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Abstract

This paper deals with existence and multiplicity of solutions for probR £2) below, which concentrate and blow-up at
a finite number of points as— 0. We give sufficient conditions af? which guarantee that the following property holds: there
existsk(£2) such that, for each > k(£2), problemP (e, £2), for ¢ > 0 small enough, has at least one solution blowing up as
e — 0 at exactlyk points. Exploiting the properties of the Green and Robin functions, we also prove that the blow up points
approach the boundary ¢ ask — oco. Moreover we present some examples which show that £2) may havek-spike
solutions of this type also whef? is a contractible domain, not necessarily close to domains with nontrivial topology and, for
¢ > 0 small andk large enough, even when it is very close to star-shaped domains.
© 2004 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved
Résumé

Nous démontrons que, si le domaig2 satisfait certaines conditions, le problenRie, £2) ci-dessous, poue > 0
suffisamment petit gt grand, admet des solutions qui paur> 0 se concentrent et explosent exactement pnints. Nous
prouvons aussi que le point de concentration s'approche du bosd daandk — oo et que le nombre de solutions est
arbitrairement grand pourvu quesoit suffisamment petit. La méthode de démonstration repose sur les propriétés des fonctions
de Green et de Robin du laplacien s2ir De plus nous donnons des exemples qui montrent que parmi les ouverts Qognés
satisfont nos conditions, il y en a aussi de contractiles, qui ne sont pas de perturbations d'ouverts non contractiles et peuver
méme étre arbitrairement proches de domaines étoilés.
© 2004 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

MSC:35J20; 35J60; 35J65

Keywords:Supercritical problems; Multi-spike solutions; Contractible domains

E-mail addressmolle@mat.uniromaz2.it (R. Molle).

0294-1449/$ — see front matter2004 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved
doi:10.1016/j.anihpc.2003.09.004



640 R. Molle, D. Passaseo / Ann. I. H. Poincaré — AN 21 (2004) 639-656

1. Introduction

Let us consider the following problem

n+2
Au+uﬁ+8=0 in $2,
P(e, £2) u>0 in 2,
u=>0 Ona.Q,

wheres2 is a bounded domain &”", n > 3, ands is a small positive parameter.

It is well known that semilinear elliptic problems of ghiorm have at least one solution in any bounded domain
£2 when the nonlinear term has superlinear and subcritical growthe(ie0). On the contrary, whea > 0 (i.e.
the nonlinearity is critical or supercritical from the point of view of Sobolev embedding) the existence of solutions
to P(e, £2) depends strongly on the geometrical properties of the dof@aimdeed, as a consequence of the well
known Pohozaev’s identity (see [21])(¢, £2) cannot have any solution if > 0 ands?2 is star-shaped while, on
the other hand, it is easy to see that it has solution for &0 if 2 is for example an annulus, as pointed out by
Kazdan and Warner in [12]. Hence many researches begg devoted to study the effect of the domain shape on
the solvability of this problem when> 0.

For e = 0, an existence result is proved by Coron in [6] for domains with a small hole (see also [22] for a
multiplicity result in presence of several holes). In [2] Bahri and Coron proved a general result (answering in
particular a question raised by Nirenberg) which guarantees the existence of a soluttyf,f&) when$2 has
“nontrivial topology” (in the sense that suitable homology group&dadre nontrivial). Noticehat this nontriviality
condition (which covers a large class of domains) is only sufficient for the solvability but not necessary, as shown by
some examples of contractible domaiasvhereP (0, £2) has solutions; these examples (which answer a question
posed by Brezis) have been found by Dancer in [7], Ding in [10] and the second author in [17].

After Bahri and Coron result [2] the naturgliestion arises whether the nontriviality @f in the sense of [2]
is a sufficient condition for the existence of a solutionR¢, £2) even where > 0 (this question was posed by
Rabinowitz, as reported by Brezis in [4]). The results proved in [18], [19] and [20] show thatf@rthis condition
is neither sufficient, nor necessary. In fact, o 0 large enough, nonexistence results hold also in some domains
with nontrivial topology in the sense of [2] (see [18] ar®]) while, on the other hand, existence and multiplicity
results hold for alk > 0 in the same contractible domains considered in [17] (see [20]).

Whene — 0 the problem presents some concentration phemagwhich have been firgtvestigated in the
subcritical case, i.e. when— 0 from below: see Atkinson and Peletier [1], Brezis and Peletier [5], Rey [23-25],
Han [11] and Bahri, Li and Rey [3]. In particular, in [3] Bhari, Li and Rey obtained multipeak solutions blowing-up
ase — 0 from below at some points which are characterized as critical points of suitable functions defined in terms
of the Green and Robin functions f@. In [9] similar phenomena are described in the supercritical case and, in
domains with small holes, far> 0 small enough, it is proved the existence of solutions blowing-up at some pairs
of points localized near the holes.

In this paper our aim is to analyse the effect of the domain shape on the existence and the multiplicity of solutions
which blow-up at an arbitrarily large number of points. To this end we consider domains having radial symmetry
with respect to a pair of variables (see condition (2.1)) and we prove that, under suitable assumpfornisere
existsk(£2) such that, for alk > k(£2), problemP (e, £2), for ¢ > 0 small enough, has solutions blowing-up as
¢ — 0 at exactlyk points, regularly placed around cirslevhose distance from the boundarysgftends to zero
ask — oo. Thus, in particular, we obtain that the number of geometrically distinct solutions tends to infinity as
¢ — 0 from above and that the solutions may have an arbitrarily large number of blow-up points. Notice that, on
the contrary, Bahri, Li and Rey proved in [3] that, wher> 0 from below, the blow-up points remain uniformly
away from the boundary a2 and that, foik large enough, there is no solution which blows up pbints as — 0
from below.

It is worth pointing out that the existence and multiplicity results we prove in this paper (which hold also
in domains with holes non necessarily small) do not require that the dafhdias nontrivial topology or is a
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perturbation of domains having different topological properties (as in [6,22]). In fact, some examples we present
below show that these results hold also in contractible domains which (unlike the cases considered in [7,10,17]) are
not required to be close to nontrivial domains. IndeB¢, £2) may have solutions far > 0 small enough even

if £2 is very close to star-shaped domains (see Remark 2.9); on the contrarys wh@rs large, a nonexistence

result of Dancer and Zhang (see [8]) holds, which extends Pohozaev result to “nearly star-shaped” domains.

Let us remark that also in [20] the existence of solutiong {e, £2) in some contractible domainf2 is proved
for ¢ > 0 (indeed, for allk > 0, not necessarily small); however the solutions obtained in [20] do not concentrate
and blow up ag — 0, but converge to solutions @f(0, £2). On the contrary, the solutions &(e, £2) we obtain
in this paper do not converge to solutionsr(o, £2) (even if P(0, £2) has solutions), since they vanishas> 0;
indeed, it is possible that (e, £2) has solutions foe > 0 small while P (0, £2) has no solution (what happens, for
example, if$2 is sufficiently close to a star-shaped domain).

The results we present here have been first announced in [13].

The paper is organized as follows: in Section 2 we statarihin results (Theorems 2.1 and 2.3) and give some
examples of domains, even contractible and close to star-shaped domains, where these theorems apply. If bo
theorems apply, we indicate a possible way to recognize that they give actually distinct solutions. In Section 3
we describe, under the symmetry conditions (2.1) and,(th2 finite dimensional reduction method we use in the
proofs. Finally, in Section 4 we use vai@nal-topological arguments to find critical points of the finite dimensional
energy functional and prove the main results.

2. Statement of the main theoremsand examples

Let 2 be a smooth bounded domain®f satisfying the following symmetry conditions:

(xX1,x2,...,xp) €2 <& (,/xf+x§, 0, x3, . ..,x,,) €S2, (2.1)
(X1, ..y Xiy oo X)) €2 & (X1, .v.,—Xiy...,xn) €82, fori=3,...,n—1 (2.2)
Exploiting these symmetry properties, we look for solutions to probf&m £2) of the form
n—2
2

]_ (), (2.3)

k 2 \1/(n—2)
n=2 (eAr )
Upe(x)=[nn—2)| * [ £

[ ] ; (8)‘13,8)2/0[72) +|x = %-i,k,e|2
whereéy . — 0 uniformly ase — 0, A . IS a concentration parameterdcsiiie concentration poings ;. . belong to
£2 and have the form

2 .2
Eike= <pk,€0037i, pk,gsm7i, 0, ..., 0, rk,g> fori=1,... k. (2.4)
More precisely, the method we use allows us to say that
lim supe /2|6 e[| 2o (2) < +00 (2.5)
e—0

and, forallx = (x1,...,x,) = (pCOSH, pSinb, x3,...,x,) € 2,

Ok, e(X1, X2, .oy Xiy ooy Xn) = Ok (X1, X2, ..., —Xi, ..., xp) fOri=2,....n—1, (2.6)
2 . 2 .
Or.e| pCO 9+7 , psin 9+7 , X3, ...y Xn | =6k (pCOSH, pSING, X3, ..., Xp). 2.7)

Theorem 2.1. Let £2 be a smooth bounded domain®f, n > 3, satisfying symmetry conditiofg.1) and (2.2).
Let us set

S(2)={(p, 1) eR? p>0, (p,0,...,0,7) € 2} (2.8)
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and consider the functioff; : R2 — R U {+oc} defined by

H_Q(p,t):{p if (0,7) € 5(2),
400 otherwise
Assume that there existsIR? an open subset such that
0<inf g < inf M. (2.9)
A A
Then there exist = k(£2) and a sequencés )k, sx > O for all k > k, such that, for allk > k and e €10, ],

P(g, £2) has at least one solutios . of the form(2.3)with 6 . satisfying propertie$2.5)—(2.7)
The concentration parameters . behave as follows

Iimokk,g >0 Vk=k and lim lim ;. =0. (2.10)
£—>

k—>00e—0

Moreover, if we set

Ma={(p,7) € A: To(p,T) =”34in17:2},

the concentration points i . satisfy
lim Iimsupdist{(,ok,g, The), MA] =0. (2.11)

k=00 .0

Remark 2.2. It is easy to verify that the set£2) andM 4 introduced in Theorem 2.1 satisfy

{(p,0,...,0, 1) eR": p>0, (p,7) €3S(2)} C I, (2.12)
My C0S(82), (2.13)
(p,1)EMy = p:ﬂlfhl'[g>0. (2.14)

Therefore, taking into account (2.11), we infer that the concentration ppintsapproach the boundary ¢f as
k — oo.

Theorem 2.3. Let £2 be a smooth bounded domain®f, n > 3, satisfying symmetry conditiofg.1) and (2.2).
Moreover, assume that there exjst, p2, p3 and 1, 12, 73 In R such thatr; < 12 < 13, maX 1, p3} < p2,

£2 contains(p1,0,...,0,71) and (p3,0,...,0, 73), while (02,0, ..., 0, t2) ¢ 2. Furthermore, assume that there
exists a continuous functign: [t1, 3] — R such thaty (11) = p1, y (13) = p3, ¥ (12) > p2 and

(¥(1),0,...,0,7) €2 Vr €11, 13].

Then there exist = k(£2) and a sequencéy )k, €x > 0 Vk > k, such that, for allk > k ande €10, &¢], P(e, £2)
has at least one solutiag, . of the form(2.3), wheref, . satisfies propertief2.5)—(2.7)
Moreover, the concentration parameteys, satisfy

Iimigka,g >0 Vk>k and lim limsupig. =0, (2.15)
£—

k—o0o o0

while for the concentration points ;. . we have
lim limsupdist(§; ., 32)=0 fori=1,... k. (2.16)

k=00 .0

Remark 2.4. Let 2 be a smooth bounded domain®f, » > 3, satisfying conditions (2.1) and (2.2). Assume that
there exisz, b e R, a < b, f:[a,b]— RT, § > 0 such that

{(0.0,...,0, 1) eR": T €fa,b], f(r)<p< f(r)+8}C R (2.17)
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while
{(,0,0,...,0, 1)eR" tela,b], f(r) -8 <p< f(r)} N =40. (2.18)
Then Theorem 2.1 applies for example when
0.<minf <min{f (. f )},
a,
while the assumptions of Theorem 2.3 are satisfied when

max > maxX{ f (a), f(b)}.

When both theorems apply, they give rise to actually distinct solutions, as one can infer from the different
asymptotic behaviour of the coggonding critical values (see Propositions 4.2, 4.3 and Remark 4.4).

Notice that the symmetry conditions (2.1) and (2.2) required in Theorems 2.1 and 2.3 are satisfied, in particular,
when the domai2 has radial symmetry with respect to an axis; for example, when

n—1 1/2
(X1,.., X)) €N & ((fo) ,o,...,o,xn)e.(z. (2.19)
i=1

In particular,$2 satisfies property (2.19) if, for example, there exisb in R and two functionsos, p2:[a, b] —
[0, +o0[ such that

n—1
Q2= :(xl, X)) R a<xy Kb, p2(n) < Y X< p%(xn)}. (2.20)
i=1

For domains of this type, any positive local minimum or maximum for the funcbipgives rise to a-spike
solution of problemP (¢, £2) for ¢ > 0 small andk large enough.
The examples below are concerned with domains of this type.

Example 2.5. Consider a domait of the form$2 = B(cz, r2) \ B(c1, r1), whereB(c1,r1) andB(cz, rp) are two
balls of R" such that O< r1 < r2 (clearly we can assume that tbentres of the balls are on thg-axis).

If |c1 — c2| < r2 —r1, then Theorem 2.3 guarantees the existenceedpike solution of problen® (¢, £2) when
¢ > 0is small andk large enough (notice that is not required to be small).

If r2 —r1 < |e1 — cal < ,/r2 —r2, Theorem 2.1 applies too, so we obtain two distibetpike solutions of
P(e, £2) for e > 0 small and darge (notice that in this case is contractible).

Remark 2.6. One could object that2 = B(c2,72) \ B(c1,71) is not a smooth domain (as we require in
Theorems 2.1 and 2.3) whep — r1 < |c1 — c2| < r2 + r1. However, it is clear that these theorems can be easily
extended in order to cover the case of a domain with piecewise smooth boundary. On the other hand, standar
smoothing technigues can be used to obtain a smooth domain preserving its geometrical properties.

The same remark holds for the piecewise smooth domains considered in the examples below.

Example 2.7. For allo > 0 and r >1, set

n—1 1/2
.Q;’::xz(xl,...,xn)eR"Z l<ix|<r, (Zx?) >crx,,}. (2.21)
i=1

Then$2? is a contractible domain and we can apply both Theorems 2.1 and 2.3, obtaining two distpike
solutions ofP (g, £27) for e > 0 small andk large enough.
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Contractible domains of this type have been first considered in [7,10,17]for the critical case=(Dg.Arguing
as in these papers one can show that for all 1 there exist (r) > 0 such thatP (0, £2¢7) has solution for all
o €]0, 0 (r)[, while it seems natural to expect that it has no solutienig large enough. On the contrary, Theorems
2.1 and 2.3 apply for alk > 0 andr > 1 and give solutions which do not converge to solution® @, £27) since
they vanish as — 0.

Example 2.8. One can give examples of domaiges (even contractible) where the number of distinct solutions
is arbitrarily large. It suffices to consider the same cactible domains already used in [17] and [20], which can
be written in the form (2.20) for a functiop satisfying the following property: there exigt< 1 <t < --- <
ton—1 < 25, such that

min{p1(t): t >} >0
and

p1(t2i) < pa(t2i+1), pa(t2iv1) > paltaiv2)  fori=0,...,h -1
Hence Theorems 2.1 and 2.3 apply and guarantee the existentsaoliiions.
Remark 2.9. By using Theorems 2.1 and 2.3, fbilarge ands > 0 small enough, we can prove the existence of
k-spike solutions of problen® (e, £2) even in domaing2 which are “nearly starshaped” in the sense we specify
below (a different definition of nearly starshaped damisi used in [8] in order to extend PohoZaev result to

nonstarshaped domains whes- 0 is large).
For any smooth bounded domathof R”, let us set (as in [14])

stanR) = supinf{v(x). * 0
Xp€S2 |x —X0|

:xea.Q},

wherev(x) denotes the outward normal &2 in x. It is natural to say tha® is nearly starshaped if si@)~ =
max{0, — star(£2)} is small.

Our aim is to construct a sequence of smooth bounded dor@ing such that lim)_, », stars2;) = 0 and, for
all j eN, P(e, £2;) hask-spike solutions of the form (2.3) farlarge ance > 0 small enough.

To this end, it suffices to consider the above defined donifin(see (2.21)). Sinc&’ is not smooth, we
consider the domain

/\/5(9;’): {xeR”: dist(x,.Q;’) <8}. (2.22)
Notice that, if 0< § < +/2/2, then/\/(;(Q}) is a smooth bounded domain for &lf> 1 and
jILmoo staf( N ($2 ])) =0.

Moreover, for allj > 1 we can apply both Theorems 2.1 and 2.3 and obtain two distispike solutions of
P (s, N5(£27)) for k large anck > 0 small enough. Thus, fag; :/\/(;(Qj’.), our assertion is proved.

Notice tfwat we can also prove that for all positive intefgénere exists a sequence of smooth bounded domains
($25,); such that lim_, », sta$2, ;) = 0 and, forj large enoughP (e, £2, ;) has at least2 k-spike solutions for
k large anck > 0 small enough. In fact, let us consider the bounded domain

n—1 1/2
:hz x=(0x1,...,x)eR" 1< x| <, (lez) > 0Xp, dist(x,C,‘;)>1f0rm=1,...,h—1 ,
i=1

(2.23)
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where
. = 2 2 3m
Cg,:!(xl,...,xn)eR". ;xizgm A= (2.24)
Now fix 8 €10, +/2/2[ and set
2n,; =N5(21,) = {x eR™: dist(x, 2/,) <3}. (2.25)

Then £2;, ; is a smooth bounded domain for gll> 1 and lim;_ . star$2, ;) = 0 for all positive integer.
Moreover, Theorems 2.1 and 2.3 apply and (takitgp anto account Propositions 4.2, 4.3 and Remark 4.4)
guarantee that, fof large enough (depending @, problemP (e, £2,, ;) has at least2distinctk-spike solutions
for k large andk > 0 small enough. Thus the sequerisd, ;); satisfies the desired properties.

3. Preliminary results

In order to prove Theorems 2.1 and 2.3, we shall useitefdimensional reduction procedure, introduced in
[3] and [24] for subcritical and critical problems, suitably adapted to the supercritical case (see for example the
references in [9] and, for a different approach, see also [16,27]).
Let us describe here this procedure. Consider the functions
n—2

IL T
) VEeR", u> 0. (3.1)

W2 |x — &2
It is well known (see [26]) that these functions, extrésrfar the Sobolev critical embedding, are all the positive
solutions of problem

Ug,u(x) = [n(n — 2)]"42<

AU+URE=0 inR",
liMx|— o0 U(x) =0.

Let us denote by/; ,, the projection ofs, , onto H}(s2), namely the solution of problem

_n+2
—AUg,uzUé"jf in$2, (3.2)
Ue,u=0 onas2.

In other wordsUs ,, = Ug, ;. — x¢.., Whereyg . is the solution of problem

{AXE,/L:_O in £,

xeu=Ug, 0NOS2. (3.3)

Arguing as in [3,9,24] and taking also into account the symmetry properties of the domain, one can prove the
following lemmas.

Lemma 3.1. Let £2 be a smooth bounded domasatisfying condition$2.1) and (2.2). Chooses €]0, 1] small
enough in such a way that the set
Ss(2) ={(p, 1) € S(2): disf (p, 1), 3S(2)] > 8}

is not empty(S(£2) is introduced in TheorerR.1, see(2.8)).
Then there exists a sequeneg);, ex > 0 Vk € N, such that for eacl € ]0, [ there exists a smooth map

Br.e 1 S5(2)x18,1/8[— HE(2) N L=(2)
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having the following propertythe functionu . (o, 7, 1) € H&(Q) N L*®($2), defined by

k
(0, TN =) Uie(p, T,0) +0e(0,7,0) V(p, 1) € S5(R), Vi €18, 1/8],
i=1
whereUi ¢ (p, 7, 1) = Uy, , ;2002 With & x = (pcosZi, psinZZi, 0, ..., 0, 1), solves problenP (e, £2) if

and only if(p, 7, A) is a critical point for the function

Fre(p,t,0) =J¢ (Mk,s(,O, T, )L))a
whereJ; is the functional defined by

Jo(u) = %/ |Vul?dx — riﬂ/ lulP* e dx, with p= Z—J_r;
2 2

Moreover, the functiofi; . (p, 7, 1) satisfies

|ir:15é1ps—1/2||ék,8(p, T W) o) < 00 (3.4)
uniformly with respect t@p, t) € Ss(£2) andi €18, 1/5[.

Furthermore, for all(p, 7) € S5(§2) andx €16, 1/6],

Ore(p. T, A) =6k e(p, T, M) 0Ty fori=2,...,n—1 (3.5)
and

Ok.e(p. T. 1) =Op e (p. T. 1) 0 Xy, (3.6)

whereT;, X : 2 — 2 are defined by

n(xlv"'v-xiv"'v-xn):(-xlv"'v_-xiv"'sxn)s

Zk(pcosd, psing, xs, ..., x,) = (p OO + 27/ k), pSING + 27/k), X3, ..., Xn).

Remark 3.2. From (3.4)—(3.6) one can easily infer that the functipp verifies (2.5)—(2.7). In fact (see (3.3))

k
Oke =Oke(p. T, 1) — Z X 1, (026) 1/ (1=2).
i=1
Lemma 3.3. Let Fy . : S5(£2)x 18, 1/8[— R be the function introduced in LemrBal Then
Fe(p, T, 1) =kSy +kanelge + e[kby + eni(p, 7. )] + @r.e (. T, ),

where S, a,, b,, ¢, are suitable constants depending only on the dimensior—l¢; . — 0 ase — 0 in
CL(S5(2)x18,1/8)) and

2 [&
Yr(p, T, 1) = ?ﬁn[ H(E i, &) —2 Z G(gi,kvéj,k)j| +kliga, (3.7)
1

1<i<j<k

=
wherep, is a positive constant depending onlymonG (x, y) denotes the Green function-efA with zero Dirichlet
condition on he boundary of2 and H (x, y) its regular part.

Now let us set

1 _ -
wk,é‘(pv T, )") = S_[Fk,é‘(ps T, )") - kSn - kang lg‘9 - 8kbl1] (38)

Cn
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Itis clear that(p, 7, 1) € S5(§2)x 18, 1/3[ is a critical point forFy, . if and only if it is a critical point foryy .. On
the other hand

1
Yi,e (0, T, M) =Y (o, T, 1) + g‘ﬂk,s(,o, 7, A), (3.9)
n

SOYr.e — Y ase — 0in C1(S5(£2)x18,1/8[). Thus, every critical point foty,, which persists with respect to
smallC? perturbations, gives rise to critical points g . and then to solutiong . for P(e, £2) of the form (2.3)
with 6, . satisfying (2.5)—(2.7).

4. Proof of the main theorems
By Lemmas 3.1 and 3.3, our problem reduces to finding critical pointg pfvhich persist with respect to small

C! perturbations.
Taking into account the symmetry &, it is clear that

52

Vi(p, T, k)=k[?¢k(p,r)+|g)»} (4.1)
with

k
Py (p, T) = Pn |:H(§l,k: g1 — Y G, éi,k)i| : (4.2)
i=2

Notice that any critical pointo, t, A) for ¥ must satisfy condition

W2 =[-dp(p. ] (4.3)

which is possible only itb; (p, ) < 0, and(p, T) must be a critical point fo®; conversely, if(p, t) is a critical
point for @, and®; (p, 7) < 0, then(p, T, 1), with A = [— Dy (p, T)]~ /2, is a critical point foryy.
Thus, finding critical points fot)y is equivalent to finding critical points, t) for &y, such thatb, (o, t) < 0.
The following lemma is a crucial step in this direction.

Lemma 4.1. Let £2 be a smooth bounded domain®f, n > 3, satisfying symmetry conditiorf2.1) and (2.2).
Then the functiom; (see(4.2))behaves as follows

(@) Dr(p,t) > +oo as(p, ) — (p, 1) for all (p, 7) € 35(£2) such thatp > 0; moreover%(p, T) —> +o00 as

(p,7) — (p, T), wherev denotes the outward normal to the boundangsgfs2) for § = dist(p, t), 35(£2)]
(notice thatd S5 (£2) is smooth neatp, 7) if (p, 7) lies in a suitable neighbourhood 68, 7));
(b) there exists a sequen¢&)x in R, ¢y — +00, such that

1@( )= —p% ™" VY(p,7)eS(R2), VkeN (4.4)
Ck k p7 = ,0 p7 E) .
and

. 1

lim —&(p, 1) =—p>" Y(p,7)€S(2); (4.5)
k—00 Ck

(c) forall g € R such thatxg = (0, 0, ..., o) € 352, there existsp > 0 such that
. 1P,
Inf{wg(,/x%—i—x%,xn): (x1,...,xp) €8, 0< x%—i—x% < rg, |xn — T0] < ro} >0, (4.6)

wherevg denotes the outward normal to the boundaryt xg.
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Proof. Firstly, notice that
G, y)=wulx —y* ™" —H(x,y) Vx,ye

for a suitable constant, > 0. Therefore

k k
Pr(p, ) = ﬁn[z H(ELg &) —on ) 1Lk — &,uz—"]. (4.7)
i=1 i=2

For the proof of (a) observe that, (b, ) — (p,7) € 35(£2) andp > 0, then the pointg; ; (fori =1,...,k)
approach the boundary ¢?. Therefore we obtain thag, (o, ) — +00 becaused (§1.«, §1.x) — +oo while the
other terms (i.e.H (§1.k, & x) and|&1x — s,-,k|2—" fori =2,..., k) remain bounded; in analogous way we infer that
8% (p, 7) — +oo from the fact thatl- H (£1.x, £1.4) — +00 While &~ H (11, & x) and - |&1x — & 12" remain
bounded foi =2, ..., k.

In order to prove (b), notice that

k k
D (p. T) = Pn [ D HELKER) — 00”1k — §i,k|2_"] (4.8)

i=1 i=2
with

_ 2 .2
Sik= (cos%i, sm%i, o, ..., 0) Vi=1,... k.

Now setcy = pnwn Y +_, [E1x — & 412" and observe that, &s— oo,

21
D 2—n
G _, Pnn /[(1— cost)? +sirft] 2 dt = +oo, (4.9)
k 2
0
while
1 k 1 27
p 2; H(Exk &) =~ o / H(¥.2(0), . (1)) dt, (4.10)
i= 0

wherey, . 1[0, 2r] — §2 is defined by
Vp,r(t) = (pcost, psint, O, ..., 0, 7).

Hence assertion (b) follows easily taking into account #ias positive and
2

/H(yp,t(O), Yo (1)) dt <400 V(p, 7)€ S(2). (4.11)
0

For the proof of (c), let us first notice theg = (0, 0, ..., 0, 1) because? satisfies symmetry conditions (2.1)
and (2.2). If we consider for example the cage= (0,0, ..., 0, 1), then (4.6) is equivalent to

. 0P
mf{a—:(p, ) (p. 1) € S(2), p <ro. |t =10l < ro} > 0. (4.12)

Now observe thabk (p, t) = pn Yt_y 3 H (E1k, &.4); SO (4.12) follows becausE_; & H (514, & k) — +oo
asp—0and t— 10 ((p, 1) € S(£2)). O
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Proof of Theorem 2.1. Let us prove first that there existssuch that for alk > & the infimum infins(2) Pk is
achieved and

lim min & = —occ. (4.13)
k—00 ANS(£2)

In fact, because of (2.9) we can chodget) € AN S(§2) such that O< p < infy4 I1g;. Therefore, by Lemma 4.1,

1 .
lim =&u(p,7)=—p>" < —(infI1)>". (4.14)
k—00 Ck 0A
On the other hand, for all € N,
1 .
—@(p, 1) > —p* " > —(Wnf1)*™" V(p, 1) €9ANS(R) (4.15)
Ck (
and (since we have assumedqitif; > 0) by (a) of Lemma 4.1 we have
lim  ®r(p, 1) =400 V(p,T)eANIS(N). (4.16)
(p,T)—~>(p,7)
Therefore infins(e) @« is achieved fok large enough and
in @ < P(p, T), 4.17
Amin, % (P, T) (4.17)

which implies (4.13) by (4.14) because Jimy, ¢y = +00.
Now, for k large enough and for all € Iminans(e) P, —cr(infya I1o)% ", let us set

o ={(p, 1) e AN S(2): Pr(p,7) <}, (4.18)
VE={(p.1.2) R (p,7) € B}, A =[-Pr(p, )] 7). (4.19)

It is easy to verify thatp, ) is a minimum point ford, on A N S(£2) if and only if (p, 7, [P (p, T)] Y?) is a
minimum point fory, on V.
Let us fixy €10, (— minans(2) @x)~Y?[ and set

= [=Pi(o. 0]

S¢={(0. 7. 1) eR% (p,7) € B},
It is easy to verify that

min{yi(p, 7, 1) B(p, ) = ¢, A= (=c)/?}
>n\1/icn1//k=max{1//k(p,t,)\): (p. T, M) €S, ¢k(p,t)=Amin @y}
k

< n}. (4.20)

NS(£2)

> max{yi(p, 7, 2): By(p, 1) = min &, | —[=Br(p, 1] 7?| =n).

ANS(2)

Then we can choose> minans(e) Pk, sufficiently close to mignse) @k, in such a way that

r=[=@u(p.0)] ¥ =n} < miny,. (4.21)
k

max{wk(p,r,)»)i (p,7) € DY,

Moreover, there exists € ]0, [, small enough, such that

. n _ H
max{yi(p. 7. 1)1 (o, 7.0) € S, Pulp. )= min i)
<min{y(p, 7, 1): Pr(p, ) =c, A >0, |r — (—c) 2| < 7). (4.22)
On the other hand, we have
NIE i
mln{ %(,0, T, x)‘: Pi(p, 1) =c, 1>0, A — (=) Y?| > g} > 0. (4.23)
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Sincey,. — Y in C1(S)) ase — 0, then fore > 0 small enough (4.21)—(4.23) hold withy . in place ofyy.
Moreover, notice that there exists no continuous map

O: A E)) = min @ ! ;
(o) €S Pulp. 1) = min @i} — §\ Vi
satisfying® (p, 7, ») = (p, 7, 1) for all (p, 7, 1) such thats — [-® (p, 1)1~ =7

It follows, by standard arguments, thatj},’j the functionyy . has at least one critical poipk ¢, Tk e, Mk c)
such that

MiNYik.e < Yie (Pres The Mee) < max{yx.c(0, 7, M): (p.T,1) €S, P(p,7) = Arﬂ*}i{}z) @}
k

Now, lettinge — 0, c = mingns(e) P« andn — 0, we obtain

Ilm I//k,S(IOk,é‘v Tk,&v )"k,é‘) = mICn I//k = max{l/fk(pv Tv )") (101 Ta )") € SZ, ®k(los T) = mln ®k}1

ANS(2)
Ilm Pi(Pr,e» Thye) = ml(rgz)ék, (4.24)
lim A =[— min @]~ Y2 (4.25)
=0 ANS(£2)

In order to describe the behaviourfas> oo, let us consider the set
As ={(p, 1) € A: disf{(p,T), Ma] <0} (4.26)
Notice that infy\ 4, [T > miny I ; therefore, foik large enough,

1 1
mn —&; < —[ inf o> ™" < inf —&. (4.27)
ANS($2) Ck A\As A\As Ck
Thus we infer that, fok large enough, all the minimum points féy, on A N S(£2) belong toA,. Moreover
1
limsup min —&; < —[ inf o> (4.28)
koo ANS(2) Ck A\A,
Lettingo — 0, we obtain (2.11) and
1
lim min =&, =—[minHo]>™", (4.29)
k—00 ANS(£2) Ck A
which, by (4.25), implies

lim lim i, = lim [- min &, Y?2=0. O (4.30)
k—>o00e—0 k—o00 ANS(£2)

Proof of Theorem 2.3. Notice that
1 _
~ @ (y(x),7) > —[y(@ " ask— oo, (4.31)
Ck

uniformly with respect ta in [t1, 73], as one can verify arguing as in the proof of Lemma 4.1.
Hence, a direct computation shows thatkas oo,

1 1 1 -2

Slgee+ - sup{vi(y (1), 7, 1)1 T € {r1, 13}, A >0} > -5+ nT lgmax{p1, p3} (4.32)
and

1 1 1 -2

> lgcx + %Sup{l/fk()/(f), T,A): T €[t 73], A >0} > —5+ i 5 gy, (4.33)

wherey = maXeefr;, 31 ¥ (7).
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Now observe that, sinc@;(p, 7) > —ckp2 " for each(p, 7) € S(2) andk € N, then

1 1. N\ —
310+ inf{yio. . 0): (0.7) € S(R). p>p2. T =12 A= (eur3 "))
1 -2
>_§+”T|gp2 Vk € N. (4.34)
Let us set
1
Or= {(y(r),r,)»): Telry, 3], e |:—,1i|} (4.35)
Ck
(notice thatl < (cxp5~")~Y/2 < 1 for k large enough).
A direct computation shows that
1 1 1
> lgck + %Sup{l/fk()/(f), T,A) A€ L—, 1}, T €11, 13]} — —00 ask — oo. (4.36)
'k

Thus, from (4.32)—(4.36), sing& > max{p1, p3}, for k large enough we have
maxy < inf{y (0,7, 2): (0.0 € S(2), p > po T =12 k= (exr5 "))
< maxyy <min{yi(p, 7,0): p € (71, 7o) T =12 k= (exny ")), (4.37)
wherey1, y2 are suitably chosen in such a way that< 31 < y(12) < y2 and(p, t2) € S(2) Vp € [y1, y2] (this
choice ofy1 andy» is indeed possible because of (a) of Lemma 4.1). Moreover, notice that (4.31) implies

klim max{cbk(y(r), r): T €[11, 'C3]} = —00; (4.38)

S0k can be chosen large enough such that we have, in addition,
max{q)k (y(t), t): T €[11, ‘L’3]} <0. (4.39)

Taking into account thaty . — ¥, ase — O uniformly on the compact subsets £f2) x R™, we infer that,
for ¢ > 0 small enough,

. - - —n\—1/2
Maxyy. < inf{Wee(o, 7, 1) p €l 72l T =12, A= (cxp2™") %)
k
. - - —n\—1/2
< Maxye < min{ v (0, 7, 2): p € (71, 72}, T =72, 2= (ckp3 ™) 7). (4.40)
k

Now, setEg={rg e R: (0,...,0, 10) € 9§2} and observe that, singe is a smooth bounded domain satisfying
condition (2.1), because of (c) of Lemma 4.1, we can ch@as® small enough such that, for alj € Eo, the set

2

Ag={x=(x1....,x) eR™ O<x?4x2<7% xg=xg=---=x,_1=0, |x, — 70| <7} (4.41)

satisfies:

0Pk
|nf{a—v0( x]2_+x%7-xn): (-xls"'s-xn) GQmAfo} >O (442)

and(v(x), vp) > O forall x € A, N 382, wherev(x) denotes the outward normal to the boundary2oét x.
Notice that (if Eg # ) we have

Slimosup{wk(,o, T, M) (p,7) € S(2), p=36, A >0, dist(z, Eo) > 7/2} = —o0, (4.43)

as one can obtain by a direct computation taking into account thatt ifg, then®;(p, t) - —oo as(p, t) —
(0, 7).
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Now, let us point out that (a) of Lemma 4.1 implies

N L
ginomf{fi—vk(p’t): (p, 7)€ S(2)NSs(82), p>34, (p,0,...,0,7) ¢ U Aro} = 400, (4.44)

o€k

wherev denotes the outward normal 885 (£2) (notice that, fors > 0 small enoughd Ss(£2) is smooth near any
(p, 7) € 3S5(£2), such thap > 8). In fact, if (p, 7) € S(£2), dist(p, 1), 3S(22)] =8, p > § and(p, 0, ...,0, 1) ¢
Urero Ay, then (up to any subsequenag), r) converges ag — 0 to some poinfp, 7) € 35(£2), such that
0> 0.

Taking into account (4.43) and (4.44), we can now chabse0 small enough such thaf; (£2) contains
the points(y (t), r) for t € [r1, r3] and (p, 72) for p € [y1, y2] and, in addition,dS;($2) is smooth near all
(p, 7) € S5(£2) such thatp > 6,

inf{%(p,r): (p.7) € S(2)NS5(2), p>36. (p.0.....0.1) ¢ | J Am} >0, (4.45)
10€Ep

sup{ vk (o, 7, M): (p,7) € S(R), p=3§, A >0, dist(r, Eg) > 7/2} <r;1an¢k. (4.46)
k

Now notice that, taking into account (4.39), we can choose a coristaich that mag@ (y (t), 7): 7 € [11, 3]} <
¢ < 0. Hence, se®; = {(p, 1) € S(£2): ®r(p, 1) < c}and observe that

sup{ Yk (p, 7, 1): (p,7) € PL N S5(2)} - —00  asi — 0 ori — +o0. (4.47)
So there exista1, 1 such that O< A1 < 1/c, A2 > 1 and

max{yx (o, 7, 1) (p,7) € Df N S5(2)} < rygxm for A =1 Or A = Ao. (4.48)

k

Taking into account the choice 6f we can fix; > 0 small enough such that

min{yi(p, 7, 1) Pu(p,7) =& 5> 0. A= (=872 <i} > maxyn: (4.49)

k
also observe that
. ad n
mm{ %(p, L[ Pe(p, 1) =E, 2> 0, [h— (=72 = g} > 0. (4.50)

Notice that (4.45) implies that
) _
mf{%(ﬂ, 7,A): (p,7) € S(2)N3S5(2), p >34,
Vv

(0.0.....0.1) ¢ ] Aq, )\e[Xl,Xz]} > 0; (4.51)

10€kp

moreover (4.42) yields (i§ < )

.. |0 o
Inf{a—w(,/xf—i—xg,xn, k): (,/x%—i—x%,xn) € 85(82), (x1,x2,0,...,0,x,) € Ay, A €[A1, )»2]} >0
Vo

V10 € Eop; (4.52)
finally (as an immediate consequence of (4.46))
sup{vi(p, 7, M): (p.T) € S(R), p=3, dist(t, Eo) > 7/2, A€ [A1,A2]} < ranQaXI/fk. (4.53)
k

Hence, sincely . — ¥ ase — 0 in any compact subset ¢f(£2) x RT, for ¢ > 0 small enough (4.48)—(4.53)
hold with v . in place ofyy.
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It follows that in S5(£2) N @ x i1, A2[ there exists at least one critical poik., tk.e, A,e) for ¥ . such that
. o ay—1/2
inf{yie(p, T, 0): p €1, 72), T =12, A= (ckp5 ") / } < Wkoe(or,es Thoos Mise) < rgaxwk,g. (4.54)
k

In fact, if no such a critical point there exists, one can prove by standard arguments that there exists a continuou
mapl: QO x [0, 1] — S5(£2) N @} x [A1, A2] such that:

I'(p,t,2,00=(p,7.2) V(p,7,2) € O,

I'(p,t, A1) =(p,7,2) Vtel01]if (p,7,2) €90k,

(0, 72, (cxp3 ™) ) ¢ T(Qk x [0,11)  for p € {71, 72},

_- —ny—1/2

[F, 0.0, D1 (0,70 € Q) N (o, 7.0 p €, 72l T =12, 2= (cupd ") %} =,

which is impossible.
Let us analyse the asymptotic behaviour (qfk,g,rk,g,)tk,g)_ as ¢ — 0. If (up to any subsequence)

(Pr,es Thoes Meye) = (Ok» Tks Ai), then (o, T, Ak) € S5(82) N @ x]h1, A2[ and is a critical point fory, (since
Vr.e — Y in CL sense). Moreover, by (4.54),

Yk,e(Ph,es Thoes Meye) = Wi (Pk, Tk M) < n"éaxwk. (4.55)
k
It follows thati; > O for all k > k and
. 1
lim =y (ok, T, A) = —00,
k—o0 k

which implies lim;_, o Ax = 0. Thus (2.15) is proved (notice thtr; andi, depend ork; (2.15) and (2.16) imply
thati; — 0 ands — 0 ask — o0).

For the proof of (2.16) it suffices to show that if (up to any subseque@ge);) — (p, T) ask — oo, then
(p,0,...,0,7) € 052.

If p>0,then(p, ) € 35(£2) (which implies(p,0,...,0,7) € 382 sincep > 0). In fact, if (p, T) ¢ 3S(£2),
then, arguing as in the proof of asserti@) in Lemma 4.1, we should have lim i%(pk, 7w ={m—

Ck
2)p%~" # 0, which is impossible sincé2 (o, 74) = 0 for all k > k.

On the other hand, if = 0 andt ¢ Eo, then lim,_, « %@Dk(pk, 7%) = —oo (which can be proved arguing as in
the proof of (b) of Lemma 4.1). But this fact gives a contradiction because, lettind in (4.54) and using (4.4),
we obtain liminf_ C—lkq>k(pk, ) = —pg‘” > —o0. Thus assertion (2.16) is proved too

The following propositions describe the asymptotic behaviour of the critical values corresponding to the
solutions given by Theorems 2.1 and 2.3 respectively.

Proposition 4.2. The solutionu . given by Theorer@.1 satisfies

im | Z1gex + 2 lim yp e o) | = =2+ "=2\gminn (4.56)
om ngk e Ve Pk,e> Tk,es Meye) | = 5 5 g \nilg. .

Proof. The method we used in the proof of Theorem 2.1, in order to find the critical paint t ¢, Ax.c) for
Y.e, Shows that (up to a subsequence)

(Pk,e» Th,es Meys) = (P, Tk, Ak)  ase — 0, (4.57)

where

Do, )= min @ and i =[— min @] Y2
ANS(£2) ANS(£2)
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Moreover
M Y e (Ok,e0 Thoes Ake) = Y (Ok, Ths Ak)-
e—0

Thus (4.56) follows easily from (4.29), taking into account that
L W=—2 1![@( )
X kP T, M) = — 5 29 k(Ok> Th) |-

Proposition 4.3. The solutionu;_ . obtained in Theorer.3 satisfies

1 1 1 n-2
liminf| =1 — liminf A >——4+ —| 4.58
'krglorl [2 gck + T ILn_)lg Yk, (Pk,e» Thye k,s)j| 5 + 5 g2 ( )
and
. 1 1. 1 n-2
limSup| - 1. + 1 IMSUPYi e (0. e k) | < —5 + o o[ max_y(@)] (4.59)
koo L2 k s>o0 2 2 T€[11,73]

Proof. Let us use the same notations introduced in the proof of Theorem 2.3 and observe that (4.54) implies
o : - —n\—1/2
||£TLIQf Ve (Pkes Thoes Mee) = INFH{Wk(p, T, 0)1 p € [71, 2], T =12, = (ckp5 ™) / } (4.60)

because); . — ¥ ase — 0 uniformly on the compact subsets $(22) x R™. Hence (4.58) follows easily from
(4.34) taking into account that > p>.
In analogous way, in order to prove (4.59), we infer from (4.54) that

Iimsupl/fk,s(lok,ev Tk,e» )\k,e) < mQanko
k

e—0

Thus (4.59) follows from (4.33) taking into account that

mQank < Sup{lﬁk(y(r), T, A): T €11, 73], A > 0}. O
k

Remark 4.4. Propositions 4.2 and 4.3 can be used in order tordjsiish the solutions given by Theorems 2.1 and
2.3 when both theorems apply. For example f’ebe as in Remark 2.4, that is there exisb, f andé satisfying
(2.17) and (2.18). If we assume that

0< [mibr]1f <min{f(), f(b)} and [ml%xf >max{ f(a), f(b)},

then both theorems apply; Theorem 2.1 guarantees the existence of a sejytiosuch that
lim [} lgcx + L im Vk,e (PLk,es TLk,es )\l,k,s):| _ ! + n-2 Ig min f,
k—o0| 2 k e—0 2 2 [a,b]
while the solutioruz . obtained in Theorem 2.3 satisfies
lim inf[} lgex + S minf v e (pa.e, Toke, )\z,k,g)} >t T2 maxy,
k—oo | 2 k -0 2 2 [a.b]

Therefore, the solutionsg; i . anduz x . are actually distinct foe > 0 small andk large enough.
On the other hand, if for example we assume in addition fthhas in[a, b] only one maximum point,; and
only one minimum point,,, then
lim limsup|tike —tm|=0 and limlimsup|pi s — {nibr]|f| =0,

k—o00 o0 —00 o0 a,



R. Molle, D. Passaseo / Ann. I. H. Poincaré — AN 21 (2004) 639-656 655

while one can prove that

lim limsuplt2x: —m|=0 and limlimsup|p2r . —maxf|=0.
k=00 o0 k—oo .0 [a,b]

Furthermore, notice that Propositions 4.2 and 4.3 cande tasobtain distinct solutions also when Theorems 2.1
and 2.3 apply in different geometric situations (for example, for different choices of the subs&theorem 2.1
or of the functiony in Theorem 2.3). It is what happens, for example, in the case of the damajrconsidered
in Remark 2.9. In this case, by suitable choices of the subsetd of the functiory, one can easily show that, for
k large ance > 0 small enough, the functiogy . for the domains2, ; has, forj large enough, at leaskZritical
points, corresponding tazdistinct critical values. Thu® (e, £2;,, ;) has at least22distinctk-spike solutions of the
form (2.3).

Remark 4.5. Notice that, while the domai® presents a radial symmetry with respect to the pair of variables
(x1, x2) (see condition (2.1)), the solutiong . obtained in Theorems 2.1 and 2.3 do not present the same symmetry
but satisfy only, for alp cosd, psing, xs, ..., x,) € £2,

2 . 2 .
uge| pco 9—}—7 , psin 9—}—7 , X3, ..., Xp | =uge(pcOSh, psSIiNG, x3, ..., xu).

Moreover, it is obvious that, for afl € [0, 2], the function, , ; defined by
Uy o 5(PCOSH, pSiNG, x3, ..., x,) =upe(pCOYH —6), psin@® —0), x3, ..., xu) (4.61)

is still a solution of problenP (¢, £2).
Taking into account the method used in the proofs, it is clear that solutions of the form (4.61) (for suitable values
of 9) persist with respect to any small perturbationdfwhich preserves the symmetry properties (2.2) and

2T . 2 .
pCOo 9+7 , pSin 9+7 , X3, ..., Xp | €2 <& (pcosY, psind, x3, ..., x,) € 2. (4.62)

Finally, notice that in [15] we consider probleRts, £2) in a different class of domain@ which do not satisfy
condition (2.2) and, fok large anct > 0 small enough, we obtain analogous éxige and multiplicity results for
positive solutions blowing up at exacttypoints ass — 0.
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