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Abstract

In this paper we obtain a generalised maximum principle of Alexandrov—Bakelman—Pucci type for viscosity solutions of
fully nonlinear cooperativelptic systems. We also &sblish a Harnack estimate for suctsms and give some applications.
In particular, a Harnack type estimate for solutions of higher order equations is given.
© 2004 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

Résumé

Dans cet article nous obtenons un principe de maximum généralisé de type Alexandrov—Bakelman—Pucci pour les solution:s
de viscosité de systémes elliptiques caapiés completement non-lgaires. Nous établissons une inégalité de Harnack pour
ce type de systémes et présers quelques applitians. En particulier, nous obtenons unégalité de type Harnack pour les
solutions d’équations polyharmoniques.
© 2004 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

Part I. The basic estimates
1. Introduction

During the last twenty years there have been many attempts to extend to weakly coupled cooperative
elliptic systems of second order the theory of scaliipte equations in non-divergence form. This work is
a contribution to this study. We estah counterparts, for cooperativellig nonlinear elliptic systems, of the
fundamental Alexandrov—Bakelman—Pucci and Harnack—Krylov—Safonov estimates for scalar linear equations
(see, for example, [22]).
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We study the system
F1(D?u1, Dus,u1, ..., up, x) = fi(x),
F2(D%uz, Dug, us, ... un, x) = fo(x), O
Fu(D2un, Dup,u1, ... un, x) = fo(x)

in a bounded domai® c RY; n, N > 1. HereF; are uniformly elliptic fuly nonlinear operators.
We obtain the following two results (see Section 3 for precise statements). First, we prove an Alexandrov—
Bakelman—Pucci (ABP) type inequality, which has the form

Sup max u;(x) < sup max u,-(x)+CH max f;(x)
xeR1<isn xean 1<i<n 1<i<n

V@)

provided (u1, ..., u,) is a subsolution of (1) and (1) is coercive in an appropriate sense. Second, we obtain a
Harnack inequality which states that any nonnegative solution of (1) satisfies

sup max u; (x) < q)( inf min u; (x), H max f;(x)
xeB 1<isn xeB1Likn 1<ign

LN(.Q))’

whereB is a ball included inf2 and® (-, -) is a continuous function such th&t0, 0) = 0.

For such a general system to satisfy ABP and Harnestimates there are twonavoidable structural
assumptions one is obliged to make. First, the coupling in the system appears only in the zero order terms, tha
is, thei-th equation in (1) involves only derivatives of. This property is usually referred to as weak coupling.
Second, the system is cooperative (quasi-monotone) in the sensg tisamon-decreasing in;, for i # j. In
general, if any of these properties is not satisfied then the system does not satisfy even the maximum principle (se
the counterexamples at the end of Section 3).

Harnack estimates have been essential in many are@BBE, such as existence and regularity of solutions
of nonlinear elliptic equations, Liouvillgype theorems, qualitative properties of solutions. In particular, they have
been the core of the theory of strong (i.mi’cN) solutions of scalar equations in non-divergence form, developed
by Krylov and Safonov in the late 70’s (see [30]). This theory is the counterpart of the classical De-Giorgi—-Nash—
Moser regularity theory for divergence form equations (see, for instance, [22]). A general regularity result for
nonlinear equations in divergence form was obtained by Serrin in [38].

Ever since DeGiorgi’'s counterexample (see [17,21]) it has been known that general systems in divergence forn
do not enjoy the same regularity properties as scalar equations. Consequently, a great amount of work has bee
devoted to determining under what restrictions systems in divergence form do behave like scalar equations, as fa
as regularity is concerned. A basically optimal regularity result for diagonal type systems in divergence form was
obtained by Hildebrandt and Widman in [26]. For a thoroaghount on the regularity theory for elliptic systems
in divergence form we refer to Giaquinta’s book [21].

On the other hand, relatively little is known about ellipgistimates for systems in non-divergence form (there
have been only partial results for linear systems with regular coefficients, see the discussion after Corollary 8.1).
We give here an appropriate framework in which such estimates can be obtained. Our results are complete in thi
sense that they reduce to those of Krylov and Safonov wher (scalar case). This paper is the firstin a program
aimed at establishing a satisfactory elliptic theory for systems of type (1).

The leading idea of our work is to use the properties ofasity solutions of partial differential equations. The
viscosity solutions theory developed very rapidly during the last twenty years (we quote some of the fundamental
works on the subject in Section 4). Viscosity solutions offer a number of advantages and provide a convenient
framework for studying fully nonlinear equations. &ddition, recent developments — the so-callédviscosity
solutions — permit to treat equationghvdiscontinuous coefficients; in thietting strong solutions are a subclass
of the class of." -viscosity solutions.
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In recent years elliptic estimates were obtained foras#ty solutions of fully nonlinear scalar equations. It
turns out that viscosity solutions are an appropriate framework for studying systems too. The first to use viscosity
solutions in the general setting of systems that we consider were Ishii and Koike [27], who obtained existence and
unigueness results for viscosity solutions of cooperatliiiptic systems through a Perron-type argument. Our ap-
proach contains a new idea, which consists in relating system (1) to a set of scalar fully nonlinear elliptic equations
and then using the Alexandrov—Bakelman—Pucci and Harnack estimates for viscosity solutions of such equations.

Although cooperative elliptic systems share many prigewith scalar equations, it would definitely be wrong
to think that these systems boil down to scalar equations. For example, even basic concepts in the frameworl
of scalar equations, such as coercivity, do not admit clear (or unique) equivalents for systems. We give various
conditions under which a cooperative system satisfiesthgimum principle, together with counterexamples
(Sections 3 and 10).

Our results are new even in the paniiar case of a linear system. Because of the importance of this case we have
devoted to it a whole part of the article in which we restate our results in a more precise manner (Section 8). For
example, we give a detailed description of the way the coupling in the system reflects into the Harnack estimate.

Further, in the linear setting we are able to give a complete answer to the coercivity issue we mentioned above
Specifically, in Section 14, we obtain a necessary and sufficient condition for the maximum principle to hold for
a linear system (this question has been open for some time in the non-divergence case). This is done in terms c
a properly defined first eigenvalue of the system. Altyua was not known before whether a general cooperative
system admits a first eigenvalue with properties similar to those of the first eigenvalue of a scalar operator (excep
for a partial and somewhat different result by Hess).

An application of our results are ABP and Haok estimates for higher order equations such as

Au=f.
Estimates for polyharmonic functiong & 0) are a very classical problem. Even though their study dates back to
the nineteenth century, such estimates were obtained much later, and they depend on the polyharmonicity of th

function. A Harnack estimate was available neither for more general higher order equations, nor for equations with
aright-hand side. See Sectiob fbr a discussion and results.

2. Examples

We give here a selection of problems, taken from different fields, which lead to weakly coupled cooperative
elliptic systems of type (1).

Switched diffusion processes (probability theory)et A, € {1, ..., n} be a discrete valued Markov process and
let X, be a diffusion process such that
dX; = b* dr 4 o™ dW,,

whereW; is a standard-dimensional Wiener process, independentofSupposep;; > 0 is the probability of
transition from state to state;j of A,. Then

ui () =By, 0 Xz 2))]. i=1....n,
is a solution of the linear system
Liu; —I—Zpijuj =0 ing,
J#
uj = ¢o; onos2, i=1,...,n,
where

1 N i
Liwzétr(a (") D w)+b" - Dw,



546 J. Busca, B. Sirakov / Ann. I. H. Poincaré — AN 21 (2004) 543-590

andz (£2) is the first exit time ofX, from 2. See [11] for a more detailed description of the problem.

Jumping volatility modelgmathematical finance).In this well-known extension of the Black—Scholes pricing
model the underlying asset follows the stochastic differential equation

dS[ ZVSI dt+O’AtS[dWI,

under the risk-neustl probability. Herer denotes the risk-free rate, is the volatility of the asseto( can take

n different values) and.; € {1,...,n} is a discrete-valued Markov process, independent of the standard one-
dimensional brownian motioW;. If we denote the price of an European call option with maturitsgnd strikek

by C(t, S;, A), then the function

Ci(t,8)=C(t,S,i), (S el0,T]xR",
is shown to satisfy the system
9Ci (a")zszaZc,» aC

i 1
S— —rCi+ = ;i (C; — Ci) =0,
Y 5 952 +r 7S r z+p§;pu( J i)

Ci(T,$)=(S-K)",
wherep;; is as above and is the characteristic time of;. For details on this model, see [4,5,31].
Remark. Strictly speaking, the above system falls out of the scope of our work, since it is parabolic (or degenerate

elliptic). We consider it as a motivation for an extension of our work to parabolic systems. We do not doubt such
an extension is possible.

Mathematical biology. A number of models in population dynamics leacelliptic and parabolic systems which
can be transformed into cooperative systems of type (1). A simple example is the system

Au+u(a—bu—cv)=0, .
{Av+v(d—eu—fv)=0 n 2.

We refer to the abundant literature on this topic, for example, [34].

Switching games (stochastic games and control theor)typical example is the system

maxXLiu; — fi, —u; + Miu} =0 in2,i=1,...,n,
u; =0 onos2, i=1,...,n,

whereL; are uniformly elliptic linear operators,= (u1, ..., u,), and
Miu(x) = mgx{—kij +uj(x)}, forsomek; e R.
VEall
This problem arises when considering a system whose state processes are of Ito type and who can be switched in
n different regimes. The problem is then to choose an@mjate switching so as to minimise the resulting cost.

See [32] for details on this problem.
Other problems from stochastic gamkedry lead to the more general system

min{maX{Gi (Dzui, Du;,u;, x), —u; + M; (u,x)}, —u; + Ni(u,x)} =0,
i=1,...,n, where

Mi(u,x)=max{u; + gij(x)}, Ni(u, x) =minfu; + hij(x)},
J# J#i

with g;;, h;j € C(£2). See [27] and the references therein.
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3. Main results

We study the system

{Fi(Dzui,Dui,ul,...,un,x)=fi(x),
i=1...,n,

defined in a bounded domaid c RY: n, N > 1.

The elliptic operatorsFy, ..., F,, defined onSy(R) x RY x R* x 2 (Sy(R) denotes the space of real
symmetricN x N matrices) are supposed to satisfy the following set of assumptions. First, we assume that there
exist constantag € (0, 1), ¥ > 0 and measurable functions g;: R" x 2 — R, i =1,...,n, such that

(HO) ¢;(u,x), gi(u, x) are globally Lipschitz continuous im € R", uniformly in x € £2 \ A/ for some Lebesgue
null set V' C £2, with Lipschitz constant (in the sense that thik-norms ofV,c; andV, g; are bounded
by v);

(H1) F;(M, p,u, x) < SUP e g tr(AM) +yIpl +ci(u,x), i=1,...,n;

(H2) Fi(M, p,u,x) Zinfyc gtr(AM) — y|pl +gi(u,x), i=1,...,n,

forall (M, p,u) € Sy(R) x RY x R" and a.ex € £2, where A denotes the set of all symmetric matrices whose
eigenvalues lie in the intervido, ozgl]. Elliptic estimates have been established for scalar equations which satisfy
the above hypotheses (see Section 4). Withaittiing the generality we can suppose &0, x) = g; (0, x) =0,
fora.e.x € £2 and alli.

We assume that system (1) is cooperative (or quasi-monotone), in the following sense: fopanR” such
thatu > v component-wise and anye {1, ..., n} for whichu; = v;, we have

(H3) cj(u,x) > cj(v,x) andg;(u,x) > g;(v,x) fora.e.x € £2.
We studyL " -viscosity solutionsf (1), that is, vector functions
u=(ut,...,u,) € C(2,R")

satisfying (1) in a sense that we make precise in Section 4 (see Definition 4.2). In particulstroaugysolution
of (1) (that is, anyw € Wé’CN(.Q, R™), satisfying (1) pointwise a.e. if?) is a LY -viscosity solution; see Section 4,
Proposition 4.2. We make the convention that, throughout the palpdifferential equations and inequations are
assumed to hold in thel.V)-viscosity sense, unless otherwise stated. Besides, all relations between vectors are
understood to hold component-wise.

We use the following notations

vVwkx)= max{v(x), w(x)}, vAwX) = min{v(x), w(x)},
v+(x)=max{v(x),0}, vf(x)zmax{—v(x),O},

for any two functions andw.
We suppose that the right-hand side of (1) satisfies

(H4) fieLlN),i=1,...,n,

andsetf = fiv---V fy.
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Our first result is an Alexandrov—Bakelman—Pucci (ABP) type estimate. To our knowledge, this is the first
estimate of this kind for systems of type (1)

Theorem 3.1(ABP estimate)We assum¢H0), (H1), (H3)and (H4). Letu € C(£2, R") satisfy

{E(Dzui,Dui,ul,...,un,x)>—ﬁ(x) in £, @
i=1 ..., n.
In addition, we assume that either
(H5) foralli=1,...,n
n
ac,- . n
Za -(u,x) <0 ae.inR" x £ 3)

j=1""/
or
(H6) if we set
_ ac;
mij = supess —(u,x)

(u,x)eRrx 2 OUj

(mij < v < 00) then the matrix\ = (mij)} 1 is negative semi-definite, that sV, £) < Ofor all & e R™.
Then the following ABP inequality holds
SUpu1 Vv -+ Vi) < C(suguir Vvl + ||f+||LN(_Q)). 4)
2 082

The constanC depends only o, «g, v, v, anddiams2.
Under (H5) we can weake(HO0), namely we can suppose thatare only locally Lipschitz in:. Furthermore,
under(H5) the following stronger conclusion holds true

SUpuLV -V <supui Vv + Cagell £ v o) (5)
2 00

whereCapp depends only oWV, «g, y, anddiams2.
Theorem 3.1bis(ABP estimate)We assuméHO0), (H2), (H3), (H4)and either(H5) or (H6), with ¢; replaced
by g;. Letu satisfy

{ F;(D?ui, Duj, uz, ..., up,x) < fi(x) in £,

i=1...,n.
Then

—inf(ur A -+~ Aup) < C(suﬂu[ VeV, )+ ||f+||LN(Q)>, (6)
12 302

whereC depends only oV, «g, v, v, anddiams2.
Under (H5) we can suppose that; are only locally Lipschitz ins. Furthermore, undeXH5) the following
stronger conclusion holds true

- igf(ul Ao Aug) SSUPuT Vs Vaug) + Caspll v ) (7)
982

whereCapp depends only oWV, «g, y, anddiams2.
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Remark 1. In the particular cas¢ = 0 Theorems 3.1 and 3.1bis yield a maximum principle for the nonlinear
system (1).

Remark 2. Neither of hypotheses (H5) and (H6) contains the other, as the following example shows. Take the
following two couples of functions (with = 2, u = (u1, u2))

{ P, x) = a() " H—u1 + uz). { ¢t (u. x) = —2u1 + 3arctanz,

c(zl)(u, x)=a(x)(uy — us), c(zz)(u, x) =arctamny — 2uo,

wherea(x) is a continuous function fron® onto[%, 2]. Then the first couple satisfies (H5) but not (H6), while the
second couple satisfies (H6) but not (H5).

Note that both (H5) and (H6) are hypotheses on the matrix
ac "

Clu,x) = ( ‘ (u,x)>
8uj

i,j=1

A natural way to unify and extend these two hypotheses would be to suppose that thednatnix itself is
negative semi-definite, for almost evdy, x). Indeed, one can see, under (H3gttthis condition is implied by
either of (H5) and (H6), see Lemma 10.1. However, it turns out that the ABP inequality (and even the maximum
principle) fails if we make this assumption only. See Section 10 for a counterexample.

Further, we establish a Harnack inequafity non-negative solutions of system (1).

The form of the Harnack inequality depends very much on the way the system relates the fungtionsy,
to each other. Here, for simplicity, we shallppose that systeri)(links all functionsus, ..., u, in a strong sense,
or, more precisely, that system (1)fidly coupled We give a suitable nonlinear meaning to this notion. Note that
the assumption of full coupling can be removed and theltean be made much more precise - nevertheless, to
avoid heavy notations here, we state these more general results in the simplified framework of linear systems (se
Section 8).

Fix indicesk, € {1, ...,n} such thatkt # [ and letwy; be a non-null measurable subset®f We define the
function

o () =infessgy (ter, x), forr >0, (8)
XEwk]

wheree; € R" is the vector withi-th coordinate equal to one and all other coordinates equal to zero. For simplicity
of notation we shall not write explicitly the dependencepgfon wy;. One can check that (HO) implies thay is
globally Lipschitz continuous ofD, +oc0). Note thatyy; is non-decreasing, because of (H3), apd0) = 0.

The following definition provides a nonlinear vars of the commonly used notion of full coupling.

Definition 3.1.We call system (1) fully coupled if2, provided for any non-empty setsJ C {1, ..., n} such that
INJ=¢andIUJ ={1,...,n}, there exisig € I and jo € J for which one can find a sef;, ;, C £2 with positive
Lebesgue measure such tipgf;, () does not vanish far# 0. Under (H3) this means that

@igjo(t) >0 forallr > 0.

In some sense, a system is fully coupled if it cannot be split into two subsystems, one of which does not depenc
on the other. Note that any scalar equation is a fully coupled system.

Theorem 3.2(Harnack inequality)Suppos€HO0) through(H4) hold and letu > 0 be a solution of(1) in a ball
B3r C £2. Suppose, in addition, that systéi) is fully coupled inBg. Then there exists a non-negative continuous
function® :R2 — R, with @(0, 0) = 0, depending only 0fiR?¢;;}, N, n, ao, ¥ R, vR?, such that

sBupulv Vi, < qﬁ(ilglfulx\ C A, R||f||LN(33R)). 9)
R R
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Remark 1. An explicit expression ofp is given in the proof of Theorem 3.2. Roughly speakidgy, 0) is a
composition of the inverse functions of the functiang(z). For example, ifpy; () > ct® for somea > 0 and all

indicesk # 1, thend(r,0) < Cr¢ """V,

Remark 2. In the particular case of a linear systed(r,s) = C1t + Cas (see Section 8, Theorem 8.2 and
Corollary 8.1).

In the course of the proof of the Harnack estimate we obtain two estimates of independent interest, for
subsolutions and supersolutions of system (1). These have well-known counterparts in the scalar case too.
We set, for anyp > 0,

1 1/p
lulpr = 7/|u|p .
meas$Bg)
Br

Proposition 3.1 (local maximum principle)Suppos€HO0), (H1), (H3) and (H4) hold. Letu € C(B3g,R") be a
solution of

{ Fi(D?u;, Duj, uz, ..., un,x) > — fi(x),
i=1...,n,
in B3g. Then for allp > 0 we have

(10)

supur V- Vg < C(Juf Ve Vst par + RIS LN o)
Br

whereC = C(N, «o, p, YR, vR?).

Proposition 3.2 (weak Harnack inequalitybuppos€HO0), (H2), (H3) and(H4) hold. Assumél) is fully coupled
and letu € C(B3g, R") be a non-negative solution of

{Fi(Dzui, Duj,ui, ..., un, x) < fi(x), (11)
i=1...,n,
in Bag. Then there exists a numbgr= p(N, n, 2, ¥ R, vR?) > 0 such that
Ua VeV itnlp2r < D (infus A Aty RIS N g ) (12)
R

where® is as in Theoren3.2

Counterexample 1.All our results fail for general non-cooperative systems. Simple examples are provided by the
systems
Au—v=0, Au—v=0,
AU = 0, AU —u < 0’

The first system satisfies all hypotheses of Theorem 3.1 except for (H3). By takirig— |x|%, v = —2N, we see
that Theorem 3.1 (withf = 0) is false for this system sinae= 0, v < 0 ond B butu £ 0in By. A counterexample
for the weak Harnack inequality (Bposition 3.2) is obtained by setting= |x|2, v = 2N in the second system,
since inf, u A v =0 butu, v 0.

in By cRY. (13)

Counterexample 2.There is no hope to obtain maximum principles for general systems in non-divergence form
with coupling in the first-order terms. For example, consider the system of inequalities
{Au+vx—om<0,

Av+u, —av <0 ng=>LhCR, (14)
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wherea > 1 is arbitrary. The functions
0 in(-1,0
u(x)=1 1 neno v(x) = {2 in(~1,0),
N =D in (0, 1), “12-x in(0,1),

satisfy (14) and: =0, v > 0 on 352. Howeveru # 0 in £2. Note that the elliptic operators; in (14) can be
arbitrarily coercive int;, whena > 1, yet this does not help.

Counterexample 3.This example shows that even systems of &étjga do not necessarily satisfy the maximum
principle if they are coupled in the first order terms.
The functions

1
u(xvy):x2+y2_l, U(X,y):—§x3—4y+5

solve the system

Au-l—vy:O, . 2
{Av+ux=O in By C R%,
andu =0, v > 0 on dB;.. Howeverx # 0 in By.

Sections 4-7 are devoted to the proofs of Theorems 3.1 and 3.2.

4. Definition and properties of viscosity solutions

In this section we describe the class of viscosity 8ohs to which our results apply. The concept of viscosity
solution has found many applications in PDE’s (see for example the fundamental work [12]).

Basic tools in the proof of our results are the ABP estimate and the Harnack inequality for viscosity solutions of
fully nonlinear scalar elliptic equations, obtained by Wang in [41], Caffarelli, Crandall, Kocan and Swiech in [9].
We shall state, for the reader’s convenience, the results from these papers that we need. We refer to the book b
Caffarelli and Cabre [8] for results an-viscosity solutions of fully nonlinear elliptic equations.

Consider a measurable functigh: Sy (R) x RY x R x 2 — R, such thatG(-, -, -, x) is locally uniformly
continuous, uniformly forx € £2 \ NV, where/ is a Lebesgue null set. Take a measurable funcfioand a
continuous functionw, defined ins2. We consider the scalar equation

G(Dzw, Dw, w,x) =f ing2, (15)
providedG is uniformly elliptic, that is, there exis{8y > 0 such that
BolM'| <G(M +M', P,w,x) = G(M, P,w,x) < By 1M],

for any matrixM e Sy (R), any positive definite matrid/’ € Sy(R), any P e RV, w e R and a.ex € 2. We

denote byAT the transposed matrix of, and se{A| = \/tr(ATA), for any A € My (R).
We recall the definition of & -viscosity solution of a scalar equation.

Definition 4.1 (scalar equations; [41,9] We say that the functiom e C(£2) is a (LV)-viscosity subsolution
(supersolution) of (15), provided for amy=> 0, any open subsé&? c £2, and anyp € W2V (0) (we callg a test
function), such that

G(D%p(x), De(x), w(x), x) < f(x) — &,

(G(D?p(x), Dp(x), w(x).x) > f(x)+¢&) ae.inO,

the functionw — ¢ cannot achieve a local maximum (minimum) equal to zer@irin this case we say that the
functionw satisfies the inequation
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G(D*w, Dw,w,x) > () f
in the (LV)-viscosity sense 2.
We say thatw is a solution of (15) ifw is at the same time a subsolution and a supersolution of (15).

Remark. This definition is equivalent to Definition 2.1 in [9], setting= N there. It is easy to see, under our
hypotheses oG, that the class of viscosity solutions the above definition introduces is included in the class
considered by Wang in [41].

Next, we recall the definition of the Pucci extremal operators
MMy =ag' Y ei+aoY e, M (M)=ap )y eitag Y e
e;>0 e; <0 ¢;>0 e; <0

for M € Sy (R), wheree, .. ., ey denote the eigenvalues &f. Then (see [8])

MT (M) = suptr(AM), M~ (M) = inf tr(AM), (16)
AeA AeA
where A denotes the set of all symmetric matrices whose eigenvalues lie in the ir[uedsyagl]. To relate our
notations to those of [9] one has to note thdt™ = —P~ and M~ = —P*, with P+, P~ defined in [9]. It is not
difficult to check that (see [8])
M (=M)=M"(M),  M" (M) =nM*(M) (17)
and

MFE(M) + M~ (N) S ME(M + N) < MFT(M) + MT(N),
M™=(M) + M~ (N) S M~ (M + N) < MY (M) + M~ (N),

for every two symmetric matrice®, N, and everyy > 0.
We define the extremal operators

£ (D?w, Dw) = M*(D?w) + y|Duw|,
£~ (D?w, Dw) = M~ (D?u) — y|Dw|

(18)

(19)

(y is defined in (H1) and (H2),- | denotes the Euclidean normRi"). Note that
£+(D2w, Dw) =—L (—Dzw, —Dw). (20)

Definition 4.2 (systems)We call the vector € C(£2, R") a subsolution of (1) provided the equation
LY (D%ui, Du;) > —ci(u, x) + fi(x) (21)

is satisfied in the viscosity sense for edch {1, ..., n}, in terms of Definition 4.1. Equivalently, we say that
satisfies the system

Fi(D%u;, Duj,u,x) > fi(x), i=1,...,n.
Respectivelyy € C(£2,R") is called a supersolution of (1) provided the equation
L7 (D%ui, Du;i) < —gi(u, x) + fi(x) (22)

is satisfied in the viscosity sense for edch {1, ..., n}, in terms of Definition 4.1. Equivalently, we say that
satisfies the system

E(Dzui,Dui,u,x) < fikx), i=1,...,n.
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A solution of (1) is a vecton € C(£2, R™) which is both a subsolution and a supersolution of (1).

The rest of this section contains a list of results on viscosity solutions of scalar equations. We shall need these
in the sequel.

Proposition 4.1.The maximum of two viscosity subsolutions of a scalar equation is a viscosity subsolution. The
minimum of two viscosity supersolutions of a scalar equation is a viscosity supersolution.

Proof. This is very well-known and obvious, from Definition 4.10

Proposition 4.2.Let f € LV (£2) and let£ be a scalar extremal operator, as {@9). Suppose thaw ¢ Wlf)’cN(.Q)

is such thatC(D?w, Dw) > (<) f a.e. inf2. ThenL(D?w, Dw) > (<) f in the viscosity sense. Conversely, if
we Wlf;cN(.Q) satisfiesC(D?w, Dw) > (<) f in the viscosity sense i? then£(D?w, Dw) > (<) f a.e.ins2.

Proof. This follows from Lemma 2.5 and Corollary 3.7 in [9].0
The following lemma contains several easy, but important properti€d afnd £~

Lemma 4.1.(a)Let f € LV (£2). Supposd., k=1, ...,n, are linear uniformly elligic second-order operators
without zero-order terms, with ellipticity constasg and all their coefficients bounded py ThenL,w < f, for
somek, (resp.>) implies

L™ (D?w, Dw) < f  (resp.LT(D?w, Dw) > f).
ConverselyLt (D?w, Dw) < f impliesLyw < f,andL~ (D?w, Dw) > f impliesLyw > f,forallk=1,...,n.
This is the reason for whicB™ and £~ are called extremal.

(b) Letw € Wlf)’CN (£2). There exist scalar linear uniformly elliptic second order operatbg‘s Ly (depending
on w) with bounded measurable coefficients, such that

£+(D2w,Dw) =L5rw, Ef(Dzw,Dw) =Ljw.
Furthermore o is an ellipticity constant for the operatois{{, Ly, andy is an upper bound for th&°°-norms of
their first order coefficients.
Proof. Part (a) is a direct consequence of (16) and Definition 4.1. Part (b) follows from the fact that the supremum
and the infimum in (16) are attained (sindeés compact). For instance, we take
LEw(x) =tr(A (x) D?w(x)) + b(x) Dw(x),

wherex — Aaf(x) is a measurable selection of elementsioét which

suptr(AD?w(x))
Aec A
is attained, and
Dw(x) .
. = D 0
b =1 Y Dweny " PP #0
0, if Dw(x)=0.

We shall use the following Alexandrov—BakelmareRi inequality for fully nofinear scalar equations.

Proposition 4.3.Letw € C(2) and f e LY (£2) satisfy the scalar inequality
—£+(D2w, Dw) <f in2n{w=>0}L
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Then

supw < supw™ + Cull fF I Lty
2 082

Here I't denotes the upper contact setwfdefined by

I ={xewx)=wx)} (23)
wherew is the concave envelope of i.e.

w=inf{® | > w and® is concav¢, (24)
and the constant, depends only oW, «g, y anddiams2.

The first to prove an ABP type result for viscosity solutions of nonlinear equations was Caffarelli in his
fundamental work [7]. In the casg € L* Proposition 4.3 is due to Wang (see Theorem 3.14 and Lemma 3.19
in [41]). In its full generality, this propason was proved in [9] (Proposition 3.3 in [9]).

We shall also make use of the following weak Harnack inequality for scalar equations (see Corollary 4.14
in [41], and Section 4.6 in [41] for more general equations). Another general result for parabolic equations was
stated in [13, pp. 2022—2025].

Proposition 4.4.Letw € C(£2) be a non-negative solution of the scalar inequality
L7 (D?w,Dw) —cw < f inByC L2,

wherec € L®(B>), with0 < c(x) < v a.e. inBo, and f € LY (B»). Then there exists = p(N, ao, ¥, v) > 0 such
that

lwlp1< C#<igfw + ||f||LN(Bz))’
1

whereCx = Cy#(N, ap, y, v). In particular, if f =0 then eitherw is strictly positive orw = 0 (strong maximum
principle).

Remark. In fact, this proposition was proved in [41] in the particular cgse L>°, but extension taLV is
straightforward, since the proof in [41] relies only on the ABP inequality, which holds true for right-hand sides
in LV (see Proposition 4.3 above).

The following existence result for extremal operators will be useful in the sequel.

Proposition 4.5. Let ¢, f € L°°(B2), and 0 < ¢ < v a.e. in Ba. Then there exists a unique solution €
sz)’CN(Bz) N C(B,) of the following problem

— 2 _ .
{ —L (D w, Dw) +cw=f a.e.in By, (25)
w=0 onaBy.
Moreover,w € Wlf,’c”(Bz) for all p < 0o, and one has the interior estimate
lwllwar gy < C(llwll Loy + IIfIILN(BZ)), (26)

whereC = C(N, ag, y, v, p).

Proof. Whenc = 0 this result was proved in [9] (Corollary 3.10 in that paper). Exactly the same proof works for
¢ > 0, since the authors use Theorem 17.17 in [22] and the ABP estimate, which both hold witen O
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Finally, we prove two lemmas concerning sums and products of viscosity solutions and test functions.

Lemma 4.2.Suppose the linear operator

N
Lo= Z a;j(x)

i,j=1

2

a
3)6,’8)6]'

al 9
bi(x)— 27
is uniformly elliptic in$2, and supposé has bounded measurable coefficients. f.at € LY (£2).

(a) Letw € C(2) andyr € Wlf)’év(.(z) satisfyLow > f in 2 and Loy > g a.e. inf2. Then
Low+y) 2> f+g inf. (28)

(b) Letw € C(£2) s~atisfyL0w > finQandy e Wl(z)’cp(.fz) NC(R2), p > N, be strictly positive in2. Define
w=w/y and f = f/v¥. Then we have

Lw>f ing,
whereL is defined by

diy(x) 9 Loy(x)
vx) dx;  Yx)

N
L =Lo+2 Z a;jj(x)
ij=1

Proof. Suppose (28) does not hold. Then, by Definition 4.1, we can find an op&f sef2 (we can assume
O e R),e>0,x0 €O and afunctiorp € W2 (0) such that
Lop< f+g—¢
< f+ Loy —e a.e.inoO, (29)

@ > w+ ¥ in O ande(xg) = w(xg) + ¥ (xo). Sincey € W2N (), the functiong — ' is a test function for the
equationLow > f. However,Lo(¢ — ¥) < f — ¢ is a contradiction with this equation.

Next, suppose (b) is false. Then we can find an opedsets2, ¢ > 0, xg € O, ¢ € W2V (0) such thatp > @
in O, ¢(xp) = w(xg), and

Lo< f—e ae. ino. (30)
A simple computation transforms (30) into
Lo(py) < f — ey
< f—e1 ae.ino, (31)

wheres; = eminp ¢ > 0. Sincepy € W2V (0) (W?V is an algebra)py > w in O, ¢y (xg) = w(xp), we obtain
a contradiction withLow > f. O

Lemma 4.3.Let w € C(£2) satisfy £+ (D?w, Dw) > f in £2 and suppose) € Wli’c"(.Q) NC(R),p>N, is
strictly positive in2. Thenw = w/v satisfies the inequation

+ 2

14

Proof. Suppose firstv € Wlf)’cN (£2) so thatL T (D?w, Dw) > f is satisfied a.e. i2. We have
Dw =y Dw + wD, D?w =y D?*w + 2DV @ Dw + wD?y. (32)
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It is understood here and in the sequel tRatenotes the symmetric tensor product, i.eX it € RY thenX Y =
%(x,-yj +x;yi)i,j- By putting (32) intal* (D?w, Dw) > f and by using (18) we obtain the statement of the lemma.
Note that ttA(X ® ¥)) < |A[|X ® Y| < v/Nag ' X||Y |, whereA is a matrix whose eigenvalues lie [igo, g 1,
and|A| := /tr(ATA). If u is only continuous we proceed as in the proof of part (b) of the previous lemma.

Remark. In the same way we can prove that (D%w, Dw) < f implies

— 2 _
M_(Dzw)_<y+2aolﬁ%>mm+</w (D 1{; y|Dw|>K£.

5. Proof of the ABP estimate

This section is concerned with theqof of Theorem 3.1. Recall thatsatisfies the system
—£+(D2ui, Du,-) —ciu,x)< filx), i=1,...,n.
The first lemma permits us to linearize the zero-order terms in this system.

Lemma 5.1.Suppose = (c1, ...,c,) : R" x 2 — R" satisfies(H0), (H3) and either(H5) or (H6). Then there
existsM € L (R" x £2, M, (R)), with M = (m;;), such that

c(u, x) = M(u, x)u (33)
satisfying

mij(u,x) >0 Vi#j, i,jefl,...,n}, (34)
for allu e R" and a.ex € £2. In addition,

Xn:mij(u,x)gO, Vie{l,..., n}, (35)

j=1
in case(H5), or

mij(u,x) <mi;, Vi, jel{l, ... n}, (36)

in case(H6) holds.

Proof. Because of (HO) the functiol(s, u, x) = V,c(su, x) belongs toL1((0, 1) x Bg x £2), for any Bg C R”",
R < oo (even ifc is only locally Lipschitz un:). By Fubini's theorem the function

1
M(u,x):/Vuc(su,x) ds (37)
0

is measurable oR” x 2. By (HO) M € L*(R" x 2, M,(R)). Further,M clearly satisfies (33)—(35), and (36)
fora.e.(u, x).

Now for a.ex € £2 the matrixM (u, x) is well defined for alk € R" \ Z, with all the desired properties, where
Z, C R" is a set ofn-dimensional measure zero. It remains to defiien Z,. To this aim, for any € Z, we
takeuy € R" \ Z, such thaty; — u and observe that the sequendéu,, x) is bounded inM,,(R). We can thus
defineM (u, x) as (any) limit of a subsequence &f(u;, x), and observe that properties (33)—(35), and (36) are
still satisfied at the limit.

This completes the proof of Lemma 5.10



J. Busca, B. Sirakov / Ann. I. H. Poincaré — AN 21 (2004) 543-590 557
We infer from (H1), (2) and Lemma 5.1 that
n
ME(D?u;) + y1Dui| + Y mij(u(x), x)u; > - fF, (38)
j=1
fori=1,...,n. We setm;; (x) =m;;(u(x), x).
We claim that the same inequality is satisfied by the positive parts of the funations

Claim 5.1.We have

n
M+(D2u;") + y|Du;”| + Zmij ()c)u;!r > —fi+. (39)
j=1

Proof. By (34)m;ju; < miju;.r, fori # j. Hence both = u; andv = 0 satisfy the inequality

n
M+(D2v) + v |Dv| 4+ m;i(x)v = —fiJr - Zmij(x)u;r.
J#L
Hence, by Proposition 4.14;r = max(u;, 0) satisfies the same inequation:
We are now ready to prove the ABP inequality in case (H5) is satisfied. By the previous considerations we can

restrict ourselves to a system of type (39), with satisfying (34) and (35). The basic idea of the proof is to show
that the function

v(x):uirv~~VI4,J{(x) (40)

satisfies a scalar elliptic inequation, and then apply the scalar ABP estimate to

Lemma 5.2.Under(H5) we have

—LT(D%v, Dv) < fif vV fiF ing. (41)
Proof. Suppose for contradiction that there are an open(set §2, a pointxg € O, ¢ > 0, and a function
@ € W2N () such thaw < ¢ in O, v(xp) = ¢(x0), and

—LT(D%p, D) = fi V-V ff +e>0 ae.inO. (42)
We have to show that (42) is impossible. kix {1, ..., n} such thau,j(xo) =v(xg). Then

0> u,:r >0 inO and ¢(x) = u,j(xo). (43)

We distinguish two cases. Firstgi{xg) = 0, we see thap attains a local minimum aty. Then we apply the scalar
strong maximum principle (sderoposition 4.4) to (42) and obtain= 0 in O. This contradicts (42).
Second, ifg(xg) > 0, we have, by (34), (35), (42) and (HO)

n
—£+(D2<p, Dgo) > (kaj>u,f + fk+ +ée (44)
j=1
n e
> miul + £+ 5 ae.inoy, (45)

j=1
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whereO; C O is an open neighbourhood &f in which
u, >0 and u(>u;'—8/2v, (46)

forall j €{1,...,n} (O exists, sincew (xg) =uy Vv ---V u,(xg) > 0).
By (39) uy, is a (viscosity) solution of

n
— (D2, Duf) < myjut + £F
j=1

which is a contradiction with (43) and (45). Lemma 5.2 is proved.

Now we can apply Proposition 4.3 to (41). We obtain

supy < supv + Cull f17 V-V fiF vy,
2 082
which gives part (b) of Theorem 3.1.

Remark. If the functionsc; are supposed to be only locally Lipschitz the above proof remains the same, if we
replacev in (46) by the essential supremum of &ll; |m;; (x)| in a neighbourhood ofo.

We are going to show that if our system satisfies assumption (H6) then we can introduce a change of functions
so that the transformed system satisfies (H5). So let us assume (H6), which,says< ;; for a.e.x, where
M= (im;;) is a negative semi-definite matrix. First we perturb the system in order to make the zero order matrix
negative definite. To this purpose, we 8et= u;r/w, wherey is the solution of

M (DY) +y Dyl =—1 ing2,
v =0 onag, (47)
¥ eWed (2)NC(2) Vpedtoo)

(this problem is solvable, seRroposition 4.5 and (20)), whet@ is such that2 € §2. By the scalar maximum
principley > 0 in £2. By using the scalar ABP inequality, Lemma 4.1, and a theorem by Krylov which we state
later (Theorem 7.1 in Section 7), one can see€haty > ¢ > 0in £2, whereC and¢ are constants which depend
only onN, ag, v, and dianis2).

By (H6), (39) and Lemma 4.3 satisfies the system of inequations

MT(D?i;) + (v + 205 VN 1DV lloc |Dﬁ~|+2(m~—sa~)ﬁ~>—fl—'+ (48)
i 0 |nf_qw i - ij ij)hj = w s
where
_ MO tyiDyl 1
B Sup; ¥ Csupy

SetM, =&l — M (M, is positive definite), and let € R" be the solution of the linear system

MiE=(1,...,1). (49)
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We claim that assumptions (H3) and (H6) imggly> O for all i. In order to prove this we suppose first thdt is
symmetric. It is well-known that (H6) implies that all principal minorsMf are positive. We are going to use an
algebraic lemma from [15] (Lemma 2.2 in that paper), ttaéesnent of which we give for readers’ convenience.

Lemma 5.3 (de Figueiredo-Mitidieri)Let M = (m;;) € M, (R) be a matrix such that;; < 0 for i # j, and
dei((m,-j)f{jzl) > 0, for everyk € {1, ..., n}. Then

(—=1)*/ detM' > 0,

whereM'/ is the submatrix oM obtained by dropping its-th line and;j-th column.

It follows from this lemma that—1)!*/det() > 0. By Cramer’s rule

& =def(M; 1)) (-1t defmY) > 0.
j=1

If M, is not symmetric we use the following elementary algebraic lemma.

Lemma 5.4.If A is a positive definite matrix then
A+ AT
det(A) > det( +2 ) > 0.

Lemma 5.4 implies that all principal minors 8f, are positive, even iM, is not symmetric. For completeness,
we give a proof of Lemma 5.4 at the end of this section.
We can now finish the proof of the ABP estimate. Weiget &;ii;. These transformed functions clearly satisfy

~ 1 5 - ~
M+(D2ﬁi)+y/|Dui|+gZdijuj Z—fi—i_, (50)
J

where

- ~ fr

dij = (m;; — €8;;)&;, fif= m (51)

_ DY lloo
"= (205 VN . 52

y (aofinfgw+y> (52)
By (49), the zero-order matrix in (50) satisfies

1 - 1

- d,'j =——<0 (53)

&= &

]_

for all i, i.e., assumption (H5). Therefore we can apply to (50) the ABP inequality we already proved. Since

i; = uj /(&) we get

sup . &y (x) (
infi x & (x)
Theorem 3.1 is proved.O

We obtain the result in Theorem Bid by settingv = —u in Theorem 3.1, by using (H2), and by noting that
gi(u,x) = —gi(—u, x) has the same propertiesggnamely, satisfies (HO) and (H3)).O

supluy v .- vl +C||f+||LN(.Q))‘

SUPULV -+ Vi) <
2 982
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Proof of Lemma 5.4. The lemma follows from the following more general fact.
Claim 5.2. Let B € M, (R) be a positive definite symmetric matrix and Rt M, (R) be a skew-symmetric
matrix (RT = —R). Then

[n/2]

detB +xR) = Z apx
k=0

wherea; > 0if k > 1, andag = det(B) > 0.

Lemma 5.4 follows by takin@ = (A + AT)/2, R = (A — AT)/2, andx = 1 in the claim (note that andB are
matrices of the same quadratic form).

Proof of Claim 5.2. First we note that for any skew-symmetric matfixthe characteristic polynomial dd can
be written in the following form
deii ] — D) = A" (A2 + B1) - (32 + Bu), (54)
whereg; > 0,i=1,...,m, p+ 2m = n. Indeed, ifu € C andv € C" are such thaRv = uv, the equality
(Rv,v) = (v, RTv) impliesyu = —fi.
Next, we write
1
det B +xR) =detB) - x" - deI(BlR + —I)
X
=detB) - x" - (—1)" detAl — SR), (55)

wherex = —1/x andS = B~ 1 is a positive definite symmetric matrix. We set= S/2RSY2. ThenD is a skew-
symmetric matrix, and the eigenvalues@fand SR, counted with their multiplicities, are the same«iE C" is
an eigenvector of R corresponding to the eigenvalpeandw solvesSY/?w = v, thenw € C" is an eigenvector
of D corresponding to the same eigengliEqualities (54) and (55) then yield

detB + xR) = det(B) (B1x? + 1) - - - (Bux®+ 1),

which gives the desired result.

6. Proof of the local maximum principle

This section is devoted to the proof of Proposition 3.1. From now on, we supposethatand B is centered
at yo = 0, the general case being obtained by nseafrthe coordinate transformatian— (x — yo)/R.
First, we claim that the functiom,ir satisfies the inequation

—LT(D%u}, Duf) <vufv---vuf+ fT inBs (56)
(in the viscosity sense), forall=1,...,n. Recallthatf = fi v ---V f.
Proof of (56). Setv = uj v---Vul. Suppose (56) is false. Then, by Definition 4.1, there exist an op&n seBs,
x0 €O, ¢ € W2N (), and a real number> 0 such thav < ¢ in O, v(xg) = ¢(xo) and

—LT(D%p, Dg) =vv+ fT+¢ ae.ino. (57)
Observe that the hypotheses of Proposition 3.1 imply, by Lemma 5.1,
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—LF (DPug, Dug) < my (o)t (x) + mag o) (i — up0)
j#k
Svv+my (u, + ft ing, (58)

forall k =1,...,n. We then proceed as in the proof of the ABP estimate, Lemma 5u2x¢) = ¢ (xg) > 0, we
takek such thatv(xg) = ur(xp) and obtain a contradiction with (57) and (58) in some opertget O, where
ur > 0 (so thatm,u, =0in O1). If p(xo) =0, ¢ attains a local minimum atp and we obtain a contradiction
with the strong maximum principle, as in the proof of Lemma 5.2.

Using the fact that the maximum of subsolutiégsa subsolution (Proposition 4.1), we obtain from (56)
—L(D?v, Dv) <vu+ T in B3 (59)

in the viscosity sense. In order to obtain the cositn of Proposition 3.1 we use Proposition 4.3, combined with

the localization argument in the proof of Theorem 9.20 in [22]. We are going to show that this argument can be
adapted to our situation. Since it relies on a cut-off procedure and pointwise estimates, for the differential relations
to make sense we shall use a regularized versian namely its sup-convolution, defined by

1
ve(x) = sup {v(y) — o - y|2}. (60)
YEB5)2 €

Let us suppose first thaf is continuousin B3z. We recall the following well-known properties of the sup-
convolution, see [28] and [29].

Lemma 6.1.

(1) ve € CO1(Bs)2);

(2) ve — v uniformly in By;

(3) v, is twice differentiable a.e. iB2;
(4) As aconsequence ¢59), v, satisfies

—£+(D2v8, Dvg) <vog + ]F”E' a.e. in By, (61)
where
Te(x)=sup v.(y), firx)= sup fT(), (62)
lx—yl<d(e) lx—yl<d(e)

with 8 (&) = 2(el|vll oo () 2.

We then sew, = n. v, where

ne(x) = (2—8(2)) P ((2-8())° = Ix1D)”,

for someg > 2. For simplicity of notation, we writ@ instead ofy,.
By (16)—(18) and (61), we have

Lt (Dzwg, Dwg) —M+(nD2v€) —2M™(Dn ® Dv,) — M_(ngzn) — y|nDve + ve D)
(=M (D?ve) — y|Dvel) + 2M™((—= D) ® Dve) + M (—v: D?n) + yve| D]

<vnbs + £ + 205N (1D Dvg | + |D?nlve) + yve| Dyl

NN
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a.e. inBo_s (. (see also the proof of Lemma 4.3). Let us denotédthe right-hand side in the last inequality. By
using Proposition 4.3 we obtain

sup we < CullHll v ), (63)
Bo_s(¢)

wherel ;" is the upper contact set of;, see Proposition 4.3. By a concavity argument we get, as in the proof of
Theorem 9.20in [22],

|Dve| < C(BYyn~ VP,

onrl; . Since

IDnl < Cp*=YP, |D%p| < o8,
we see that

H < i + C(n~Pw, + £ (64)
a.e.onl}".

Here and in the sequé! denotes a constant which depends on the appropriate quantities and may vary from
line to line.

Then we follow the lines of the proof of Theorem 9.20 in [22] (in particular the last three inequalities in this
proof) to infer from (63) and (64)

sup we < C(InTellLv gy + 10ellrcsy + [ fe || v gy)- (65)
Ba_s(e)
whereC does not depend an By interpolation this implies

1 - - ~
sup nvs — 5 supnfe < C (10l + vellLr sy + [ £ vy ) (66)
Bo_s(¢) By

Note that, by (2) in Lemma 6.& — v uniformly on Bs.
By letting e — 0 we obtain the desired result.
Finally we have to remove the continuity assumptionfoif his can be done through a (standard) approximation
argument. We take a solution of the problem
—L(D?y), DY) = fI — f* in By,
¥/ =0 ondBy, (67)
¥l e Wl (2)NC(Bz)
(see Proposition 4.5), whei®’ € C*(By), f/ — f*in LY (Ba). ‘
Setv/ = v+ /. The scalar ABP inequality (Proposition 4.3), applied to (67), impliés— 0 uniformly in Bs.
Then by (18)

LT (D?%v, Dv) < LT (D%, Dv/) — L7 (D?y!, Dy/) = L (D%, Dv/) + I — fT. (68)
Note that this is valid in the viscosity sense singé has the regularity of a test functiog{ € Vl/kz)’CN (£2)). Now,
by (59)

—£+(D2vj, va) <vo+ fl=vvl + fi, (69)

wherefi = f/ +v(v —v/). Note thatfJ € C(Bz) and f/ — f*+in L (B).
Applying the result we already proved{ is continuous) to (69) with// instead ofv and sending — oo in
the final inequality concludes the proof.
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7. Proof of the Harnack inequality

In this section we prove the Harnack and the weak Harnack inequalities (that is, Theorem 3.2 and
Proposition 3.2) in the case when system (1) is fully coupled. We recall that we haveRakédn
We shall use the following equivalent definition aflifcoupling by a chain (see, for instance, [11]).

Lemma 7.1.The systenfl) is fully coupled in2 if and only if for anyk, ! € {1, ..., n}, with k # [, we can find
a sequence of indices;}’;_, such thati; # i1 forall j =0,....r —1,i0 =k, i, =, and sets with positive
Lebesgue measute;;;,, C £2 such that

ijia () >0 forallr>0 (70)

(recall thatgy; are defined in(8)).

For each couple j € {1,...,n}, i # j, we define the function

@ij (1) = (kijij (1) — C*||f||LN(33))+, (71)

wherek;; = «;; (N, n, ao, y, v, measw;;)) are positive constants (to be defined later) @pd= C.(N, ag, y, v) is
the constant from the scalar ABP inequality (Proposition 4.3).
We set

(;(t) = ]Icgj; @kil o @iliz ©---0 @irfll(t)v (72)

where for eachk,!), k # 1, the chain{ij}j.:0 is chosen as in Lemma 7.1 above. Note thais a Lipschitz
continuous non-decreasing functionsofvith ¢(0) = 0 in casef = 0.
The following lemma plays a crucial role. It relates the values of the infimums of the funations

Lemma 7.2.Under the hypotheses of Theor8(8, suppose the indicésand! are such thak # [ and there exists
a setwy; C By with measwy;) > 0, such thatp;(¢) > Oforall ¢ > 0. Then

. S onli '

Ilglfuk > (pkl(ll';;ul> (73)
Therefore, for allk #1,

. e

infuy > ga(.ngul). (74)
Proof. Ifinf g, u; = 0 there is nothing to prove. So supposesinf; > 0. By assumption (H2) we have

L™ (D?ug, Dug) + g (u, x) < fi. (75)
By using the cooperativity assumption (H3) we get

L7 (D?ug, Duk) + gi (uex +urer, x) < fi, (76)

whereg; is thei-th vector in the canonical basis Bf. By the assumed (uniform in) Lipschitz continuity ofg,
together with the cooperativity assumption (H3), (76) yields

L™ (Dzuk, Duk) + gk(inf uej, x) —vug < fr 77)
By

(recallv is a Lipschitz constant faogy).
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We are going to estimate, from below by the solution of the following problem (see Proposition 4.5)

L~ (Dzw, Dw) —Vvw = —gk(im‘]g2 ulel,x> in By,

we Wal(B)NC(Bz), Vpe(l, +o0), (78)
w=0 onoBo.

Note thatg; (0, x) =0 and g(-,x) € C%Limply gx(u, x) € L (£2) for u fixed.
We are going to infer from (77) and (78) an elliptic inequality for the functipn- w. We use the following

(essentially known) lemma.
Lemma 7.3.Letw be a domain and supposg, w» € C(w) satisfy

M_(Dzwl) —y|Dw1|<h and M_(Dzwz) —y|Dwz| >0 inw, (79)
in the viscosity sense, for sorhe LY (w), and thatws € W2 (w). Then

—M+(D2(w2 — wl)) — y|D(w2 - w1)| <h inw.
Proof of Lemma 7.3. Let us takexg € O C w, ¢ > 0 and a test functiopp € W2V (0) satisfying¢ > ws — w1
in O, ¢ (x0) = wa2(xg) — wi(xo). Suppose for contradiction that

—LY(D?¢,D$) = h+e inO. (80)
By (17), (18), (79) and (80) we get

—LT(D?(¢ — w2), D(¢ — w2)) > —MT(D?¢) + M~ (D?w2) — y|D| — y | Dwy|
> —MT(D%$) — y|Dg|
>h+e

in O.
Sincew, € W2V (w), ¢ — wy is a test function which satisfigs— wo > —w1 in O, with equality atxg. Now
since—w satisfies

—LT(D*(—w1), D(—w1)) < A, (81)
we get, by Definition 4.1,
—LT(D*(¢ — w2), D(p — wp)) Fh+e (82)

in @, which is a contradiction. O

From inequalities (77), (78) and the above lemma, we deduce that the fungtion satisfies the inequality

—LY(D*(w — ui), D(w — up)) +v(w — ug) < fi (83)
in B>. Sincew — u; < 0 ond B, the scalar ABP inequality (Proposition 4.3) implies

- ing(uk —w)= S}_;quw —u) < Cill fill v gy (84)
which yields

ur(x) = w(x) — Cull fill Ly = ilgfw = Cull fill Ly (8, (85)
1
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for all x € B1. Hence

infup >infw — Cull fill Ly () (86)
By B

The point is that ing, w can be estimated from below lgy, (infp, u;). Let us prove this. By Lemma 4.1 there
exists an linear second order uniformly elliptic operakosuch thatLw = £~ (D?w, Dw). Then (H3) and (78)
yield

Lw—vw= —gk(ilgfulel: x) <0 inBy,
2

Lw—vw= —gk<igfulel, X> < —(ﬂkl(il';ful) in oy C B, (87)
2 2

w=0 ondBy.

By the usual maximum principle > 0 in Bo. We now use the following consequence of a theorem by Krylov
(Theorem 12 on p. 129 in [30]), in the form which was stated in [2].

Theorem 7.1(Krylov). Let Lo be a linear uniformly elliptic operatowith bounded measurablcoefficients in

the form(27), and suppose € L°>°(B2). Supposex is an ellipticity constant forLo, and r is an upper bound

for the L°°-norms ofc and the first order coefficients @fp. Letv € Wlf;cN(Bz) be a positive function satisfying
Lov+cv<0a.e.inBy and Lgv + cv < —p a.e. in a closed subset C Bz, for somep > 0. Then there exists a
constantn > 0, depending only oWV, ag, 7, and a positie lower bound omeasgw) > 0, such that

infv > mp. (88)
B

This theorem and (87) give the following estimate from below
. S .
I}I;lf w = Kkl(pkl(lg;ul), (89)
whereky; is the constant from Theorem 7.1. Combining (86) and (89) yields
. S o (i
|£|1ka > (Pkl<|22f ul)- (90)

This proves (73) in Lemma 7.2. Finally, we take a sequengé_ as in Lemma 7.1 and a sequence of nested
balls{By, };:0, a; =1+ j/r. Then, as above,

o

wipy) < infug (91)
j+1 “j

and the second estimate in Lemma 7.2 follows by iterating {Hirhes (note that < n(n — 1)), in view of the
definition of (see (72)). O

By using the cooperativity assumption (H3) and the Lipschitz continuigy @ftu = 0 (recall thatg (0, x) = 0),
we have
L~ (Dzuk, Duk) —vup < f in By, (92)
fork =1,...,n. The weak Harnack inequality for scakguations (Proposition 4.4) yields

k] .2 < Coinf e + 1 v ) (93)

where p; andCy are positive constants which depend only®n«o, y, andv. We setp = min{p1, ..., p,} and
note that - |, r is non-decreasing ip > 0.
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Next, we replace everywhere in the above proof each fungtipfor which ¢;;(r) > 0 if r > 0 by a Lipschitz
continuous functio;; such that;; (r) < ¢;;(r) andg;;(r) is strictly increasing, for > 0 (if ¢;; itself does not
have these properties it is easy to see that such a fungtiozan be constructed). Of course, estimates (73) and
(74) in Lemma 7.2 continue to hold.

We set

¢1] ) _90,, <Kt

1

C
+ _*”f”LN(Bg)>
IC[./'
and
ot [1.f 1l ¥ (Bg)) = SUPBi, 11 0 Biy_yi, 5 © 0 Piniy (1) 0 Piiy (1),
k£l

where for eachk, 1), k #1, the cham{ } _o Is chosen as in Lemma 7.1. Note th&(z, s) is continuous and

increasing ori0, 00)2, and®g(0, 0) =
Then estimate (74) can be recast in the form

infu < q>0(|nfuk 1/ s s ) (94)

forallk,l=1,...,n,k#1.
Finally

lug Vv -- Vun|p2 lug + -+ +un|p2

< (nt YV 1)2 luilp,2

i=1

n
< (VP v ) C#(Zlnfuz +n||f||LN(Bs>>

i=1

< (n7H7 v m) oo min infus, £l sy ) + €IS s

1<isn B

= C¢0(ilf3'1fu1/\"'/\un, ”f”LN(Bg)) + Cllfllv By
1

:@('Eful/\ s Ny, ”f”LN(Bg))’
1

which concludes the proof of Proposition 3.21
The full Harnack inequality is an immedetonsequence of Propositions 3.1 and 3.2.

Part Il. Linear elliptic systems

8. The estimates in the linear case

In this section we restate and extend our resfribdgn Section 3 in the setting of linear weakly coupled
cooperative elliptic systems of second order. In thisrensimple but important case we obtain more precise
and easier-to-state results. In Section 10 we discuss some extensions and give some open problems ar
counterexamples.
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We study the system

Liui + c1a1(x)ui + cro(x)uz + - - - + c1n (Xu, = f1(x),
Loup + co1(x)u1 + c2o(x)uz + - - - + con (X)u, = fa2(x),

(95)
Lyuy 4 cp1()ug + cpa(x)uz + -+ + cpn () up = frn(x)
in the bounded domaife c RY; n, N > 1.
In order to simplify the notations we write (95) in the form
Lu—+Cu= f,
whereL = diag(Ly, ..., L), C(x) = (cij ()} j_g, u = (uz, ..., u)T,andf = (f1, ..., ).
The second-order elliptic operatats, .. ., L, are supposed to be in general non-divergence form
N 82 N 9
L = k b (x)—, 96
k ,-,Z_lau (x) Txin, + ; F(x) P (96)

and to be uniformly elliptic:

(L1) there existsyg € (0, 1) such that for alt e RV, allk =1, ..., n, and almost every € £2 we have
N

wlé?< Y afi(0EE; <ogtlE”
i,j=1
We assume that the operatdrs, . .., L, and the matrixC have bounded measurable coefficients, with

N n

2 2

L2 max b* —p2 <, max . <.

(L2) 1gkgn2|| i HL°°(A’2) S e E . lckillLoo(2) <
1= i=

We assume that the system (95) is cooperative, that is, for all indiges{1, ..., n}, withi # j,
(L3) ¢;j >0a.e.inf2.
Finally, we assume
(L4) feLN@ R,
and considel. " -viscosity solutions: € C(£2, R") of (95). Recall that any Wlf;cN(Q, R™) which satisfies (95)
a.e. inf2 is a viscosity solution.
The first result is the ABP estimate for (95). We prove it under an assumption which is milder that (H5) and
(H6). Actually, assumptiow” below is sharp, in a sense which will become clear later (see Section 14).

Theorem 8.1(ABP estimate). (a)Ve suppose that

(¥) there exists a functio = (Y1, ..., ¥,) € Wli’cp(.Q, R™) N C(£2,R"), for somep > N, such that

LY +C¥ <0 a.e.ing2,

v >0 in £2. (97)
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If (L1)—(L4)hold andu € C(£2, R") satisfies
Lu+Cu>—f ing,
then

SupuL VvV ---Vuy,) < C(sumqr Vvt + ||f+||LN(_Q)) (98)
2 1)

(recall f = f1 v ---V f,). Respectively, if is such thatLu + Cu < fthen
—inf(ur A~ Aup) < C(suﬂu[ Voeeevug) + ||f+||LN(Q)>.
2 1)

The constan€C depends oWV, «p, v, ¥, anddiams?2.
(b) If instead of(¥) one assumes ifa) the strongel(take¥ = (1, ..., 1)) condition

n
Zc,»j (x)<0 a.e.in2, foreveryi € {1,...,n}, (99)
j=1
then the following stronger conclusion holds true

SUpULV -+ Vi <supud VoVt + Casell £ Iy o) (100)
2 82

and, respectively,

- igf(ul Ao Aug) SSUPuT V- Vaug) + Caspll v ) (101)
a2
where the constartagp depends only oV, «g, v, anddiams2.

Remark 1. Takingn =1, u € Wé’CN(.Q,R) in (100), we obtain Theorem 9.1 in [22] (compare also with [2],
Theorem 1.3). This means our results containdlassical ABP estimate for scalar equations.

Remark 2. Hypothesis ¢) implies that the matrix operatdr + C satisfies the maximum principle 2 (see [16]
and Section 14 of our paper).

Remark 3. In the case when the second order coefficients of the elliptic operators., L,, are continuous
functions and 2 has some regularity, we can weaken hypothegis More precisely, instead & > 0 in 2 we
could suppose tha¥ > 0 in £2, with either? £ 0 on 92 or L¥ + C¥ #0 in £2. This weaker condition will be
shown to be equivalent taX) (see in particular Lemma 14.1 in Section 14).

Remark 4. The dependence r of the constant in Theorem 8.1 is expressed in terms of upper bounds on

\4'4 and Y1V Vi
1//1/\"'/\1%1 L%®(2) 1ﬁl/\"'/\l//n

Lw(ﬂ)'

We turn to the Harnack inequality fmon-negative solutions of (95).

Ouir first goal is to describe precisely the way system (95) can force the fungtions, u, to depend on each
other.

Let us restate the definition of a fully coupled system in the linear case.

Definition 8.1. A matrix C(x) = (c;; (x))fl.j:r which satisfies (H3), is called irreducible i, and the system
Lu + Cu = f is called fully coupled inf2, provided for any non-empty sefsJ C {1,...,n} suchthat N J =9
and/ UJ ={1,...,n}, there existg € I and jo € J for which

meas{x € 2| cigjo(x) > 0} > 0. (102)
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For simplicity, when (102) holds we writg, ;, # 0 in £2.

Next we give a notion of partial coupling for a non-fully coupled system. It is easy to see, by renumbering lines
and columns (i.e., by permuting the indicesf . . ., u,), that any matrixC can be written in the block triangular
form

C = (Ca)} 11, (103)

so that the matrix which we obtain still satisfies (H3); here ik < n, Cy; aret; x 1 matrices,y "}, tx = n, Cix is
anirreduciblematrix forallk =1, ...,m, andCy =0in £2, forall k,l € {1, ..., m} with k <[. Note thatm = 1
meang’ is irreducible, whilen = n meang’ is in triangular form.

From now on, we suppose thétx) is written in the form (103). We setp = 0, sx = Zf.‘zlt,», Sk =
{sk_1+1,...,s)and

Ug =Ug_ 141V -V Ug, Uk = Us 141N\ NUggs

forallke{1,...,m}.

Definition 8.2.Let (95) be a non-fully coupled system andAiet [, for some k, le {1, ..., m}. We call system (95)
(kl)-partially coupled, provided there exist indic@sj) € S x S; such that;; # 0 in £2. For simplicity, in this
case we write (7 £ 0 in £2.

We fix a pointxg € £2 and a ballBs := B(xo, 3R) C §2. We suppose the matr(x) is written in the form (103)
in B3g (i.e.,Cyx; =0 in Bag for k <[ andCyy are irreducible inBsg).
We set, forallk,/ € {1, ..., m},

m
Aw(B3g) = {(, j) | (i, j) € Sk x Sy, i # j andc;; #0in Bag}, A= U Ax
k, =1

(A can be empty, if (95) is totally decoupled) and fixe (0, 3) such thatAy (Byr) = Ax(B3g), for all
k,1e{l,...,m}.

We shall prove a Harnack inequality in the b&ljz. To avoid heavy notations, we take= 1 (in the general
case the constants in the Harnack inequality depend-en 3 We set, for alli, j) € A,

wij={x € Br | cij(x) > p}, (104)
wherep > 0 is taken so that meés;;) > 0.

Theorem 8.2(Harnack inequality)Suppos€L1) through(L4) are satisfied and lei > 0 be a solution 0f(95)
in B3g. Then

supig < C(infus + RIf v 5y )- (105)
Bg Br

forall ke {1,...,m}.
If, in addition, (95) is (kl)-partially coupled, then

supz v 1 < C(infuk + RILf ¥ 5y )- (106)
Bg Bg

The constant<” in (105) and (106) depend only om, N, ag, vR?, pR?, and a positive lower bound for
RN measw;;), (i, j) € AN{L, ..., )2
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Counterexample.We recall that our results fail for general nooeperative systems. For example, the functions
u = |x|%, v = 2N solve the system
{Au—v:Q
Av=0
and violate (106). See also the counterexamples at the end of Section 3.

in By c RV,

A particular case of (105) is the following

Corollary 8.1. Under the hypotheses of Theor8@2 we have

. < i .
supu; < C(infus + Rl s ) (107)
foralli=1,...,n.
If, in addition, systen(95)is fully coupled, then
supur V- Vi, < C(inful A Ay + R||f||LN(33R)>. (108)
Br Bg

Let us recall the earlier results on Harnack inequalitiefiiptic systems. Extending results by Mandras [33],
Chen and Zhao [10] obtained Corollary 8.1 for strong solutions of (95), in the £as@, under Holder regularity
assumptions on the coefficients of the elliptic operafors. .., L,. Their proof makes use of estimates on the
Green functions of_1, ..., L,. The result of Chen and Zhao was shown to holdcfl@re COL, bk e L™ by

Arapostatis, Ghosh and Marcus [1]. All these werklied on typically “linear” tools which requirﬁ =0andlead
to the additional regularity assumptions on the coefficients of the elliptic operators. We note that, using a Nash—
Moser type iteration technique, Muscalu [35] recently obtained a weak form of the Harnack inequality for a class
of elliptic systems in divergence form.
Finally, we state the two half-Harnack inequalities.

Proposition 8.1(local maximum principle)Suppose hypothes@sl) through(L4) hold. Let

Lu+Cu>—f (109)
in B3g. Then for allp > 0 we have

suputV Vi < C(Juf VeVt p2r+ RISV -V 1N Byp))-
Br

whereC = C(N, ao, vR?, p).

Proposition 8.2 (weak Harnack inequalityuppose hypothesfsl) through(L4) hold and let: > 0 satisfy

-

Lu+Cu<f (110)

in Bag. Then there exists a numbgr= p(N, n, ag, vR?) > 0 such that for any € {1, ..., m},

|l p.2k < C(ig:ﬂ FRISE VeV fsjnLN(BM)), (111)
and, in cas€95)is (kl)-partially coupled,

TV 1,20 < C (0 i+ RISV -V S g ) (112)

whereC is as in Theoren8.2
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9. Proofs

We begin with the proof of the linear ABP estimate (Theorem 8.1). First, the statement in (b) is a particular case
of Theorem 3.1 in Section 3.

In case system (95) satisfies conditid@n)( we make the following change of functions
Ui = k
R fk = L'
Yk Yk
A simple computation yields

1 - Lklﬁk)
—Lkukszuk+uk< )
Y Yk

iy = (113)

forallk=1,...,n, where, asin Lemma4.2,

di(x) B

N
Li=Lg+2 Z alkj(x) i) o
J

i,j=1
We have then, by Lemma 4.2(b),

(114)

n
Lyiix + ) éjiij = — fe (115)
j=1

where
_ 1 ;
Crj(x) = %(Cmﬁ’ + 8k Livk).-

We see that¥) implies
n
Y @) <0 ing, (116)
j=1

forall k =1,...,n. Thus, by making the change of functions (113), we obtain a new cooperative system which
satisfies (99). By applying the ABP estimate for such systems, which we already have, we obtain

SUI%I/flvthﬁn(
info Y A Ay,

Theorem 8.1 is proved.O

The linear local maximum principle (Propositi®.1) is a consequence of Proposition 3.1.

The proofs of the Harnack and the weak Harnack inggeswill be carried out through an induction argument.
We use induction with respect o, where, we recally: is the number of irreducible blocks which appear when
we write the matri>C in the form (103).

The casen =1 (that is,C is irreducible) is a consequence of the nonlinear Harnack inequality we already
proved in Part |. Note that in the case of a linear system the funafigrege linear irv

supu; v-~-Vu,J{+C||f+||LN(m>~

Supu1V -+ Vi, <
2 082

ij =t( inf es&ij(x)) zpt, (i,))eA,
XEw;jj
so that the basic estimate (74) reduces to

infu; > wjinfu; — Coll fllpv gy 77 (117)
B1 By
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and the functionbg which appears at the end of the proof of Theorem 3.2 is line@, s) = C1t + Cas. Let us
suppose Theorem 8.2 and Proposition 8.2 hold for systems with atimest irreducible blocks, and let us have
a system withn irreducible blocks.

Note that, by the induction hypothesis, Theorem 8.@ Rroposition 8.2 hold for the system formed by the first
sm—1 equations in (95). It remains to prove (105), (106), (111) and (112) forn.

The inequality (111) is obtained by repeating the Egfument in Section 7 and by using the fact that (117)
holds fori, j € Sy, i # j. Note that (L3) implies

(Li—c;)uigﬁ inBz,i=1,...,n
so that the weak Harnack inequality for scalar equations yields

uilp2 < C(infui 41 v ) (118)

Let us prove (112). Fix € {1, ..., m — 1} such thaiCp,; # 0 in B;. Let for exampler;,, # 0 in By, for some
i0 € Sy, jo € S;. Then, by (117),

. . +
int i < ¢ (infuio + 113 Nz (119)

Using (111), (117), (118), (119) and the induction hypothesis, we obtain

m vV urlp2< C

—~

|”_m|p,2+ |M_l|p,2)

<C Z mfu, + mln lnf ) +1If* ”LN(Bg))
IESm
<C Z mfu, Iignf Ujo + ||f+||LN(Bg))
IESm Y2
<cCc(2 Z mfu, +If ||LN(33))
ieSy

<C m|n|nfu,+||f IILN(33)>
i€, m

=C

A/\/—\/—\/—\

i+ 11 )

which proves (112).

Finally, let us prove (105) and (106). We distinguish two cases.

Casel. There exists a numbeée {1, ...,m — 1} such thatCy; =0 in By, forall k > [.

In this case we remove from (95) the equations with numbesfs and obtain a system to which the induction
hypothesis applies.

Case2. Foralll € {1,...,m — 1} there exist& > [ such thaCy; # 0 in By.

In this case we can even prove that

supulv---vm,gc(infuﬂ+||f||LN(33)>. (120)
By By

In view of Proposition 8.1 it suffices to prove that

@152 < C(infum + 1 v s ) (121)
1



J. Busca, B. Sirakov / Ann. I. H. Poincaré — AN 21 (2004) 543-590 573

forall I € {1,...,m}. Forl = m this follows from (111). On the other hand, the assumption of Case 2 implies,
by (112), thatforall € {1, ..., m — 1} there exist& > [ such that

lp.2 < C(infur + 1 vy )
1

Finally, we take a sequende= kg < k1 < --- < k, = m such that the latter inequality holds betwegn and
u,,, and at mosin — 1 nested balls betweeBy and B;. Iterating the inequality between each two of them, we
obtain (121). O

10. Further results and some open problems

While the hypotheses under which we prove our Harnack inequality seem natural — and the result seems
complete in view of what is known for scalar equations — a number of questions remain to be answered about
the ABP inequality, and even about the maximum principle. Namely, (H5) and (H6) are not optimal. For instance,
one could expect that Theorem 3.1 holds only under the hypothesis

ac; " . . . .
Clu,x)= (i(u x)) is negative semi-definite for a.e, x). (122)
J i,j=1

Indeed (122) is more general than (H5) and (H6) in view of the following lemma.

Lemma 10.1.Let M = (m;;) € M, (R) be a cooperative matrix, i.em;; > 0for i # j. Suppose either that

n
> mij<0 foralli=1,....n (123)
j=1
or that
mij < mij, (124)

where M = (imi;) is a negative semi-definite matrie., (Mg, &) < 0for all £ e R"). ThenM is negative semi-
definite.

We give the elementary proof of Lemma 10.1 at the end of this section, for the sake of completeness.

Although Theorem 3.1 holds under (122) for some particular systems, this proves to be false in general. This
section contains a discussion on these points.

The problem is quite delicate, even in the linear case. ttiquéar, there turns out to be important differences
between systems with divergence and non-divergence form operators, between systems with autonomous (i.e
constant in the linear case) or non-autonomous zero-order terms, and between systems with the same or differe
linear elliptic operators.

To avoid technical complications, in this section we consider only strong solutions, that lsqf;CN (£2,RHN
C(2,R").

First, it follows from Theorem 3.1(b) that the system

L (D?ui, Dui) + (Cu); =0, i=1,...,n,
satisfies ABP (that is, (4) holds),dfis a constant negative semi-definite matrix.
Next, we recall that ABP remains true under (122) for linggstems with elliptic operators in divergence form.
Proposition 10.1.Suppose € W2V (2, R") satisfies
Lu+Cxu>—f (125)



574 J. Busca, B. Sirakov / Ann. I. H. Poincaré — AN 21 (2004) 543-590

in the regular domairf2, whereLy, k=1, ..., n, can be written in the form
N

Ly = Z 3 (af (x)0)

i j=1
for somea{fl. e C1(£2), and supposé(x) = C(u, x) satisfieg122). Then

Supuy V- Vi, < C(supuir Vvt 4 ||f+||LN(.Q)>' (126)
2 052

Remark. The assumption that the coefficients of the elliptic operators are regular can of course be relaxed by
considering the weak formulation of (125). We have made these hypothesis for simplicity, in order to remain in the
non-divergence framework.

Proof of Proposition 10.1. As we show later, it suffices to prove thiat- C satisfies the maximum principle (since
this implies &) from Theorem 8.1, see Section 14, Theorem 14.1)ullat such that

Lu+Cu<0 ing2,
u>0 onods2.

We have to show that > 0 in £2. We use a standard argument. We multiply tkte equation by:;” and integrate
over 2. We obtain

n
—/(AiDui,Du;)dx—i—/Zc,’juju;<O, i=1,...,n,
0 o j=1

(127)

whereA’ = (a' ), ;. Summing over we obtain (recall that = u™ — u ™)

n

n
Z/(AiDu;, Du; ) dx — Z cijuju; <O0.
i:lg i,j=1

Hence, by ellipticity and (122),

0102/ |Dui_|2dx < /(C(x)u_,u_) dx <0,
i=lg 2
which impliesy;” =const=0,i=1,...,n. O

The next result shows that the ABP inequality rensairue for strong solutions of linear systems in non-
divergence form under assumption (122), provided all elliptic operdtoewincide.

Proposition 10.2.Suppose& (x) = C(u, x) satisfies(122), u satisfies(125)and thatL; =--- = L, is a scalar
second-order operator with bounded measurable coefficients in the(8@)mThen(126)holds true.

Remark. We do have to restrict here to strong supersolutions; we suspect that this result extends to viscosity
supersolutions, although we do not have a proof.

Proof. By dividing each functiom; by a solution ofLy = —1in §2, 2 € §2, we can reduce to a modified system
with negative definite zero-order matrix, see (47) and the computations thereafter. We keep the same notations fo
simplicity. Hence we can assume

(C)E, &) < —alg|® forallé eR", aex e, (128)
for somea > 0.
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As we explained above, in order to establish (126) it is enough to show that the maximum principle holds true
for L+Cin £2,i.e., that (127) implies;” =0in £2, for all i. First, note that by the cooperativity assumption (L3)
thei-th equation in (127) yields

n
Liu; + C,','u;i_ — Zciju; <0. (129)
j=1

Let us denote by, the convolution of the function — %(z,)2 with a standard smoothing kerngl (that is,
Jgpe=1,p: 20, pe € C(R), Suppps C (—¢, €)).

Note thate; (z) = pe * (—z7), so that|—¢, (u;) — u; | < e. By multiplying (129) by —¢, (u;) (> 0) and by
using (128) we get

—Zqﬁ;(ui)Llui < —o Z(uf)2+Ce, (130)
i=1 i

2.n

<" and any conve € C? we have the following

whereC depends only ofju|| .= (). Observe that for any € W,
well-known Kato inequality

Li(¢(w)) = ¢'(w)Liw. (131)
We assume for contradiction thﬁi(ui‘)2 > 0 and apply (131), withw = u;, ¢ = ¢¢, to (130). This yields
—Ll(Z%(un) <= ¢e(ui)Liu; <O (132)
i=1 i=1

for all ¢ > 0 small enough. By the scalar maximum principle applied to (132), noticing:thiatd ond $2 implies
¢.(u;) = O(e) ondS2, we get

> e(ui) < Ce (133)
i=1

in 2. Takinge — 0 we getu; =0 in £ for all i, a contradiction. O

In the nonlinear case we are able to prove that system (1) satisfies the maximum principle under (122), providec
it is autonomous. We do not know whether ABP holds in this situation.

Proposition 10.3.Suppose € C(£2, R") satisfies
L~ (Dzu,', Dui) +ci(u) <0 in £,
u>0 0nas, (134)
i=1...,n

in the viscosity sense. Assume the functigreatisfy(H0), (H3)and
n
(c(v), v) = ZC:’(U)Ui <0 forallveR". (135)
i=1
Thenu > 0in £2.

Remark. Condition (135) is weaker than (122). This is nallusince in Proposition 10.3 we aim at a maximum
principle only.
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Proof of Proposition 10.3. Setu; = u;, wherey is a strong solution of the equation
£~ (D*y, DY) =-1 ing2,

Y =0 o0nas,

with £2 € 2. Up to adding a constant to we have

L~ (D?%;, Dii;) + ¢ (1) <0 in 2,

u>0 ondg, (136)
i=1...,n,
wherec is defined by
~(17) — 1 (17 17 - j— 1
ci(u) = ECI () —eu;, &= U, ¥

(see Lemma 4.3 and (48)). Now system (136) satisfies all hypotheses of Proposition 10.3, with a strict inequality
in (135), for allv € R™ \ {0}. For simplicity we writec instead of andu instead ofi.
By (H3) we have

£7(D2u,-, Dui) +ei(—uqg, ..., —u;_q,uj, —Ui g —u,)<0 ing
for all i. Hence
Lt (Dzu;, Du:) +c¢i(—u") <0,
sinceu; = —min(u;, 0) and the minimum of supersolutions is a supersolutioniiets2 be a point of maximum

of the nonnegative functiom;”. Setc; = —c;(—uj (x1), ..., —u, (x,)). We claim thai; > O for alli. If not, there
existsj € {1,...,n} such that; < 0 and, by continuity,

Ci

>

for (x1,...,x,) € O, whereQ is a neighbourhood afr1, . . ., ), such thau,T achieves its maximum i@ atx;.
We get '

¢ (—ul_(xl), cees —u;(xn)) >

_ o _ _ _ _ _ i
L (Dz(uj (xj)—uj),D(uj (xj)—ul/))=—£+(D2uj,Duj)g—E<0

in O. By the scalar strong maximum principk? = u;(xj) in O, which is a contradiction with the last inequality.
Sety; =u; (x;) >0and y=(y1,..., y,). Then, byc; >0 and (135),

n
0< ) (—yei(=y) <0,
i=1
unlessy; =0foralli. O

Finally we show, through a counterexample, that condi{ib22) is not sufficient to ensure the validity of the
maximum principle in the non-autonomous case, even for a linear system.
Setl = (—3, 3) and define the functions d € C*°(I) as follows

—e ifxe[-8,—1],

a(x) = —§ if x e [1.3], d@) =

if x e[-3,—1],

—e ifxell, 3]
and such that(x)d(x)=2in 1.
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Letv € C%(I) be a positive function such that
v(=3)=v3)=0, V>0 In[-3,1H)uU(@2,3] and v <0 in(l,2).
Setu(x) = v(—x). Itis easy to see that if andcg are small enough the following inequalities hold
M+(D2u)+a(x)u+v20 inl,
M+(D2v)+u+d(x)v20 inl, (137)
u,v=0 onaol.

This system satisfies (122) but it does not satisfy the maximum principle,sincg 0 in £2. Note also that (137)
can be written as a linear system, by using Lemma 4.1.

Proof of Lemma 10.1. Setqg;; = %(m['j +mj;),aij = %(n‘z,»j +imj;), andA = (a;;), A = (a;;). If (123) holds one
gets by a trivial computation

(M&,£) = (AE.§) <= aij(§j — &)* <0.
i<j
In case (124) is verifiedsf; < a;; and(A&, &) <Oforall§ e R") we setB, =¢l — A, B, =¢l — A= (b;;), SO
that B, is positive definite. It is clearly enough to show tifatis positive definite under the additional assumption
that A andA differ only in one entry, say

aij =a;; it @, j)# Go, jo) and ajyj, < @igjo- (138)
The result then follows easily by taking a chain of matrices each two consecutive elements of which differ only in
one entry, and by letting — 0. _
So suppose (138) and s&fr) = (1 —t)B, +t B, = (b;;(¢)). Let, as beforeM*! denotes the submatrix obtained

from an arbitrary matri¥¥/ by removing itsk-th line and/-th column. By (138) deBi®/ (r) = detB/ (r), for any
j €{1,...,n}. By Cramer’s rule and Lemma 5.3 we get

detB(r) = Y (=1 by () detB™/ (1) 4 (— 1)y, (1) detB o0 (1)
J#Jo
> (=1 biy (1) detB™ (1) + (= 1) by jo (1) detBO0 (1)
J#io
=detB, > 0.

It follows, by continuity inz, that all eigenvalues aB(1) = B, are positive, i.e., thaB, is positive definite. O

Part lll. Applications

In the third part of the paper we give several applications of the results obtained in Parts | and II. We prove
a maximum principle in unbounded domains and a sharp strong maximum principle for cooperative systems. An
important application is the existence of a principal eigenvalue and a principal eigenfunction of a fully coupled
system. This result permits us to obtain a necessadysaifficient condition for a cooperative (not necessarily
fully coupled) system to satisfy the maximum principle. Finally, we show how our results can be applied to give
Harnack type estimates for a class of higher order elliptic equations, including the biharmonic and the polyharmonic
equation. We show the existence of a principal eigenvalue and a principal eigenfunction for these equations, in &
sense which seems to be new.

In order to simplify the presentation all these applications are given in the linear case although most results
(maximum principles, higher order equations) readily extend to nonlinear equations.
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11. A maximum principle in unbounded domains
We say that the operatdr+ C satisfies the maximum principle 2 provided for any € C(£2, R"),

{Lu—i—CugO in $2, (139)

u>0 onds2

impliesu > 0in 2. Whens2 is bounded, it is well-known that the assumptions of Theorem 8.1 (the ABP estimate)
are sufficient to ensure that+ C satisfies the maximum principle 2 (see [15]). This fact is a particular case of
Theorem 8.1.

The ABP estimate can also be used to derive a masirprinciple in unbounded domains. Thexhproposition
contains a result of this kind. General results of the same type for scalar equations can be found in [6].

Proposition 11.1.Let 2 € RY be a domair(bounded or unbound@dSupposéL1) through(L4) hold and

n
D cijx)<-8<0 ae.ing2 (140)
j=1
foralli=1,...,n, and some > 0. Then there existsy(8, N, ag, v) > 0 such that
Lu+Cu<0 in 2,
u>0 onasg, if 92 £ 0,

ug (X) V-V, (x) < CeRlin 2, for someC > 0,
impliesu > 0in £2.
Proof. We takeg > 0 such that N oy 282 + v+/N B < § and seteg = /2. We make the change of functions
i; =u;/g, with g(x) =coshBxy - --coshBxy. Thenu = (i1, ..., u,) satisfies
Li+Ci<0 ing2,
whereL = (L1, ..., Ly),

B} 3
Ly=Li+28 )  af (x)tanhﬁx,»W

1<i, j<N J
and
— . L L
C=C+d|ag<ﬁ,..., ”g).
8 8

More preciselyC = (€}, j—1» With

= crj + Ok (ﬁz > af,tanhBxtanhBx, + 6% D aj+p > bf tanh,Bxl).
1<I.m<N 1IN 1IN
I#m

Note that, because of the choice pfand o, C satisfies condition (99) an@d~ — 0 as|x| — +o0o, x € £2.
By applying ABP inequality (Theorem 8.1, (101)) #oin balls of increasing radii, we obtain the conclusion of
Proposition 11.1. O
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12. A sharp strong maximum principle

An immediate consequence of theak Harnack inequality (Proposition 8i8 the following strong maximum
principle. We recall we suppose that the zero order matiswritten in the form (103) in2.

Proposition 12.1.AssuméL1) through(L4) hold. Suppose € C(2, R") satisfies

Lu+Cu<0 inS$2,
u>0 in 2.

Let1 <k < m and suppose there exists a paigte £2 and an index e S such thaty; (xo) = 0. Thenu; = 0 for
all j € S. If, in addition,1 < k < < m are such that there exists a sequemt;e;zo for which

k=ig>i1>--->i,=[ and Ciji_/+1$0 in £2 (141)
thenu; =0in 2, forall j € Uj—oSi;-

Remark 1. In the particular case when the system is fully coupled<1), Proposition 12.1 reduces to the known
strong maximum principle (see [40]), which states thatg) = 0 for somexg € £2 and some < {1, ..., n} implies
u=0in £2.

Remark 2. The strong maximum principle given by Propositib2.1 is sharp in the sense that if a sequence as
in (141) does not exist then, clearly, the system does not relate the functions with indiie®ithe functions
with indices inS;.

13. Existence of a principal eigenvalue for a fully coupled system

Throughout this and the next section we suppose that (L1) through (L3) hold and, in addition,
af; € C(82),

foralli, j e{l,...,N},ke{d,...,n}. Allfunctions considered belong Wlf)’c"(sz, RMHNC(L2,R"), forallg < oo
(except otherwise stated), so thit contrast to the rest of the papal| equalities and inequalities hold almost
everywhere.

For simplicity we suppose tha® is regular (for exampleg2 satisfies a uniform exterior cone condition). All
our results can be extended to arbitrary domains, by using the arguments in [2].

We set

Ar=A1(L+C)
= sup» € R | there existar € W2 (2, R") such tha¥ > 0 and (L+C + A1)¥ < 0in 2}.

oc
Our main result in this section is the following theorem.

Theorem 13.1.Suppose thaf is an irreducible matrix(see Definition8.1). Then(a) there exists a function
@1 € W2 (2,R") N C(2,R"), Yg < oo, such that

(L+C+rD)d1=0 ing,
{®1>0 in £2,
®1=0 onos2.

2(b There are no eigenvalues ef(L + C) in the interval(—oo, A1); the vectord1 spansKer(L + C + A11) in

Wige (£2,R")N C(£2,R™) under the Dirichlet boundary condition.
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(c) Assume there is a functich WlfJ’CN(.Q, R™) such that
>0 and (L+0O¥ <0 ing.

Then eitr]erxl >00ra;=0 and_lI/ = const @;.
) If & € W2 (2,R") N C(2,R") satisfies

(L+C+1D¥ <0 ing,
v >0 onos2

then¥ = const @;.
(e) If we normalize®1 = (¢1.1, . . ., $1.») in such a way that

min ¢1;(xg) =1
1<i<n¢”( )

for somexg € £2, then

supP1:=suppr1V---Veér, <C,
2 2

whereC depends only omp, £2 and the same quadities as the constanthich appears in the Harnack inequality
(TheorenB.2in Part 11).

Remark 1. Supposing priori thati; > 0 (he actually uses a hypothesis of tyge) @nd proves his hypothesis

is equivalent tor; > 0), Sweers proved parts (a) and (b) of Theorem 13.1 in [40] (his proof relies on the Krein—
Rutman technique; see also [3] for the case of a non-regular domain). We are going to use this result in the proo
of Theorem 13.1.

Remark 2. If the boundary ofs2 is not regular the principal eigenfunction may not belong1@2) and®, =0
ond£2 only in a certain sense (as in [2] and [3]).

Remark 3. In [2] Berestycki, Nirenberg and Varadhan made a deep study of the properties of the principal
eigenvalue and the principal eigenfunction of a scalar elliptic operator in a general domain. The basic tools they
used are the ABP and the Harnack—Krylov—Safonov inequalities for scalar equations. Since we now have suck
inequalities for cooperative elliptic systems, it is only atteaof technique to show that all results in [2] have their
analogues for systems. Here and in the next section we present some of these analogues (and often merely ade
the proofs in [2] to the case of a system). To extend to systems the rest of the results in [2] is left to the interested
reader.

Remark 4. The hypothesis that the system is fully coupled can be relaxed in Theorem 13.1.

Remark 5. In [25] Hess considered a related eigenvalue problem. He showed that the equatioruC® =0
has a solution{, @) under Dirichlet boundary conditions, witla > 0, ® > 0 in £2, providedc,fk = 0 for some
k €{1,...,n}. Inother words, Hess gave a condition@nnder which one can find a positive constarguch that
M (L + 1C) =0, in terms of our definition of1.

Proof of Theorem 13.1.1t follows from the definition ofr; that for anyr < A1 the matrix operatof. 4+ C + A1
satisfies the hypotheses of Theorem 1.1 in [40] (namely, this operator is cooperative, fully coupled, and satisfies
a condition of type ¢)). This theorem implies the existence of coufle, @,) such that®, e Wlf)’clv(.(z, RM) N
C(2,RY), uy >0and
L+C+Ar+uw)D)®, =0 ing2,
@, >0 in £, (142)
! @, =0 onos2.
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We claim that

C1
)‘<)¥+MA<)»1<E,

581

(143)

whereCy, = C1(N, ag, v) andR > 0 is such that2 contains a ball of radiug.

The first inequality in (143) is obvious. The second inequality follows from the definition ahd (142). The
last inequality in (143) is known to hold if; is replaced by.1(L; + ¢;;) — the principal eigenvalue of trexalar
operatorL; + ¢;; in £2, for anyi =1,...,n (this is Lemma 1.1, page 51 in [2]). On the other hand, sifi¢e

cooperative,
(L+C+ D@ <0 implies (L;+cij+Ar)¢i <0
(@ =(¢1,...,%n)), hencery < A1(L; +¢y), foralli =1,...,

We now fixs =8(N, ag, v, £2) > 0 such that

2 ey
8 < {2CaBp V+ﬁ

(Cagp is the constant which appears in Theorem 8.1(b)).

Let xo € 2. We normalize the vecto®;, = ($x 1, ..

minigi<n @i (xo) > 0, so that we can suppose
qbk)i(xo))l, foralli=1,...,n,
and

¢A,l AN ¢)»,n(x0) =1

n.

., ¢r.n) by dividing the equation in (142) by

(144)

We take a compact s&f C £2 such that we haveg € K, Bg C K, A(K) = A(£2) (A is defined in Section 8,

page 38), and
measgs2 \ K) <.

It follows from (144) and our Harnack ig@ality (Corollary 8.1 in Part Il) that

supPr1V -V, <C2
K

(145)

(the constant, indexed or not, depends only on the appropriate quantities, in partiCulsindependent of).

Sete=(1,1,...,1) and®, = &, — Coe, so that
®; <0 ond(R2\K).
We have, by (142) and (143),
(L+C—vD)®) = -+ i+ up)® — Co2(C—vi)e

C1 .
2—(1}4—?)@151 in2\K,

(146)

(147)

where we have used the fact that (L2) impli€s- vI)e < 0. This fact also shows that the operator in the left-hand

side of (147) satisfies the hypotheses of the ABP estimate (Theorem 8.1(b)). Applying this estimate to (147), we

obtain

C1

SUPP; 1V - Vi —C2< CABP(V + —2>

2\K R 2\K
1

<5 SupgriV -V n.

2 \k

81/N Sup(ﬁk,l VeV ¢A,n

(148)
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By combining (145) and (148) we obtain

| D1l Loo(2) =SUPG, LV -+ V Py < C3.
2,

Since
n

Ligni ==Y (e — 8j O+ 1)) n

j=1

we see thali¢, x remain bounded iL*°(£2) asr — A1, forallk =1, ..., n. Classical interior elliptic estimates
for scalar equations imply

||¢A||W2vq(g/) <C, (149)

forany 1< ¢ < oo and any2’ € 2.
We infer from (149) that there exists a seque(ﬂd@}‘le and a function?; such that

AV =y and oY) =o,;) — @1

weakly in szj’é’ (£2),1 < g < 0o, and uniformly in any compact subset@f It follows that®; solves the equation
(L+C+xDP1=0 ing

(note that (143) implies ") 4 1, ) — A1), and
0<P1<Cze Iing2.

Since, by (144)®1(xo) > e, the strong maximum principle implies; > 0 in £2.
Finally,

Lo = _cpl) — ()\(j) +MA(./))¢(j)
C1C3

72 e=—Cge in$2,

> —vCze —
so the usual maximum principle for scalar equations implies
&Y < Cadg in 2,
where@y is the solution of the problem

Ldg=—¢ ing2,
Po=0 onos2.

Hence
0< @1 <CsPg in g2,

S0P, € C(2) andd, =00nds.
Statements (a) and (e) of Theorem 13.1 are proved. )
The first part of statement (b) follows from the result of Sweers (Theorem 1.1 in [40]). Indeed, if; is an

eigenvalue for—(L + C) then the operatot. + C + @I satisfies the hypotheses of Theorem 1.1 in [40], and
hence does not have negative eigenvalues — a contradiction. The second part of (b) is a particular case of (d).
Let us prove statements (c) and (d). It is clear that the assumptions in (c) impiy. If A1 =0, set

t=sup{teR|¥ >1d1in 2}. (150)
By continuityW > t®;. If ¥ = td1, we are done. If not, the strong maximum principle, applied to
(L+C)(¥ —tP1) <0,
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implies¥ > t®1 in £2. We now make use of the maximum principle in “small domains” obtained by de Figueiredo
in [14] (this result is stated in Corollary 14.1 below). It follows from this result that if a compadf set2 is such

that mea&2 \ K) is small enough, thed + C satisfies the maximum principle if2 \ K. SinceK is compact,
there existg > 0 such thatv > (r + ¢)®1 in K. Since

{@+CXW—@+@¢Q<O in2\K,

v —(t+e)®1>0 ona(2 \ K), (151)

we get, by the maximum principle; > (t + ¢)®1 in §2, which contradicts (150).
Finally, let us prove (d). We can suppose that= 0 (replaceC by C + 111). It suffices to findx > 0 such that

Z=Y+a®P1 >0 inf

(Z then satisfies the assumption in (c)). We fix a comgact §2 such thatl + C satisfies the maximum principle
in £2\ K and we takex > 0 such thatZ > 0 in K. Since

(L+C)Z<0 inR2\K,
Z>0 on (2 \ K),

we getZ>0in2\K.
Theorem 13.1 is proved.O

At the end of this section we recall the following result of Sweers [40].

Theorem 13.2(Sweers) Suppos€ is irreducible and Ietf € L1(£2,R"), g > N. If 11 > 0 then there exists a
unique solution inqu[ZJ’é’(Q, R™) N C(£2,R") of the problem
{Lu—i—Cu:—f in 2,
u=0 onas2.

Moreover,f> 0in £ impliesu >0in £2; f: (f1,..., fn) =0and f; #0, for some, implyf > 0.

14. Necessary and sufficient conditions for a linear system to satisfy the maximum principle

The existence of a principal eigenfunction permits us to show that condi#igoim Theorem 8.1(a), which has
long been known to be sufficient for the maximum principle, is also necessary for its validity. Our result, applied
to a fully coupled system, says the maximum principle holds if and only if the principal eigenvalue of the matrix
operatorL + C is positive. This result contains the well-known necessary and sufficient condition for a scalar
operator to verify the maximum principle.

Let the matrixC be written in the form

C= (Ckl)zl,lzl (152)

in £2, where, we recall, KX m <n, Cy arer x 1 matrices,y ;' = n,Cy is an irreducible matrix for
al k=1,...,m, andCy; =0 for all k,] € {1,...,m} with k < [. We have setsg =0, s = Zf.‘zlt,», and
Se={sk—1+1, ..., 5]
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Let 2P e R and® € w29 (2, R%) N C(R2,R%), Vg < oo, be the principal eigenvalue and eigenfunction

of the operator* + Ci in £2, where we denoté® = diag(Ly, ,41..... Ly,). The existence of{” and®{" is
ensured by Theorem 13.1.

Theorem 14.1.Let (L1) through(L3) hold and Ieta{‘j be continuous functions, for all j, k. The following are
equivalent

(i) L + C satisfies the maximum principle i, in the sense described in the beginning of Sectibn
(i) A >0 forallke(1,...,m};
(i) there exists a functiow > 0in £2 such that(L + C)¥ < 0in £2, and eithers 200nd2 or (L +C)¥ #0
in £2 (component-wige

Proof. (i) = (ii). Suppose there existse {1, ..., m} such that.® < 0. Set
v =(0,....,0,0,0,...,0)
(the only non-zero coordinates @f are those with indices ifi;). Then

(L+0)w=(0.....0,. -2 o Corud ... Cud?),

so, by (L3),
(L+C¥ >0 ing2,
v =0 onos2,

but¥ £ 0in £2, which contradicts the maximum principle.
(i) = (iii). We use a recurrent procedure to constrirce= (D . w ) (w® consists of; components).

Sety @ — q)il), If Cp1 =0 we takew @ = qbiz). If Co1 2 0 we takew @ to be the solution of the problem

@)
A
(LZ +Cor+ %)w@ =—CvD in g,

v@ <0 in £,
g =0 onas.
This boundary value problem is solvable, by Theorem 13.2.
Finally, for any! € {2, ..., n}, when we have constructed?, ... w(=D we takew? to be eitherqﬁf), in
caseCy =0forallk=1,...,1—1, or the positive solution of the problem
NG -1
L’+C,l+i>w<l>=— Cr® in 2,
( 2 1;1 (153)
yh =0 onas,

in case the right-hand side in (153) is not identically zero.
Then we have > 0 and

(L+0OW < (_xy@; - )""’_lT@im)) <0 inQ.

(iii) = (ii). Let us notew = (¢ D ... @) > 0. Since (L3) holds, we have
(Lk + Ckk)lll(k) <0,
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and eithenr® =£ 0 on 920r (LX 4+ C)w® £0in 2, forallk =1, ..., m. It follows from Theorem 13.1(c) that
eitherr?’ > 0 orA{" =0 and, in the latter case® = const #". The last equality is impossible, by (jii) and
the properties ofp;.

(iii) = (i). We show that (iii) is equivalent to condition( in the ABP estimate (Theorem 8.1(a)). Then the
conclusion is immediate, since the maximum principle is a particular case of the ABP estimate.

Lemma 14.1. Supposerl” > 0, for all k = 1,...,m. Then there exists a functio# e WhZ)’Cq(Q,R”) N
C(R2,R"), Vg < oo, such that
{(L+C)J/<0 in £2,
¥ >e in §2.
Proof. Since (iii) is equivalent to (ii) we can consider the veciorconstructed in the proof of (ige (iii). Then

we can adapt to our situation the proof of Lemma 6.1 in [2]. Let us sketch the argument.
We take a compact sé& C £2 and solve the following scalar equations

LW =—-2ve in2\K,
:LW:O ink,
w=0 onas2.

As in [2], by takingK sufficiently close ta2, we can ensure tha/ < e in £2. Takingeg such that > gge on K
and setting

a= max and ¥ =e¢+ W +a¥,

1<k<m 3P gq
we get(L +C)¥ <0in £2, asin [2].
Theorem 14.1 is proved.O

Finally, we give a lower bound for the principal eigenvalue, analogous to the estimate in Lemma 4.1 in [2].

Proposition 14.1.Under the conditions of Theoreb3.1, set

- .t
by= 1Qa<xn{ ; leijllzoce) + ||cj,-||Loo<g>}.
i#]j

SAS

Then
1

AM>———m—F— — b1
! Cagp|2|Y/N !

Proof. Apply the ABP estimate to
(L+C—b11)DP1=—(b1+ 11)P1.
The following maximum principle in small domair(see [14]) is a consequee of Propogion 14.1 and
Theorem 14.1.
Corollary 14.1. Supposé€L1)—(L3) hold. For anyd > O there exists a positive numb&e= §(N, co, v, d) such that
diam2 <d and |£2|<$

imply that the operatoL + C satisfies the maximum principle {B.
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15. Higher order equations. Estimates for equations of polyharmonic type

The equatiom\"« =0, n > 2, is very classical. It is known that solutions of this equation (called polyharmonic
functions) do not admit the same estimates as harmonic functions. However, there is an important subclass o
polyharmonic functions (the so-called completely superharmonic functions, see below) for which Harnack and
Liouville type results have been obtained. The possibility of extending these results to equations with right-hand
side and zero-order term has been an open question for a long time. Our estimates for systems permit us to give ¢
affirmative answer to this question.

Our results give ABP and Harnack estimatesdquations of arbitrary order in the form

(—L,, — C,l(x)) e (—Ll - cl(x))u —cXu=f(x) Ing (154)

(in contrast to the rest of the paper, in this sectioand /' denote scalar functions). It is easy to see that (154) is
equivalent to the system

LU +CU= ¥, (155)
where
c1(x) 1 0 0 u
0 ctx) 1 ... O (—L1—c1u
Co=| .. S E U= :
0 0o 0 .. 1 1
c(x) 0 0 ... ) (M= (= Li = ci)u

andf =(0,...,0, /). Note that the matrix is fully coupled when: = 0 and is in triangular form when= 0.
The simplest and most studied example for (154) is the biharmonic equation

—A(Au) +c(x)u= f(x) in$2, (156)
which corresponds to the system
Au+v=0,
{ Av+c(x)u = f(x). (157)

We have the following Harnack estimate for Eq. (154). We give separately the Harnack estimate for the
polyharmonic equation with a right-hand side.

Theorem 15.1Let f € LN (2).
(a) Suppose that € C2'~2(£2) satisfies the equation
=A)"u=f (158)
in the viscosity sense i? and
(-A*u>0 (159)

inaball B3g C 2, fork=0,...,n— 1.
Then

< Clinf R , 1
supu < C(infu+ RILS1v(sy) (160)

whereC = C(n, N, R).
(b) Letc € L*® andc¢; € L*>°(£2), i =1, ..., n, be functions such that

c#0, 0<c<v, max [cllpee) <v.
1<k<n
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Letu € C%*~2(2) be a non-negative viscosity solution of

(=Lp—cn)---(=Li—cu—cu=f ing (161)
such that

(=Lk—cr) - (—L1—cu =0

forallk=1,...,n—1.
Then

k k
su vV max —L; —¢ <Clinfiu A min —L; —¢ R .
BRp{u 1<k<n_l<ilj!.( i cl))u} (BR {u lgkgnl<ﬂ( i cl)>u} + ||f||LN(B3R)>

Functions which satisfy condition (159) ardled completely supedrmonic (of ordern — 1). It is easy to see
that this hypothesis cannot be omitted in Theorem 15.1 (take for example |2 in the unit ball; then the weak
Harnack inequality fails, sinca2y =0, u > 0, 4(0) = 0, butu % 0).

The patrticular role of completely superharmonic fuont was already noticed by M. Nicolesco in his classical
book [36, pp. 16—25]. He proved that the coefficients in the Almansi expansion of a polyharmonic function which
satisfies this property are of constant sign, as well as a Harnack convergence type theorem for such functions
Harnack type results for positive solutions affu = 0 were obtained by many authors, mostly by studying
spherical means of (see, for instance, [18,20]). An interesting Liouville type result for completely superharmonic
functions was proved by [37]; other theorems of Lidi@type can be found in [19]. The inequality (160) fr= 0
andn = 2 appears for example in [39] (we could not find a reference fer2). All these results rely heavily on the
polyharmonicity of the function and could not be extende@duations with a non-trivial right-hand side. Quite
little is known about the equatio-A)"u — c¢(x)u = 0 either (see also Theorem 15.2).

Recently, using Green functions, Grunau and Sweees[&% Theorem 5.1]) obtaidanaximum principle type
results for classical solutions of (154), in the case when the domain is a ball and all derivativefooder smaller
thannr vanish ond 2. In [24] they used this result to obtain a local maximum principle for equations of order 2
provided the lower order coefficients are sufficiently small.

Theorem 13.1 permits us to define a “principal eigengaland a “principal eigenfunction” for the operator
(=A)" — ¢(x), ¢ > 0, under Dirichlet boundary conditions for the law@der Laplacians. The positivity of this
eigenvalue is a necessary and sufficient condition for the operator to satisfy the maximum principle. Note that
the existence of a first eigenvalue for the other classical polyharmonic boundary value problem (Lauricella’s
problem) — in which the boundga conditions require thaD*u = 0 on 952 for k =0,....,n — 1 — is well-
known.

Theorem 15.2.

(a) Letc e L®(£2), 0< ¢ < v. There exists a real numbey = A(lc) and a functiong, = gbf) in le”"’(.Q) N

= oc
C%'=2(02), Vg < o0, such that

(=A —2)"¢p1—cp1=0 1in$2, (162)
$1>0, (=A—2rD)f¢p1>0 ing, (163)
$1=0, (—A—r)f¢1=0 onas, (164)

fork=1,...,n—1. There are no eigenvaluéwith the Dirichlet conditior(164))smaller tham.; and (11, ¢1)
is the unique coupléup to a normalization of;), which satisfie$162), (163)and(164).
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(b) A(l”) > 0is a necessary and sufficient condition for the operaten)” — ¢ to satisfy the maximum principle,
in the following sense

(=AN)"'u—cu<0 ing,
(—Au <0 ond2, k=0,...,n—1,
implies(—A)*u <0in £2,fork=0,...,n— 1.
(c) Letqbf) be normalized so tha;ti“) (x0) = 1, for somexg € £2. Then

suppl? < C(n, N, v, 2).
2

(d) If {c-/}j‘;l is a sequence such that > 0, {¢/} is bounded inL>(£2) and {¢/} tends to zero a.e. if2, then

k(lcj) tends to the principal eigenvalue of the Laplaciarf?nand

¢ = du(A),
(—A =AYl 50, k=1,...,n—1,

weakly inWlf)’cq(Q) and strongly inC(£2) (the functionsgbf’) are assumed to be normalized aga)).

Proof. In view of Theorem 13.1 and the representation (155), only part (d) needs a proof. Suppose for simplicity
n =2 (the case: > 2 is very much the same).

Set)/ = A(lcj) andg¢’ = gbf’). It follows from (143) and Proposition 14.1 that the sequefi¢¢ is bounded.
Hence (up to a subsequence) it converges to a number

We have

(—A—)J)ujzvj,
= (165)
(—A =)/ =clul,

whereu’/ = ¢/ andv/ = (—A — 1)@/
Applying the theorem of Krylov we already used in Section 7 (Theorem 7.1 on page 33), we obtain from the
first equation in (165)

iIr}fuj >C(N,v,K, ) i?(f v/, (166)
for any compact subsef C £2.
Applied to (165), our local maximunrimciple (Proposition 8.1) yields

supu/'vwgc(\uﬂp 2R+|Uj‘p2R)’ (167)
Bg ’ ’

for any p > 0, any Boz C £2, with C = C(p, N,vR?). The weak Harnack inequality for scalar equations
(Theorem 9.22 in [22]) applied to

(=A=2)u/ >0 and (—A—1)v/ >0
then gives

supu’ v v/ < C(infuf + inf vj)
Bg Bg Bg

<Cinfu/ =C(N,v, 2)
Bg
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if xo € Bg, where we have used (166), (167), aldxo) = 1. Hence, for any compact skt c £2,

supu’ v v/ <C(N,v, K, 2).

K
By proceeding as in the proof of Theorem 13.1, that is, by takingose enough t&2 and by applying the ABP
inequality in$2 \ K, we get

|4/ V07| o) S CN, v, 2).
Then elliptic theory implies

w' >u and v/ —v

weakly in Wlf)’g(.Q), Vg < oo, and strongly inC(£2). By passing to the limit in (165) we obtain

(—A—Nu=v ins,
(—A—2v=0 ing, (168)
u=v=0 onos2.

Sincev > 0, we infer from the second equation in (168) that either0 or A = A1(A) andv = ¢1(A) > 0. In the
second case we obtain a contradiction with the first equation, since

{ (A —=21(A))u>0 ing,
u=20 onas2
has no solution. Hence

{(—A—X)uzo in £,
u=0 onos2.

Sinceu > 0 andu(xg) = 1, we geth = A1(A) andu = ¢1(A).
Theorem 15.2 is proved.O

More generally, for any: elliptic operatorsLy, ..., L,, satisfying (H1)—(H2), and any > 0, there exists a
couple(r1, ¢1) such that

(=Ly — A1) - (=L1— 1)1 —cp1=0,

with the appropriate positivity and boundary conditions.
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