Then, W (X) embeds inL>®(SV~1) if and only if

Thus, in some senséy (LY ~11(SV—1)) is the largest space (among the admissieX)) which embeds in
L®(SN~1): that is the reason why the spat&—1-1(SV~1) appears naturally in our proof.

By Cianchi and Pick’s theorem, it only remains to prove that the functigrend their gradients converge to
Voo, FESPEctivelW vy, in LY=11(SN=1): by assertion (24), we have for evelly— 1 < ¢ < min{p1, N}

ISV

N-2
lvr — Vool pv-11gV-1) = / tTNT vy — Voo (1) dt
A
A

Now, fix ¢ > 0. By assertion (23), there is some real number 0 such that

|SN 1‘ \SN_1|

1 1
q 2 q
— vool*q(t)dt> ( / val ) dt)
0

Nq||Ur Uoo”Lq(SN )

<
< Vo4 N _ 0
X AN,q L‘I(RN) .

r——+o0

Vr>re, Vg eipo, pi),rV / (V" )|  do < e

SN-1

Thus, denoting., = Agev-1, andf, = |vS" o, ¥, we obtain

Po 8171
Vi>0, X-(r)<min , ,
()< rN—=1=pogpo’ pN—1-pi1sp1

and

, € €
vt >0, fr(t)gmm{ NI 1 NI 1 }

F PO TtP0 oy P1 71;1'1
Finally, we compute

S
SNfl

[V el vanoney = / £ Vi dr

o

1-N |SN_1|

1-N-1 N2 1 1-N-1 _N-2_ 1
Lerm 1 t N1orndt4erm po t N1 orodt AN, po,pr€-

0 F1-N
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It yields thatvS" v, converges to 0 LN ~21(SN-1) whenr tends to+oo. By Cianchi and Pick’s theorem, we
then get

|| Vyr — Vo ||L°°(SN’1) r—>_—>|-oo O,

which achieves the proof of Lemma 20.
The proof of Proposition 19 is then complete because the functjotenverge uniformly ta., by Lemma 20,
and because the proof of Lemma 20 yields thatis a constant function. O

Corollary 4 then follows from Theorem 3 and Proposition 19.
Proof of Corollary 4. If v is a travelling wave of finite energy and of speed 0 < +/2, it satisfies the assumptions

of Proposition 19 by Theorem 3. So, there is a constan& C such that

v(x) —  VUso.
|x|——+o00

By Lemma 14, the modulus af, is one. O

Remark. To simplify the notations, and since the solutions are defined up to a rotation, we will assume from now
on that

Voo = 1.

2. Linear estimates for the Gross—Pitaevskii kernels

Inthe second part, we estimate the algebraic decay oftheels associated to the Gross—Pitaevskii equagn
Kj, Ljx andR;, i.e. the exponents for which the functions.|“Ko, |.|1“K, |.|*L; x and|.|*R; ; are bounded
onRRY. We then deduce sonie’-regularity for those kernels.

2.1. Inequalities. *—L>®
In this section, for sake of completeness, we first prove Lemma 7, which is presumably well-known to the

experts. We then deduce three generalizatigiiisfor functions which are not necessarily $tR”Y ). The first one
concerns the functions in the fractional Sobolev spaéé (RY) defined by

WSLRN) = {u e LY(RY): / / Mdy dz < +oo} (25)
|z — y|N+s
RN RN
for 0 < s < 1, the second one, the functions in the fractional Deny—Lions spad¢R”) defined by
DYYRN) = {u e LPs(RN): / / Mdy dz < +oo} (26)
|z — y|N+s
RN RN

for 0 < s < 1: they are both useful to studyetalgebraic decay of the kernek®, K; and L . The last one
concerns the functions in the homogeneous fractional Sobolev $pab@&” ), whose definition is more involved:
it is likely to be the largest space in which thé—L> estimate of Lemma 7 holds.

Proof of Lemma 7. Let f a function inS(RV). At first, f is also inS(R"), so, the function: — |x|* f(x) is in
CI®N). Now , fix x € RV: we get
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/ SO =IO vy gy g = f JOED =IO v gy ay

|Z_y|N+s |t|N+5
RN RN RN RN

. —it.o __ 1
(oot
RN RN RN
We then compute
e—it.a -1
/ |t|N+s dt
RN

by a general formula for the Fourier transformation of radial functions (see for example the book of
L. Schwartz [16]):

o0

. i i

—it.o _1 ﬂTil Y

/eltlef=27t/(Jg/1(27tr|o|)—r(—N(r|G)2 l)r_s_%|c7|l_%dr
0

RN 7)

+00

N
=27t|a|‘Y/<Jg/1(27114)—7;(1\])14%1)14%"6114.
2

0

So, if we denote

+o00 N_q
T2 N_ 1\ _N_¢
AN =27 Jy _4@ru) — U2 u 2 du <0,
’ 2 I'(z)

we get
TR =T v gyaz = ay [ [ r@lore =9 do ay
|Z _ y|N+s
RN RV RN RN

— An / T dy = @) Ay f(x)lx P,
RN

and formula (16) holds for everf € S(RY). O

We have assumed in Lemma 7 tb%\is a smooth function irs (RY). However, we can extent Lemma 7 in three
ways at least by an argument of density.

e Consider first the fractional Sobolev spais& - 1(R") defined by (25) for every & s < 1. WSL(RV) is a
Banach space for the norm

|u(z) —u(y)|
”u”WS’l(RN) = ”u“Ll(RN) + / Wd}’ dz,

RN RN
in which the spaceS(RY) is dense (see the books of J. Peetre [15] and H. Triebel [18] for many more details:
wL(RN) is equal to the Besov spaoBél',l(RN)).
We deduce from the property of density$SfR") and from Lemma 7 the next corollary.
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Corollary 21. LetO < s < 1and f € WL(RY). Then, the function — |x|* f(x) is in CJ(RY) and satisfies

H| | f”LOC(RN) I]V”f”W-Y LRN)Y» (27)
wherely is the constant given by Lemrida
Proof. Let f € WS1(RY). SinceS(RY) is dense it¥*:1(RV), there is a sequencé, ),<x of functions ofS(RV)
such that

||f fn”Wsl(RN) —> 0.
Thus, by Lemma 7, the sequence of functions

gnix > gn(x)=Ix° fu(x)
is a Cauchy sequence in the spﬂ&RN): therefore, there is a functigne Cg(RN) such that

llgn _g”Lw(RN)n:» 0.

oo

By assumption, the functiorjél converge tof in LY(RY), so, the functiong;,, converge tof in L>(R"), and up
to an extraction, almost everywhere. It follows that

g=1Irf.
By Lemma 7, we have for everye N,
Hl | f"“Lm(RN) IN”f;‘l”WSl(RN)’
which yields inequality (27) by taking the limit — +oco. O

e Actually, we are going to work on functions which do not belong to the spt&®R"Y). That is the reason
why we introduce a second space in which Lemma 7 holds: by standard Sobolev embeddings, we know that

WL RN) — LPs (RN)

foreveryO<s<land p =
by (26) for every O< s < 1. DS l(]RN) is also a Banach space for the norm

lu(@) —u(y)l
”u”W-‘l(RN) ”u”LP‘ RN)+// y|N+S d dz,

RN RN

and the spac8(R") is also dense iD*1(RV) (see the books of J. Peetre [15] and H. Triebel [18] for many more
details).
We deduce from the property of density$SfR") and from Lemma 7 the next corollary.

Corollary 22. LetO < s < 1and f € D*1(R"). Then, the functiom i |x|* f (x) is in CJ(RY) and satisfies

HHSf” Loo(RN) < IN||f||D5=l(RN)s
wherely is the constant given by Lemrida

Proof. The proof being nearly identical to the proof of Corollary 21, we omit it: the main difference is that the
functionsﬁ do not converge tg in L1(RY) anymore. However, they convergefan L?s (RY): sincep, < 2, the

functions f,, converge tof in LPs(RYN) wherep; = i
everywhere. Corollary 22 then follows from the same arguments as in the proof of Corollary21.
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e Finally, we introduce a last space to which the doson of Lemma 7 can be extended: the homogeneous
fractional Sobolev spac®@*1(R"). Its definition is rather involved. We first consider the space

Z®RY) ={ue S®R") |Ya eN", 3*4(0) = 0},
and its topological dual spac& (R"). We are going to identifyz’(RY) with the factor space’(RY)/P(RY),
where P(RY) denotes the set of all polynomial functions&f . In this case, an element @ (R") is a class of

tempered distributions defined modulo a polynomial function: we will denpgerepresentative of the clagsn
S’(RN). The spacév*1(R") is then given by

WSl(RN)—{ueZ(RN inf (//M(Z)_'—P(Z)_d(y)_P(y)|dydz)<+oo}

PeP(RN) |z — y|N+s

for every O< s < 1. W1(R") is a Banach space for the norm
. 1(z)+ P(z) —u(y)— P
lullysagny == inf < / () (@) — #(y) W)l dy dz).

PeP(RY) |z — y|N+s

RN RN

The spaceZ(R") is dense inw*1(RY) and W*1(R") is continuously embedded i#i' (R") (see the book of
J. Peetre [15] and H. Triebel [18] for many more detalis>1(R") is equal to the homogeneous Besov space
Bj | (RM)).

We deduce from the property of density 6fR") and from Lemma 7 the following corollary.

Corollary23. LetO<s <1 and f/ € WsL(RY). Then, there is a distributiosf in the classf such that the function
x > |x[* f(x) is in C(RY) and satisfies

||| | f” L®@RN) X < Iy “f”WS L(RN)» (28)
wherely is the constant given by Lemrida
Remark. We must clarify some pointsf is a class of distributions modulo a polynomial function. Thfiss also

a class of tempered distributipns, but modulo a finite linear combination of the Diracsmias8 and of some of
its derivatives: we will denot¢f, a representative of the clagsin S’ (R").

Proof. Let f € WSL(®RY). Z(RYN) is dense in*L(RY), so, there is a sequencg, ), of functions of Z(RV)
such that

If = Fallimaawy, 3 O (29)
Thus,(ﬁ)neN is a Cauchy sequence W L(RY), so, by Lemma 7, the sequence of functions

gn X > gn(x) = |x|° fu(x)
is a Cauchy sequence in the spaﬂ&RN). Therefore, there is a functigne Cg(RN) such that

llgn — g”Loo(RN) n_)—_:oo 0.

On the other hand, sind&s-1(R"V) is continuously embedded irY (RY), assertion (29) yields that
f”n:ioof in Z'(RM).

So, if we consider a functio# € S(R") such that
[P e Z®RY),
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i.e. a functionp € S(RY) such that.|*¢ is in C*@RY) and
Vo e NV, 9%(|.I°¢)(0) =0,
we get
(.40 = lm (LI fu.¢)=@0)7" lim (f..[T9)
= @) N(f [Fe) = (I f. ).
We deduce that there is some representafiiethe class off which is in CS(RN \ {0}) and which satisfies
l.I'f=g onRY\{0}.

Sinceg is in CS(RN), lis is in L%C(RN), and so, is a tempered distribution. Consequelﬁly; ﬁ is also a

tempered distribution whose support is included in thg@gt 5
By Schwartz lemma, it is a finite linear combinationdgfand of some of its derivatives, i.e. the classeg of
and% modulo a finite linear combination éf and of some of its derivatives are the same: up to the choice of a

new representativg in the classf, we will assume that we have exactly

f= % in ' (RY).

Then, f isin LL (RY), and|.|* f is a tempered distribution i} (RY) which satisfies
g=|.I"f onRV.

Finally, |.|* f is in CJ(RY), and since for every € N,
H |'|an HLOO(RN) g IN ”ﬁ ” WS»l(RN)’

estimate (28) holds by taking the limit— +oco. O
2.2. First estimates for the Gross—Pitaevskii kernels

In this section, we deduce from Lemma 7 and Corollaries 21, 22 and 23 E6trestimates for the Gross—
Pitaevskii kernels, i.e. Theorem 8.

Proof of Theorem 8. We first report some properties of the functidtg K;, L and of their derivatives.

Step 1.Let (n, p) e N2 and f, either the functionl”d" Ko, d’d"K; ot dPd"L .
f is arational fraction onR", whose denominator only vanisheaind such that

177" f € L¥(BO.1)) and [ |P7"2f € L%(B(0. 1))

Step 1 follows from a straightforward inductive argument based on formulae (11), (12) and (14): we only give
its sketch. For instance, far= 0, by formula (11), the functioi is a rational fraction equal to

_ €12
&4+ 2|&|2 — c2£2°

so, it satisfies the estimates of Step 1. Moreover, its derivajikg is

2, 451811 + 45181 — 2¢%81 8115
&4+ 2|&|2 — c22 (€1 + 2& |2 — c2£2)2

Ko(¢)

9, Ko(§) =
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It is also a rational fraction which satisfies the conclusion of Step 1: the proof then follows from a straightforward
induction onp.

Remark. We infer from Step 1 that the behaviour of all those kernels is identical, and in order to simplify the proof,
we focus on the functiod” K.

We notice that/VN~+"dn Ky belongs toL1(RY), so, by the standard-L> inequality, |.|N~"1*"d" Kq is
bounded oRY .
To prove the other estimates, we then derive

Step 2.Lets €]0, 1[ andn € N. The functions
|'|N72+s+ndnK

are bounded ofR" .

Indeed, we apply Corollary 22 to the function
f= AN-2tngn g,

We first notice by Step 1 that is in LP(RV) for 1 < p < %5 since 1< p, < 325 forevery O<s <1, f isin
LPs(RN) for every O< s < 1 and it only remains to compute

/ If(Z)—f(y)Idde

IZ_y|N+s
RN RN

3 o+ —FO)
= /( TS dy) “
RN RN

3 1fO+0D—FO) Ifo+0—Ffol,
_/< / TIRER dt)d” /( / TIRER ) '

RN 111 [t]>1  |y|>2Jt]
Ifo+10)— FO)
+ /( / |I|N+S dy )dzt.
t1>1  |y|<2t|

For the first integral, we have

N ~ 1
fo+n-Ffol, VG 400
/( TS ) /( /( BN dt>dy>da
0

RV 1<l RN <1

/'Vﬂ““&)( / Vs 1)

A/|dN—1+"d71?0(g)|dg <400
RN

for the second one,
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~ ~ 1 ~
Fo 0 - Fol WV F o+ 00)
/< / [V dy)dtgf( /( / V1 dy)dt>d°
[t]>1  |y[>2|t] 0 [t]>1  |y|>2J¢]
1

<A / / / 4y a1y
X o
|y+c7t|N+l |t|N+571

0 t1>1  |y|>2]¢]

<A/ / dy dt
h (Iy] = [(hN+L ] || NHs—1
[t]>1  |y|>2Jt]|
<A dt du
s TS (u— DN+ ) =+
[t]>1 lu|>2

and for the last one,

Ifo+0—fO) R dt
/ HLR dy>dt<2/( /'f(y)|dy>|r|N—+s

l71>1  |yl<2lz] l7]>1 |yI<3Jt]
dy dy dt
AL ([ | R
|y|N=2 [yIN ) [t|N+s
l71>1  |yI<1 1<|yI<3t]
dt dy In(3|¢])
<A —_— —— |+ A dt <
(/IIIN“)( / IyINZ) / |t|NFs
lr]>1 lyI<1 l7[>1
Thus, we get
/@ = Fol
————dydz < +00,
/ e—yve
RN RN

and £ is in D*1(RY): by Corollary 22,.|N~2+s+n4n g is then bounded oR” for every O< s < 1.
We achieve the proof by the next similar step

Step 3.Lets €]0, 1[ andn € N. The functions
|.|N_1+S+ndnK0

are bounded oY .

The proof relies on Corollary 21 for the function
f =dN71+nd/nI?0.
By Step 1,1 is in LY(R") and we compute likewise

/(@)= fO 3 fO+D = fO)
/ EEIE A / v 4
RN RN RN RN

If+0)— fOl
:/< / TLES dt)”ly

RN |21

ydt

+o0o



For the first integral, we have

|f(y+r>—f<y)|

/(

RN 121

|t|N+S

for the second one,
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+/ / If(y+t)—f(y)|dy)dt

|t|N+s
[t]<1  |yI<2lt|
Ifo+0—fO)
+ /( / |t|N+5 dy |dt.
[t]<1 |y[>2]t|

w)ar<2{ flrole)( [ )

lr1>1

— dt
<( / i) [ gi) <o
RN

l11=21

dt

/ Ifo+0)—FO)

|t|N+s

lf<1 1yI<2lt]

and for the last one,

d)’>dt<2 |f(y)’d)’>|t|N—+S
1<l |yI<3t]

< [ ([ )i

l1l<1 1yI<3e]

dt du
<A |t|N+s—l |u|N_1 < +oo,

|t]<1 |u|<3

/ |f(y+r>—f<y)|dy)dt

|t|N+S

1<l |yl>2lt|

(] wosane)

0 [t|<1

o

|t]<1

[y[>2lt]

2>|y|>2|t|

ItI

dt
|t|N+sfl do

d n ) dt
(Iyl —[eHN (Iy| = [ehN+2 J || N+s—1

lyl>2

o [ ([

|t]<1
| In(1)]
|t|N+s—l

|t]<1

Thus, we also get

1f(z) = F )
/ |z — y|NFs dydz

RN RN

dy
>|t|N+‘ it < / |t |N+s= l)( / (Iyl—l)N+2>
ly|>2

A< / |t|N+S_1)( / (|y|_1)N+2><+oo.
It]<1 2

[yl>

< 400,
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and f is in WS1(RY): by Corollary 21,).|N =147 K is bounded ofRY for every O< s < 1, which achieves
the proofs of Step 3 and Theorem 80

Remark. Here, the key ingredient is the form of the Fourier transformakioof the kernels.
e K is arational fraction;

e Kis only singular at the origin, where the singularity is of theforajn 1/1€1%);
e at |nf|n|ty,K isoftheform o0 (1/|¢/%), whereg > a.
£

|E]—> 400

We can obtain the algebraic decay of aktkernels whose Fourier transformation satisfies similar assumptions by
the same argument.

Before improving those estimates, we deduce s@féntegrability for the Gross—Pitaevskii kernels.

Corollary 24. Let(j, k) € {1, ..., N}2. The functiono, K; andL;  belongto all the spacek? (RYN) for

1 ,
PN

and their gradients, for

1< .
P=N_1

Proof. It follows from the estimates of Theorem 80

Remark. We conjecture Corollary 24 is optimal, i.e.

e the functionsKo, K; andL  x do not belong either t&1(RY), nortoL%(RN);
o their gradients do not belong fov-1 (RV).

2.3. Critical estimates for the Gross—Pitaevskii kernels

In this section, we improve the linear estimates gily Theorem 8 by proving Theorem 9. It seems very
similar to Theorem 8, but its proof is quite different: we conjecture that the functiphs*d” Ko, |. |N+”d"
and|.|Nt"d" L j.k do not tend to O at infinity. Thus, we cannobpe Theorem 9 from a general inequality deduced
from the denS|ty ofS(RY): it would mean that.|N+"d" Ko, |.|N*"d"K; and|.|N*"d" L, tend to 0 at infinity.
Actually, its proof relies on the following lemma.

Lemma 25.Let1 < j < N. The function
x> xjf(x)
is bounded orB(0, 1)¢ for every f € §'(R") such that
(i) fis afunctionC? onRM \ {0},
(i) (N4 1.1 f is bounded oY,

(i) (l.IN*241.1%)d; f is bounded oR",
(iv) (I.IN+3 4+ 1Nt 1)9;8; f are bounded oRN for 1<k < N
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Proof. Indeed, we establish the formula
Step 1.Leta > 0. The following equality holds almost everywhere

~ . A , 1 n .
( f 3 f&)e™5 d + / 0; @)™ —DdE+ f sjf(@e'xfds). (30)

B(0,1)¢ B(0,1) S(0,1)

i
(2m)N

xjf(x) =

Letg € S(RV). We have
(i f,8)=(fx;8) =—i(f,0;8) =—i(f.0;8).

By assumption (ii).f is in L1(R"), so, we can write

(xj . 8) = —i / F€)d;5(6) de.
RN

and by integrating by parts, we deduce

(xif.8)=—i(f 9,8 =i f 3, f(£)g(&)de +i / 3; (&) (g(8) — g(0) d&

B(0,0)¢ B(0,2)
ig(0) A
+ Y / §if(&)ds.
5(0,)

Sinceg is in S(RY), it satisfies

86) = Gow f g(x)eE dx,
RN
which yields
. o A _ 1 A
<x,;f,§>=ﬁ/§(x)( / 3; f(&)e™* de + / ij(é)(e’x'f—l)d€+x / é;f(é‘)dﬁ;) dx.

RN B(0,A)¢ B(0,)) S(0,1)
As the function
N . ~ . 1 N
x> / 3 f(&)e™* de + f 3 fE) ™ ~Ddg+ f £ f (&) d&
B(0,1)¢ B(0,%) S(0,1)

belongs toLﬁ)C(RN), by standard duality, formula (30) is valid almost everywhere.

To proceed further, we estimate each term of formula (30).

Step 2.The following inequalities hold for everye RY andx > 0
|f3(o,x) 3jf(§)(eix.g —1)d&| < Arlx|,
| fS(O,A) "Ejf(%_)em'S d&| < AM,

whereA is a real number independent.ofand .

Indeed, on one hand, we know
VueR, |e*—1<Alul,
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and therefore,

9; f&) (™ — 1) dE| < Alx| / |9; £ (&)|I€] dE.
B(0,)) B(0,2)
By assumption (iii), we get

o . d
3, f (€)™ € — 1) dk| < Alx] f m%@um.

B(0,1) B(0,)

On the other hand, we deduce likewise from assumption (ii)

A d
/ £ f&)e™s dé‘ <A / ISI% < AA,
S(0,1) $(0,1)
and it only remains a single integral to evaluate.

Step 3.The following inequality holds for everye B(0, 1) and0O< X1 <1

1
<A 1 N R
(+A|x|)

whereA is a real number independent.ofand .

‘ / 0, f(&)e 4 de

B(0,0)¢

Indeed, we have
f 8; f(§)e™ ¢ d = f 8; f(&)e™ < dt + / 0; f(&)e™ < de.

B(0,1)¢ B(0,1)¢ B(0,1)\B(0,))

For the first integral, we deduce from assumption (iii)
3; f(&)e™* ds’ < / |0, f(&)]d& < A.

B(0,1)¢ B(0,1)¢
For the second one, by assumption,

lx| > 1,

S0, there is some integerlk < N such that

|xk| > m
N
By integrating by parts, we then get
0 f @™ d = — 8j f &)k (e™ ) dt
J = ix J k
B(0,1)\B(0,2) B(0,1)\B(0,2»)
1 o . R )
= @(_ / 30 f (&)™ dE + / 3 f (&)™ g dg

B(0,1)\B(0,1) $(0,1)

1 ; ix.g
—3 / 9; f(&)e $kd$>,

S(O,%)
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and by assumptions (iii) and (iv),

A N de A d& A
a<f(s>e’xfds‘<—<A / St A+ / —)<—+A.
! |x| |&|N+1 A |EIN=1 ) = Alx|
B(0,1)\B(0,2») B(0,1)\B(0,2) S(O,A)

Thus, we get

r ix. A
9jf(&)e" " dE| < — + A.
Alx|
B(0,1)¢

Finally, by Steps 1, 2 and 3, we get for evarg B(0, 1) and O< A <1,

|x; £ ()] < Adlx| + ﬁ +A.
By choosing
1
=

we obtain the result of Lemma 250

Now, we can deduce the proof of Theorem 9.

Proof of Theorem 9. By Step 1 of the proof of Theorem 8, the functiod —1t"d" Ko, d¥~"d"K; and
dN=Yngny, . satisfy the four assumptions of Lemma 25, which implies Theorent®.

2.4. Estimates for the composed Riesz kernels

We focus next on the kernel; ., for which we have the explicit expression (17):fifis a smooth function,
and if g; x is the function defined by

VEeRY, g =R f (),
we have

8kly12 = Ny
VxeRY, gix(x)=Ay / ’MTZ’f(x—y)dy

lyl>1
8.kly12 = Nyjyi
+ Ay / MT(JC(X —y) = f(x))dy.
lyl<1
Therefore, we do not need to study the decay of the keigisdirectly, and instead, we may restrict ourselves to
the decay of the functiong; , with suitable assumptions ofi. In that context, we recall some useful facts, which
are presumably well-known to the experts. For sake of completeness, we also mention the proofs.
Proposition 26.Let f a functionC! onRY which belongs td.” (RV) for 1 < p < 400, and suppose there is
3 €10, N]
such that for every € [0, §[ ,

{|.|ﬁfeL°°(RN),
I.IBV f e L*@RN).
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Then, the functions
|1Pgjx € L®RY)
for every(j, k) € {1, ..., N}? and for evenys € [0, §[.

Proof. Recalling formula (17), we first denote

81.kly1% = Ny; i kly> = Nyjyi
N / jb,szjf(x_y)dy-’_AN/ J- |y|N+2] (f(X—y)—f(x))dy

lyl>1 yI<1
= I1(x) + L(x).

Then, if we fixg € [0, §[, we get

_v|B _ _
|x|ﬂ‘11(x)‘<A/ Pl y)Idy—i-A / 7“(()6 y)|dy,

gjk(x)=A

|yIV |y|N=F
lyI>1 ly|>1
Hence, ifp > 5= ﬂ,we have
1
|f(x —y)l dy »
/ Wdy < ”f”Lp/(RN) W < 409,
lyl>1 lyl>1

andif8 <§ —¢ and|x| > 4, then,

—y|B — d
/ lx — yl If;x y)ldygA / _ y
[yl [y|V]x —yl®

lyl>1 lyl>1
< A / dt
e eIV & — 1]
Txl
It|>|x|
< A / dt n A / dt n A / dt
T [N x| |57 —tE  |xfe 1INV (2] — D#
1 1 1 3 Il 3
m<\t\<§ s<ltl<3 [t]>5
_ Alnjx| i A / dt
T e xe | — e
l—51<3
Aln|x|
< e + A < 400,

whereas, if x| < 4, we get

lx = yIP1f(x = )l / dy / dy
dy<A — 4+ A —_— < 400
/ lyIV lyIV yIV(ly| — 4)¢

lyl>1 1<ly|<5 lyI>5

Thus,|.|#I1 is bounded oRY, and likewise, we have fab,

B Fx—y) — o
2P Eas) < A / Jx =yl If(l);wy) POl a / S |yly}\)]7ﬂf(x)|d

lyI<1 Iyl
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On one hand, i < § — ¢, we compute

_y|B —_v) —
/ x =y |f<|);|Ny> T 41 € 19 Flloeqoe (1] 4 1)° /

lyI<1 lyl<1

dy < A n
< < 400
IyIV=1 7 (@ + x e

and on the other hand, we gefif=0,

1f =) — )] / dy
dy < A o0,
/ N Y V-1 =T

IyI<1 lyIs1

whereas if8 > 0,

1fx—y) — £ / dy
dy <A .
/ y|N =P Y y|N =P

lyI<1 lyIs1

Therefore|.|? I, is also bounded oR”, such as.|’g;x. O
Remark. In fact, a similar proposition holds for the Riesz kernels.

Actually, we will make use of the next more preciseposition in the critical case: it is also presumably well-
known to the experts, but for sake of completeness, we also mention the proof.
Proposition 27.Let f a functionC! onRY which belongs td.1(R"), and suppose that

A+ 1Y) f e L¥RV),
A+ [NV £ e L®RN).

Then, the functions
|1V gjx € LX@RY)
for every(j, k) e {1,..., N}2.

Proof. Recalling formula (17) once more, we notice

8jklyl2— Nyjyk 8jkly1?2— Nyjyk
/ Tz fx—y)dy+ An / T fx—y)dy

1> ey 1> —yl<

gik(x)=Ay

8iklyl> = Ny,
+ Ay / —”"'yl'y|N+2y-’yk(f(x—y)—f<x>)dy
i<l
=I1(x) + I(x) + I3(x).

For the first integral, we compute

|n()| < An / dy < An / o dz
Iy[Vlx = yI¥ x|V 2Nl — 2l
Iyl> 5L e —yl> 4 l2l> 5.1 & —21> ]
AN dz AN
Sy / 2Nler — 2V~ x|V’

1 1
lz|>7.le1—z>7
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for the second one,
AN AN / AN
I < —— — dy < — Hdt < —,
wl< S [ lre-la< S [ rolar< 2y
e—yl< lr| <13
and for the last one,

_ “N— AN
|3(0)] < Aw f Py < S

Iyl

Thus,|.|¥g; « is bounded oRY. O

3. Decay at infinity

In the last part, we study the algebraic decay of the functiprg(y6), Vv and of their derivatives, by the
inductive argument yet explained in the introduction (see Lemmas 5 and 6), which was introduced by J.L. Bona
and Yi A. Li [4], and A. de Bouard and J.C. Saut [6] (see also the articles of M. Maris [13,14] for many more
details).

We first prove a refined energy estimate based amrba 10, which provides some algebraic decay for the
functionsn, V(6) andVv. Then, by convolution equations (10) and (13), we deduce inductively Theorem 11,
which gives some decay rate for all those functions.

3.1. Arefined energy estimate

We first give an energy estimate fothanks to arguments from F. Béthuel, G. Orlandi and D. Smets [3]: it will
yield in the next section some algebraic decay for the functign&yy6) andVu.

Proposition 28.If v is a solution of finite energy of E(R) in L%C(RN), there is some real number> 0 such that
the integral

/ lx[Pe(v)(x)dx
RN

is finite for evenl0 < 8 < a.

The proof relies on Lemma 10 proved by F. Béthuel, G. Orlandi and D. Smets [3] for snfedir sake of
completeness, we mention the proof of Lemma 10 for evegyO< /2.

Proof of Lemma 10. We first invoke Lemma 15 to choose some real nunibep large that
v=pe'? onB(, R)".

By Eq. (2), we then compute
—Ap + pIVOIZ + cpdif = p(1— p?), (31)
div(p?Ve) = —%81,02 (32)

on the setB(0, R)°.
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Then, fixA > R and denote2 = B(0, 1) \ B(0, R), anddg = @ fSR 6. We first multiply Eq. (31) byp? — 1,
which gives by integrating by parts,

Z/pwmz—/aup(pz—1>+/avp(p2—1)
2

S;. Sgr
+/P(,02—1)|V9|2+C/,0(P2—1)3192—/,0(,02—1)2- (33)
2 2 2

We already know thal, p (0% — 1) belongs taL1(B(0, R)¢), so, we can construct an increasing SeqUERLE N
which diverges tot-oo, and such that

/avp<p2—1> = o

n——+00
Sy,

n

By taking the limit at infinity in equality (33), we get

2 f p|Vp|2+favp(p2—1)+ / p(p? —1)|V6|?

B(0,R)¢ Sk B(O,R)¢
e / p(p? = 1)ond = — / p(p? — 12, (34)
B(0,R)¢ B(0,R)¢

We also get such a result by multiplying Eq. (32)dby 6 and by integrating by parts,

/p2|ve|2—fpzave(e—9R>+fp28v9(9—91e>
2

S Sr

=—2 f(p2 ~ b + g/(pz —Dua(® — bg) — %/(pz — ua(@ — 6p).
2 S Sk

By Theorem 3,v6 and 1— p? belong tOL%(B(O, R)“), so, we can construct another increasing sequence
(A)nen Which diverges tet-oco, and such that

An/(|ve|%+|1—p2|%) ~ 0.

n—oo

N _ N-1
:|fslp28ve(e—91e)|<Afgk|ave|<A(xfgk|ave|zv-1) v
_N__N-1
| 5, (0% = Dva(0 = 0p)| < A g, 11— p?| S A fg, 11— p?|¥-1) W,
we get

C
P2IVO% + / p%0,0(6 — Og) = —5< / (p? —1)316 + / (p? —Dv1(0 —eR)>. (35)
B(0,R)¢ Sk B(0,R)¢ Sk

By adding equalities (34) and (35), we infer
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1
f e(v)=—§ f ,0(,02—1)319—5/,0231;9(9—9R)

B(0,R)¢ B(0,R)¢ Sk

¢ Vo2 (1—p?)?

—— [ O=-0r)(p>-1 1-
4f( R)(0? — Lyvy + /( p)( 2 =
Sk B(0,R)¢
¢ 2 1 2 1 2 2

~ 1 L-p)(p —1)319—Z dvp(p _1)+Z p(1—p9)|Vo|-. (36)
B(0,R)¢ Sr B(O,R)¢

It remains to evaluate each term in the right member of equality (36). For the first one, we can write

2 2 2\2
d160 1-
<= / (” 197, p))<i f e(v).
/2 2 4 Nz
B(O,R)°

B(O,R)¢

C
‘5 / p(p? —1)310

B(0,R)¢
For the next one, we get by Sobolev—Poincaré inequality,

‘%/pzave(e—m gA(/ 281)9) </(9 eR)Z)
Sgr Sg
1
gAR( /,0281)9 ) (/ave ) gAR/e(u),
S

R Sr Sk

and likewise,
15 J5, 0 —0R)(0* = DI < AR [ e(v),
| s, o0 = DI <A [, e().

In order to estimate the other terms, wedix 0, and by Lemma 14, we choogfesufficiently large such ag — 1|
and|Vo| are less tham on the domainB(0, R)¢. For such arR, we have

| 0. (L~ (Vg 1 A=) ¢ [50.p) €V)-

|é£1fB(0,R)C(1_ 0)(p? —1)310| < Ae fB(O’R)Ce(v),

13 a0.pe P PDIVOIRI < Ae [y g e(v),
which finally gives,

/ e(v) < <%2+A8) / e(v)—i—AR/e(v).

B(0,R) B(O,R)¢ Sr

If ¢ is sufficiently small such as

c
— + Aeg < 1,
V2
it yields
e(v) < ACR/e(v).
B(0,R)¢ Sr

DenotingJ (R) = fB(o,R)c e(v), we get forR sufficiently large
J(R) < —ARJ'(R)
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which gives
C
RL/Ac”
Lemma 10 holds foe, =1/A.. O

J(R) <

Finally, we deduce Proposition 28 from Lemma 10.

Proof of Proposition 28. The case8 = 0 being immediate, we choogec 10, «.[ and compute
400

+o00 +00 +o00 +o00
/|x|ﬁe(u)(x)dx=/rﬂ/e(v)dr=—[rﬂ / /e(v)dp] +ﬂ/rﬂ1<//e(u)dp) dr
RN 0 S rs, 0 0 rs,
+0o0 +00
:ﬁ/rﬂl<//e(v)dp>dr<+oo. O
0 rs,

Remark. Proposition 28 is crucial to initialize the proof of the next section.
3.2. Decay of the functionsand Vv

In this section, we prove Theorem 11, i.e. weéaitmine some algebraic decay for the functign& (y6), Vv
and their derivatives.

The proof of Theorem 11 essentially follows from the arguments developed in the introduction in Lemmas 5
and 6, and is of inductive nature. However, as mentioned, it is more involved, since we have to consider a systen
of convolution equations and to handhetsingularities of the convolution kernels at the origin. Thus, we will split
the argument in four subsections.

In Section 3.2.1, we show that the functionandVv belong to some spaca$§°(RN) for g sufficiently small.

It provides an initialization similar to the one needed in Lemma 6.

In Section 3.2.2, we apply the inductive argument of Lemma 6 to Eqgs. (10) and (13) to improve the algebraic
decay of the functions, Vn, V(¥0) andVu.

In Section 3.2.3, we deduce inductively some algebraic decay for the derivatives of the funchans)) and
Vv by the same argument.

Finally, in Section 3.2.4, we improve once more the decay rate of the funetjons, V(y¥0) andVv by using
the critical estimates of Theorem 9 instead oE®rem 8, and Proposition 27 instead of Proposition 26.

3.2.1. Initialization of the proof of Theorem 11
In this first subsection, we deduce some algebraic decay for the funciioRs, V(¥60) and Vv from
Proposition 28.
Proposition 29.There is some real number> 0 such that
(n. V., V(¥0), Vv) € MZPRY)*
forevery0< 8 < «.

Proof. The proof relies on Egs. (10)

N
n:KO*F+2cZKj*Gj,
j=1
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and (13)

N N
C
aj(l/fe)zin*FJcmE Lj,k*Gk+§ Rjx * Gy.
k=1 k=1

We estimate each term of thosguations beginning by Eq. (10).
Stepl.lletje{l,...,N}. Then,

e Ko F € MEO(RN),
e KjxGj e M;O(RN),

for g sufficiently small.
Indeed, we have for & 8 < N and for everyr € RV,

|x|ﬁ\Ko*F(x)\<A( f|x—y|ﬁ\1<o(x—y)\|F<y>|dy+/|Ko(x—y>||y|ﬁ\F<y)\dy>.
RN RN

On one hand, by Theorem 8,
l.IPKo e LP(R™),

for
N N
N—pg P N_p-2
if0<B <N —2,and for
N
p>N—,3

if N —2< B < N.Forsuch a, by Theorem 3F is in L” (RY), so, we get by Young's inequality,
[(-17K0) 5 Fl ooy < NP Koll ooy I Wl vy < +oe.

On the other hand, by Corollary 24,
Ko e LI(RY)

N

721

for every 1< g < =, and by Proposition 28, there is some real number0 such that

VB € [0, af, /|.|ﬂ(|F|+|G|) < +00.
RN
Then, considep € [0, 22[: there is 1< ¢ < 1 such that
Bq’ <a.
As F tends to 0 at infinity by Lemma 14, we deduce

/|.|¢‘4/|F|‘f’<A/|.|ﬁ"’|F|<+oo.
RN RN
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Thus, for eveng € [0, [, we get
1Ko # (1P F) | oo vy < 1Kl Lamy [ 1P F | L oy -

So, the functiorkg * (|.|? F) is bounded oR”, such as the function|? Ko * F: the proof being identical for the
functions|.|?K ; * G ; by replacingF by G ;, we omit it.

By Eq. (10) and Step 1.4, belongs toM§° (RN) for g sufficiently small.

To prove the remaining results, we turn to the funcfiopwhich satisfies the equation

N
Vn=VKo*F+2c) VK;*Gj (37)
Jj=1
and we establish similarly

Step l.2letje{l,...,N}. Then,

e VKogxF e M;;O(RN),
e VK;xGj € ME"(RN),
for g sufficiently small.

Indeed, we have for & g < N + 1 and for every € RY,

Ix|P|VKo* F(x)| < A /(|x —yIf|VKo(x — D||FO)| + |[VKox — »)|Iy1P|F(»)]) dy.
RN
On one hand, by Theorem 8,
l.IFVKg e LP(RN),

for
N N
<p<

N+1-8 N-1-8

if0<B <N —1,andfor
N
-
P> N¥1-p

if N—1< B <N +1.Forsuch g, by Theorem 3F is in LP' (RV), so, we get by Young’s inequality,
|17V Ko) 5 F | oy < NPV Kol Ly oy IF Nl ey < 00
On the other hand, by Corollary 24,

VKo e L4(RY)

N

and by Proposition 28, there is some real nuneber0 such that
VB €0, af, /|.|ﬁ‘(|F|+|G|) < 400.
RN
Then, considep € [0, 4[: there is 1< g < 2 such that

Bq’ <a.



628 P. Gravejat / Ann. I. H. Poincaré — AN 21 (2004) 591-637

As F tends to 0 at infinity by Lemma 14, we deduce

/|.|ﬁ‘f’|F|‘f’<A/|.|ﬂ‘f’|F|<+oo.
RN RN

Thus, for eveng € [0, 5[, we get
[VKo* (11 F) | e vy < IV Koll Loy [11PF| Ly -

Hence,VKo  (|.|f F) is bounded oRY, such as.|’ VK * F: the proof being identical fol.|’VK; * G; by
replacingF by G;, we omit it.

By Eq. (37) and Step 1.%/n belongs toME"(RN) for g sufficiently small.

We then turn to the functioW (6) and study Eq. (13). The study of the terms involving the ker&glsand
L; « is strictly identical to Step 1.1, and gives

Step 1.3.Let(j, k) e {1,..., N}2 Then,

e KjxFe M;O(RN),
o Ljx*GreMPRY),

for g sufficiently small.
It only remains to evaluate the functioRs ; * Gi.

Step 1.4Let(j, k) e{1,..., N} Then,
RjixGre MP®RY),

for g sufficiently small.

Indeed, on one hand, by Steps 1.1 and 1.2, the functighsand|.|# vy are bounded o®" for g sufficiently
small.
On the other handy (y0) is C* onRY and is given by

iv.Vou
V(o) = A

at infinity. However, by Theorem 37v andd?v are bounded o®", and by Lemma 14,

lh@)|=px) — 1,
|x|——+o00
s0,V(¥0) andd?(y6) are bounded o" .
At last, G is C* onR" and is equal to

G =nV(y0)

at infinity, so,|.|#G and|.|?VG are bounded oR” for g sufficiently small. ASG andV G belong to all the spaces
L?(R") by Step 1 of the proof of Proposition 18, it follows from Proposition 26 tH&R; x * Gy is bounded for
B sulfficiently small.

By Eq. (13) and Steps 1.3 and 1M(y/6) belongs toM g° [®RN) for g sufficiently small.

We achieve the proof of Proposition 29 by deducing that

Vv e MPRY)
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for g sufficiently small. Indeed, by Theorem8p is C*° onR”" and satisfies at infinity
|V[?

2
IVol* = IVpI* +°1V61 = 25 + p* [V~

Since
plx) — 1

[x]—+o00

by Lemma 14, we infer from the study &% andV () that|.|? Vv is bounded oiR" for 8 sufficiently small. O

3.2.2. Inductive argument for the decay of the functipng,, V(¥6) and Vv
We then improve by the inductive argument of Lemma 6 the decay rate of the fungti®ms V(16) andVv.

Proposition 30.Assume there is some real numbes 0 such that
(n. V. V(¥0), Vv) € M RM)*,
for
B el0,al.
Then,
(n. V(¥6), Vv) € MZRN)®,
for
B € [0, min{N, 2a}[,
and
Ve MPRY),
for
B € [0, min{N + 1, 2a}[.

Proof. The proof is quite similar to the previous one: we first use the quadratic fodeaofdG.

Step 2.1.The function
LIE(IFI+1G])

is bounded for every
B € [0, 2af.

By formulae (8) and (9)F andG areC* onR" and are given by
F =2|Vv|? 4 2% — 2cnoi(y6),
and
G =nV(y0),
at infinity. Step 2.1 then follows dirdly from the assumptions of Proposition 30.
Now, we study the function by Eq. (10).
Step2.2letje{l,...,N}andg € [0, min{N, 2«¢}[. Then,

e Ko F € MEO(RN),
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e KjxGj e M;O(RN).
Indeed, we have likewise forQ g < N and for everyr € RV,

xl?| Ko F ()] < A( f e — yIP|Ko(x —y)HF(y)|dy+/|K0(x - y>||y|ﬂ\F<y)\dy>.
RN RN
On one hand, we have already proved in the proof of Step 1.1 that for gwef9, N[,
(117 Ko) = F“LN(RN) < +oo.
On the other hand, by Corollary 24,
Koe L4 (RN)
forl<gqg< 2 : S0, we get for every € [0, 2],
“KO*( |ﬁF)HL°°(RN) ”KOHM(RN)H' | F”Lq (RN
By Step 2.1, there is some real numbet 4 < m such that
/|.|ﬁq/|F|q’ < 400.

RN

Thus, the functiorko * (|.|# F) is bounded oR", such as the functioh|? K = F: the proof being identical for
the functions.|? K ; * G; by replacingF by G ;, we omit it.

By Step 2.2 and Eg. (10), Proposition 30 holds for the function

Then, we estimate the functiony by Eq. (37).

Step2.3Letje{1,..., N} andp € [0, min{2«, N + 1}[. Then,

o VKox F e MPRY),
o VK;xGjeMZR").
In Step 1.2, we have shown that
(I.IPVKo)  F e LY [R")

for g € [0, N + 1[. We also deduce from Corollary 24 that fgre [1, 3= l[ sufficiently small and for every
B €10, 2«f,

(||ﬂF)HL00(RN) ”VKO”L‘](RN)Hl | F”Lq (RN) < +o00.

Similarly, the functionsVK; * (|.[°G) and (|.|VK;) = G, are bounded fop € [0, min{N + 1, 2«}[, which
completes the proof of Step 2.3.

The result of Proposition 30 for the functiory follows from Step 2.3 and Eq. (37), and we can turn to the
function V(¥0), which satisfies Eq. (13). The study of the terms involving the kerRglsind L ; ;. is strictly
identical to those of Steps 2.2 and 2.3.

Step 2.4Let(j, k) e{1,..., N}° Then,

e KjxF GMEO(RN),
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o Ljx*GreMPRY),
for everyg € [0, min{N, 2a}][.
Thus, it only remains to evaluate the functiaRis,  Gy.

Step 2.5Let(j,k) € {1,..., N} andp € [0, min{N, 2«}[. Then,
Rji*Gre MPRY).

Indeed, by Steps 2.2 and 2.3, the functi¢iy and|.|Vy are bounded oRY for g € [0, min{N, 2a}[: S0,
the functiong.|?G and|.|?VG are also bounded dR" for 8 in this range. Sinc& andV G belong to the spaces
LP(RN) for 1< p < 400 by Step 1 of the proof of Proposition 18, by Proposition 26, the functigh®; x * G
are bounded fog in this range.

Subsequently, by Steps 2.4 and 2.5, and Eq. (Z8)0) is in MEO(RN) for 8 € [0, min{N, 2u}[.
We conclude the proof of Proposition 30 by showing that

Vv e MZER"Y)
for g € [0, min{N, 2«}[. Indeed, by Theorem /v is C* onR" and satisfies at infinity

|Vn|?

2
IVol® = IVpI* +°1V6 1" = 75 + p* [V~

Since

plx) —

x| =400
by Lemma 14, it follows from the study o¥Vn and V(y¥6) that |.|#Vv is bounded onRY for 0 < 8 <
min{N, 2«}. O
3.2.3. Inductive argument for the decay of the derivatives of the funcjiovigy6) and Vv
We deduce from Propositions 29 and 30 that

(1. V(¥6), Vv) € MZRN)3,
for everyp € [0, N[ and

Ve MPRY),
for everyg € [0, N + 1[. We now estimate the decay of the derivativeg oV (v0) andVv.
Proposition 31.Leta € NV, Then,

(n, 0*V(¥6), 9% Vv) € MZRN)®,
for everyg € [0, N[ and

9°Vn e MZERY),
foreveryg € [0, N + 1].

Proof. The proofis by induction oif| € N: the casex = 0 follows from Propositions 29 and 30.
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Now, assume that Proposition 31 holds for evierly< p and fixa € NV such thafa| = p + 1. As in the proof
of Proposition 30, we first estimate andG.

Step 3.1.The function
11P(187 F| + 187 GI)
is bounded for everg € [0, N[ and for everyy € NV such thaty| = p + 1.

Step 3.1 relies on Leibnitz’s formula and on the quadratic forri @hdG.
F is aC™ function onR" given by
F =2|Vv|? + 2% — 2cnor(y6)
at infinity. By Leibnitz’s formula, we compute
AF = ZZ cs,y [0 TP V0.9 Vo + 87 0n.9%n — cd” "0 n.8%01(v0)],
3y
where the coefficients; ,, are positive integers.
On one hand, by the assumption of induction,
1IP(19° Vol +18%n] + |9°91(w0)]) € L®RY)
for § <y ands # y, and forg € [0, N[.
On the other hand, by Theorem®, Vv, 3 n andd” 31(y0) are bounded oR”, so,
1107 Fl e L (RY)
for everyp € [0, N|.
Likewise, G is aC* function onR” given by
G =nV(yo)
at infinity, so, by the same argument?3” G is bounded oRY for g € [0, N[.
We then study the functiod® Vy, which satisfies

N
0"V =VKoxd"F+2cy VK;*3"Gj. (38)
j=1

Step3.2Lletje{l,...,N}andg [0, N[. Then,

o VKo 9°F € MZ(RY),
e VK;%x93°G; € M;O(RN).

By Step 3.1, the proof is similar to the proof of Step 2.3: by Step 1 of the proof of Propositiag¥ £8and
9*G; arein all the spaceb” (RV) for 1 < p < 400 as well asF andG;. So, we omit it.
Thus,0* Vn belongs toMg"(RN) for everyg € [0, NJ.
Now, we turn to the functiod®d; (y6), which satisfies
c N N
2
899 (Y0) = 5K x 0°F +¢ D Ljxx0Ge+ Y Rjxx9°Gr. (39)
k=1 k=1
By Step 3.1, the study of the terms involving the kerri€lsand L ;  is strictly identical to Steps 2.2, 2.3, 2.4
or 3.2.
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Step 3.3Let(j, k) € {1,..., N} Then,

e Kjx93"F € M;O(RN),
o Ljx*3%Gy e MEO(RN),

for everyg € [0, N|.
It only remains to evaluate the functioRs x * 0*Gy.

Step 3.4Let(j,k)e{1,...,N}?andg €[0, N[. Then,
Rjx*0%Gr € MPRY).
Indeed, letH, = 3*Gy: H; belongs to all the spaceds”(RY) for 1 < p < 400 by Step 1 of the proof of
Proposition 18, and|? H is bounded oRY for everyp € [0, N[ by Step 3.1.

In order to apply Proposition 26, we claim thdf vV H; is bounded oR" for everyg e [0, N[: it follows from
Leibnitz’s formula as well as in the proof of Step 3.1. Indeed, by formula (9), we have at infinity

VG = Vn.op(¥0) +n.Vor(¥0).
By Leibnitz’s formula, we get
VH = Z ¢s,0(3°VN.0° 28k (¥0) + 8°1.0* PV (6)).
s<a

The terms involving the highest derivatives arfev .o, (0), Vn.0%0x (¥ 0), 9%n. Vo (¥ 0), n.Vor(¥0). All of
them belong tdvlgo(RN) for B € [0, N[ because of the assumption of induction and of Step 1 of the proof of

Proposition 18. The other terms are alsowgO (RN) for 8 € [0, N[ by the same argument. Thereforg? vV H; is

bounded oRY for everyp e [0, N[ and we can apply Proposition 26 to achieve the proof of Step 3.4.
Subsequently, by Steps 3.3 and 3.4, and Eq. @W,(¥0) is in M;"(RN) for B € [0, NI.
Then, by Steps 3.2, 3.3 and 3.4, we claim that

Vv e M*RN)
for 8 € [0, N[. Indeed Vv is C*® onR" and is given by
' .
Vo= Z—"e”w +ipV(y6)elV?
0

at infinity: the claim follows from Theorem 3, Lemma 14, Steps 3.2, 3.3 and 3.4, the chain rule theorem and
Leibnitz's formula once more.
At last, we improve Step 3.1 so as to improve the estimate for the fungtion.
Step 3.5.The function
118187 F| + 187 G|)
is bounded for everg € [0, 2N and for everyy € NV such thaty| = p + 1.
The proof is similar to the proof of Step 3.1.
For instancefF is aC> function onR" given by
F = 2|Vv|? + 2% — 2cnor(y6)
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at infinity. By Leibnitz’s formula, we compute again

AVF = 22 cs,y[07 V.9’ Vo + 97 00.8%n — cd” 0n.0° 91y 0)].
3y

On one hand, by the assumption of induction, we know
LIP(19° Vol +19°n] + |9° 91 (y0)|) € L®RY)

for § <y ands # y, and forg € [0, N[.
On the other hand, by Steps 3.2, 3.3 and 3.4,

1B (197 Vol + (87 5] + [87 d1(¥6)|) € L2 (RY)
for everyg € [0, N|, so,
112187 F| € L (R")

for everyg € [0, 2N].
The proof is identical foB” G.
We then deduce from Eq. (38)

Step 3.6Letje{l,...,N}andB € [0, N + 1[. Then,
e VKo 9d%F € ME"(RN),
e VK;%3°G, € ME"(RN).

The proof is identical to the proof of Step 3.2 by replacing Step 3.1 by Step 3.5, so, we omit it.
By Eq. (38),0°Vn belongs tdwgo (RM) for everyp € [0, N + 1[, which achieves the inductive argument of the
proof of Proposition 31. O

3.2.4. Critical decay of the functiong V (¥0) and Vv
At last, we study the critical case, i.e. the c@ise N or 8 =N + 1.

Proposition 32.Leta € NV, Then,

(n, 3V (¥0), 3*Vv) € My (RN)3,
and

3*Vn e My, (RY).

Proof. The proof is similar to the proofs of Propositions 29, 30 and 31. We first recall some estimates for the
functionsF andG.

Step 4.1.The function
1.1B(18% F| +19°G))
is bounded oRY for everya € NV andpg € [0, 2N[.

The proof of Step 4.1 is the same as the proof of Step 3.5, so, we omit it.
We then turn to the function, and so, we study Eq. (10).
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Step4.2letje{l,...,N}. Then,

e Kox Fe MPRY),
e KjxGjeMYRY).

Indeed, we have for evenye RY,

x|N|Ko*F(x)|<A( /|x—y|N|Ko(x—y)||F<y)|dy+/|Ko(x—y>||y|N|F(y>|dy).
RN RN

On one hand, by Theorem 9 and Step 1 of the padéfroposition 18,

I(- |NK0) *F”LOO(RN) [ INKOHLOO(RN)”F”Ll(RN) < +o0.
On the other hand, by Corollary 24,
Koe LY(RY)

f0r1<q<%130,
HKO* (||N )HLOO(RN) ”KO”L‘Z(RN)Hl |NFHLq (RN)

By Step 4.1, there is some real numbet 4 < ﬂ such that

1Y F vy < o0,

s0, the functiorko * (|.|Y F) is bounded ofR", such as the function|" Ko % F: the proof being identical for the
functions|.|" K ; x G; by replacingF by G ;, we omit it.

By Step 4.2 and Eq. (10), Proposition 32 holds for the function

For the function$* V), we study Eg. (38).

Step 4.3Letje({1,..., N}. Then,

o VKox0°F € MY, ,(RN),
o VK;%3%Gje My, (RY).

Indeed, we have for evenye RY,

XN VKo % 99 F (x)| < A/(|x — ¥ VKo(x — »)|[3* F3)| + [VKo(x — ) |1y ¥ F(»)|) dy

RN
On one hand, by Theorem 9 and Step 1 of the padéfroposition 18,
[(1INV Ko) 5 0% F | ooy < 11NV KO ooy 10 Fll L1y < +00.

On the other hand, by Corollary 24,
VKoe L4(RY)
for 1< g < 251 so,

[VKox(I.1N 10 F) IV Koll Lo emy |11V 0

HLOO(RN) F| L4 (RN)-

By Step 4.1, there is some real numbet 4 < m such that

| |-|N+13°‘F||Lq’(RN) < +o0,
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s0, the functiorV Ko * (|.|N*19% F) is bounded orR”", such as the function|Yt1V K % % F: the proof being
identical for the function$|N+1VKj * %G ; by replacingd® F by 0* G ;, we omit it.

By Step 4.3 and Eq. (38), Proposition 32 also holds for the funéfory.

We then deduce a similar estimate #13; (y0) by Eq. (39): we first study the terms involving the kerngls
andLj .

Step 4.4Let(j, k) e{1,..., N}° Then,

o Kj%x3°F e MPRY),
o Lj;*0°Gre MP[RYN).

The proof is identical to the proof of Steps 4.2 and 4.3, so, we omit it.
Finally, it only remains to evaluate the functioRg * G.

Step 4.5Let(j, k) €{1,..., N}2 Then,
Rjx* 3Gk € MY (RY).
Indeed, by Step 4.1 and Step 1 of the proof of Propositio18,andd® VG belong toL1(RV), and|.|N 9 G
and|.|N*t19*V G are bounded o : Step 4.5 then follows from Proposition 27.
Steps 4.4 and 4.5 yield the critical decayd8iV (/6), and we can achieve the proofs of Proposition 32 and of
Theorem 11 by proving the critical decay of the functiéf& v. Indeed,Vv is C* onR" and is given by

Vn . .
Vo= Z—"e”w +ipV(y6)el??
0

at infinity: the critical decay 06* Vv then follows from Theorem 3, Lemma 18{eps 4.3, 4.4 and 4.5, the chain
rule theorem and Leibnitz’s formula.O

3.3. Asymptotic decay for the function

In the last section, we complete the proof of Theorem 1: we have already shown the convergence at infinity of
v towards a complex number of modulus one in Corollary 4. We are now in position to prove the second part of
Theorem 1.

Proposition 33.The function.|¥Y (v — 1) is bounded oiR" .

Proof. Indeed, by Theorem 11, the function¥ Vv is bounded ofR” . Since

+o00
Vx eRV\ {0}, w(x)—1=— / a,v(ﬂ) ds,
) | x|
we get
+o00
ds A

Vx e RV \ {0}, \v(x)—1|<A/

x|

N S |x|N-1°

which achieves the proofs of Proposition 33 and of Theoremr1.
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