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Abstract

We consider the (KdV)/(KP-I) asymptotic regime for the nonlinear Schrödinger equation with a general nonlinearity. In a
previous work, we have proved the convergence to the Korteweg–de Vries equation (in dimension 1) and to the Kadomtsev–
Petviashvili equation (in higher dimensions) by a compactness argument. We propose a weakly transverse Boussinesq type system
formally equivalent to the (KdV)/(KP-I) equation in the spirit of the work of Lannes and Saut, and then prove a comparison result
with quantitative error estimates. For either suitable nonlinearities for (NLS) either a Landau–Lifshitz type equation, we derive a
(mKdV)/(mKP-I) equation involving cubic nonlinearity. We then give a partial result justifying this asymptotic limit.
© 2013
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1. Introduction

In this paper, we consider the Nonlinear Schrödinger equation in R
d

i
∂Ψ

∂t
+ �Ψ = Ψf

(|Ψ |2)
, (NLS)

with the condition at infinity∣∣Ψ (t, x)
∣∣ → r0, where r0 > 0 and f

(
r2

0

) = 0.

This model appears in Nonlinear Optics (cf. [34]) and in Bose–Einstein condensation or superfluidity (cf. [46,1]).
A standard well-known case is the Gross–Pitaevskii equation (GP) for which f (�) = � − 1. However, for Bose
condensates, other models may be used (see [36]), such as the quintic (NLS) (f (�) = �2 or f (�) = �2 − r4

0 ) in one
space dimension and f (�) = d

d�
(�2/ ln(a�)) in two space dimension. The so-called cubic–quintic (NLS) is another

relevant model (cf. [5]), for which
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f (�) = α1 − α3� + α5�
2,

where α1, α3 and α5 are positive constants such that f has two positive roots. In Nonlinear Optics, several nonlinear-
ities can be found in [34]:

f (�) = μ + α�ν + β�2ν, f (�) = α�

(
1 + γ tanh

(
�2 − �2

0

σ 2

))

or (see [2]),

f (�) = α ln(�), f (�) = μ + α� + β�2 + γ �3,

and when we take into account saturation effects, one may encounter (see [34,33]):

f (�) = α

(
1

(1 + 1
�0

)ν
− 1

(1 + �
�0

)ν

)
, f (�) = 1 − exp

(
1 − �

�0

)

for some parameters ν > 0, �0 > 0. In the study of the motion of nearly parallel vortex filaments, the (NLS) equation
appears as a simplified model with f (�) = (� − 1)/� (see [4] and the references cited therein). Therefore, we shall
assume f quite general and, without loss of generality, we normalize r0 to 1. The energy associated with (NLS) is
given by

E(Ψ ) ≡
∫
Rd

|∇Ψ |2 + F
(|Ψ |2)

dx, where F(�) ≡
1∫

�

f.

If Ψ is a solution of (NLS) which does not vanish, we may use the Madelung transform

Ψ = A exp(iφ)

and rewrite (NLS) as a hydrodynamical system with an additional quantum pressure⎧⎨
⎩

∂tA + 2∇φ · ∇A + A�φ = 0

∂tφ + |∇φ|2 + f
(
A2) − �A

A
= 0

or

⎧⎨
⎩

∂tρ + 2∇ · (ρU) = 0

∂tU + 2U · ∇U + ∇(
f (ρ)

) − ∇
(

�
√

ρ√
ρ

)
= 0

(1)

with (ρ,U) ≡ (A2,∇φ). When neglecting the quantum pressure and linearizing this Euler type system around the
particular trivial solution Ψ = 1 (or (A,U) = (1,0)), we obtain the free wave equation{

∂t Ā + ∇ · Ū = 0

∂t Ū + 2f ′(1)∇Ā = 0

with associated speed of sound

cs ≡ √
2f ′(1) > 0

provided f ′(1) > 0, that is the Euler system is hyperbolic in the region ρ � 1, which we will assume throughout
the paper. For the rigorous justification of the free wave regime when (NLS) is the Gross–Pitaevskii equation, that is
f (�) = � − 1, see [23] for weak convergences and more recently [10] for strong convergences. In the sequel, we shall
always assume f as smooth as necessary near � = 1.

1.1. The (KdV)/(KP-I) asymptotic regime for (NLS)

The (KdV)/(KP-I) asymptotic regime for (NLS) gives a description, as for the water waves system, of a wave of
small amplitude which propagates at the speed of sound in the x1 direction and (if d � 2) with a slow modulation in
the transverse variables x⊥ = (x2, . . . , xd). More precisely, we insert the ansatz

Ψ (t, x) = (
1 + ε2Aε(τ, z)

)
exp

(
iφε(τ, z)

)
τ = ε3t, z1 ≡ ε(x1 − cs t), z⊥ ≡ ε2x⊥ (2)
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in (NLS), cancel the phase factor and separate real and imaginary parts to obtain the long wave rescaling of system
(1) ⎧⎪⎪⎨

⎪⎪⎩
∂τAε − cs

ε2
∂z1Aε + 2∂z1φε∂z1Aε + 2ε2∇z⊥φε · ∇z⊥Aε + 1

ε2

(
1 + ε2Aε

)(
∂2
z1

φε + ε2�z⊥φε

) = 0

∂τφε − cs

ε2
∂z1φε + (∂z1φε)

2 + ε2|∇z⊥φε|2 + 1

ε4
f

((
1 + ε2Aε

)2) − ∂2
z1

Aε + ε2�z⊥Aε

1 + ε2Aε

= 0.

(3)

In this section, we assume that f is of class C3 near � = 1. On the formal level, if Aε and φε are indeed of order one
and converge to A and φ, we must have, due to the singular terms in (3), for the first equation,

−cs∂z1A + ∂2
z1

φ = 0,

and for the second one, using the Taylor expansion

f
(
(1 + α)2) = c2

s α +
(
c2
s

2
+ 2f ′′(1)

)
α2 + f3(α), (4)

with f3(α) =O(α3) as α → 0, we obtain

−cs∂z1φ + c2
sA = 0.

These two constraints are actually a single one:

csA = ∂z1φ, (5)

and this comes from the fact that we are focusing on the wave propagating to the right. In order to cancel out the
singular terms, we add c−1

s times the first equation of (3) to c−2
s times the z1-derivative of the second one:

1

cs
∂τ

(
Aε + ∂z1φε

cs

)
+ 2

∂z1φε

cs
∂z1Aε + (

1 + ε2Aε

)
�z⊥

(
φε

cs

)
+ Aε∂z1

(
∂z1φε

cs

)

+ 2
∂z1φε

cs
∂z1

(
∂z1φε

cs

)
+

(
1 + 4f ′′(1)

c2
s

)
Aε∂z1Aε − 1

c2
s

∂z1

(
∂2
z1

Aε + ε2�z⊥Aε

1 + ε2Aε

)

= −2ε2

cs
∇z⊥φε · ∇z⊥Aε − ε2

c2
s

∂z1

(|∇z⊥φε|2
) − 1

ε4c2
s

∂z1

[
f3

(
ε2Aε

)]
. (6)

Passing to the limit ε → 0 formally in (6) and using the constraint (5) (so that φ/cs = ∂−1
z1

A), we obtain the Korteweg–
de Vries equation (KdV) in dimension d = 1, and the Kadomtsev–Petviashvili equation (KP-I) when d � 2

2

cs
∂τA + Γ A∂z1A − 1

c2
s

∂3
z1

A + �z⊥∂−1
z1

A = 0, (KdV)/(KP-I)

where the coefficient Γ is related to the nonlinearity f by the formula:

Γ ≡ 6 + 4

c2
s

f ′′(1).

The (KdV)/(KP-I) flow (formally) preserves the momentum

M (A) ≡
∫
Rd

A2 dz

and the energy

E (A) ≡
∫
Rd

1

c2
s

(∂z1A)2 + ∣∣∇z⊥∂−1
z1

A
∣∣2 + Γ

3
A3 dz.

In dimension d = 1, the formal derivation of the (KdV) equation from the (NLS) equation in this asymptotic regime
is well known in the physics literature (see, for example, [55] and [33]), and is useful in the stability analysis of dark
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solitons or travelling waves of small energy. We refer to [34,35] for the occurrence of the two dimensional (KP-I)
in Nonlinear Optics. In [9], this (KP-I) asymptotic regime for (NLS) is formally derived for the Gross–Pitaevskii
equation (i.e. (NLS) with f (�) = � − 1) in dimension d = 3, and is used to investigate the linear instability of the
solitary waves of speed � cs .

Before turning to the mathematical justifications of this regime for (NLS), we would like to point out that the
(KdV)/(KP) equation has also been rigorously derived for hyperbolic systems by W. Ben Youssef and T. Colin [6] for
(KdV) and W. Ben Youssef and D. Lannes [7] for (KP). The first rigorous justifications of this long wave asymptotic
regime for (NLS) are given in the papers [13] and [14], which work on the Gross–Pitaevskii equation in dimension
d = 1. The point is that this equation is integrable, and these results rely on the higher order conservation laws of
(GP). For (GP) in dimension d = 1, the Cauchy problem is known (see [13]) to be globally well-posed (see also
[56,27,28]) in the Zhidkov space Zσ (R) ≡ {v ∈ L∞(R), ∂xv ∈ Hσ−1(R)}, where σ is a positive integer. We recall
the main results of [13] and [14]. In Theorems 1 and 2 below, the initial datum for (GP)

i∂tΨε + ∂2
xΨε = Ψε

(|Ψε|2 − 1
)

is

Z3(R) � Ψ in
ε (x) = (

1 + ε2Ain
ε (z)

)
eiεφin

ε (z), z = εx,

and we denote Ψε ∈ C(R+,Z3(R)) the associated solution. For the Gross–Pitaevskii nonlinearity, we have cs = √
2

and Γ = 6.

Theorem 1. (See [13].) We assume d = 1, f (�) = � − 1 and that the functions Ain
ε and φin

ε verify∥∥Ain
ε

∥∥
H 3(R)

+ ∥∥∂zφ
in
ε /

√
2
∥∥

H 3(R)
� M.

Then, there exists ε0(M) > 0 such that, if 0 < ε < ε0(M), then Ψε can be written

Ψε(t, x) = (
1 + ε2Aε(τ, z)

)
eiεφε(τ,z), τ = ε3t, z = ε(x − √

2t),

with Aε , φε : R+ ×R→R continuous, (Aε,φε)|τ=0 = (Ain
ε , φin

ε ), and we have, for any τ � 0,

∥∥Aε(τ) − ζε(τ )
∥∥

L2(R)
� CM

(∥∥∥∥Ain
ε − ∂zφ

in
ε√
2

∥∥∥∥
H 3(R)

+ ε

)
eCMτ ,

where ζε stands for the solution of the (KdV) equation

2
√

2∂τ ζ + 12ζ∂zζ − ∂3
z ζ = 0

with initial datum

(ζε)|τ=0 = Ain
ε .

The error in ε is not natural, since only ε2 appears in (3) (for d = 1). This is in particular due to the fact that the
use, in [13], of the first three pairs of nontrivial conservation laws for (GP) yields

‖Aε − ∂zφε/
√

2‖H 3(R) � C
(∥∥Ain

ε − ∂zφ
in
ε /

√
2
∥∥

H 3(R)
+ ε

)
. (7)

In [14] the authors improve this first result by replacing the ε above by ε2. The price to pay is the loss of more
derivatives.

Theorem 2. (See [14].) Let s ∈ N∪ {0}, K0 > 0 and 0 < ε < 1 be given and assume that∥∥Ain
ε

∥∥
Hs+5(R)

+ ε
∥∥∂s+6

z Ain
ε

∥∥
L2(R)

+ ∥∥∂zφ
in
ε

∥∥
Hs+5(R)

�K0.

Let Aε and Uε denote the solutions to the (KdV) equations

2
√

2∂τ ζ + 12ζ∂zζ − ∂3
z ζ = 0
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with initial data Ain
ε and ∂zφ

in
ε /

√
2 respectively. Then, there exist ε0 = ε0(K0, s) ∈ (0,1) and K = K(K0, s) > 0 such

that if ε � ε0(K0, s), Ψε never vanishes and thus can be written

Ψε(t, x) = (
1 + ε2Aε(τ, z)

)
eiεφε(τ,z), τ = ε3t, z = ε(x − √

2t).

Furthermore, for any τ � 0,

‖Aε −Aε‖Hs(R) +
∥∥∥∥∂zφε√

2
− Uε

∥∥∥∥
Hs(R)

� K

(
ε2 +

∥∥∥∥Ain
ε − ∂zφ

in
ε√
2

∥∥∥∥
Hs(R)

)
eKτ .

The improvement in their proof is due to the fact that they take into account waves going to the right and to the
left: see Theorem 1 in [14] for a precise statement. In this paper, we shall treat only the right-going wave.

In [20], we have investigated the (KdV)/(KP-I) limit in arbitrary dimension d and for a general nonlinearity f

satisfying f ′(1) > 0. Here is one of our results (see also in [20] a result in the energy space when d = 1, and a result
for non-well-prepared data). Here, for Ain

ε , φin
ε , we consider the initial datum for (NLS)

Ψ in
ε (x) ≡ (

1 + ε2Ain
ε (z)

)
exp

(
iεφin

ε (z)
)
, z1 = εx1, z⊥ = ε2x⊥,

and denote Ψε ∈ Ψ in
ε + C([0, Tε),H

s+1(Rd)) the corresponding Hs+1 maximal solution. Let us recall that for initial
data Ain in Hs with s > 1 + d/2, the (KdV)/(KP-I) equation has a unique local in time weak solution (in the distribu-
tional sense) A ∈ L∞([0, τ0],H s(Rd)), as can be easily seen (for d � 2) by cutting off low frequencies and passing to
the limit. If moreover the antiderivative ∂−1

z1
Ain exists in the sense that (1+|ξ |)sξ−1

1 F (Ain) ∈ L2(Rd) (where F is the
Fourier transform), then, from the result of [32], we know that A actually belongs to C([0, τ0],H s(Rd) ∩ ∂z1H

s(Rd))

(for s > 1 + d/2). If, in addition, �z⊥∂−1
z1

Ain ∈ ∂z1H
s−3(Rd), then �z⊥∂−2

z1
A ∈ L∞([0, τ0],H s−3(Rd)) (see [53] or

Lemma 3 in [42]).

Theorem 3. (See [20].) Let s ∈N be such that s > 1 + d
2 . Assume that we have a family (Ain

ε , φin
ε )0<ε<1 such that

Λ ≡ sup
0<ε<1

∥∥(
Ain

ε , ∂z1φ
in
ε , ε∇z⊥φin

ε

)∥∥
Hs+1(Rd )

< +∞.

Then, there exist 0 < ε0 < 1, τ0 > 0 and K > 0, depending only on s and Λ, such that, for 0 < ε � ε0, Tε > τ0/ε
3

and there exist two real-valued functions Aε ∈ C([0, τ0],H s+1(Rd)) and φε ∈ C([0, τ0], Ḣ s+1(Rd))∩ C([0, τ0]×Rd)

such that (Aε,φε)|τ=0 = (Ain
ε , φin

ε ) and satisfying

Ψε(t, x) = (
1 + ε2Aε(τ, z)

)
exp

(
iεφε(τ, z)

)
, τ = ε3t, z1 ≡ ε(x1 − cs t), z⊥ ≡ ε2x⊥ (8)

with 1 + ε2Aε � 1
2 and

sup
0�τ�τ0

{‖Aε‖Hs+1(Rd ) + ∥∥(
∂z1φ

in
ε , ε∇z⊥φε

)∥∥
Hs(Rd )

}
� K. (9)

We assume that there exists a function Ain ∈ Hs+1(Rd) such that(
Ain

ε , ∂z1φ
in
ε , ε∇z⊥φin

ε

) → (
Ain, csA

in,0
)

in L2(
R

d
)

and moreover that, if d � 2,∥∥∥∥Ain
ε − ∂z1φ

in
ε

cs

∥∥∥∥
L2(Rd )

=O(ε) and
∥∥∇z⊥φin

ε

∥∥
L2(Rd )

=O(1).

Then, we have for ε → 0 and every σ < s + 1,

Aε → ζ in C
([0, τ0],Hσ

(
R

d
))

, and
∂z1φ

in
ε

cs
→ ζ in C

([0, τ0],Hσ−1(
R

d
))

,

where ζ ∈ L∞([0, τ0],H s+1(Rd)) is the solution of the (KdV)/(KP-I) equation with initial datum1 Ain ∈ Hs+1(Rd).
Furthermore,

1 If d � 2, we actually have ∇z⊥∂−1
z1 Ain ∈ L2(Rd ) and ∇z⊥Ain ∈ Hs(Rd ), which is sufficient to guarantee the continuity in time for ζ .
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sup
0�τ�τ0

∥∥∥∥Aε − ∂z1φε

cs

∥∥∥∥
L2(Rd )

= o(1), (10)

and if d � 2,

sup
0�τ�τ0

∥∥∥∥Aε − ∂z1φε

cs

∥∥∥∥
L2(Rd )

� Kε and sup
0�τ�τ0

‖∇z⊥φε‖L2(Rd ) � K. (11)

Remark 1.1. In [20], Lemma 1, the proof implicitly assumes that the potential function F is nonnegative. This is not
a problem for the study of the (KdV) limit since, in the end, we prove that |Ψ | is uniformly close to 1. Therefore, since
F(�) ∼ c2

s (� − 1)2/4 as � → 1, one can modify F away from 1 in order to have “F � 0” and afterwards observe that
the solution for the modified nonlinearity is actually a solution for the original one for ε small enough. However, for
a correct statement of Lemma 1 in [20], one needs to add that F is nonnegative.

Since the above result give a description of a wave propagating at the speed of sound, it is natural to investigate
the behaviour of the travelling waves of (NLS) in the transonic limit, that is for travelling waves of speed c � cs , and
expect a convergence, up to similar rescalings, to the (KdV)/(KP-I) solitary wave. The (KdV)/(KP-I) equation does
have solitary waves provided Γ �= 0 (otherwise, (KdV)/(KP-I) is linear), and 1 � d � 3 (see [24] when d � 2). For
the Gross–Pitaevskii nonlinearity (f (�) = � − 1), explicit integration of the travelling waves equation can be carried
out in dimension d = 1 (see [52,12]), and this convergence can be checked explicitely. Still for the Gross–Pitaevskii
nonlinearity, we refer to [11] for the proof of the transonic limit in the two dimensional case. For a more general
nonlinearity f , see [16] for the case d = 1, using ODE techniques, and [18] for the dimensions d = 2 and d = 3.

In Theorem 3, the convergence was obtained through a compactness argument, which does not provide a quanti-
tative error estimate. The purpose of this paper is to provide a convergence result for this (KdV)/(KP-I) asymptotic
regime with an error bound comparable to the one obtained in Theorem 2 of [14] for a general nonlinearity f and any
dimension d � 1. As a first remark, note that the zero mass assumption

∫
R

A(z1, z⊥) dz1 = 0 for every z⊥ ∈ R
d−1,

which allows to define the term ∂−1
z1

A, is necessary in order to prove rigorously a consistency result of the (KP-I) ap-
proximation, as explained by D. Lannes in [40]. However, this zero mass assumption is not natural from the physical
point of view. This is the reason why D. Lannes and J.-C. Saut have proposed in [42] weakly transverse Boussinesq
type systems that are formally equivalent to the (KP) equation but for which no zero mass assumption is needed and
for which natural consistency error bounds can be proved. This is the point of view we shall adopt for our problem.

1.2. Comparing to a weakly transverse Boussinesq system

Working in the hydrodynamical variables (Aε,Uε = (U1
ε ,U⊥

ε ) ≡ c−1
s (∂z1φε,∇z⊥φε)), (3) becomes

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1

cs
∂τAε − 1

ε2
∂z1Aε + 2U1

ε ∂z1Aε + 2ε2U⊥
ε · ∇z⊥Aε + 1

ε2

(
1 + ε2Aε

)(
∂z1U

1
ε + ε2∇z⊥ · U⊥

ε

) = 0

1

cs
∂τUε − 1

ε2
∂z1Uε + 2

(
U1

ε ∂z1 + ε2U⊥
ε · ∇z⊥

)
Uε + 1

c2
s ε

4
∂z1

[
f

((
1 + ε2Aε

)2)]

− 1

c2
s

∇z

(
∂2
z1

Aε + ε2�z⊥Aε

1 + ε2Aε

)
= 0.

(12)

Notice that, when we neglect the quantum pressure, (12) is a symmetrizable hyperbolic system in the variables
(Aε,U

1
ε , εU⊥

ε ) (and not (Aε,U
1
ε ,U⊥

ε ) due to the weak transversality), for which the symmetrizers

Diag

(
1,

c2
s

2f ′((1 + ε2Aε)2)
, . . . ,

c2
s

2f ′((1 + ε2Aε)2)

)
or Diag

(
2

c2
s

f ′((
1 + ε2Aε

)2)
,1, . . . ,1

)
(13)

can be used. Therefore, it is natural to propose, in the spirit of [42], the following Boussinesq type system
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

cs
∂τ Aε − 1

ε2
∂z1Aε + 1

ε2
∂z1 U1

ε + 2U1
ε∂z1 Aε + Aε∂z1 U1

ε + 2ε2U⊥
ε · ∇z⊥Aε

+ (
1 + ε2Aε

)∇z⊥ · U⊥
ε = 0

1

cs
∂τ Uε − 1

ε2
∂z1Uε + 2U1

ε∂z1 Uε + 2ε2U⊥
ε · ∇z⊥Uε + 1

ε2
∇zAε + (Γ − 5)Aε∇zAε

− 1

c2
s

∂3
z1

Uε = 0.

(Bε)

Here, we have used the Taylor expansion (4) for the nonlinearity f and the definition of Γ . Notice that in this
system, we have replaced Aε by Uε in the dispersive terms, which is justified by the fact that, by (5), we expect Aε ≈
c−1
s ∂z1φε = U1

ε . This allows to have the structure of a symmetrizable hyperbolic system in the variables (Aε,U1
ε, εU⊥

ε ),
since the dispersive term is then a diagonal term with constant coefficients. Indeed, we can use the symmetrizer

Σ
(
ε2Aε

) ≡ Diag

(
1 + (Γ − 5)ε2Aε

1 + ε2Aε

,1, . . . ,1

)
,

the first one of (13) having the disadvantage of making the dispersive term with nonconstant coefficients. We may
observe that if, in (Bε), we replace ∂3

z1
U1

ε and ∂3
z1

U⊥
ε by ∂3

z1
A1

ε and ∂3
z1

A⊥
ε respectively, we no longer have a sym-

metrizable hyperbolic system, and the local well-posedness of the resulting system would then be a delicate issue, see
[47] for a Boussinesq system (see also [54]). In view of this very nice structure of (Bε), we prove the following local
well-posedness result.

Proposition 1. Let Λ > 0 and s ∈ N be such that s > 3 + d
2 . Assume that 0 < ε < 1 and that (Ain

ε ,Uin
ε ) is an initial

datum for (Bε) such that∥∥(
Ain

ε ,Uin,1
ε , εUin,⊥

ε

)∥∥
Hs(Rd )

� Λ.

Then, there exists τ∗ > 0 and K depending only on Λ and s (and not on ε ∈ (0,1)) such that (Bε) has a unique
solution (Aε,U1

ε, εU⊥
ε ) ∈ L∞([0, τ∗],H s(Rd)), and this solution satisfies

sup
0�τ�τ∗

∥∥(
Aε,U1

ε, εU⊥
ε

)∥∥
Hs(Rd )

� K. (14)

Moreover, if Uin
ε is a gradient vector field, then for 0 � τ � τ∗, Uε(τ ) is also a gradient vector field.

As it is the case in [42], let us emphasize that if d � 2, we do not control a priori U⊥
ε but only εU⊥

ε , due to the
anistropy of the scaling. We now stress the link between the system (Bε) and the (KdV) and the (KP-I) equations.

Proposition 2. Assume d = 1, s ∈ N such that s � 5 and let 0 < ε < 1 and Λ > 0 be given. Let (Ain
ε ,Uin

ε ) be such that∥∥(
Ain

ε ,Uin
ε

)∥∥
Hs(R)

� Λ,

and let (Aε,Uε) ∈ L∞([0, τ∗],H s(R)) be the solution of (Bε) for the initial datum (Ain
ε ,Uin

ε ) provided by Proposi-
tion 1. Then, for some constant K depending only on Λ, we have

sup
0�τ�τ∗

‖Aε − Uε‖Hs−2(R) � K
(∥∥Ain

ε − Uin
ε

∥∥
Hs−2(R)

+ ε2)
. (15)

Moreover, if ζε ∈ C(R+,H s(R)) is the solution of the (KdV) equation

2

cs
∂τ ζε + Γ ζε∂zζε − 1

c2
s

∂3
z ζε = 0, (ζε)|τ=0 = Ain

ε ,

then for some constant K depending only on Λ,

sup
[0,τ0]

‖Aε − ζε‖Hs−5(R) + sup
[0,τ0]

‖Uε − ζε‖Hs−5(R) � K
(∥∥Ain

ε − Uin
ε

∥∥
Hs−2(R)

+ ε2)
. (16)
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Of course, the comparison (16) is meaningless if Ain
ε −Uin

ε is not small, which has to be related to the constraint (5).

Proposition 3. Assume d � 2, s ∈ N such that s > 3 + d
2 and let 0 < ε < 1 and Λ > 0 be given. Let (Aε,U1

ε, εU⊥
ε ) ∈

L∞([0, τ∗],H s(Rd)) be, as in Proposition 1, a solution of (Bε) for an initial datum (Ain
ε ,Uin

ε ) such that Uin
ε is a

gradient vector field and∥∥(
Ain

ε ,Uin,1
ε , εUin,⊥

ε

)∥∥
Hs(Rd )

� Λ.

Then, for some constant K depending only on Λ, we have, for 0 � τ � τ∗,{ ∥∥∂2
z1

(Aε − U1
ε)

∥∥
Hs−3(Rd )

�K
(∥∥∂2

z1
(Ain

ε − Uin
ε )

∥∥
Hs−3(Rd )

+ ε2)
∥∥∂z1

(
Aε − U1

ε

)∥∥
Hs−2(Rd )

� K
(∥∥∂z1(A

in
ε − Uin

ε )
∥∥

Hs−2(Rd )
+ ε

)
,

(17)

as well as∥∥Aε − U1
ε

∥∥
L2(Rd )

+ ε
∥∥U⊥

ε

∥∥
L2(Rd )

�K
(∥∥Ain

ε − Uin,1
ε

∥∥
L2(Rd )

+ ε
∥∥Uin,⊥

ε

∥∥
L2(Rd )

+ ε
)
. (18)

Moreover, if we have a family of initial data (Ain
ε ,Uin,1

ε , εUin,⊥
ε )0<ε<1 such that Uin

ε is a gradient vector field∥∥(
Ain

ε ,Uin
ε

)∥∥
Hs(Rd )

� Λ,
∥∥Ain

ε − Uin,1
ε

∥∥
L2(Rd )

� Λε,
∥∥Uin,⊥

ε

∥∥
L2(Rd )

� Λ

and, for some ζ in ∈ Hs(Rd),(
Ain

ε ,Uin,1
ε

) → (
ζ in, ζ in)

in L2(
R

d
)
,

then we have, for any 0 � σ < s,

Aε → ζ and U1
ε → ζ in C

([0, τ∗],Hσ
(
R

d
))

,

where ζ ∈ L∞([0, τ∗],H s(Rd)) solves the (KP-I) equation

2

cs
∂τ ζ + Γ ζ∂z1ζ − 1

c2
s

∂3
z1

ζ + �z⊥∂−1
z1

ζ = 0, ζ|τ=0 = ζ in.

Remark 1. The estimates in (17) are very anisotropic due to the fact that the natural bound is on εU⊥
ε and not

on U⊥
ε , but we can use that ∂z1 U⊥

ε = ∇z⊥U1
ε since Uε is a gradient to improve the bounds. Note that in [42], the

convergence of the weakly transverse Boussinesq system to uncoupled (KP) equations is shown (see Theorem 1
there) by a WKB expansion. Here, the wave propagating to the left is trivial. The hypothesis for Theorem 1 in [42]
are not exactly the same as in Proposition 3: for instance, we do not impose conditions like ∂2

z2
ζ in ∈ ∂2

z1
Hs(R2). The

proof of Proposition 3 relies on a compactness argument close to [20], and not a WKB expansion.

The link between the Boussinesq system (Bε) and the (KdV) and the (KP-I) equations being clarified, we can state
our main result.

Theorem 4. Let Λ > 0, 0 < ε < 1 and s ∈N be such that s > 3 + d
2 . Assume that (Ain

ε , φin
ε ) is such that∥∥(

Ain
ε , ∂z1φ

in
ε ,∇z⊥φin

ε

)∥∥
Hs(Rd )

� Λ.

Then, there exists 0 < ε0 < 1 and K depending on Λ and s such that, for 0 < ε < ε0, (NLS) has a unique solution
Ψε ∈ Ψ in

ε + C([0, τ0/ε
3],H s(Rd)), with τ0 � 1/(KΛ), that can be written

Ψε(t, x) = (
1 + ε2Aε(τ, z)

)
exp

(
iεφε(τ, z)

)
, τ = ε3t, z1 ≡ ε(x1 − cs t), z⊥ ≡ ε2x⊥

with 1 + ε2Aε � 1
2 and

‖Aε‖C([0,τ0],H s(Rd )) + ‖∂z1φε, ε∇z⊥φε‖C([0,τ0],H s−1(Rd )) � K.

Denoting (Aε,U1
ε,U⊥

ε ) ∈ L∞([0, τ∗],H s(Rd)) the solution to (Bε) for the initial datum (Ain
ε , c−1

s ∂z1φ
in
ε , c−1

s ∇z⊥φin
ε ),

we have, for 0 � τ � min(τ0, τ∗),
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∥∥∥∥
(

Aε,
∂z1φε

cs
,
ε∇z⊥φε

cs

)
− (

Aε,U1
ε, εU⊥

ε

)∥∥∥∥
Hs−1(Rd )

� Kε2τ.

This result is quite close to Theorem 1 in [14], where the functions (Aε + Uε)/2 and (Aε − Uε)/2 are shown to
be ε2 close to the solutions of two (KdV) equation with appropriate initial data. Here, we compare directly to the
Boussinesq system (Bε) via an estimate of the τ -derivative of (Aε,Uε). The estimates of Proposition 2 and 3 can thus
be transposed to (Aε,Uε), leading in particular to the following corollary.

Corollary 1. If d = 1 and under the assumptions of Theorem 4 with s � 5, we have, for 0 < ε < ε0 and some constant
K depending only on Λ,

sup
[0,min(τ0,τ∗)]

{‖Aε − ζε‖Hs(R) + ‖Uε − ζε‖Hs(R)

}
� K

(∥∥Ain
ε − U in

ε

∥∥
Hs(R)

+ ε2)
where ζε ∈ C(R+,H s(R)) denotes the solution to the (KdV) equation

2

cs
∂τ ζε + Γ ζε∂zζε − 1

c2
s

∂3
z ζε = 0, (ζε)|τ=0 = Ain

ε .

Proof of Corollary 1. Denoting (Aε,Uε) ∈ L∞([0, τ∗],H s(R)) the solution to (Bε), we have

sup
[0,τ0]

∥∥∥∥
(

Aε,
∂zφε

cs

)
− (Aε,Uε)

∥∥∥∥
Hs−1(R)

� Kε2τ � Kε2

by Theorem 4, since s � 5 > 3 + 1/2. Moreover, since s � 5, applying Proposition 2, there holds

sup
[0,τ0]

‖Aε − ζε‖Hs−5(R) + sup
[0,τ0]

‖Uε − ζε‖Hs−5(R) � K
(∥∥Ain

ε − Uin
ε

∥∥
Hs−2(R)

+ ε2)
where ζε solves (KdV) with initial datum Ain

ε . As a consequence,

sup
[0,min(τ0,τ∗)]

{‖Aε − ζε‖Hs−5(R) + ‖Uε − ζε‖Hs−5(R)

}

�K sup
[0,min(τ0,τ∗)]

{∥∥∥∥
(

Aε,
∂zφε

cs

)
− (Aε,Uε)

∥∥∥∥
Hs−1(R)

+ ‖Aε − ζε‖Hs−5(R) + ‖Uε − ζε‖Hs−5(R)

}

�K
(∥∥Ain

ε − U in
ε

∥∥
Hs−2(R)

+ ε2)
,

as desired. �
Notice that we obtain in this way in dimension d = 1 a comparison result with the (KdV) equation with an error

O(ε2) as in Theorem 2, [14], with assumptions that are basically the same (note that we do not need the L2 bound-
edness of the “ε∂s+6

z Ain
ε ” derivative). Of course, the convergence by compactness in Theorem 3 holds in a larger

space than the one where we prove quantitative error bounds. Our result holds for a general nonlinearity and does not
rely on the integrability of the one dimensional Gross–Pitaevskii equation but only on singular hyperbolic systems.
However, since we do not benefit of the a priori bounds deduced from the integrability (as in [13]), we do not have
an exponential bound on the error but work on a bounded interval in τ . Note that from our previous discussion, no
reasonable comparison result with the (KP-I) equation itself has to be expected.

1.3. Expanding in powers of ε

One natural way to get error estimates would be to justify an expansion of Aε and φε in powers of ε. These
expansions are indeed justified for the WKB asymptotics: see, e.g., [29,31,19]. In the physical literature, this is actually
the way the (KP-I) equation is formally derived for (NLS) (see [9,34,45]). We would like to point out that, in view
of the fact that the limit is singular, this power expansion is not formally correct in the sense that this requires very
strong well-preparedness assumptions on the initial data and this expansion cannot be valid at arbitrary order.
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We consider the system (12), where ∂−1
z1

U1
ε stands for c−1

s φε:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1

cs
∂τAε − 1

ε2
∂z1Aε + 2U1

ε ∂z1Aε + 2ε2(∇z⊥∂−1
z1

U1
ε

) · ∇z⊥Aε + 1

ε2

(
1 + ε2Aε

)[
∂z1U

1
ε + ε2�z⊥∂−1

z1
U1

ε

] = 0

1

cs
∂τU

1
ε − 1

ε2
∂z1U

1
ε + 2U1

ε ∂z1U
1
ε + 2ε2(∇z⊥∂−1

z1
U1

ε

) · ∇z⊥U1
ε + 1

ε2
∂z1Aε

+ 1

c2
s ε

4
∂z1

[
f

([
1 + ε2Aε

]2) − c2
s ε

2Aε

] = 1

c2
s

∂z1

(
∂2
z1

Aε + ε2�z⊥Aε

1 + ε2Aε

)
.

We assume a formal expansion

Aε = A0 + εA1 + ε2A2 + · · · , U1
ε = U1

0 + εU1
1 + ε2U1

2 + · · · ,
where the functions Ak and U1

k are localized, insert this into (12) and collect the terms of the same formal order in ε.
We then consider initial data having the same expansions:

Ain
ε = Ain

0 + εAin
1 + ε2Ain

2 + · · · , U in,1
ε = U

in,1
0 + εU

in,1
1 + ε2U

in,1
2 + · · · .

At order ε−2, we obtain U1
0 = A0 (and this is natural in view of (5)). The terms of order ε−1 provide

U1
1 = A1

and we point out that this is indeed a constraint of well-preparedness on the terms A1 and U1
1 at initial time, since we

must have

U
in,1
1 = Ain

1 ,

and this condition is not natural, even though in [9], the expansion only involves even powers of ε. We now turn to the
terms of order ε0:⎧⎪⎪⎨

⎪⎪⎩
1

cs
∂τU

1
0 + 2U1

0 ∂z1U
1
0 − 1

c2
s

∂3
z1

A0 + (Γ − 5)A0∂z1A0 + ∂z1A2 − ∂z1U
1
2 = 0

1

cs
∂τA0 + A0∂z1U

1
0 + 2U1

0 ∂z1A0 + �z⊥∂−1
z1

U1
0 + ∂z1U

1
2 − ∂z1A2 = 0.

We can solve this equation in (A2,U
1
2 ) if and only if the two equations are compatible, that is if and only if A0 = U1

0
is a solution of

2

cs
∂τA0 − 1

c2
s

∂3
z1

A0 + Γ A0∂z1A0 + �z⊥∂−1
z1

A0 = 0,

which is (KdV)/(KP-I). Then, using the (KdV)/(KP-I) equation for A0, we are left with

∂z1A2 − ∂z1U
1
2 = 1

cs
∂τA0 + 3A0∂z1A0 + �z⊥∂−1

z1
A0 = 1

2c2
s

∂3
z1

A0 +
(

3 − Γ

2

)
A0∂z1A0 + 1

2
�z⊥∂−1

z1
A0,

that is

A2 = U1
2 + 1

2c2
s

∂2
z1

A0 + 1

4
(6 − Γ )A2

0 + 1

2
�z⊥∂−2

z1
A0. (19)

Here again, we obtain a strong constraint on (A2,U
1
2 ) at the initial time:

Ain
2 = U

in,1
2 + 1

2c2
s

∂2
z1

Ain
0 + 1

4
(6 − Γ )

(
Ain

0

)2 − 1

2
�z⊥∂−2

z1
Ain

0 ,

which is not natural since the rigorous results in Theorems 2, 3, 4 do not make such preparedness assumptions on
the initial data. Moreover, in dimensions d � 2, the term �z⊥∂−2

z1
Ain

0 is not well defined in general: for instance, if

Ain = ∂z1{e−z2
1−z2

2} = −2z1e−z2
1−z2

2 , then ∂2
z ∂−1

z Ain = 2(2z2 − 1)e−z2
1−z2

2 has no z1 antiderivative in L2.
0 2 1 0 2
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The terms of order ε1 give⎧⎪⎪⎨
⎪⎪⎩

1

cs
∂τU

1
1 − 1

c2
s

∂3
z1

A1 + (Γ − 5)A0∂z1A1 + (Γ − 5)A1∂z1A0 + 2U1
0 ∂z1U

1
1 + 2U1

1 ∂z1U
1
0 + ∂z1A3 − ∂z1U

1
3 = 0

1

cs
∂τA1 + A0∂z1U

1
1 + A1∂z1U

1
0 + 2U1

0 ∂z1A1 + 2U1
1 ∂z1A0 + �z⊥∂−1

z1
U1

1 + ∂z1U
1
3 − ∂z1A3 = 0.

Here again, we have a compatibility condition between these two equations, which implies that A1 = U1
1 must verify

the (KdV)/(KP-I) equation linearized around A0

2

cs
∂τA1 + Γ A0∂z1A1 + Γ A1∂z1A0 − 1

c2
s

∂3
z1

A1 + �z⊥∂−1
z1

A1 = 0,

and it remains (since A0 = U1
0 and A1 = U1

1 )

∂z1A3 − ∂z1U
1
3 = 1

cs
∂τA1 + A0∂z1U

1
1 + A1∂z1U

1
0 + 2U1

0 ∂z1A1 + 2U1
1 ∂z1A0 + �z⊥∂−1

z1
U1

1

=
(

3 − Γ

2

)
∂z1(A0A1) + 1

2c2
s

∂2
z1

A1 + 1

2
�z⊥∂−1

z1
A1.

In [9], the expansion is assumed even in ε, hence A1 = U1
1 = 0, and then it is natural to choose A3 = U1

3 = 0.
For the terms of order ε2, we have, for some coefficient q3 coming from the Taylor expansion of f ((1 + α)2):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

cs
∂τU

1
2 − 1

c2
s

∂3
z1

A2 + 1

c2
s

∂z1

(
A0∂

2
z1

A0
) − 1

c2
s

∂z1�z⊥A0

+ (Γ − 5)∂z1(A2A0) + (Γ − 5)A1∂z1A1 + 3q3A
2
0∂z1A0

+ 2∂z1

(
U1

0 U1
2

) + 2U1
1 ∂z1U

1
1 + 2

(∇z⊥∂−1
z1

U1
0

) · ∇z⊥U1
0 + ∂z1A4 − ∂z1U

1
4 = 0

1

cs
∂τA2 + A0∂z1U

1
2 + A2∂z1U

1
0 + A1∂z1U

1
1 + 2U1

0 ∂z1A2 + 2U1
2 ∂z1A0 + 2U1

1 ∂z1A1

+ 2
(∇z⊥∂−1

z1
U1

0

) · ∇z⊥A0 + �z⊥∂−1
z1

U1
2 + A0�z⊥∂−1

z1
U1

0 + ∂z1U
1
4 − ∂z1A4 = 0.

Compatibility of the second equation with the first one then implies

1

cs
∂τ

(
A2 + U1

2

) − 1

c2
s

∂3
z1

A2 + (Γ − 5)∂z1(A0A2) + Γ A1∂z1A1 + ∂z1

(
q3A

3
0

) + 2∂z1

(
U1

0 A2
)

+ 1

c2
s

∂z1

(
A0∂

2
z1

A0
) + ∂z1

(
2A0U

1
2

) + A0∂z1U
1
2 + A2∂z1A0 + 2A0∂z1A2 + 2U1

2 ∂z1A0

+ 4
(∇z⊥∂−1

z1
U1

0

) · ∇z⊥A0 + �z⊥∂−1
z1

U1
2 + A0�z⊥∂−1

z1
A0 − 1

c2
s

∂z1�z⊥A0 = 0. (20)

Using the expression (19) of A2 in terms of U1
2 and the (KdV)/(KP-I) equation for A0, we obtain

1

cs
∂τ

(
U1

2 − A2
) + 1

4
(6 − Γ )A0�z⊥∂−1

z1
A0 + Γ

8
�z⊥∂−1

z1

(
A2

0

) + 1

4
�2

z⊥∂−3
z1

A0 + ∂z1{...} = 0,

where the term {...} depends on A1, U1
2 , A0. Here again, we observe that the term �2

z⊥∂−3
z1

A0 is not well defined in
general, and that the expression �z⊥∂−1

z1
(A2

0) is not in L2 since A2
0 � 0 (when A0 is nontrivial). This means that if

d � 2, the expansion is not formally correct up to the cancellation of the terms of order ε2.
We would like to point out another difficulty when we cancel the terms of order ε2, and restrict ourselves to

the dimension d = 1. Under weak assumptions on the nonlinearity, the Cauchy problem for (NLS) is known to be
locally well-posed in Ψ in + H 1, see [28]. This implies in particular that when we lift Ψ = Aeiϕ , we must have,
by Sobolev imbedding, the existence of the limits ϕ(t,±∞) as well as ϕ(t,±∞) = ϕin(t,±∞) for any t � 0.
Note that we consider here only solutions with |Ψ | ≈ 1. As a consequence, the (generalized Riemann, say) inte-
gral

∫
Uε dz = ∫

U0 dz + ε
∫

U1 dz + ε2
∫

U2 dz + · · · must be independent of τ . Since U0 (resp. U1) solves

R R R R
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(KdV) (resp. linearized (KdV)), it is (formally) true that
∫
R

U0 dz (resp.
∫
R

U1 dz) is conserved. For U2, assuming the
conservation of

∫
R

U2 dz, we deduce from (19) that

∂τ

∫
R

A2 dz = 1

4
(6 − Γ )∂τ

∫
R

A2
0 dz = 0, (21)

since the (KdV) flow conserves the L2 norm. On the other hand, (20) becomes

1

cs
∂τ (A2 + U2) − 1

2c2
s

∂3
z (A2 + U2) + Γ − 4

2
∂z

(
A0(A2 + U2)

) + 3∂z

(
A0[A2 + U2]

)
= 1

2c2
s

∂3
z

(
1

2c2
s

∂2
z A0 + 1

4
(6 − Γ )A2

0

)
+

(
1

2c2
s

∂2
z A0 + 1

4
(6 − Γ )A2

0

)
∂zA0

− Γ − 4

2

(
1

2c2
s

∂2
z A0 + 1

4
(6 − Γ )A2

0

)
− Γ A1∂zA1 − 1

c2
s

∂z

(
A0∂

2
z A0

) − ∂z

(
q3A

3
0

)
,

and since 2∂2
z A0∂zA0 = ∂z[(∂zA0)

2] and 3A2
0∂zA0 = ∂z[A3

0], all the terms in the right-hand side are z-derivatives
except the term involving A2

0 in the before last line. Therefore, formal z integration of the above equation provides,
still assuming

∫
R

U2 dz constant,

1

cs
∂τ

∫
R

A2 dz = (Γ − 4)(Γ − 6)

8

∫
R

A2
0 dz,

which contradicts (21) (when A0 is nontrivial), except in the particular cases Γ = 6 which happens for the Gross–
Pitaevskii nonlinearity since f ′′ = 0 everywhere, or Γ = 4. This second argument suggest that we may not in general
be able to cancel out the terms in ε2 with an expansion in ε.

We finally point out that in [42], the convergence of the weakly transverse Boussinesq system to the (KP) equation
was shown through an expansion in ε similar to the one discussed here, which leads, similarly to (19), to hypothesis
like ∂2

z2
ζ in ∈ ∂2

z1
Hs(R2). The results in Theorems 1, 2 and 3 do not rely on the justification of some expansion in ε.

Actually, expanding in ε with even powers so that the equations are solved up to the natural error O(ε2) suggest that
we may compare the true solution (Aε,Uε) to the approximate one (A0 + ε2A2,U0 + ε2U2) up to an error O(ε2).
The condition (19) appears then somehow unnatural because the terms (ε2A2, ε

2U2) involved are of the order of the
error O(ε2).

1.4. Formal derivation of (gKdV)/(gKP-I) equation in the degenerate case Γ = 0

When

Γ = 6 + 4

c2
s

f ′′(1) = 0,

(KdV)/(KP-I) is a linear dispersive equation. In order to see nonlinear effects, it is thus natural to enlarge the size of
the data. It turns out that the natural scaling is now

Ψ (t, x) = (
1 + εAε(τ, z)

)
exp

(
iφε(τ, z)

)
τ = ε3t, z1 ≡ ε(x1 − cs t), z⊥ ≡ ε2x⊥. (22)

Plugging this into (NLS), we obtain the system⎧⎪⎪⎨
⎪⎪⎩

∂τAε − cs

ε2
∂z1Aε + 2

ε
∂z1φε∂z1Aε + 2ε∇z⊥φε · ∇z⊥Aε + 1

ε2
(1 + εAε)

(
∂2
z1

φε + ε2�z⊥φε

) = 0

∂τφε − cs

ε2
∂z1φε + 1

ε
(∂z1φε)

2 + ε|∇z⊥φε|2 + 1

ε3
f

(
(1 + εAε)

2) − ∂2
z1

Aε + ε2�z⊥Aε

1 + εAε

= 0.

(23)

As ε → 0 and if Aε → A and φε → φ, we infer as above that at leading order, for both equations

csA = ∂z1φ. (24)
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However, it has to be noticed that (23) has also singular terms of order ε−1. Assuming that f is of class C4 near � = 1
and using the Taylor expansion

f
(
(1 + α)2) = c2

s α +
(
c2
s

2
+ 2f ′′(1)

)
α2 +

(
2f ′′(1) + 4

3
f ′′′(1)

)
α3 + f4(α),

with f4(α) =O(α4) as α → 0, the formally singular terms in system (23) give⎧⎪⎨
⎪⎩

1

ε2

(
∂2
z1

φε − cs∂z1Aε

) + 1

ε

(
2∂z1φε∂z1Aε + Aε∂

2
z1

φε

) =O(1)

cs

ε2
(csAε − ∂z1φε) + 1

ε

(
(∂z1φε)

2 + (
c2
s /2 + 2f ′′(1)

)
A2

ε

) =O(1).

We recall that Γ = 0 if and only if −2f ′′(1) = 3c2
s . Furthermore, since csAε = ∂z1φε + O(ε), we infer for both

equations in the above system (formally)

∂z1φε − csAε = −3ε

2
csA

2
ε +O

(
ε2)

. (25)

Adding c−1
s times the first equation of (23) to c−2

s ∂z1 times the second one, we get (using −2f ′′(1) = 3c2
s ),

1

cs
∂τ

(
Aε + 1

cs
∂z1φε

)
− 1

c2
s

∂z1

(
∂2
z1

Aε + ε2�z⊥Aε

1 + εAε

)
+ (1 + εAε)�z⊥φε + 1

c2
s

(
6f ′′(1) + 4f ′′′(1)

)
A2

ε∂z1Aε

+ 1

csε

{
2∂z1φε∂z1Aε + Aε∂

2
z1

φε + 1

cs
∂z1

[
(∂z1φε)

2] − 5cs
2

∂z1

(
A2

ε

)}

= −2ε

cs
∇z⊥φε · ∇z⊥Aε − ε

c2
s

∂z1

[|∇z⊥φε|2
] − 1

c2
s ε

3
∂z1

[
f4(εAε)

]
. (26)

We have to pay attention to the second line in (26) due to the factor ε−1. Using (25), the leading (quadratic) order
terms cancel out and the second line in (26) is

1

csε

{
2∂z1Aε

(
csAε − 3ε

2
csA

2
ε

)
+ Aε∂z1

(
csAε − 3ε

2
csA

2
ε

)
+ 1

cs
∂z1

[(
csAε − 3ε

2
csA

2
ε

)2]
− 5csAε∂z1Aε

}
+O(ε)

= −15A2
ε∂z1Aε +O(ε).

As a consequence, passing to the (formal) limit ε → 0 in (26) yields the modified (KdV)/(KP-I) equation

2

cs
∂τA − 1

c2
s

∂3
z1

A + Γ ′A2∂z1A + �z⊥∂−1
z1

A = 0, (mKdV)/(mKP-I)

where the coefficient

Γ ′ ≡ 4f ′′′(1)

c2
s

− 24

involves a third order derivative of f at 1. The nature of (mKdV)/(mKP-I) strongly depends on the sign of Γ ′: it is
defocussing for Γ ′ > 0 (without solitary waves) but focusing when Γ ′ < 0 (with solitary waves). Indeed, in dimension
d = 1, we have two solitons of speed −1/(2cs)

w±(z) ≡ ±
√−6/(Γ ′c2

s )

cosh(z)

(recall that (mKdV)/(mKP-I) is odd in A: if A is a solution, so is −A), and if d � 2, we have existence of (at least
two) nontrivial solitary waves to (mKP-I) if and only if d = 2 and Γ ′ < 0 (cf. [24]).

We can clearly go further and derive more generally (gKdV)/(gKP-I) equations from (NLS) when suitable coeffi-
cients like Γ and Γ ′ vanish. More precisely, for some given m ∈ N, assume that f is of class Cm+3 near � = 1 and
that we have
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f (j)(1)

(j + 1)! = (−1)j+1 c
2
s

4
for 1 � j < m + 2, (27)

the equality for j = 1 being always true by definition of cs , namely cs = √
2f ′(1). If m = 1, this requires f ′′(1) =

−3c2
s /2, which holds true if Γ = 0. Consider now (f is supposed smooth enough) the Taylor expansion of f ((1+α)2)

near the origin:

1

c2
s

f
(
(1 + α)2) =

m+1∑
k=1

qkα
k + qm+2α

m+2 +O
(
αm+3) =

m+2∑
k=1

( ∑
0���j
j+�=k

f (j)(1)2�−j

�!(j − �)!
)

αk +O
(
αm+3)

.

The ansatz (2) and (22) are then changed for

Ψ (t, x) = (
1 + ε

2
m+1 Aε(τ, z)

)
exp

(
iε

1−m
1+m φε(τ, z)

)
τ = ε3t, z1 ≡ ε(x1 − cs t), z⊥ ≡ ε2x⊥. (28)

Inserting this into (NLS) yields, with Uε ≡ c−1
s ∇zφε ,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

cs
∂τAε − 1

ε2
∂z1Aε + 2ε

2
m+1 −2U1

ε ∂z1Aε + 2ε
2

m+1 U⊥
ε · ∇z⊥Aε

+ 1

ε2

(
1 + ε

2
m+1 Aε

)(
∂z1U

1
ε + ε2∇z⊥ · U⊥

ε

) = 0

1

cs
∂τU

1
ε − 1

ε2
∂z1U

1
ε + 2ε

2
m+1 −2U1

ε ∂z1U
1
ε + 2ε

2
m+1 U⊥

ε · ∇z⊥U1
ε +

m+1∑
k=1

kqkε
2(k−1)
m+1 −2Ak−1

ε ∂z1Aε

+ (m + 2)qm+2A
m+1
ε ∂z1Aε +O

(
ε

2
m+1

) − 1

c2
s

∂z1

(
∂2
z1

Aε + ε2�z⊥Aε

1 + ε
2

m+1 Aε

)
= 0.

(29)

Comparing the singular terms in both equations, we obtain⎧⎪⎪⎨
⎪⎪⎩

∂z1U
1
ε − ∂z1Aε + ε

2
m+1

(
2U1

ε ∂z1Aε + Aε∂z1U
1
ε

) =O
(
ε2)

∂z1Aε − ∂z1U
1
ε + 2ε

2
m+1 U1

ε ∂z1U
1
ε +

m+1∑
k=2

kqkε
2(k−1)
m+1 Ak−1

ε ∂z1Aε =O
(
ε2)

.

For m = 0, we recover the constraint (5), and for m = 1, we obtain (25). When m � 1, this system is also a single
constraint. Indeed, letting ε ≡ ε2/(m+1), so that εm+1 = ε2, we shall see that the two equations in the above system
formally reduce to the single constraint

U1
ε = Aε − 3

2
εA2

ε + 2ε2A3
ε − 5

2
ε3A4

ε + · · · + (−1)m
m + 2

2
εmAm+1

ε +O
(
εm+1)

. (30)

For the first equation, this follows immediately by induction on m. Formally integrating in z1, the second one can be
written

Aε − U1
ε + ε

(
U1

ε

)2 +
m+1∑
k=2

qkε
k−1Ak

ε =O
(
εm+1)

.

From (30) and after a little algebra, this is equivalent to

m+1∑
k=2

(−1)k
k + 1

2
εk−1Ak

ε +
m+1∑
k=2

(−1)k
(k + 1)(k − 1)(k + 6)

24
εk−1Ak

ε +
m+1∑
k=2

qkε
k−1Ak

ε =O
(
εm+1)

,

that is to

∀2 � k � m + 1, qk = (−1)k−1 (k + 1)(k + 2)(k + 3)
. (31)
24
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The relation (31) is actually verified when the f (j)(1)’s verify (27), as can be seen by noticing that then, for � → 1,

f (�) =
m+1∑
j=1

f (j)(1)

j ! (� − 1)j +O
(
(� − 1)m+2) =

m+1∑
j=1

c2
s

4
(−1)j+1(j + 1)(� − 1)j +O

(
(� − 1)m+2)

= c2
s

4

+∞∑
j=1

(−1)j+1(j + 1)(� − 1)j +O
(
(� − 1)m+2) = c2

s

4

(
1 − 1

�2

)
+O

(
(� − 1)m+2)

,

thus, for α → 0,

1

c2
s

f
(
(1 + α)2) = 1

4

(
1 − 1

(1 + α)4

)
+O

(
αm+2) =

m+1∑
k=1

(−1)k−1 (k + 1)(k + 2)(k + 3)

24
αk +O

(
αm+2)

.

Note that when (30) is satisfied, we have

ε
(
2U1

ε ∂z1Aε + Aε∂z1U
1
ε

) + 2εU1
ε ∂z1U

1
ε +

m+1∑
k=2

kqkε
k−1Ak−1

ε ∂z1Aε

= (−1)m
εm+1

24
(m + 2)(m + 3)(m + 4)(m + 5)Am+1

ε ∂z1Aε +O
(
εm+2)

. (32)

Adding now the two equations of (29) and using (32), we infer

1

cs
∂τ

(
Aε + U1

ε

) − 1

c2
s

∂z1

(
∂2
z1

Aε + ε2�z⊥Aε

1 + εAε

)
+ (1 + εAε)∇z⊥ · U⊥

ε

+ (m + 2)qm+2A
m+1
ε ∂z1Aε + (−1)m

24
(m + 2)(m + 3)(m + 4)(m + 5)Am+1

ε ∂z1Aε

= −2εU⊥
ε · ∇z⊥U1

ε − 2εU⊥
ε · ∇z⊥Aε +O(ε), (33)

where the O(ε) contains the remainder in the Taylor expansion and the contribution coming from (32). The formal
limit is then the (gKdV)/(gKP-I) equation

2

cs
∂τA + Γ (m)Am+1∂z1A + �z⊥∂−1

z1
A − 1

c2
s

∂3
z1

A = 0, (gKdV)/(gKP-I)

where the coefficient Γ (m) involves a derivative of order f (m+2) of f at ρ = 1 and is defined by

Γ (m) ≡ (m + 2)qm+2 + (−1)m

24
(m + 2)(m + 3)(m + 4)(m + 5),

and clearly Γ (0) = Γ if m = 0 and Γ (1) = Γ ′ if m = 1. It is also clear that Γ (m) vanishes if and only if qm+2 =
(−1)m+1 (m+3)(m+4)(m+5)

24 , which is (31) for k = m + 2.

Remark 2. As we have seen during the computation, the nonlinearity given by

f (�) = c2
s

4

(
1 − 1

�2

)
,

at least locally near � = 1, is extremely specific. Indeed, all the coefficients Γ (m), m ∈N∪ {0} vanish for this nonlin-

earity, in view of the fact that f (j)(1) = (−1)j+1(j + 1)! c2
s

4 for any j ∈N0.

Remark 3. If one prefers to express Aε in terms of U1
ε in (30), one obtains

Aε =
m+1∑ 1 · 3 · · · · · (2k − 1)

k! εk−1[
U1

ε

]k +O
(
εm+1)

. (34)

k=1
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Indeed, (30) provides (formally)

εU1
ε =

+∞∑
j=0

(−1)j
j + 2

2
εj+1Aj+1

ε +O
(
εm+1) = 1

2
∂ε

( +∞∑
j=0

(−1)j εj+2Aj+1
ε

)
+O

(
εm+1)

= 1

2
∂ε

(
ε2Aε

1 + εAε

)
+O

(
εm+1) = 1

2

(
1 − 1

(1 + εAε)2

)
+O

(
εm+1)

,

hence 1 + εAε = (1 − 2εU1
ε )−1/2 +O(εm+1) and the result follows by Taylor expansion.

We would like to conclude this section with a discussion on the free wave regime studied in [10]. This wave regime
holds for an initial datum for (NLS) of the type

Ψ in(x) = (
1 + εAin

ε (z)
)

exp
(
iφin

ε (z)
)
, z ≡ εx (35)

and relies on the ansatz

Ψ (t, x) = (
1 + εAε(t, z)

)
exp

(
iφε(t, z)

)
, t = εt, z ≡ εx. (36)

The main result in [10] is the following.

Theorem 5. (See [10].) Let Λ > 0 and s ∈ R be such that s > 1 + d
2 . We consider an initial datum for the Gross–

Pitaevskii equation

i
∂Ψ

∂t
+ �Ψ = Ψ

(|Ψ |2 − 1
)

(GP)

of the type Ψ in
ε (x) = (1 + εAin

ε (z)) exp(iφin
ε (z)), z = εx, with∥∥Ain

ε

∥∥
Hs+1(Rd )

+ ∥∥∇zφ
in
ε

∥∥
Hs(Rd )

�Λ.

Then, there exists a positive constant K0 = K0(s, d) such that if K0εΛ � 1, then (GP) has a unique solution Ψε ∈
Ψ in

ε + C([0,1/(K0εΛ)],H s+1(Rd ,C) with initial datum Ψ in
ε , which can be written under the form (36) with

sup
0�t�1/(K0εΛ)

∥∥Aε(t)
∥∥

Hs+1(Rd )
+ ∥∥∇zφε(t)

∥∥
Hs(Rd )

� K0Λ and
1

2
� ρ = 1 + εAε � 2. (37)

Furthermore, if (aε,uε) denotes the solution to the free wave equation⎧⎨
⎩

∂taε + 2∇z · uε = 0

∂tuε + 1

2
∇zaε = 0

(38)

with intial datum (Ain
ε ,∇zφ

in
ε ), then, for 0 � t � 1/(K0εΛ), there holds∥∥(Aε,Uε)(t) − (aε,uε)(t)

∥∥
Hs−2(Rd )×Hs−2(Rd )

� K0εt
(
Λ2 + εΛ

)
. (39)

This underlines that the free wave regime is a good approximation for large t, namely t � ε−1. Actually, t ≈ 1
(t � ε−1) is the time scale for the Euler regime, and since we linearize around a constant state, we expect that the
asymptotics hold for large t . We may refer to, e.g., [17] for a survey on the different long wave regimes for (NLS)
(Euler regime, wave regime, . . . ). In the case d = 1, m = 1, the initial datum for the (mKdV) regime is also of the type
(35). However, due to the cancellation of Γ and the nonlinear preparedness assumption (25) of the data, we formally
obtain solutions on a much larger time interval τ � 1, that is t ≈ ε−3 or t ≈ ε−2.

Remark 4. It seems that actually, in Theorem 5, the norm ‖Ain
ε ‖Hs+1(Rd ) needs to be replaced by ‖Ain

ε ‖Hs(Rd ) +
ε‖Ain

ε ‖Hs+1(Rd ), and similarly in (37). Indeed, in Proposition 1 in [10], we see that “z” is controled in Hs , but the

imaginary part of z is 2∇ρ
ρ

, with ρ = 1 + εAε , so that only ε‖Ain
ε ‖Hs+1(Rd ) is involved and not just ‖Aε‖Hs+1(Rd ).

This means that the right-hand side of (39) should presumably be replaced by K0εt(Λ2 + Λ).
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1.5. Some rigorous justification of the (gKdV)/(gKP-I) equation

We present here our rigorous convergence result to the (gKdV)/(gKP-I) equation, but, as we shall see, it does not
hold on the scale τ = ε3t ≈ 1.

Determining the right time scale. When one wants to justify the (gKdV)/(gKP-I) asymptotic regime, the main
difficulty is the presence, in systems (23) and (29), of singular terms with nonconstant coefficient. In comparison
with the justification of the (KdV)/(KP-I) limit, where we prove first the Sobolev bounds and then the error estimate
involving the preparedness assumption, the difficulty for proving the (gKdV)/(gKP-I) limit on the natural time scale
τ = ε3t is to break down a vicious circle: the Sobolev bounds depend on the preparation of the data, which itself
depends on the Sobolev bounds. Despite our efforts, we have not been able to solve this problem, even working in
a space of analytic functions. Another aspect which appears for this problem on the time scale τ = ε3t ≈ 1 is that
we always have to expand much further than the expected natural order. For instance, the constraint (30), namely,
considering d = 1 for simplicity,

Uε = Aε − 3

2
εA2

ε + 2ε2A3
ε − 5

2
ε3A4

ε + · · · + (−1)m
m + 2

2
εmAm+1

ε +O
(
εm+1)

,

requires to expand (Aε,Uε) up to O(εm+1). However, this induces in the equations a consistency error only O(1)

due to the singular term in 1/ε2 = 1/εm+1. Hence we may hope to prove only (Aε,Uε) − (A0,U0) − ε(A1,U1) −
· · · − εm(Am,Um) =O(1), which is useless. Furthermore, we do not have any equation for the evolution of (A1,U1),
(A2,U2), . . . and there is clearly no uniqueness when solving (30). Expanding (Aε,Uε) up to O(εm+r ) for some r � 1
provides a consistency error O(εr−1), which is not sufficient for proving that (30) remains true, except for r � m + 2.
When m = 1, hence ε = ε, this means that we have to expand (Aε,Uε) up to O(ε4) instead of the natural O(ε2). This
is the same mechanism which shows that the Sobolev bounds at one order require an expansion of the data at a much
larger order.

As a consequence, it is natural to work on a smaller time scale. In view of the result of [10] given in Theorem 5,
the wave time scale seems natural. Notice that for an initial datum of the form

Ψ in(x) = (
1 + εAin

ε (z)
)

exp

(
i
ε

ε
φin

ε (z)

)
, z ≡ εx,

where the small parameter ε2 � ε � 1 may be different from ε (compare with (38)), the free wave regime holds for
t � (εε)−1. We thus introduce the time scale θ = εεt = εt, that is we replace (22) by

Ψ (t, x) = (
1 + εAε(θ, z)

)
exp

(
i
ε

ε
φε(θ, z)

)
, θ = εεt, z1 ≡ ε(x1 − cs t), z⊥ ≡ ε2x⊥, (40)

which changes (3) for a system with Uε ≡ c−1
s ∇zφε where the singular terms have constant coefficients:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂θAε − cs

ε
∂z1Aε + 2U1

ε ∂z1Aε + 2ε2U⊥
ε · ∇z⊥Aε + 1

ε
(1 + εAε)

(
∂z1U

1
ε + ε2∇z⊥ · U⊥

ε

) = 0

∂θUε − cs

ε
∂z1Uε + 2U1

ε ∂z1Uε + 2ε2U⊥
ε · ∇z⊥Uε + 1

ε2
∇z

[
f

(
(1 + εAε)

2)]
= ε2

ε
∇z

[
∂2
z1

Aε + ε2�z⊥Aε

1 + εAε

]
.

(41)

The free wave regime studied in [10] then holds for θ � 1.

Approximation of the right-going wave by the Burgers equation for θ ≈ 1. Let us investigate what can be shown
concerning an expansion in ε for the one dimensional situation with only one wave propagating to the right. We then
try to expand further in ε = ε the result in [10] with the assumption that the wave going to the left is negligible. This
leads us to consider the one dimensional system, where θ = ε2t and Uε = c−1

s ∂zφε ,
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⎧⎪⎪⎨
⎪⎪⎩

1

cs
∂θAε − 1

ε
∂zAε + 2Uε∂zAε + 1

ε
(1 + εAε)∂zUε = 0

1

cs
∂θUε − 1

ε
∂zUε + 2Uε∂zUε + 1

c2
s ε

2
∂z

(
f

([1 + εAε]2)) = ε∂z

(
∂2
z Aε

1 + εAε

)
.

(42)

When plugging a formal expansion in ε for Aε = A0 + εA1 + · · · and Uε = U0 + εU1 + · · · into (42) and arguing
as in Section 1.3, we find that A0 = U0 verifies the (inviscid) Burgers equation (sometimes, it is also called the Hopf
equation)

2

cs
∂θa+ Γ a∂za= 0 (43)

under the additional hypothesis that

U in
1 − Ain

1 = Γ − 6

4

[
Ain

0

]2
,

so that the relation U1 − A1 = Γ −6
4 A2

0 holds true for positive times. Here is a rigorous result in this direction, without
this last extra assumption (as (19) was not necessary for proving the convergence to the (KdV)/(KP-I) equation but
required by the expansion in ε). We emphasize that we focus on the right-going wave.

Proposition 4. Assume d = 1, Λ > 0 and s ∈ N be such that s � 3. We consider an initial datum (Ain
ε ,U in

ε ) for (42)
verifying∥∥Ain

ε

∥∥ � Λ and
∥∥U in

ε

∥∥ � Λ. (44)

Then, there exist θ∗ > 0 and a positive constant ε0 = ε0(Λ, s) such that if 0 < ε � ε0, then (42) has a unique solution
(Aε,Uε) ∈ C([0, θ∗],H s(R) × Hs−1(R)) with initial datum (Ain

ε ,U in
ε ), verifying

sup
0�θ�θ∗

∥∥Aε(θ)
∥∥

Hs(R)
+ ∥∥∂zφε(θ)

∥∥
Hs−1(R)

� K0Λ and
1

2
� ρ = 1 + εAε � 2. (45)

Furthermore, if aε ∈ C([0, θ0],H s(R)) denotes the solution to the (inviscid) Burgers equation

2

cs
∂θa+ Γ a∂za= 0

with intial datum Ain
ε , then, for 0 � θ � min(θ0, θ∗), there holds∥∥Aε(θ) − aε(θ)

∥∥
Hs−3(R)

+ ∥∥Uε(θ) − aε(θ)
∥∥

Hs−3(R)
� K

(∥∥Ain
ε − U in

ε

∥∥
Hs−1(R)

+ εθ
)
.

This result provides an expansion for Aε and Uε up to O(ε) uniformly for 0 � θ � min(θ0, θ∗) ≈ 1, whereas the
result in Theorem 5, [10] takes into account left and right-going waves but is restricted to 0 � θ � 1. If Γ �= 0, the
approximation aε has a nontrivial dynamics on the time scale θ ≈ 1. We shall now investigate what happens when
Γ = 0, on the time scale θ . More precisely, we shall work up to θ � | ln ε|.

Justification of the (gKdV)/(gKP-I) equation for large θ . Here, we make the assumption (27) for some m ∈ N,
and recall that ε = ε2/(m+1). Since we shall work for θ � | ln ε|, there holds τ = εmθ � εm| ln ε|, so that the solution
ζ(τ ) to (gKdV)/(gKP-I) has moved from ≈ εm| ln ε| � 1 from its initial value. As a consequence, any error estimate
between Aε and ζ(τ ) for θ � |ln ε| is meaningful only if the error is � εm| ln ε|. Since we shall justify an expansion
in ε, this will force us to solve the equations up to an error O(εm+1). Proceeding in this way, we shall then prove a
Gronwall estimate which roughly reads∥∥Aε(θ) − (

A0 + εA1 + · · · + εm+1Am+1
)
(τ )

∥∥ + ∥∥Uε(θ) − (
U0 + εU1 + · · · + εm+1Um+1

)
(τ )

∥∥
� εm+1eC0θ , (46)

where A0 = U0 = ζ(τ ). For θ � |ln ε| ≈ |ln ε|, the right-hand side remains small. Clearly, in this expansion, the
terms εm+1Am+1 and εm+1Um+1 are useless in view of the error � εm+1, but they are necessary in order to have
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a consistency error in O(εm+1). This leads to constraints such as (19) or U in
1 − Ain

1 = Γ −6
4 [Ain

0 ]2 for the Burgers
equation. We have seen that for (A1,U1), (A2,U2), . . . , we have no evolution equation on the time scale τ (but they
are (formally) stationary on the time scale θ ). Therefore, it may seem strange to justify an expansion which seems up
to O(εm+1) without knowing the true dynamics of (A1,U1), (A2,U2), . . . . However, this is not unconsistent, since
for θ � |ln ε|, the term εU1 for instance, has moved from its initial condition of at most ε × τ = εm+1θ , which is much
smaller than εm+1eC0θ when θ is large.

Our result is based on an expansion in ε, thus we shall have the above mentioned constraints on the initial data,
such as �z⊥∂−2

z1
ζ in ∈ Hs+1(Rd), although we believe that they are actually not necessary. In view of the form of (46),

note that a distinction has to be made between the case m = 1 and the case m � 2. Indeed, we have seen that we wish
to have ‖Aε(θ) − ζ(τ )‖ = ‖Uε(θ) − ζ(τ )‖ = o(εm|ln ε|), and a priori, we infer from (46) that ‖Aε(θ) − ζ(τ )‖ =
‖Uε(θ) − ζ(τ )‖ ≈ ε. If m = 1, it is true that ε = o(εm|ln ε|), but if m� 2, this is no longer the case, which means that
we cannot compare both Aε and Uε to ζ in a significant way. Indeed, in view of (30), that is

Uε −
{
Aε − 3

2
εA2

ε + 2ε2A3
ε − 5

2
ε3A4

ε + · · · + (−1)m
m + 2

2
εmAm+1

ε

}
=O

(
εm+1)

,

we cannot have at the same time A1 = 0 and U1 = 0. In the case m � 2, we shall privilege the comparison of ζ to
the amplitude Aε and then impose A1 = A2 = · · · = Am−1 = 0, which in turn implies, via (30), a strong constraint
on the expansion of Uε at the initial time, both for U in,1

ε and for U in,⊥
ε = ∇z⊥∂−1

z1
U in,1

ε (since Uε is a gradient vector
field). This is the reason why we shall present two results. The first one (Theorem 6 below) in one space dimension
and where we want to compare the amplitude Aε to ζ , which requires A1 = A2 = · · · = Am−1 = 0, in particular at the
initial time. The second one (Theorem 7 below) in space dimension d � 2, and where we compare the first component
of the gradient vector field Uε to ζ , which requires U1

1 = U1
2 = · · · = U1

m−1 = 0. Of course when d = 1, one could
make a statement where we compare Uε to ζ (with U1

1 = U1
2 = · · · = U1

m−1 = 0). However, in dimension d � 2, since
Uε is a gradient vector field, this imposes some constraints in the expansion in ε for U1

ε and U⊥
ε , which prevents the

comparison between Aε and ζ (since we must have A1 = A2 = · · · = Am−1 = 0), at least when m � 2. We may now
state our main results for this section.

Theorem 6. We assume d = 1. Let Λ > 0, s,m ∈ N such that s � 2 and (27) holds. We fix ζ in ∈ Hs+5(R) and denote
ζ ∈ C([0, τ∗],H s+5(R)) the solution to the (gKdV) equation

2

cs
∂τ ζ + Γ (m)ζm+1∂zζ − 1

c2
s

∂3
z ζ = 0

for the initial datum ζ in. We fix Ain
m ∈ Hs+5(R) and consider an initial datum (Ain

ε ,U in
ε = ∂zφ

in
ε ) for (41) satisfying∥∥Ain

ε − ζ in − εmAin
m

∥∥
Hs(R)

� Λε2 = Λεm+1,

and ∥∥∥∥U in
ε −

{
Ain

ε − 3

2
ε
[
Ain

ε

]2 + 2ε2[
Ain

ε

]3 − 5

2
ε3[

Ain
ε

]4 + · · · + (−1)m
m + 2

2
εm

[
Ain

ε

]m+1
}∥∥∥∥

Hs(R)

�Λε2 = Λεm+1.

Then, there exist two (small) positive constants μ and ε0 > 0, depending only on s, Λ and the functions ζ in and
Ain

m such that (41) has a unique solution (Aε,Uε) ∈ C([0,μ|ln ε|],H s(R) × Hs−1(R)) if 0 < ε � ε0. Moreover, there
exists a positive constant C, depending only on s, Λ and the functions ζ in and Ain

m such that, for θ ∈ [0,μ|ln ε|], we
have ∥∥Aε(θ) − ζ

(
εmθ

)∥∥
Hs(R)

� C
(
εm

∥∥Ain
m

∥∥
Hs(R)

+ εm+1eθ/(2μ)
)
� Cεm

and ∥∥∥∥Uε(θ) −
{
Aε − 3

2
εA2

ε + 2ε2A3
ε − 5

2
ε3A4

ε + · · · + (−1)m
m + 2

2
εmAm+1

ε

}
(θ)

∥∥∥∥
Hs−1(R)

� Cεm+1eθ/(2μ) � Cεm+ 1
2 .
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We recall that the assumption ‖Ain
ε − ζ in − εmAin

m‖Hs(R) � Λε2 = Λεm+1 corresponds to the hypothesis A1 =
A2 = · · · = Am−1 = 0 at θ = 0. Our second result holds in arbitrary dimension d � 1. Since we privilege the vector
field Uε , we no longer compute U1

ε from Aε by (30) but compute Aε from U1
ε by (34).

Theorem 7. We assume d � 1. Let Λ > 0, s,m ∈ N such that s > 1 + d
2 and (27) holds. We fix ζ in ∈ Hs+5(Rd) and

assume moreover, if d � 2, that

ζ in ∈ ∂z1H
s+5(

R
d
)

and �z⊥∂−1
z1

ζ in ∈ ∂z1H
s+2(

R
d
)
.

We then denote ζ ∈ C([0, τ∗],H s(Rd)) the solution to the (gKdV)/(gKP-I) equation

2

cs
∂τ ζ + Γ (m)ζm+1∂z1ζ + �z⊥∂−1

z1
ζ − 1

c2
s

∂3
z1

ζ = 0

for the initial datum ζ in. We consider an initial datum (Ain
ε ,U in

ε = ∇zφ
in
ε ) for (41) satisfying

U in
ε = ∇z∂

−1
z1

ζ in and

∥∥∥∥∥Ain
ε −

m+1∑
k=1

1 · 3 · · · · · (2k − 1)

k! εk−1[
U1

ε

]k

∥∥∥∥∥
Hs(Rd )

�Λεm+1 = Λε2.

Then, there exist two (small) positive constants μ and ε0, depending only on s, d , Λ and the function ζ in such that (41)
has a unique solution (Aε,Uε) ∈ C([0,μ|ln ε|],H s(Rd) × Hs−1(Rd)). Moreover, there exists a positive constant C,
depending only on s, d , Λ and the function ζ in such that, for θ ∈ [0,μ|ln ε|], we have∥∥U1

ε (θ) − ζ
(
εmθ

)∥∥
Hs−1(Rd )

� Cεm+1eθ/(2μ) � Cεm+ 1
2 ,

∥∥εU⊥
ε (θ)

∥∥
Hs−1(Rd )

� Cεm+1eθ/(2μ) � Cεm+ 1
2 ,

and ∥∥∥∥∥Aε(θ) −
m+1∑
k=1

1 · 3 · · · · · (2k − 1)

k! εk−1[
U1

ε (θ)
]k

∥∥∥∥∥
Hs(Rd )

� Cεm+1eθ/(2μ) � Cεm+ 1
2 .

As an illustration for these two theorems, take m = 1, U in = ∇z∂
−1
z1

ζ in, and Ain = ζ in + 3
2 [ζ in]2. Then, we prove

that Aε(θ) and U1
ε (θ) are equal to ζ(εθ) +O(ε) uniformly for 0 � θ � μ|ln ε|, whereas ζ has moved from its initial

condition about ε|ln ε| � ε. Theorems 6 and 7 then provide a justification of the (gKdV)/(gKP-I) limit on the time

scale t � (εε)−1|ln ε| ≈ ε−1− 2
m+1 |ln ε|, which is much smaller than the expected one t � ε−3 (recall m� 1), but much

larger than the natural one for the free wave regime t � (εε)−1 with both left and right-going waves (cf. Theorem 5
due to [10]), or the time scale t ≈ ε−2 which is suitable for a right-going wave approximated by the Burgers equation
(see Proposition 4).

In [22], T. Colin and D. Lannes justify the Davey–Stewartson approximation for WKB initial data in hyperbolic
systems. Their situation bears some common feature with our one: the transport equation (analogous to the free
wave equation for us) governs formally the dynamics on the time scale say t � 1/δ, and the diffractive (formal)
approximation holds on the time scale t � 1/δ2, where δ is some samall parameter. However, the rigorous justification
of the Davey–Stewartson approximation in [22] is for times t � |ln δ|/δ, which is here again much smaller than the
diffractive scale t � 1/δ2, but much larger than the transport scale t � δ−1. However, in [22], this is the occurrence
of resonances which prevent the approximation to hold up to times of order t � 1/δ2, whereas in our situation, this
is the occurrence of nonlinear singular terms. It is then not completely clear on which time scale the (gKdV)/(gKP-I)
approximation is valid. We shall study this problem numerically in some forthcoming work.

Similarly to the (KdV)/(KP-I) limit, we may wonder what is known for the (gKdV)/(gKP-I) asymptotic limit for
the travelling waves. Concerning the one dimensional problem, we refer to [16], where the ODE argument still works
for the (gKdV) limit as soon as the (gKdV) equation has solitary waves, that is the nonlinearity is even, or focusing
and odd. In particular, when Γ = 0 > Γ ′, this gives rise to two branches of solutions in the transonic limit. In higher
dimension, note that the (gKP-I) equation which is not (KP-I) (that is with nonlinearity which is not quadratic) has
travelling wave only if d = 2 and the nonlinearity is either cubic focusing or quartic (see [24]). In [21], we have
investigated numerically the existence and properties of the travelling waves for (NLS) in dimension two. In the
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focusing case Γ = 0 > Γ ′ for (mKP-I), we have also obtained, as in [16], two branches of solutions in the transonic
limit. So far, we do not know any mathematical result concerning this convergence to (mKP-I) for the travelling waves.

The main ingredient in the proofs for the above results is to use the trick of E. Grenier [31]. The idea is to write the
wave function Ψ solution to (NLS) under the form

Ψ = a exp(iϕ),

where ϕ is real-valued but a is complex-valued, which is a modified Madelung transform where amplitude and phase
are no longer the true ones. Then, we do not split (NLS) separating real and imaginary parts, which would lead to the
first system in (1), but decide instead to solve{

∂ta + 2∇φ · ∇a + a�ϕ = i�a

∂tϕ + |∇ϕ|2 + f (|a|2) = 0.

The point is that if (a,ϕ) solves this system, then Ψ = a exp(iϕ) solves (NLS). The advantage of this system is that it
is a symmetrizable hyperbolic system (if f ′ > 0, which will be the case here) with a skew-adjoint, constant coefficient,
perturbation for which existence or comparison results can be easily derived.

1.6. Derivation of the (mKdV)/(mKP-I) equation from the Landau–Lifshitz model

In the Landau–Lifshitz model for planar ferromagnets in the case of an easy-plane anisotropy, the spin density
m=m(t, x) = (m1,m2,m3) ∈ S

2, t ∈ R+, x ∈ R
d , obeys (see [39,37,38,45]) the equation

∂m

∂t
=m× (�m−m3�e3), �e3 ≡ (0,0,1). (LL)

The physical dimensions are d = 1, 2 or 3. The Landau–Lifshitz equation (LL) formally conserves the energy∫
Rd

|∇m|2 +m2
3 dx.

Concerning the local well-posedness of (LL), we shall use the following result.

Theorem 8. Let s ∈ N with s > + d
2 . If min ∈ C(Rd ,S2) verifies ∇min ∈ Hs(Rd , (Rd)3), then there exists t∗ =

1
C(s,d)‖∇min‖Hs

> 0 such that (LL) has a unique solution m ∈ L∞([0, t∗],S2) with ∇m ∈ L∞([0, t∗],H s((Rd)3)).

The proof of Theorem 8 is omitted, since it follows from the arguments in [50] (the extra term m3�e3 is harmless),
or in [26], where the heat flow into the manifold S2 is used, which would lead for (LL) to the parabolic regularization:

∂mν

∂t
= ν

(
�mν + ∣∣∇mν

∣∣2
mν −mν

3�e3
) +mν × (

�mν −mν
3�e3

)
,

and then letting ν → 0.
The Eq. (LL) may be recast as a nonlinear Schrödinger type equation by using the stereographic projection

Ψ ≡ m1 + im2

1 +m3
,

which is valid for m3 �= −1. This transforms (LL) into the nonlinear Schrödinger type equation

i
∂Ψ

∂t
+ �Ψ + 1 − |Ψ |2

1 + |Ψ |2 Ψ = 2Ψ̄

1 + |Ψ |2
(

d∑
j=1

(∂jΨ )2

)
, (47)

which also possesses the gauge invariance, but which is quasilinear and not semilinear as (NLS). We may also find
the hydrodynamical form by using the Madelung transform Ψ = Aeiϕ , provided Ψ does not vanish, which yields⎧⎪⎪⎨

⎪⎪⎩
∂tA + 2

1 − A2

1 + A2
(∇ϕ) · ∇A + A�ϕ = 0

∂tϕ + 1 − A2

2
|∇ϕ|2 + A2 − 1

2
− �A + 2|∇A|2

2
= 0

(48)
1 + A A + 1 A 1 + A
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or, in variables (ρ ≡ A2, U ≡ ∇xϕ),⎧⎪⎪⎨
⎪⎪⎩

∂tρ + 2
1 − ρ

1 + ρ
U · ∇ρ + 2ρ∇ · U = 0

∂tU + ∇
(

1 − ρ

1 + ρ
|U |2

)
+ ∇

(
ρ − 1

ρ + 1

)
− ∇

(
�

√
ρ√

ρ

)
+ ∇

( |∇ρ|2
2ρ(1 + ρ)

)
= 0.

(49)

Notice that here, the speed of sound is equal to 2 d
dρ

(
ρ−1
ρ+1 )|ρ=1 = 1, and that the associated Euler type system (in

the long wave regime) is different from the usual one. The result below will no longer rely on the trick of E. Grenier,
where we allow the amplitude to be complex-valued, thus we shall work with the true hydrodynamical variables
(ρ = A2,U = ∇xϕ). In order to put forward the (mKdV)/(mKP-I) limit, we follow [45] (although this work was
related to the question of travelling waves), and make the long wave ansatz

Ψ (t, x) = √
1 + εAε(τ, z) exp

(
iφε(τ, z)

)
τ = ε3t, z1 ≡ ε(x1 − t), z⊥ ≡ ε2x⊥, (50)

which is actually similar to the one used in Section 1.4 when Γ = 0. We plug (50) in (47) and deduce as above the
system⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂τAε − 1

ε2
∂z1Aε − 2Aε

2 + εAε

[
∂z1φε∂z1Aε + ε2∇z⊥φε · ∇z⊥Aε

] + 2

ε2
(1 + εAε)

(
∂2
z1

φε + ε2�z⊥φε

) = 0

∂τφε − 1

ε2
∂z1φε − Aε

2 + εAε

[
(∂z1φε)

2 + ε2|∇z⊥φε|2
] + 1

ε2
· Aε

2 + εAε

− ∂2
z1

√
1 + εAε + ε2�z⊥

√
1 + εAε

ε
√

1 + εAε

+ ε

2(1 + εAε)(2 + εAε)

[
(∂z1Aε)

2 + ε2|∇z⊥Aε|2
] = 0.

(51)

The singular terms in ε−2 are

− 1

ε2
∂z1Aε + 2

ε2
∂2
z1

φε and − 1

ε2
, ∂z1φε + 1

2ε2
Aε,

which gives as before the constraint A = 2∂z1φ (comparing to the case of the (NLS) equation, since
√

1 + εAε =
1 + εAε/2 + O(ε2), there is an extra factor 2 to the formula “csA = ∂z1φ”). As in subsection 1.4, the formally
singular terms in (51) reduce, for both equations, to the single preparedness condition:

2∂z1φε − Aε = −ε

2
A2

ε +O
(
ε2)

or Aε = 2∂z1φε + 2ε(∂z1φε)
2 +O

(
ε2)

. (52)

Noticing that α
2+α

= α
2 − α2

4 + α3

8 +Oα→0(α
4), we add here again the first equation of (51) to 2∂z1 times the second

one and get

∂τ (Aε + 2∂z1φε) − 2∂z1

(
∂2
z1

√
1 + εAε + ε2�z⊥

√
1 + εAε

ε
√

1 + εAε

)
+ 2(1 + εAε)�z⊥φε

− ∂z1

((
Aε + F1(εAε)

)
(∂z1φε)

2) − (
Aε + F2(εAε)

)
∂z1φε∂z1Aε

+ 1

ε

{
2Aε∂

2
z1

φε − Aε∂z1Aε

} + 3

4
A2

ε∂z1Aε

= 2ε2Aε

2 + εAε

∇z⊥φε · ∇z⊥Aε − 1

ε3
∂z1

[
f4(εAε)

]
− ε∂z1

{
(∂z1Aε)

2 + ε2|∇z⊥Aε|2
(1 + εAε)(2 + εAε)

}
+ ε2∂z1

{
Aε

2 + εAε

|∇z⊥φε|2
}
. (53)

Here, we have f4(α) = O(α4) and F1(α), F2(α) = O(α) as α → 0. As in the previous subsection, in the second line
of (53), the formally singular term {2Aε∂

2
z1

φε − Aε∂z1Aε}/ε becomes, in view of (52),

−A2
ε∂z1Aε,
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hence (53) implies, on the formal level, if Aε → A and φε → φ, with A = ∂z1φ, the convergence to the
(mKdV)/(mKP-I) focusing equation

2∂τA − ∂3
z1

A − 3

2
A2∂z1A + �z⊥∂−1

z1
A = 0.

For a slightly different model, where the Maxwell equation is taken into account, H. Leblond in [43] also derives
(formally) an asymptotic regime given by the (mKP) equation. In the work [30] by P. Germain and F. Rousset, the
(KdV)/(KP-I) asymptotic regime is studied starting from the Schrödinger map problem into a manifold in a general
geometrical framework, which includes the (LL) equation as a particular case. Their result proves the convergence
to a geometrical (KdV)/(KP-I) equation in a scaling comparable to (2) and includes as a particular case the (NLS)
equation, that is the results presented in Section 1.1. It turns out that for (LL), this would lead to the linear Airy
equation (for the phase ϕ such that m = eiϕ ∈ S

1 ⊂ S
2) on the time scale τ ≈ 1. The method of proof is different since

the target is a general manifold, whereas our analysis of (LL) relies on the stereographic projection.
Concerning (LL), we shall prove the following justification of the (mKdV)/(mKP-I) asymptotic regime. We give a

statement close to the one in Theorem 7, but here again, in dimension d = 1, one could write down the result where
we compare the amplitude Aε to ζ , allowing an expansion of Ain

ε up to O(ε2), similar to Theorem 6. Note that we
work here in the variables θ = ε2t and z = (z1, z⊥) = (εx1, ε

2x⊥), so that (51) with Uε ≡ ∇zφε is changed for⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂θAε − 1

ε
∂z1Aε − 2εAε

2 + εAε

[
U1

ε ∂z1Aε + ε2U⊥
ε · ∇z⊥Aε

] + 2

ε
(1 + εAε)

(
∂z1U

1
ε + ε2∇z⊥ · U⊥

ε

) = 0

∂θUε − 1

ε
∂z1Uε − ∇z

(
εAε

2 + εAε

[[
U1

ε

]2 + ε2
∣∣U⊥

ε

∣∣2])
+ 1

ε
∇z

(
Aε

2 + εAε

)

− ∇z

(
∂2
z1

√
1 + εAε + ε2�z⊥

√
1 + εAε√

1 + εAε

)
+ ε2∇z

(
(∂z1Aε)

2 + ε2|∇z⊥Aε|2
(1 + εAε)(2 + εAε)

)
= 0.

(54)

Theorem 9. Let Λ > 0 and s ∈ N be such that s > 1 + d
2 . We fix ζ in ∈ Hs+6(Rd) and assume moreover, if d � 2, that

ζ in ∈ ∂z1H
s+6(

R
d
)

and �z⊥∂−1
z1

ζ in ∈ ∂z1H
s+3(

R
d
)
.

We then denote ζ ∈ C([0, τ∗],H s+6(Rd)) the solution to the (mKdV)/(mKP-I) equation

2∂τ ζ − ∂3
z1

ζ − 3

2
ζ 2∂z1ζ + �z⊥∂−1

z1
ζ = 0

for the initial datum ζ in. We consider an initial datum (Ain
ε ,∇zφ

in) for (54) such that

∇zφ
in = 1

2
∇z∂

−1
z1

ζ in and
∥∥Ain

ε − ζ in − ε

2

[
ζ in]2∥∥

Hs(Rd )
+ ε

∥∥Ain
ε − ζ in − ε

2

[
ζ in]2∥∥

Hs+1(Rd )
� Λε2.

Then, there exists two (small) positive constants ε0 and μ, depending only on s, d , Λ and the function ζ in such that,
if 0 < ε < ε0, (54) has a unique solution (Aε,Uε) ∈ C([0,μ|ln ε|],H s(Rd) × Hs+1(Rd)). Moreover, there exists a
positive constant C, depending only on s, d , Λ and the function ζ in such that, for θ ∈ [0,μ|ln ε|], we have∥∥2U1

ε (θ) − ζ(εθ)
∥∥

Hs(Rd )
+ ∥∥2εU⊥

ε (θ) − ε∇z⊥ζ(εθ)
∥∥

Hs(Rd )
� Cε2eθ/(2μ) � Cε

3
2

and ∥∥∥∥Aε(θ) − ζ(εθ) − ε

2
ζ 2(εθ)

∥∥∥∥
Hs(Rd )

+ ε

∥∥∥∥Aε(θ) − ζ(εθ) − ε

2
ζ 2(εθ)

∥∥∥∥
Hs+1(Rd )

� Cε2eθ/(2μ) � Cε
3
2

so that in particular∥∥Aε(θ) − ζ(εθ)
∥∥

Hs(Rd )
� Cε.

In connection with this result, an analogous convergence from (LL) to (mKdV)/(mKP-I) holds for the travelling
waves. For the one dimensional case, this follows from explicit integration (see [44,25]): for 0 � c < 1, the only
travelling wave m(t, x) =mc(x − ct) to (LL) is given by
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mc(x) =
(

c

cosh(x
√

1 − c2)
, tanh

(
x

√
1 − c2

)
,±

√
1 − c2

cosh(x
√

1 − c2)

)
,

up to the natural symmetries of the problem: rotation around the x3 axis and translation. From this explicit formula
we have, for instance, with ε = √

1 − c2, and Uc given by the stereographic projection

Uc = mc,1 + imc,2

1 +mc,3
,

the relation (recall z = εx)

|Uc|2(x) − 1 = 1 −mc,3(x)

1 +mc,3(x)
− 1 = ∓2

√
1−c2

cosh(x
√

1−c2)

1 +
√

1−c2

cosh(x
√

1−c2)

= ∓2
ε

cosh(εx)

1 + ε
cosh(εx)

= ∓2
ε

cosh(z)

1 + ε
cosh(z)

.

This shows clearly that

εAε(z) = |Uc|2(x) − 1 = ±2ε

cosh(z)
+O

(
ε2)

,

where ±2
cosh(z)

is the (mKdV) solitary wave (of speed −1/2). In the two dimensional situation, the numerical simula-
tions and formal computations in [45], similar to those above, suggest the convergence to the (mKP-I) ground state in
the transonic limit.

Concerning the associated wave regime, where we remove the space translation and work on the shorter time scale
t ≈ ε−2, let us quote two papers. The first one is due to J. Shatah and C. Zeng [49], where the strong convergence to
the wave map equation

∂2
t m= �zm+ |∇zm|2m, (55)

with m ∈ S
1 ⊂ S

2 the equator, is shown. Actually, a more general result is proven, which corresponds for (LL) to the
particular case of the target manifold S

2 and Bk = 0 for all 1 � k � d . Of course, once we have lifted the S
1-valued

map m= eiϕ , the wave map equation (55) reduces to the free wave equation

∂2
t ϕ = �zϕ.

The result of [49] is proved for the time scale t = ε−1t ≈ ε−1, i.e. t of order one. Comparing with the result in [10],
where the convergence is proved for t � ε−2, that is t � ε−1, this is a smaller time scale, and this is in particular due
to the fact that when Bk = Bk(m) is nonzero, the term Bk(m)m in Eq. (SM) in [49] prevents in general from having
existence of smooth solutions for large times.2 On the other hand, A. Capella, C. Melcher and F. Otto in [15] provide
a weak convergence result to a wave map type equation (see [15] for a precise statement) for a model similar to (LL)
(but also including dissipation and the stray-field coming from Maxwell equations). Their result also holds on the time
scale t = ε−1t ≈ ε−1, for weak convergences and locally in space. Finally, the results in [49] and [15] do not provide
error bounds. Our last result is about the free wave regime associated with (LL). In order to state it, we have to work
in the variables (t, z) = (εt, εx), and write the solution Ψ of (47) under the form given by

Ψ (t, x) = √
1 + εAε(t, z) exp

(
iφε(t, z)

)
, t = εt, z = εx,

so that, denoting Uε ≡ ∇zφε , (47) becomes

2 It seems that there is a small mistake in the statement of the Theorem (convergence) in [49, p. 302]. Indeed, from the formulas on p. 310, it is not
always true that “G′′(p∗)ζ = 0” at the initial time, therefore at t = 0, we do not have “∂tp∗(0) = ιBk∂ku(0)” (which would mean for (55) ∂tm= 0
at t = 0) but ∂tp∗(0) = ιBk∂ku(0)+ ι limε→0[ε−1G(uε(0))]. Furthermore, it is not clear that the convergences in [49] are strong in H�(Rd ) since
they follow from a compactness argument.
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tAε + 2∇z · Uε = 2ε2Aε

2 + εAε

Uε · ∇zAε − 2εAε∇z · Uε

∂tUε + 1

2
∇zAε = −ε2∇z

(
Aε

2 + εAε

|Uε|2
)

+ ε3∇z

( |∇zAε|2
2(1 + εAε)(2 + εAε)

)

+ ε∇z

(
A2

ε

2(2 + εAε)

)
+ ε∇z

(
�z

√
1 + εAε√

1 + εAε

)
.

(56)

Theorem 10. Let Λ > 0 and s ∈ N be such that s > 5 + d
2 . We consider an initial datum for (56) of the type

(Ain
ε ,∇zφ

in
ε ) ∈ Hs+1(Rd) × Hs(Rd ,Rd), with∥∥Ain
ε

∥∥
Hs(Rd )

+ ε
∥∥Ain

ε

∥∥
Hs+1(Rd )

+ ∥∥∇zφ
in
ε

∥∥
Hs(Rd )

�Λ.

Then, there exists a positive constant K0 = K0(s, d) such that if K0εΛ� 1, then (56) has a unique solution (Aε,Uε) ∈
C([0,1/(K0εΛ)],H s+1(Rd) × Hs(Rd ,Rd)) with initial datum (Ain

ε ,∇zφ
in
ε ), and it verifies

sup
0�t�1/(K0εΛ)

[∥∥Aε(t)
∥∥

Hs(Rd )
+ ε

∥∥Aε(t)
∥∥

Hs+1(Rd )
+ ∥∥∇zφε(t)

∥∥
Hs(Rd )

]
�K0Λ (57)

and, for 0 � t � 1/(K0εΛ), x ∈R
d ,

1

2
� ρ(t, x) = 1 + εAε(t, x) � 2.

Furthermore, if (aε,uε) denotes the solution to the free wave equation⎧⎨
⎩

∂taε + 2∇z · uε = 0

∂tuε + 1

2
∇zaε = 0

(58)

with intial datum (Ain
ε ,∇zφ

in
ε ), then, for 0 � t � 1/(K0εΛ), there holds∥∥(Aε,Uε)(t) − (aε,uε)(t)

∥∥
Hs−2(Rd )×Hs−2(Rd )

� K0εt
(
Λ + Λ2)

.

We emphasize that [49] prove uniform Sobolev bounds in this regime for t of order one, whereas here, we obtain
these uniform bounds for the much larger time scale t � 1/(K0εΛ). Moreover, we prove a comparison result with
strong convergences. The main ingredient in the proof of Theorems 9 and 10 is to use an extended formulation and
an augmented system as for the analysis in [8] of the Cauchy problem for the Euler–Korteweg system. This approach
was also used in [10] for the free wave regime. An alternative to the well-posedness result in Theorem 8 would be to
rely on this extended formulation as in [8]. In comparison with the results for (NLS) that we prove using the trick of
E. Grenier ([31]), for the latter approach, the formulation (49) is more appropriate. We mention that one could use the
extended formulation for the analysis of (NLS), for instance for the (gKdV)/(gKP-I) limit (Theorem 6), but we have
privileged the approach of E. Grenier in view of the simplicity of the structure of hyperbolic symmetrizable system
perturbed by a skew-adjoint, constant coefficient, perturbation. The differences in the statements for both approaches
only rely on the loss of derivatives for the uniform Sobolev bounds. On the other hand, it is plausible that one may
improve the uniform Sobolev bounds (57) to larger time scales, using the dispersive properties of the equation, as
it is done in [10]. We have not tackled this question here. Finally, let us mention that since we are in a situation
analogous to the case Γ = 0 for (NLS), the result associated to what we prove in Proposition 4 would be here simply
a comparison of Aε and Uε to the solution of the trivial “Burgers” equation ∂θa= 0.

2. Properties of the Boussinesq system and comparison result

We shall use the fact that for s > d/2, Hs(Rd) is an algebra, and that

‖fg‖Hs(Rd ) � C1‖f ‖Hs(Rd )‖g‖Hs(Rd ).

Moreover, we have the tame estimates (see, e.g., [51])∥∥∂α
z (fg) − f ∂α

z g
∥∥

L2(Rd )
� Ck

(‖f ‖Hk‖g‖L∞(Rd ) + ‖∇zf ‖L∞(Rd )‖g‖Hk−1(Rd )

)
, |α| � k. (59)
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2.1. Proof of Proposition 1: local well-posedness of the Boussinesq system (Bε)

The proof of Proposition 1 is very close to the proof of Theorem 4 in [20], and thus will be only sketched. We set
Y = (Y0,Y1,Y⊥)t ≡ (Aε,U

1
ε , εU⊥

ε )t ∈ R × R × R
d−1 = R

1+d , ∇ε = (∂z1 , ε∇z⊥), and write the system (Bε) under
the abstract form:

1

cs
∂τY + 1

ε2
H

(
ε2Y,∇ε

)
Y = L

(∇ε
)
Y, (60)

where L(∇ε) is the constant coefficients third order differential operator

L(∇ε) ≡ 1

c2
s

⎛
⎝ 0 0 0

0 ∂3
z1

0
0 0 ∂3

z1

⎞
⎠ ,

and H(ε2Y,∇ε) is a first order hyperbolic operator

H
(
ε2Y,∇ε

) =
d∑

j=1

Hk
(
ε2Y

)∇ε
j ,

with symbol

H
(
ε2Y, ξ

) =
d∑

j=1

Hj
(
ε2Y

)
ξj

=
⎛
⎝ (−ξ1 + 2ε2Y1ξ1 + 2ε2Y⊥ · ξ⊥) (1 + ε2Y0)ξ1 (1 + ε2Y0)ξ t⊥

(1 + (Γ − 5)ε2Y0)ξ1 −ξ1 + 2ε2Y1ξ1 + 2ε2Y⊥ · ξ⊥ 0

(1 + (Γ − 5)ε2Y0)ξ⊥ 0 (−ξ1 + 2ε2Y1ξ1 + 2ε2Y⊥ · ξ⊥)Id−1

⎞
⎠ .

We may symmetrize this system by using, as we have said,

Σ
(
ε2Y

) = Diag

(
1 + (Γ − 5)ε2Y0

1 + ε2Y0
,1, . . . ,1

)
.

Indeed, we have

Σ
(
ε2Y

)
L

(∇ε
) = L

(∇ε
) = 1

c2
s

⎛
⎝ 0 0 0

0 ∂3
z1

0
0 0 ∂3

z1

⎞
⎠

which is a skew symmetric operator, and the matrix

Σ
(
ε2Y

)
H

(
ε2Y, ξ

) =
⎛
⎝ ∗ (1 + (Γ − 5)ε2Y0)ξ1 (1 + (Γ − 5)ε2Y0)ξ t

(1 + (Γ − 5)ε2Y0)ξ1 ∗ 0

(1 + (Γ − 5)ε2Y0)ξ⊥ 0 ∗Id−1

⎞
⎠

(where the coefficients ∗ are nonrelevant) is symmetric for every ξ ∈ R
d and, by an integration by parts,

∀W ∈ H 1(
R

d
)
,

∣∣〈Σ(
ε2Y

)
H

(
ε2Y,∇ε

)
W,W

〉
L2

∣∣ � Kε2‖∇Y‖L∞‖W‖2
L2 .

Therefore, the local in time existence and uniqueness for smooth solutions Y ∈ L∞([0, T ε),H s), with s > 3 + d/2
for this type of system is classical. In order to prove that T ε � τ∗, where τ∗ > 0 is independent of 0 < ε < 1, we
follow readily [20] (these are classical arguments, see e.g. [48]), which gives the estimate

∥∥Y(τ )
∥∥2

Hs � C

(∥∥Y in
∥∥2

Hs +
τ∫

0

[
ε2

∥∥∂τ̄Y(τ̄ )
∥∥

L∞ + ∥∥Y(τ̄ )
∥∥

W 1,∞
]∥∥Y(τ̄ )

∥∥2
Hs dτ̄

)
.

We use the equation and the Sobolev imbedding to estimate the bracket:
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ε2
∥∥∂τ̄Y(τ̄ )

∥∥
L∞ + ∥∥Y(τ̄ )

∥∥
W 1,∞ � C

∥∥Y(τ̄ )
∥∥

W 3,∞ � C
∥∥Y(τ̄ )

∥∥
Hs ,

provided s > 3 + d/2 (due to the third order derivative, we loose one more derivative than in [20]). Therefore,

∥∥Y(τ )
∥∥2

Hs � C

(∥∥Y in
∥∥2

Hs +
τ∫

0

∥∥Y(τ̄ )
∥∥3

Hs dτ̄

)
,

and the result then follows easily. We shall repeatedly use this structure of hyperbolic system with a constant coefficient
dispersive term with a symmetrizer which leaves invariant this dispersive term to prove either existence/uniqueness of
solution either comparison results. The fact that Uε remains a gradient if it is a gradient initially comes immediately
from the structure of the equation. The proof is complete. �
2.2. Proof of Theorem 4

The first point is to compare (12) and (Bε), and the main difference between these two systems is that we have
changed ∂z1Aε for ∂z1U

1
ε . By estimating the time derivative of (Aε,U

1
ε , εU⊥

ε ), we shall derive the following estimate.

Lemma 1. There exists some constant K , depending only on Λ, such that for 0 � τ � τ0, we have⎧⎪⎪⎨
⎪⎪⎩

(d = 1)
∥∥∂z(Aε − Uε)

∥∥
Hs−2 �K

(∥∥∂z

(
Ain

ε − U in
ε

)∥∥
Hs−2 + ε2)

(d � 2)
∥∥∂z1

(
Aε − U1

ε

)∥∥
Hs−2 �K

(∥∥∂z1

(
Ain

ε − U1,in
ε

)∥∥
Hs−2 + ε

)
(d � 2)

∥∥∂2
z1

(
Aε − U1

ε

)∥∥
Hs−3 �K

(∥∥∂2
z1

(
Ain

ε − U1,in
ε

)∥∥
Hs−3 + ε2)

.

Proof. We recall that in [20], the solution Ψε was constructed using the trick of E. Grenier [31]. We first solve the
system where aε is complex-valued, u1

ε and u⊥
ε real-valued and where 〈·, ·〉 denotes the real scalar product in C:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

cs
∂τ aε − 1

ε2
∂z1aε + 1

ε2
∂z1u

1
ε + 2u1

ε∂z1aε + aε∂z1u
1
ε + 2ε2u⊥

ε · ∇z⊥aε + (
1 + ε2aε

)∇z⊥ · u⊥
ε

= i

εcs

(
∂2
z1

aε + ε2�z⊥aε

)
1

cs
∂τ u

1
ε − 1

ε2
∂z1u

1
ε + 2u1

ε∂z1u
1
ε + 2ε2u⊥

ε · ∇z⊥u1
ε + 2f ′(|1 + ε2aε|2)

ε2c2
s

〈
1 + ε2aε, ∂z1aε

〉 = 0

1

cs
∂τ u

⊥
ε − 1

ε2
∂z1u

⊥
ε + 2u1

ε∂z1u
⊥
ε + 2ε2u⊥

ε · ∇z⊥u⊥
ε + 2f ′(|1 + ε2aε|2)

ε2c2
s

〈
1 + ε2aε,∇z⊥aε

〉 = 0,

(61)

with the initial conditions (aε, uε)|τ=0 = (Ain
ε ,U in

ε ) ∈ R × Rd ⊂ C × Rd . Then, following [3], we define the phase
function Θε by the formula

Θε(τ, z) ≡ φin
ε (z) −

τ∫
0

[∣∣u1
ε

∣∣2 + ε2
∣∣u⊥

ε

∣∣2 + f
(∣∣1 + ε2aε

∣∣2)]
(τ̄ , z) dτ̄ ,

and then check that uε = ∇zΘε and that the function

Ψε(t, x) ≡ (
1 + ε2aε(τ, z)

)
exp

(
iεΘε(τ, z)

)
, τ = ε3t, z1 = ε(x1 − cs t), z⊥ = ε2x⊥

is indeed a solution of (NLS). This has been achieved (see the proof of Theorem 4 in [20]) for s > 2 + d/2 on some
time interval [0, τ0], where τ0 > 0 is independent of 0 < ε < 1, and with the uniform bounds:∥∥(

aε,u
1
ε, εu

⊥
ε

)∥∥
Hs � K. (62)

Notice that the use of this strategy is possible if we work with the variables (A,∇φ), but not with the variables
(ρ = |A|2,∇φ), since the main interest of (61) is that the dispersive term in the right-hand side of the first equation
has constant coefficient, and this is no longer the case with the density ρ = |A|2.
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The bound (62) leads to (9) after the change of variables from (aε, uε) to (Aε,Uε), namely

Aε ≡ |1 + ε2aε| − 1

ε2
, Uε ≡ uε − iε

cs

( ∇aε

1 + ε2aε

− ∇Aε

1 + ε2Aε

)
, (63)

which looses one derivative in Uε (notice also that Uε is indeed real-valued since |1 + ε2aε| = 1 + ε2Aε). We then let(
ȧε, U̇

1
ε , εU̇⊥

ε

) ≡ ∂τ

(
aε,u

1
ε, εu

⊥
ε

)
and apply ∂τ to (61) to obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

cs
∂τ ȧε − 1

ε2
∂z1 ȧε + 1

ε2
∂z1 u̇

1
ε + 2u1

ε∂z1 ȧε + aε∂z1 u̇
1
ε + 2ε2u⊥

ε · ∇z⊥ ȧε + (
1 + ε2aε

)∇z⊥ · u̇⊥
ε

= i

εcs

(
∂2
z1

ȧ1
ε + ε2�z⊥ ȧε

) + Cε

1

cs
∂τ u̇

1
ε − 1

ε2
∂z1 u̇

1
ε + 2u1

ε∂z1 u̇
1
ε + 2ε2u⊥

ε · ∇z⊥ u̇1
ε + 2f ′(|1 + ε2aε|2)

ε2c2
s

〈
1 + ε2aε, ∂z1 ȧε

〉 = C1
ε

1

cs
∂τ u̇

⊥
ε − 1

ε2
∂z1 u̇

⊥
ε + 2u1

ε∂z1 u̇
⊥
ε + 2ε2u⊥

ε · ∇z⊥ u̇⊥
ε + 2f ′(|1 + ε2aε|2)

ε2c2
s

〈
1 + ε2aε,∇z⊥ ȧε

〉 = C⊥
ε .

(64)

Here, the commutators Cε , C1
ε and C⊥

ε are defined by

Cε ≡ −2u̇1
ε∂z1aε − ȧε∂z1u

1
ε − 2ε2u̇⊥

ε · ∇z⊥aε − ε2ȧε∇z⊥ · u⊥
ε ,

C1
ε ≡ −2u̇1

ε∂z1u
1
ε − 2ε2u̇⊥

ε · ∇z⊥u1
ε −

〈
∂τ

[
2f ′(|1 + ε2aε|2)

ε2c2
s

(
1 + ε2aε

)]
, ∂z1aε

〉
,

C⊥
ε ≡ −2u̇1

ε∂z1u
⊥
ε − 2ε2u̇⊥

ε · ∇z⊥u⊥
ε −

〈
∂τ

[
2f ′(|1 + ε2aε|2)

ε2c2
s

(
1 + ε2aε

)]
∇z⊥aε

〉
.

As for the Boussinesq system, denoting Υ = (Υ 0,Υ 1,Υ ⊥)t ≡ (ȧε, u̇
1
ε, εu̇

⊥
ε )t allows to write (64) under the form of

a hyperbolic system with smooth coefficients X = (X 0,X 1
ε , εX⊥

ε )t ≡ (aε, u
1
ε, εu

⊥
ε )t ∈ L∞([0, τ∗],H s)

1

cs
∂τΥ + 1

ε2
H

(
ε2X ,∇ε

)
Υ = 1

ε
L

(∇ε
)
Υ + Sε(Υ ), (65)

with

L
(∇ε

) ≡ i

cs

(
∂2
z1

+ ε2�z⊥ 0 0
0 0 0
0 0 0

)
and H

(
ε2X ,∇ε

) =
d∑

j=1

Hj
(
ε2X

)∇ε
j ,

where

H
(
ε2X , ξ

) =
d∑

j=1

Hj
(
ε2X

)
ξj

=
⎛
⎜⎝

(−ξ1 + 2ε2X 1ξ1 + 2ε2X⊥ · ξ⊥) (1 + ε2X 0)ξ1 (1 + ε2X 0)ξ t⊥
2
c2
s
f ′(|1 + ε2X 0|2)ξ1 −ξ1 + 2ε2X 1ξ1 + 2ε2X⊥ · ξ⊥ 0

2
c2
s
f ′(|1 + ε2X 0|2)ξ⊥ 0 (−ξ1 + 2ε2X 1ξ1 + 2ε2X⊥ · ξ⊥)Id−1

⎞
⎟⎠ .

Moreover, the source term Sε given by the commutators Cε , C1
ε and C⊥

ε enjoys the estimate, for 0 � τ � τ∗,∥∥Sε(Υ )
∥∥

Hs−2 � K‖Υ ‖Hs−2 (66)

using (62) and that Hσ is an algebra with σ = s − 2 > d/2. Since s − 2 > d/2, the local well-posedness of the linear
system (65) in Hs−2 is standard, and we indeed have (ȧε, U̇

1
ε , εU̇⊥

ε )|τ=0 ∈ Hs−2 (from (61)). Hence, it remains to
show that the maximal solution is defined on a time interval [0, τ ∗

ε ] such that τ ∗
ε � τ0 for ε small. The symmetrizer
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Sε

(
ε2X 0) ≡ Diag

(
1C,

c2
s

2f ′(|1 + ε2X 0|2) , . . . ,
c2
s

2f ′(|1 + ε2X 0|2)
)

is well adapted (see [20]), since it keeps the dispersive term with constant coefficients, and is such that the matrix
SεH(ε2X , ξ) is symmetric for every ξ ∈ R

d . By applying ∂α
z with α ∈ N

d such that |α| � s − 2, we infer as in [20],
using the tame estimate (59), that for 0 � τ < min(τ ∗

ε , τ∗),
d

dτ

((
Sε

(
ε2X 0)

∂α
z Υ, ∂α

z Υ
)
L2

)
� C

(
ε2

∥∥∂τX 0
∥∥

L∞ + ‖X‖W 1,∞
)‖Υ ‖2

Hs−2 + C
∥∥Sε(Υ )

∥∥
Hs−2‖Υ ‖Hs−2 .

Using (66), the Sobolev imbedding and the uniform bounds (62), we deduce

d

dτ

((
Sε

(
ε2X 0)

∂α
z Υ, ∂α

z Υ
)
L2

)
� K

∥∥Υ (τ)
∥∥2

Hs−2 ,

where K depends only on Λ, hence by the Gronwall lemma, it comes τ ∗
ε > τ∗ and

sup
0�τ�τ∗

∥∥Υ (τ)
∥∥

Hs−2 � K
∥∥Υ in

∥∥
Hs−2 . (67)

We recall that we wish to bound ∂z1(Aε − U1
ε ) or ∂2

z1
(Aε − U1

ε ). By (63) and the uniform bounds (62), we have

Aε = |1 + ε2aε| − 1

ε2
= Re(aε) +OHs

(
ε2)

,

and then

∂z1

(
Aε − U1

ε

) = ∂z1

(
Re(aε) − u1

ε + iε

cs

[
∂z1aε

1 + ε2aε

− ∂z1Aε

1 + ε2Aε

])
+OHs−1

(
ε2)

= ∂z1

(
Re(aε) − u1

ε + iε

cs
[∂z1aε − ∂z1Aε]

)
+OHs−1

(
ε2)

= ∂z1

(
Re(aε) − u1

ε − ε

cs
∂z1 Im(aε)

)
+OHs−1

(
ε2)

= Re

{
∂z1

(
aε − u1

ε

) + iε

cs

[
∂2
z1

+ ε2�z⊥
]
aε

}
+OHs−1

(
ε2)

(68)

= Re

{
ε2

cs
∂τ aε

}
+ ε2∇z⊥ · u⊥

ε +OHs−1

(
ε2)

. (69)

For (69), we use the uniform bounds (9), and in particular the uniform bound on εu⊥
ε . This is also the reason why we

have singled out (if d � 2), the term ∇z⊥ · u⊥
ε . Let us assume first d = 1, so that the term ∇z⊥ · u⊥

ε disappears. Then,
since at the initial time, aε = Aε is real-valued, we infer in particular from (68) that

[
∂z(Aε − Uε)

]
|τ=0 =

[
ε2

cs
∂τ aε

]
|τ=0

+OHs−1

(
ε2)

.

Furthermore, we deduce easily from (61) that{
ε2

cs
∂τ uε

}
|τ=0

= [
∂z(Uε − Aε)

]
|τ=0 +OHs−1

(
ε2) = ∂z

(
U in

ε − Ain
ε

) +OHs−1

(
ε2)

,

so that∥∥ε2Υ in
∥∥

Hs−2 �Kε2 + K
∥∥∂z

(
U in

ε − Ain
ε

)∥∥
Hs−2 .

Then, taking the Hs−2 norm in (69) and using (67), we deduce that for 0 � τ � τ∗ and some constant K depending
only on Λ,∥∥∂z(Aε − Uε)

∥∥
Hs−2 �K

(∥∥ε2∂τ aε

∥∥
Hs−2 + ε2)

�K
(∥∥ε2Υ in

∥∥
Hs−2 + ε2)

�K
(∥∥∂z

(
U in

ε − Ain
ε

)∥∥
s−2 + ε2)

.

H
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This finishes the proof of the one dimensional case. When d � 2, the point is that we do not control u⊥
ε but only εu⊥

ε .
Nevertheless, if d � 2, the same argument shows the second statement in Lemma 1. For the third statement, we may
use that uε is a gradient, hence ∂z1u

⊥
ε = ∇z⊥u1

ε . Therefore, it is natural to apply ∂z1 to (68) and infer

[
∂2
z1

(Aε − Uε)
]
|τ=0 = ∂z1

[
ε2

cs
∂τ aε

]
|τ=0

+ ε2∂z1∇z⊥ · u⊥
ε +OHs−2

(
ε2)

= ∂z1

[
ε2

cs
∂τ aε

]
|τ=0

+ ε2�z⊥u1
ε +OHs−2

(
ε2)

= ∂z1

[
ε2

cs
∂τ aε

]
|τ=0

+OHs−2

(
ε2)

.

Hence, we deduce in a similar way

∥∥∂2
z1

(Aε − Uε)
∥∥

Hs−3 � K
∥∥∂2

z1

(
Ain

ε − U in
ε

)∥∥
Hs−3 + Kε2,

and this finishes the proof of Lemma 1. �
We now turn to the proof of Theorem 4. We recall that (Aε,U

1
ε ,U⊥

ε ) solves (12), that is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

cs
∂τAε − 1

ε2
∂z1Aε + 2U1

ε ∂z1Aε + 2ε2U⊥
ε · ∇z⊥Aε + 1

ε2

(
1 + ε2Aε

)(
∂z1U

1
ε + ε2∇z⊥ · U⊥

ε

) = 0

1

cs
∂τU

1
ε − 1

ε2
∂z1U

1
ε + 2

(
U1

ε ∂z1 + ε2U⊥
ε · ∇z⊥

)
U1

ε + 1

c2
s ε

4
∂z1

[
f

((
1 + ε2Aε

)2)]

− 1

c2
s

∂z1

(
∂2
z1

Aε + ε2�z⊥Aε

1 + ε2Aε

)
= 0

1

cs
∂τU

⊥
ε − 1

ε2
∂z1U

⊥
ε + 2

(
U1

ε ∂z1 + ε2U⊥
ε · ∇z⊥

)
U⊥

ε + 1

c2
s ε

4
∇z⊥

[
f

((
1 + ε2Aε

)2)]

− 1

c2
s

∇z⊥

(
∂2
z1

Aε + ε2�z⊥Aε

1 + ε2Aε

)
= 0.

Using the Taylor expansion (4) and Lemma 1, we shall deduce that (Aε,U
1
ε ,U⊥

ε )t solves the Boussinesq system Bε

up to an error O(ε2). More precisely, we have, with the notations of subsection 2.1 and Y ≡ (Aε,U
1
ε , εU⊥

ε )t ,

1

cs
∂τ Y + 1

ε2
H

(
ε2Y,∇ε

)
Y = L

(∇ε
)
Y + 1

c2
s

Errε,

where, using once again that ∂z1U
⊥
ε = ∇z⊥U1

ε ,

Errε ≡
⎛
⎜⎝

0

− 1
c2
s ε

4 ∂z1(f3(ε
2Aε))

− 1
c2
s ε

4 ∇z⊥(f3(ε
2Aε))

⎞
⎟⎠ +

⎛
⎜⎝

0

∂3
z1

(Aε − U1
ε ) − ∂z1(

ε2Aε

1+ε2Aε
∂2
z1

Aε) + ε2∂z1(
�z⊥Aε

1+ε2Aε
)

∂2
z1

∇z⊥(Aε − U1
ε ) − ∇z⊥( ε2Aε

1+ε2Aε
∂2
z1

Aε) + ε2∇z⊥(
�z⊥Aε

1+ε2Aε
)

⎞
⎟⎠ .

From the uniform bounds (9) and Lemma 1 to control the terms ∂3
z1

(Aε − U1
ε ) and ∂2

z1
∇z⊥(Aε − U1

ε ), we infer that
Errε verifies, for some constant K depending only on Λ,

sup
0�τ�τ0

‖Errε‖Hs−3 �K
(∥∥Ain

ε − U1,in
ε

∥∥
Hs + ε2)

.

The error estimate follows then easily since the unperturbed system is symmetrizable in variables (Aε,U
1
ε , εU⊥

ε ) as
in the proof of Proposition 1. �
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2.3. Proof of Propositions 2 and 3

Proof of Proposition 2. Notice first that arguing as in Lemma 1, namely estimating the time derivative of (Aε,Uε)

yields the estimate∥∥∂z(Aε − Uε)
∥∥

Hs−3(R)
� K

(∥∥∂z

(
Ain

ε − Uin
ε

)∥∥
Hs−3(R)

+ ε2)
. (70)

The exponent is now s − 3 instead of s − 2 since the dispersive term is here of third order. In order to prove (15),
it remains then to show the L2 estimate, and we shall argue as in [13] (proof of Proposition 4 there). From the two
equations of (Bε), we obtain

1

cs
∂τ (Aε − Uε) − 2

ε2
∂z(Aε − Uε) + 2Uε∂zAε + Aε∂zUε − 2Uε∂zUε − (Γ − 5)Aε∂zAε + 1

c2
s

∂3
z Uε = 0.

We then define Wε ≡ Aε − Uε and write the equation for Wε under the form

2

cs
∂τ Wε − 2

ε2
∂zWε + (2Uε − Aε)∂zWε = (Γ − 6)Aε∂zAε − 1

c2
s

∂3
z Uε. (71)

It then follows from integration by parts that

2

cs

d

dτ

∫
R

W2
ε dz =

∫
R

∂z(2Uε − Aε)W
2
ε dz − (Γ − 6)

∫
R

A2
ε∂zWε dz + 2

c2
s

∫
R

∂zWε∂
2
z Uε dz.

We now integrate in time and use the uniform bound (62) to infer

2

cs

∫
R

W2
ε dz � 2

cs
‖Ain

ε − Uin
ε ‖2

L2 + K

τ∫
0

∫
R

W2
ε(τ̄ ) dz dτ̄ +

τ∫
0

∫
R

∂zWε

{
2

c2
s

∂2
z Uε − (Γ − 6)A2

ε

}
dzdτ̄ .

We now express 2
ε2 ∂zWε from (71) and obtain

2

cs

∫
R

W2
ε(τ ) dz

� 2

cs

∥∥Ain
ε − Uin

ε

∥∥2
L2 + K

τ∫
0

∫
R

W2
ε(τ̄ ) dz dτ̄

+ ε2

cs

τ∫
0

∫
R

∂τ Wε

{
2

c2
s

∂2
z Uε − (Γ − 6)A2

ε

}
dzdτ̄

+ ε2

2

τ∫
0

∫
R

{
(2Uε − Aε)∂zWε − (Γ − 6)Aε∂zAε + 1

c2
s

∂3
z Uε

}{
2

c2
s

∂2
z Uε − (Γ − 6)A2

ε

}
dzdτ̄ . (72)

For the second line in (72), we integrate by parts in time:

ε2

cs

τ∫
0

∫
R

∂τ Wε

{
2

c2
s

∂2
z Uε − (Γ − 6)A2

ε

}
dzdτ̄

= −ε2

cs

τ∫
0

∫
R

Wε∂τ

{
2

c2
s

∂2
z Uε − (Γ − 6)A2

ε

}
dzdτ̄ + ε2

cs

∫
R

Wε(τ )

{
2

c2
s

∂2
z Uε(τ ) − (Γ − 6)A2

ε(τ )

}
dz

− ε2

cs

∫
Wε(0)

{
2

c2
s

∂2
z Uε(0) − (Γ − 6)A2

ε(0)

}
dz.
R
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The last and before last terms are easily estimated by Kε2‖Ain
ε − Uin

ε ‖L2 and Kε2‖Wε‖L2 respectively. Moreover,
from (Bε), we have

ε2

cs
∂τ ∂

2
z Uε(τ ) = −∂3

z Wε +OL2

(
ε2)

since s � 5, thus, for 0 � τ � τ0,

−ε2

cs

τ∫
0

∫
R

Wε∂τ

{
2

c2
s

∂2
z Uε

}
dzdτ̄ � 2

c2
s

τ∫
0

∫
R

Wε∂
3
z Wε dz + Kε2

τ∫
0

‖Wε‖L2 dτ̄ � 0 + Kε4 +
τ∫

0

‖Wε‖2
L2 dτ̄ .

Similarly, using the inequality 2ab � a2 + b2,

ε2

cs
(Γ − 6)

∫
R

Wε∂τ

[
A2

ε

]
dz � 2(Γ − 6)

∫
R

AεWε∂zWε dz + Kε2‖Wε‖L2 � K‖Wε‖2
L2 + Kε4

by integration by parts for the last integral. For the third line in (72), the uniform bound (62) gives, for 0 � τ � τ0,

ε2

2

τ∫
0

∫
R

(2Uε − Aε)∂zWε

{
1

c2
s

∂2
z Uε − (Γ − 6)A2

ε

}
dzdτ̄ �Kε2

τ∫
0

‖Wε‖L2 dτ̄ � Kε4 +
τ∫

0

‖Wε‖2
L2 dτ̄ .

In addition,∫
R

{
−(Γ − 6)Aε∂zAε + 1

c2
s

∂3
z Uε

}{
2

c2
s

∂2
z Uε − (Γ − 6)A2

ε

}
dz =

∫
R

∂z

{[
1

c2
s

∂2
z Uε − Γ − 6

2
A2

ε

]2}
dz = 0.

Consequently, (72) implies

∥∥Wε(τ )
∥∥2

L2 �
∥∥Ain

ε − Uin
ε

∥∥2
L2 + K

τ∫
0

∥∥Wε(τ̄ )
∥∥2

L2 dτ̄ + Kε4,

and (15) then follows from the Gronwall lemma.
Defining

Zε ≡ Aε + Uε

2

and summing the two equations of (Bε), we obtain

2

cs
∂τZε + Γ Zε∂zZε − 1

c2
s

∂3
zZε = −(Γ − 8)Wε∂zZε − (Γ − 6)Zε∂zWε − (Γ − 6)Wε∂zWε − 1

c2
s

∂3
z Wε. (73)

As a consequence, by a crude estimate of the right-hand side of (73) and using (70), we have∥∥∥∥ 2

cs
∂τZε + Γ Zε∂zZε − 1

c2
s

∂3
zZε

∥∥∥∥
Hs−5

� K
(∥∥Ain

ε − Uin
ε

∥∥
Hs−2 + ε2)

. (74)

By very standard estimates involving (59) (since ∂zZε ∈ L∞([0, τ0],L∞)), we deduce that for 0 � τ � τ0,

sup
[0,τ0]

‖Zε − ζ̃ε‖Hs−5 � K
(∥∥Ain

ε − Uin
ε

∥∥
Hs−2 + ε2)

, (75)

where ζ̃ε is the solution of the initial value problem

2

c
∂τ ζ̃ε + Γ ζ̃ε∂zζ̃ε − 1

c2
∂3
z ζ̃ε = 0, (ζ̃ε)|τ=0 = (Zε)|τ=0 = Ain

ε + Uin
ε

2
.

s s
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Since ζε is the solution of the initial value problem

2

cs
∂τ ζε + Γ ζε∂zζε − 1

c2
s

∂3
z ζε = 0, (ζε)|τ=0 = Ain

ε ,

it follows that

sup
[0,τ0]

‖ζε − ζ̃ε‖Hs−5 � C(τ0)
∥∥Ain

ε − Uin
ε

∥∥
Hs−2,

hence

sup
[0,τ0]

‖Aε − ζε‖Hs−5 + sup
[0,τ0]

‖Uε − ζε‖Hs−5 �K
(∥∥Ain

ε − Uin
ε

∥∥
Hs−2 + ε2)

, (76)

as wished. �
Proof of Proposition 3 (d � 2). A first approach for proving Proposition 3 is to use the arguments in [42], for some
initial data satisfying some preparedness assumptions (Assumption 1, p. 2866 in [42]). We shall give another argument
following the lines of the proof of Theorem 3, but we give some details since the preparation hypothesis Aε � U1

ε is
slightly different and since we used in [20] the conservation of the energy and momentum for (NLS).

As a first step, note that the estimates (17) can be shown as in the proof of Lemma 1. Furthermore, using (14), we
infer from (Bε)

1

cs
∂τ

(
Aε − U1

ε

) − 2

ε2
∂z1

(
Aε − U1

ε

) + (
2U1

ε − Aε

)
∂z1

(
Aε − U1

ε

) + (Γ − 6)Aε∂z1 Aε

+ ∇z⊥ · U⊥
ε + 1

c2
s

∂3
z1

U1
ε =OL2(ε), (77)

so that, integrating by parts,

1

2cs

d

dτ

∫
Rd

(
Aε − U1

ε

)2
dz −

∫
Rd

U⊥
ε · ∇z⊥

(
Aε − U1

ε

)
dz

�
(∥∥∂z1

[
2U1

ε − Aε

]∥∥
L∞ + 1

)∥∥Aε − U1
ε

∥∥2
L2 +

∫
Rd

{
Γ − 6

2
A2

ε + 1

c2
s

∂2
z1

U1
ε

}
∂z1

(
Aε − U1

ε

)
dz + Kε2.

As for the proof of Proposition 2, we report 2
ε2 ∂z1(Aε − U1

ε) from (77) and integrate in time to get, by (14),

2

cs

∥∥(
Aε − U1

ε

)
(τ )

∥∥2
L2 − 4

τ∫
0

∫
Rd

U⊥
ε · ∇z⊥

(
Aε − U1

ε

)
dzdτ̄

�K
∥∥Ain

ε − Uin,1
ε

∥∥2
L2 + Kε2 + K

τ∫
0

∥∥(
Aε − U1

ε

)
(τ̄ )

∥∥2
L2 dτ̄

− ε2

cs

τ∫
0

∫
Rd

(
Aε − U1

ε

)
∂τ

{
2

c2
s

∂2
z1

U1
ε − (Γ − 6)A2

ε

}
dzdτ̄ .

Combining (Bε) with (62), we have here again

ε2

cs
∂τ ∂

2
z1

U1
ε = −∂3

z1

(
Aε − U1

ε

) +OL2(ε)

since εU⊥
ε is uniformly bounded in Hs . Furthermore, for the term involving ∂τ [A2

ε], comparing with the case d = 1,
we have the extra term
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2(Γ − 6)
ε2

cs

τ∫
0

∫
Rd

Aε

(
Aε − U1

ε

)[∇z⊥ · U⊥
ε +OL2(ε)

]
dτ̄ � Kε

∥∥Aε − U1
ε

∥∥
L2 � K

∥∥Aε − U1
ε

∥∥2
L2 + Kε2,

since εU⊥
ε is uniformly bounded in Hs . The loss ε instead of ε2 seems unavoidable since we do not have cancellations

with other terms (even those in the right-hand side of (77)). This leads to

∥∥(
Aε − U1

ε

)
(τ )

∥∥2
L2 − 2cs

τ∫
0

∫
Rd

U⊥
ε · ∇z⊥

(
Aε − U1

ε

)
dzdτ̄ � K

∥∥Ain
ε − Uin,1

ε

∥∥2
L2 + Kε2

+ K

τ∫
0

∥∥(
Aε − U1

ε

)
(τ̄ )

∥∥2
L2 dτ̄ . (78)

On the other hand, since ∂z1 U⊥
ε = ∇z⊥U1

ε , we deduce from (Bε)

1

2cs

d

dτ

∫
Rd

ε2
∣∣U⊥

ε

∣∣2
dz +

∫
Rd

U⊥
ε · ∇z⊥

(
Aε − U1

ε

)
dz � ε2

∥∥∂z1 U1
ε + ε2∇z⊥U⊥

ε

∥∥
L∞

∥∥U⊥
ε

∥∥2
L2 + Kε2

� Kε2
∥∥U⊥

ε

∥∥2
L2 + Kε2, (79)

thus

∥∥εU⊥
ε (τ )

∥∥2
L2 + 2cs

τ∫
0

∫
Rd

U⊥
ε · ∇z⊥

(
Aε − U1

ε

)
dzdτ̄ �

∥∥εUin,⊥
ε

∥∥2
L2 + K

τ∫
0

∥∥εU⊥
ε

∥∥2
L2 dτ̄ + Kε2. (80)

Consequently, in view of the cancellation of the integrals in the left-hand sides of (78) and (80),∥∥(
Aε − U1

ε

)
(τ )

∥∥2
L2 + ∥∥εU⊥

ε (τ )
∥∥2

L2

�
∥∥(

Ain
ε − Uin,1

ε

)∥∥2
L2 + ∥∥εUin,⊥

ε

∥∥2
L2 + K

τ∫
0

∥∥(
Aε − U1

ε

)
(τ̄ )

∥∥2
L2 + ∥∥εU⊥

ε

∥∥2
L2 dτ̄ + Kε2

hence, by the Gronwall lemma,

sup
0�τ�τ0

{∥∥Aε − U1
ε

∥∥
L2 + ε

∥∥U⊥
ε

∥∥
L2

}
� K

(∥∥Ain
ε − Uin,1

ε

∥∥
L2 + ε

∥∥Uin,⊥
ε

∥∥
L2 + ε

)
,

as wished for (18).
Finally, using (14) and (17), we deduce from (Bε) that

1

cs
∂τ Aε − 1

ε2
∂z1 Aε + 1

ε2
∂z1 U1

ε + 3Aε∂z1 Aε + ∇z⊥ · U⊥
ε =OL2

(
ε + ∥∥∂z1

(
Ain

ε − Uin,1
ε

)∥∥
Hs−2

)
and

1

cs
∂τ U1

ε − 1

ε2
∂z1 U1

ε + 1

ε2
∂z1 Aε + (Γ − 3)U1

ε∂z1 U1
ε − 1

c2
s

∂3
z1

U1
ε =OL2

(
ε + ∥∥∂z1

(
Ain

ε − Uin,1
ε

)∥∥
Hs−2

)
,

hence∣∣∣∣ 1

2cs

d

dτ

∫
Rd

A2
ε + [

U1
ε

]2
dz −

∫
Rd

U⊥
ε · ∇z⊥Aε dz

∣∣∣∣ � K
(
ε2 + ∥∥∂z1

(
Ain

ε − Uin,1
ε

)∥∥2
Hs−2

)
.

Inserting (18) into (79) and since ∇z⊥U1
ε = ∂z1 U⊥

ε , we infer∣∣∣∣ 1

2cs

d

dτ

∫
Rd

ε2
∣∣U⊥

ε

∣∣2
dz +

∫
Rd

U⊥
ε · ∇z⊥Aε dz

∣∣∣∣ �
∣∣∣∣
∫
Rd

U⊥
ε · (

∂z1 U⊥
ε

)
dz

∣∣∣∣ + Kε2
∥∥U⊥

ε

∥∥2
L2 + Kε2

� 0 + K
∥∥Ain

ε − Uin,1
ε

∥∥2
2 + Kε2

∥∥Uin,⊥
ε

∥∥2
2 + Kε2,
L L
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and then∣∣∣∣ 1

2cs

d

dτ

∫
Rd

A2
ε + [

U1
ε

]2 + ε2
∣∣U⊥

ε

∣∣2
dz

∣∣∣∣ �K
∥∥Ain

ε − Uin,1
ε

∥∥2
L2 + Kε2

∥∥Uin,⊥
ε

∥∥2
L2 + Kε2.

Combining this with (18), this allows to show the almost conservation law, for 0 � τ � τ∗,∫
Rd

2A2
ε + ε2

∣∣U⊥
ε

∣∣2
dz =

∫
Rd

2
[
Ain

ε

]2 + ε2
∣∣Uin,⊥

ε

∣∣2
dz +O

(∥∥Ain
ε − Uin,1

ε

∥∥2
L2(Rd )

+ ε2
∥∥Uin,⊥

ε

∥∥2
L2(Rd )

+ ε2)
, (81)

and a similar statement can be made with
∫
Rd 2[U1

ε]2 + ε2|U⊥
ε |2 dz.

At this stage, we note that we have all the ingredients needed for the proof of Theorem 6 in [20]. Indeed, in [20],
we used the conservation of the energy and the momentum to show that

Aε − U1
ε → 0 and εUin,⊥

ε → 0 in L2,

but here, the estimate (18) ensures these convergences. Furthermore, the uniform L2 bound on U⊥
ε comes directly from

(18) and the assumptions in Proposition 3 and provide (see [20]) compactness in time. Then, the almost conservation
law (81) guarantees that there is no loss of L2 norm in the compactness argument. This finishes the proof. �
3. Proof of Proposition 4

The proof of Proposition 4 turns out to be quite similar to the justification of the (KdV) limit. Indeed, we use once
again the trick of E. Grenier and first solve the one dimensional system, with aε complex-valued,⎧⎪⎪⎨

⎪⎪⎩
1

cs
∂θaε − 1

ε
∂zaε + 2uε∂zaε + 1

ε
(1 + εaε)∂zaε = i

cs
∂2
z aε

1

cs
∂θuε − 1

ε
∂zuε + 2uε∂zuε + 1

c2
s ε

2
∂z

(
f

(|1 + εaε|2
)) = 0.

(82)

Following [20] (proof of Theorem 4 there) or the proof of Proposition 1, we see that there exists θ∗ > 0 and ε0 > 0
such that, if 0 < ε � ε0, there exists a unique solution (aε, uε) ∈ L∞([0, θ∗],H s(R)) to (82). Moreover, for some
absolute constant K0, there holds the uniform bound

sup
0�θ�θ∗

∥∥aε(θ)
∥∥

Hs(R)
+ ∥∥uε(θ)

∥∥
Hs(R)

� K0Λ and
1

2
� |1 + εaε|� 2.

As in the proof of Lemma 1, we may show that∥∥∂z

[
aε(θ) − uε(θ)

]∥∥
Hs−2(R)

� K
(∥∥∂z

[
ain
ε − uin

ε

]∥∥
Hs−2(R)

+ ε
)
.

Via the formula (63), this yields (45) and∥∥∂z

[
Aε(θ) − Uε(θ)

]∥∥
Hs−2(R)

� K
(∥∥∂z

[
Ain

ε − U in
ε

]∥∥
Hs−2(R)

+ ε
)
.

Combining the two equations in (42), we deduce

1

cs
∂θ (Aε − Uε) − 2

ε
∂z(Aε − Uε) + (2Uε − Aε)∂z(Aε − Uε) − (Γ − 5)Aε∂zAε

= − ε

cs
∂z

(
∂2
z Aε

1 + εAε

)
+ 1

c2
s ε

2
∂z

(
f3(εAε)

)
,

where f3(α) =Oα→0(α
3) is given by the Taylor expansion (4) of f . In particular, since s � 3, we infer

1

cs
∂θ (Aε − Uε) − 2

ε
∂z(Aε − Uε) + (2Uε − Aε)∂z(Aε − Uε) − (Γ − 5)Aε∂zAε =OL2(ε),

uniformly for 0 � θ � θ∗. The L2 estimate for Aε − Uε can then be derived by following the lines of the proof of
Proposition 2, using the fact that Aε∂zAε = ∂z(A

2
ε/2). Once the estimate
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sup
0�θ�θ∗

∥∥Aε(θ) − Uε(θ)
∥∥

Hs−1(R)
�K

(∥∥Ain
ε − U in

ε

∥∥
Hs−1(R)

+ ε
)

is shown, we have

1

cs
∂θ (Aε + Uε) + 2Uε∂z(Aε + Uε) + Aε∂zUε + (Γ − 5)Aε∂zAε =OHs−3(ε),

or

1

cs
∂θ (Aε + Uε) + Γ (Aε + Uε)∂z(Aε + Uε) =OHs−3(ε).

The result follows then from a classical comparison argument involving (59) similar to the proof of Proposition 2 (see
Section 2.3).

4. Justification of the (gKdV)/(gKP-I) limit as a large time asymptotics for the free wave regime

This section is devoted to the proofs of Theorems 6 and 7. We wish to solve the (NLS) equation by using the trick
of E. Grenier, that is to solve the system (61) written in our scaling with θ = εεt and where aε is complex-valued and
uε real-valued:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1

cs
∂θaε − 1

ε
∂z1aε + 2u1

ε∂z1aε + 2εm+1u⊥
ε · ∇z⊥aε + 1

ε
(1 + εaε)

(
∂z1u

1
ε + εm+1∇z⊥ · u⊥

ε

)
= iε

εcs

(
∂2
z1

aε + εm+1�z⊥aε

)
1

cs
∂θuε − 1

ε
∂z1uε + 2u1

ε∂z1uε + 2ε2u⊥
ε · ∇z⊥uε + 2f ′(|1 + εaε|2)

εc2
s

〈1 + εaε,∇zaε〉 = 0.

(83)

The initial data (ain
ε , uin

ε ) will be chosen appropriately later on, so that the natural relation

∇Ψ in

Ψ in
= ε∇za

in

1 + εain
+ ics

ε

ε
uin

ε (84)

holds true (since we have Ψ = (1 + εaε)eiεϕε/ε). The proof is divided in two steps. In the first one, we construct an
approximate solution, and then prove an error estimate.

4.1. Construction of an approximate solution

In view of the coefficient ε/ε in front of the dispersive term in (83) and since we expect aε real-valued at leading
order, it is natural to look for the approximate solution with an expansion of the form:{

a
app
ε = a+ iεb= (

a0 + εa1 + ε2a2 + · · · + εmam + · · ·) + iε
(
b0 + εb1 + ε2b2 + · · · + εmbm + · · ·)

u
app
ε = u0 + εu1 + ε2u2 + · · · + εmum + · · · ,

where the functions uk , ak and bk depend on the variables (z, τ ) and are real-valued. We may try to construct this
approximate solution by cancellation of the powers of ε in (83) until we have solved the equations up to an O(εm+1)

error. However, we have to pay attention to some point for the imaginary part b. Indeed, if we assume b = b(τ ) only
and since ∂θ = ε2/ε∂τ = εm∂τ , the imaginary part of the first equation in (83) then reduces to

0 = εεm 1

cs
∂τb− ε

ε
∂z1b+ 2εu

app,1
ε ∂z1b+ εb∂z1u

app,1
ε − ε

εcs
∂2
z1
a+O

(
εm+1)

= −ε

ε

(
∂z1b+ 1

cs
∂2
z1
a− 2εu

app,1
ε ∂z1b− εb∂z1u

app,1
ε

)
+O

(
εm+1)

. (85)

From the fact that ε/ε = ε
m−1

2 � εm+1 (for every m� 0), it is thus necessary to choose

b0 = − 1
∂z1a0. (86)
cs
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However, to solve at next orders, we need to solve an ode in z1 and not a time dependent problem. For instance, for
b1, this becomes

cs∂z1b1 + ∂2
z1
a1 = −2u1

0∂
2
z1
a0 − ∂z1a0∂z1u

1
0 = −2∂z1[a0∂z1a0] + [∂z1a0]2,

since we shall have u1
0 = a0. Clearly, this problem cannot be solved with b1 in some Hs space exactly, since the source

term does not have zero integral in z1. To remedy this problem, we shall roughly speaking let b1, b2, . . . depend on θ .
Let us define the consistency errors

−Ra ≡ 1

cs

∂a
app
ε

∂θ
− 1

ε
∂z1a

app
ε + 2u

app,1
ε ∂z1a

app
ε + 2εm+1u

app,⊥
ε · ∇z⊥a

app
ε

+ 1

ε

(
1 + εa

app
ε

)(
∂z1u

app,1
ε + εm+1∇z⊥ · uapp,⊥

ε

) − iε

csε

(
∂2
z1

a
app
ε + εm+1�z⊥a

app
ε

)
, (87)

and

−Ru ≡ 1

cs
∂θu

app
ε − 1

ε
∂z1u

app
ε + 2u

app,1
ε ∂z1u

app
ε + 2ε2u

app,⊥
ε · ∇z⊥u

app
ε

+ 2f ′(|1 + εa
app
ε |2)

εc2
s

〈
1 + εa

app
ε ,∇za

app
ε

〉
. (88)

The next lemma provides the construction of an approximate solution (a
app
ε , u

app
ε ) for the one dimensional case (The-

orem 6). The changes required for Theorem 7 will be given next.

Lemma 2. Assume d = 1. Under the assumptions of Theorem 6, there exist initial data (ain
ε , uin

ε ) satisfying (84) and
an approximate solution (a

app
ε , u

app
ε ) such that we have

‖Ra‖Hs + ‖Ru‖Hs � Cεm+1

as well as∥∥ain
ε − a

app
ε (θ = 0)

∥∥
Hs + ∥∥uin

ε − u
app
ε (θ = 0)

∥∥
Hs � Cεm+1. (89)

Proof. The proof is divided in 4 steps.

Step 1: Definition of the approximate solution. We set

a0 = u0 ≡ ζ(τ ) ∈ C
([0, τ∗],H s+5)

, a1 = · · · = am−1 ≡ 0

(if m = 1, the second condition is void), so that a = a0 +O(εm). We have seen in Section 1.3 that in order to cancel
out the terms of order ε−1, ε0, . . . , εm−1, then (30) must hold true, that is

u = a− 3

2
εa2 + 2ε2a3 − 5

2
ε3a4 + · · · + (−1)m

m + 2

2
εmam+1 +O

(
εm+1)

.

Therefore, we also set

∀1 � k � m − 1, uk ≡ (−1)k
k + 2

2
ζ k+1(τ ) ∈ C

([0, τ∗],H s+5)
,

fix

am(τ, z) ≡ Ain
m(z) ∈ Hs+5, um(τ, z) ≡ Ain

m(z) + (−1)m
m + 2

2
ζm+1(τ, z) ∈ Hs+5

and choose um+1 ≡ 0 and

am+1 ≡ − 1

2c2
s

∂2
z1

ζ − 1

2

(
m∑

k=0

uk(τ )um−k(τ )

)
− 1

2

([
qm+2 + (−1)m

m + 3

2

]
ζm+2(τ ) − 2ζ(τ )am(τ)

)

∈ L∞([0, τ∗],H s+2)
,
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which is some (arbitrary) solution to what will be an analogue of (19). Concerning the imaginary part b, we recall
(see (85)) that we wish to solve

0 = ε

cs
∂θb− ε

ε
∂zb+ 2εu

app
ε ∂zb+ εb∂zu

app
ε − ε

εcs
∂2
z a+O

(
εm+1)

up to O(εm+1), and since ε
ε

= ε
m−1

2 , this requires to solve

ε

cs
∂θb− ∂zb+ 1

cs
∂2
z a− 2εu

app
ε ∂zb− εb∂zu

app
ε = 0

up to O(ε
m+3

2 ). For that purpose, we first define (cf. (86))

b≡ − 1

cs
∂za(τ ) ∈ C

([0, τ∗],H s+1)
,

and we omit the dependency on ε to simplify the notations. Next, we set u ≡ u
app
ε (here again, it depends on ε) and

define the function b̃ε = b̃ε(θ) as the solution of the high speed transport equation

1

cs
∂θ b̃ε − 1

ε
∂zb̃ε + 2u∂zb̃ε + b̃ε∂zu = G

cs
≡ −2u∂zb− b∂zu, b̃ε(θ = 0) = 0, (90)

and finally set

b≡ b+ b̃ε.

We shall prove that b̃ε is rather small.

Step 2: Sobolev estimates for b̃ε . The basic idea is to consider the simplified one dimensional problem, where the
source term is independent of θ (the source term in (90) depends on τ = εmθ ):

∂θβ − 1

ε
∂zβ = g(z), β(θ = 0) = 0,

with solution given by the method of characteristics:

β(θ, z) =
θ∫

0

g

(
z + θ − θ̄

ε

)
dθ̄ .

From this formula, it comes β(θ, z) = ε
∫ z−θ/ε

z
g, which shows that β is small in L∞ if g ∈ L1 and that ∂zβ is small

in L∞ simply assuming g ∈ L∞. We shall follow the same type of compuations for (90). For the extra term b∂zu, we
shall use that ∂zu has a bounded antiderivative (even though ∂zu /∈ L1

z1
(R)). We use the method of characteristics and

introduce the solution Z (we omit the dependency on ε) to the problem

∂θZ(θ, y) = − cs

ε
+ 2csu

(
εmθ,Z(θ, y)

)
, Z(θ = 0, y) = y.

Since u is uniformly Lipschitz continuous in z for θ ∈ [0, ε−1], the flow Z is well defined for θ ∈ [0, ε−1] and verifies,
for some constant C � 1 independent of ε � 1 and θ ∈ [0, ε−1],∣∣∣∣Z(θ, y) − y + θ

ε

∣∣∣∣ � C. (91)

We now consider ε small enough so that 2ε‖u‖L∞([0,τ∗]×R) � 1/2. Applying the method of characteristics, we see
that b̃ε satisfies, for every y ∈R and θ ∈ [0, |ln ε|],

d (
b̃ε

(
θ,Z(θ, y)

)) + cs b̃ε

(
θ,Z(θ, y)

)
∂zu

(
εmθ,Z(θ, y)

) = G
(
εmθ,Z(θ, y)

)
. (92)
dθ
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As a consequence, by Duhamel’s formula,

b̃ε

(
θ,Z(θ, y)

) =
θ∫

0

exp

(
cs

θ∫
θ̄

∂z1u
(
εmθ ′,Z

(
θ ′, y

))
dθ ′

)
G

(
εmθ̄,Z(θ̄ , y)

)
dθ̄ . (93)

Let us now estimate the integral in the exponential in (93) by writing and using the change of variables y = Z(θ ′, y),
or θ ′ = θ ′

y(y)

θ∫
θ̄

∂zu
(
εmθ ′,Z

(
θ ′, y

))
dθ ′ =

θ∫
θ̄

{
∂zu

in(
Z

(
θ ′, y

)) +
εmθ ′∫
0

∂τ ∂zu
(
θ,Z

(
θ ′, y

))
dθ

}
dθ ′

=
Z(θ̄,y)∫

Z(θ,y)

{
∂zu

in(y) +
εmθ ′

y(y)∫
0

∂τ ∂zu(θ,y) dθ

}
ε dy

1 − 2εu(θ ′
y(y),y)

=
Z(θ̄,y)∫

Z(θ,y)

ε∂zu
in(y) dy +

Z(θ̄,y)∫
Z(θ,y)

εmθ ′
y(y)∫

0

ε∂τ ∂zu(θ,y) dθ dy

+
Z(θ̄,y)∫

Z(θ,y)

{
∂zu

in(y) +
εmθ ′

y(y)∫
0

∂τ ∂zu(θ,y) dθ

}
2ε2u(θ ′

y(y),y) dy

1 − 2εu(θ ′
y(y),y)

.

We infer by Cauchy–Schwarz that the third integral is � Cε2. Moreover, by direct computation, the first one is equal
to

ε
{
uin(

Z(θ̄, y)
) − uin(

Z(θ, y)
)}

,

and since |Z(θ, y) − Z(θ̄, y)| � C|θ − θ̄ |/ε, we infer by Cauchy–Schwarz that the second integral is

Cε × √
θ/ε × εm|ln ε| � C|ln ε|3/2εm+1/2,

uniformly in 0 � θ̄ � θ � |ln ε|, y. As a consequence,

θ∫
θ̄

∂zu
(
εmθ ′,Z

(
θ ′, y

))
dθ ′ = ε

{
uin(

Z(θ̄, y)
) − uin(

Z(θ, y)
)} +O

(
ε2)

, (94)

and using once again the change of variables y = Z(θ̄, y), it then follows that

∣∣b̃ε

(
θ,Z(θ, y)

)∣∣ � C

θ∫
0

|G|(εmθ̄,Z(θ̄ , y)
)
dθ̄

� C

θ∫
0

∣∣Gin
∣∣(Z(θ̄, y)

)
dθ̄ + C

θ∫
0

εmθ ′∫
0

|∂τG|(θ,Z(θ̄ , y)
)
dθ dθ̄

� C

y∫
Z(θ,y)

∣∣Gin
∣∣(y)

ε dy

1 − 2εu
app,1
ε (θ ′

y(z),y)

+ C

y∫ εm|ln ε|∫
|∂τG|(θ,y) dθ

ε dy

1 − 2εu
app,1
ε (θ ′

y(y),y)
.

Z(θ,y) 0
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We now fix z ∈R and let y = Z(θ, ·)−1(z) in the above formula to deduce

∣∣b̃ε(θ, z)
∣∣ � Cε

Z(θ,·)−1(z)∫
z

∣∣Gin
∣∣(y) dy + Cε

Z(θ,·)−1(z)∫
z

εm|ln ε|∫
0

|∂τG|(θ,y) dθ dy

� Cε
∣∣Gin

∣∣ � 1[−θ/ε−C,0](z) + Cε

εm|ln ε|∫
0

|∂τG|(θ, ·) � 1[−θ/ε−C,0](z) dθ.

Here, we have used (91) for the last inequality, which gives that z = Z(θ, y) = y − θ
ε

+ O(1) uniformly in (y, θ).
Classical convolution estimates then yield, if 0 � θ � |ln ε|,

ε
∥∥∣∣Gin

∣∣ � 1[−θ/ε−C,0]
∥∥

L2 � ε
∥∥Gin

∥∥
L1‖1[−θ/ε−C,0]‖L2 � Cε

√
θ

ε
+ C � C

√
ε|ln ε|

and

ε
∥∥∣∣Gin

∣∣ � 1[−θ/ε−C,0]
∥∥

L∞ � ε
∥∥Gin

∥∥
L1‖1[−θ/ε−C,0]‖L∞ � Cε.

Note that when
∫
R

G �= 0, that is when G is not the z-derivative of some localized function, it does seem possible to
improve very much the L2 bound (see however [41] for refined estimates for secular growth). Arguing similarly for
the other term (which is actually smaller in view of the θ -integration), we arrive at

sup
0�θ�|ln ε|

∥∥b̃ε(θ)
∥∥

L2 � C
√

ε| ln ε| and sup
0�θ�|ln ε|

∥∥b̃ε(θ)
∥∥

L∞ � Cε.

Let us now estimate the derivatives of b̃ε . As explained at the beginning of this step, they enjoy a better behaviour.
Applying ∂z to (90) yields

1

cs
∂θ ∂zb̃ε − 1

ε
∂z∂zb̃ε + 2u∂z∂zb̃ε + 3∂zb̃ε∂zu = ∂zG

cs
− 2b̃ε∂

2
z u, ∂zb̃ε(θ = 0) = 0,

which has a structure similar to (90). Arguing as for (93), we deduce

∂zb̃ε(θ, z) =
θ∫

0

exp

(
3cs

θ∫
θ̄

∂zu
(
εmθ ′,Z

(
θ ′,Z(θ, ·)−1(z)

))
dθ ′

)
∂zG

(
εmθ̄,Z

(
θ̄ ,Z(θ, ·)−1(z)

))
dθ̄

− 2cs

θ∫
0

exp

(
3cs

θ∫
θ̄

∂zu
(
εmθ ′,Z

(
θ ′,Z(θ, ·)−1(z)

))
dθ ′

)

× b̃ε

(
θ̄ ,Z

(
θ̄ ,Z(θ, ·)−1(z)

))
∂2
z u

(
εmθ̄,Z

(
θ̄ ,Z(θ, ·)−1(z)

))
dθ̄

= I + II.

By (94), we see that the exponential is equal to 1 + O(ε) uniformly for 0 � θ̄ � θ � |ln ε| and z. To estimate II, we
bound b̃ε by O(ε) in L∞ and use once again the change of variable y = Z(θ̄,Z(θ, ·)−1(z)), which gains a factor ε,
and the convolution estimate to infer

sup
0�θ�|ln ε|

‖II‖L2 � Cε2
√|ln ε|/ε � Cε.

For I , similarly, we get

sup
0�θ�|ln ε|

∥∥∥∥∥I −
θ∫

0

∂z1G
in(

Z
(
θ̄ ,Z(θ, ·)−1(z1)

)
, z⊥

)
dθ̄

∥∥∥∥∥
L2

� Cε.

Making the change of variable y = Z(θ̄,Z(θ, ·)−1(z1)), we obtain
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θ∫
0

∂zG
in(

Z
(
θ̄ ,Z(θ, ·)−1(z)

))
dθ̄ =

z∫
Z(θ,·)−1(z)

∂zG
in(y)

ε dy

1 − 2εu(θ ′
Z(θ,·)−1(z)

(y),y)

=
z∫

Z(θ,·)−1(z)

∂zG
in(y, z⊥)ε dy +OL∞([0,|ln ε|],L2)

(
ε2

√|ln ε|/ε )
,

using one more time the convolution estimate. The first integral is explicitely computed (now, we have a z-derivative):
ε{Gin(z) − Gin(Z(θ, ·)−1(z))}. Gathering these estimates, we conclude

sup
0�θ�|ln ε|

∥∥∂zb̃ε(θ)
∥∥

L2 � Cε.

In a similar way, we derive

sup
0�θ�|ln ε|

∥∥∂zb̃ε(θ)
∥∥

Hs � Cε.

To summarize, we have proved that b verifies, for 0 � θ � |ln ε|,
‖b‖Hs+1 � C,

∥∥∂zb− ∂zb
(
τ = εmθ

)∥∥
Hs � Cε

and
ε

cs
∂θb− ε

ε
∂zb+ 2εu

app
ε ∂zb+ εb∂zu

app
ε − ε

εcs
∂2
z a= 0.

Step 3: Choice of the initial data for (83) and error estimate. We recall that when we use the trick of E. Grenier, the
initial data for (83) and (41) must verify (cf. (63))

Ain
ε ≡ |1 + εain

ε | − 1

ε
, U in

ε ≡ uin
ε − iε

cs

(
∂za

in
ε

1 + εain
ε

− ∂zA
in
ε

1 + εAin
ε

)
. (95)

First, we have |1+εa
app
ε |2 = |1+εa+iεεb|2 = (1+εa)2 +ε2ε2b2 = (1+εa)2 +OHs (εm+3[1+√

ε|ln ε|]) (uniformly
for 0 � θ � |ln ε|) by the estimates in Step 1. We may then define, for 0 � θ � |ln ε|, a real-valued quantity aε =
O(εm+2) such that, defining

ain
ε ≡ Ain

ε + iεb(θ = 0) + aε = Ain
ε − i

ε

cs
∂z1ζ

in + aε,

the first equality in (95) is verified. We then define uin
ε through the second equality in (95). We now give estimates for

the error between (ain
ε , uin

ε ) and (a
app,in
ε , u

app,in
ε ). By construction, we have

ain
ε − a

app,in
ε = [

Ain
ε + iεb(θ = 0) + aε

] − [
a(θ = 0) + iεb(θ = 0)

]
= Ain

ε − (
ζ in + εmAin

m + εm+1am+1(θ = 0)
) +OHs

(
εm+2) =OHs

(
εm+1)

.

Consequently,

iε

cs

(
∂za

in
ε

1 + εain
ε

− ∂zA
in
ε

1 + εAin
ε

)
= iε

csε
∂z

[
logC

(
1 + εain

ε

1 + εAin
ε

)]
=OHs

(
εεm+2) =OHs

(
εm+3)

,

thus U in
ε − uin

ε = OHs (εm+3), and this implies uin
ε − u

app
ε (θ = 0) = OHs (εm+2). As a consequence, we have con-

structed initial data (ain
ε , uin

ε ) verifying (95) as well as (89).

Step 4: Error estimate for the residuals. From the estimates of Step 1, we have b = b0 + OHs+1(
√

εθ). This is then
just for b that the expansion in ε is not completely rigorous in the sense that we do not claim that b̃ε is of order
ε in Hs+1. The term b appears in the nonlinearity f (|1 + εa

app
ε |2), but since we have already seen in Step 3 that

|1 + εaε|2 = (1 + εa)2 +OHs (εm+3), the expansion in ε is actually true. For the imaginary part of Ra , we have
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−Im(Ra) = ε

{
1

cs

∂b

∂θ
− 1

ε
∂zb+ 2u

app
ε ∂zb+ b∂zu

app
ε − 1

csε
∂2
z a

}

=OHs

(
εm+1) + ε

{
1

cs

∂b

∂θ
− 1

ε
∂zb+ 2u

app
ε ∂zb+ b∂zu

app
ε − 1

csε
∂2
z a

}
,

and by construction of b (see Step 1), we precisely get −Im(Ra) =OHs (εm+1). We turn finally to the real part of Ra ,
and since b only appears in the last term with ε/ε in front of, we obtain

−Re(Ra) = 1

cs

∂a

∂θ
− 1

ε
∂za+ 2u

app
ε ∂za+ 1

ε
(1 + εa)∂zu

app
ε + εm

cs
∂2
z b+ εm

cs
∂2
z b̃ε +OHs

(
εm+1)

.

From the estimate of Step 1, we have ∂2
z1
b̃ε = OHs (ε), and by construction, csb = −∂za = −∂za0 + OHs (ε). Since

the expansion in ε is now correct, we know that Re(Ra) and Ru are of order O(εm−1) by construction of the terms
ak , uk , 0 � k � m. Let us now inspect the terms of order εm in −Re(Ra) and −Ru respectively:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

1

cs

∂ζ

∂τ
− ∂zam+1 + 2um∂zζ + 2ζ∂zam + ∂zum+1 + am∂zζ + ζ∂zum − 1

c2
s

∂3
z ζ

1

cs
∂τ ζ − ∂zum+1 + ∂z

(
m∑

k=0

ukum−k

)
+ ∂zam+1 + ∂z

(
qm+2ζ

m+2 − 5ζam

)
,

as can be seen from the computations in Section 1.4 (we keep the same notations). These two quantities vanish if and
only if their sum and difference vanish, that is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2

cs

∂ζ

∂τ
+ 2um∂zζ + 2ζ∂zam + am∂zζ + ζ∂zum + ∂z

(
m∑

k=0

ukum−k

)
+ ∂z

(
qm+2ζ

m+2 − 5ζam

) − 1

c2
s

∂3
z ζ

2∂z(um+1 − am+1) = 2um∂zζ + 2ζ∂zam + am∂zζ + ζ∂zum + ∂z

(
m∑

k=0

ukum−k

)

+ ∂z

(
qm+2ζ

m+2 − 5ζam

) + 1

c2
s

∂3
z ζ.

Once we have reported the expressions of the uk’s, the first equation is precisely the (gKdV) equation. Since by
construction um = am + (−1)m(m + 2)ζm+1/2, we see that the right-hand side of the second equation becomes

∂z

(
m∑

k=0

ukum−k

)
+ ∂z

([
qm+2 + (−1)m

m + 3

2

]
ζm+2 − 2ζam

)
+ 1

c2
s

∂3
z ζ,

which is indeed a z-derivative. By our (arbitrary) choice for um+1 and am+1, we get the conclusion. Note that the
fact that we can integrate in z the last equation is actually not linked to the precise choice for (am,um). The proof of
Lemma 2 is complete. �
Lemma 3. Assume d � 1. Under the assumptions of Theorem 7, there exist initial data (ain

ε , uin
ε ) satisfying (84) and

an approximate solution (a
app
ε , u

app
ε ) such that we have

‖Ra‖Hs + ∥∥(
R1

u, εR⊥
u

)∥∥
Hs � Cεm+1

as well as∥∥ain
ε − a

app
ε (θ = 0)

∥∥
Hs + ∥∥uin,1

ε − u
app,1
ε (θ = 0)

∥∥
Hs � Cεm+1. (96)

Proof. We shall only point out the few differences with the proof of Lemma 2.

Step 1: Definition of the approximate solution. We set

u0 ≡ ∇z∂
−1
z ζ(τ ) ∈ C

([0, τ∗],H s+4)
, u1 = · · · = um+1 ≡ 0,
1
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(if m = 1, the second condition is void), so that u1 = ζ(τ ) + O(εm). For the amplitude, the relation (34) imposes to
choose

∀0 � k � m, ak ≡ 1 · 3 · · · · · (2k + 1)

(k + 1)! ζ k+1(τ ) ∈ C
([0, τ∗],H s+5 ∩ ∂z1H

s+5)
,

and for am+1, we fix (arbitrarily)

am+1 ≡ − 1

2c2
s

∂2
z1

ζ(τ ) − 1

2

([
qm+2 + (−1)m

m + 3

2

]
ζm+2(τ ) − 2ζam

)
− 1

2
�z⊥∂−2

z1
ζ(τ ) ∈ L∞([0, τ∗],H s+2)

(by the result in [53] or Lemma 3 in [42]). Note that the sum
∑m

k=0 ukum−k now vanishes for our choice of the uk’s.
Concerning the imaginary part, as for Lemma 2, we choose

b≡ b+ b̃ε,

where

b≡ − 1

cs
∂z1a(τ ) ∈ C

([0, τ∗],H s+1)
and the function b̃ε = b̃ε(θ) is the solution of the high speed transport equation

1

cs
∂θ b̃ε − 1

ε
∂z1 b̃ε + 2u

app,1
ε ∂z1 b̃ε + b̃ε∂z1u

app,1
ε = G

cs
≡ −2u

app,1
ε ∂z1b− b∂z1u

app,1
ε , b̃ε(θ = 0) = 0. (97)

Step 2: Sobolev estimates for b̃ε . Observing that the high speed transport equation (97) only involves the z1 coordinate,
we deduce as in the proof of Lemma 2 that b̃ε verifies first

sup
0�θ�|ln ε|

∥∥b̃ε(θ)
∥∥

L2 � C
√

ε|ln ε| and sup
0�θ�|ln ε|

∥∥b̃ε(θ)
∥∥

L∞ � Cε,

hence for any α ∈N
d−1
0 with |α| � s + 1

sup
0�θ�|ln ε|

∥∥∂α
z⊥ b̃ε(θ)

∥∥
L2 � C

√
ε|ln ε| and sup

0�θ�|ln ε|

∥∥∂α
z⊥ b̃ε(θ)

∥∥
L∞ � Cε.

As before, the z1-derivative is shown here again to have a better behaviour:

sup
0�θ�|ln ε|

∥∥∂z1 b̃ε(θ)
∥∥

Hs � Cε.

Therefore, b verifies, for 0 � θ � |ln ε|,
‖b‖Hs � C,

∥∥∂z1b− ∂z1b
(
τ = εmθ

)∥∥
Hs � Cε

and
ε

cs
∂θb− ε

ε
∂z1b+ 2εu

app,1
ε ∂z1b+ εb∂z1u

app,1
ε − ε

εcs
∂2
z1
a= 0.

Step 3: Choice of the initial data for (83) and error estimate and Step 4: Error estimate for the residuals. They are
very similar to Step 3 and Step 4 in the proof of Lemma 2, taking into account the transverse variable, thus we omit
the proof.

4.2. Error estimate

We look for an exact solution of the modified Madelung system (83) under the form

(aε, uε) = (
a

app
ε , u

app
ε

) + (Aε,Uε).

Since the system (83) is symmetrizable and the dispersive term has constant coefficient and is skew-adjoint, the error
estimate, for |α| � s,
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d

dθ

((
Sε

(
ε
(
a

app
ε +Aε

))
∂α
z Υ, ∂α

z Υ
)
L2

)
� C

(
ε
∥∥∂θ

(
a

app
ε +Aε

)∥∥
L∞ + ∥∥a

app
ε +Aε

∥∥
W 1,∞ + 1

)‖Υ ‖2
Hs + Cε2(m+1),

with Υ = (Aε,U1
ε , εU⊥

ε ), follows immediately. Recall that at time θ = 0, Υ is O(εm+1), even though we have in-
cluded the terms of order εm+1 in the approximate solution. We denote by θε ∈ (0, |ln ε|) the maximal time for which
‖ε∂θΥ ‖L∞ + ‖Aε‖W 1,∞ � 1. Then, we infer from the Gronwall inequality that for 0 � θ � θε ,∥∥Υ (θ)

∥∥2
Hs �

{∥∥Υ (θ = 0)
∥∥2

Hs + ε2(m+1)
}
e2Cθ � Cε2(m+1)e2Cθ ,

where C is a constant depending only on s, d , Λ and the function ζ . This guarantees that θε � μ| ln ε| for some small
constant 0 < μ < 1/C depending only on s, d , Λ and the function ζ and provided ε is sufficiently small. We finally
use the formula (63) to infer that for θε � μ| ln ε|,∥∥Aε − Re

(
a

app
ε

)∥∥
Hs + ∥∥U1

ε − u
app,1
ε

∥∥
Hs−1 � Cεm+1e

θ
2μ .

This completes the proofs of Theorems 6 and 7.

5. Justification of the wave and the (mKdV)/(mKP-I) limit for the Landau–Lifshitz equation

5.1. Proof of the free wave limit for the Landau–Lifshitz equation

In order to prove the Sobolev bounds (57) on the suitable time interval, we shall not proceed as in [50] and [49].
Indeed, they apply ∂t to the equation, and obtain a wave equation of the form

∂2
t m+ �2m = · · · .

Using the scales t = εt and z = εx, this becomes

∂2
t m+ ε2�2m= · · · ,

for which the natural high order functional is∑
α∈Nd

0|α|�s

∫
Rd

∣∣∂t∂
α
z m

∣∣2 + ε2
∣∣�∂α

z m
∣∣2

dz.

This functional controls ∂tm in Hs . Taking the cross product of the equation with m, we infer that

m× ∂tm = −ε�m− ε|∇m|2m+ m3

ε
�e3 − ε

(
m3

ε

)2

m,

hence the functional controls m3
ε

in Hs , but only ε�m in Hs and not �m, which should be on the same level.
From (49), we deduce that the gradient vector field

V ≡ ∇ρ

2ρ
= 1

2
∇ ln(ρ)

satisfies

∂tV + 2∇
(

1 − ρ

1 + ρ
U · V

)
+ �U = 0,

since ∇(∇ · U) = ∇(�ϕ) = �U . Moreover,

�V = 1

2
�∇ ln(ρ) = ∇� ln(

√
ρ ) = ∇

(
∇ ·

[∇√
ρ√

ρ

])
= ∇

(
�

√
ρ√

ρ
− |∇√

ρ|2
ρ

)
= ∇

(
�

√
ρ√

ρ
− |∇ρ|2

4ρ2

)
,

thus
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∇
(

�
√

ρ√
ρ

)
= �V + ∇(|V |2)

,

and we may rewrite the equation for U under the form

∂tU + ∇
(

1 − ρ

1 + ρ
|U |2

)
+ ∇

(
ρ − 1

ρ + 1

)
− �V = ∇(|V |2) − ∇

(
2ρ|V |2
1 + ρ

)
= ∇

(
1 − ρ

1 + ρ
|V |2

)
.

Consequently, the complex-valued gradient vector field

Z ≡ U − iV

verifies

∂tZ − i�Z + ∇
(

1 − ρ

1 + ρ
(Z · Z)

)
+ ∇

(
ρ − 1

ρ + 1

)
= 0,

where we have set, for Z, Z̃ ∈ C
d , Z · Z̃ = ∑d

j=1 Zj Z̃j ∈C. Therefore, we have obtained the augmented system⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂tρ + 2
1 − ρ

1 + ρ
U · ∇ρ + 2ρ∇ · U = 0

∇ρ = 2ρV

∂tZ − i�Z + ∇
(

1 − ρ

1 + ρ
(Z · Z)

)
+ ∇

(
ρ − 1

ρ + 1

)
= 0.

(98)

On the other hand, from the stereographic projection, we have

m =
(

2 Re(Ψ )

1 + |Ψ |2 ,
2 Im(Ψ )

1 + |Ψ |2 ,
1 − |Ψ |2
1 + |Ψ |2

)
,

so that the energy has the expression

E(m) =
∫
Rd

4

∣∣∣∣∇
(

Ψ

1 + |Ψ |2
)∣∣∣∣

2

+ 4

∣∣∣∣∇
(

1

1 + |Ψ |2
)∣∣∣∣

2

+
(

1 − |Ψ |2
1 + |Ψ |2

)2

dx

=
∫
Rd

4ρ

(1 + ρ)2
|∇ϕ|2 + 4

ρ(1 + ρ)2
|∇ρ|2 +

(
1 − ρ

1 + ρ

)2

dx

=
∫
Rd

4ρ

(1 + ρ)2
|Z|2 +

(
1 − ρ

1 + ρ

)2

dx.

We now use the scaled variables θ = ε2t and z = εx, which transform (98) and the energy into⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂θρ + 2
1 − ρ

1 + ρ
Uε · ∇zρ + 2ρ∇z · Uε = 0

∇zρ = 2ρVε

∂θZε − i�Zε + ∇z

(
1 − ρ

1 + ρ
(Zε · Zε)

)
+ 1

ε2
∇z

(
ρ − 1

ρ + 1

)
= 0.

(99)

and

E(m) = ε2−d

∫
Rd

4ρ

(1 + ρ)2
|Zε|2 + 1

ε2

(
1 − ρ

1 + ρ

)2

dz = ε2−dEε(Ψ ),

with

Vε ≡ V
, Uε ≡ U

, Zε ≡ Z
, ρ = 1 + εa.
ε ε ε
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Note that Vε is of order ε. By Theorem 8, we have local in time well-posedness for the system (99), say for 0 � θ � θε .
We define θ̄ε ∈ (0, θε] to be the maximal time for which, for any 0 � θ � θ̄ε ,

1

2
�

∣∣Ψ (θ, ·)∣∣ � 2. (100)

Note that the conservation of energy already provides, for 0 � θ � θ̄ε ,

1

K0

(∥∥Zε(θ)
∥∥2

L2 +
∥∥∥∥ρ(θ) − 1

ε

∥∥∥∥
2

L2

)
�

∫
Rd

4ρ

(1 + ρ)2
|Zε|2 + 1

ε2

(
1 − ρ

1 + ρ

)2

dz

=
∫
Rd

4ρin

(1 + ρin)2
|Zin

ε |2 + 1

ε2

(
1 − ρin

1 + ρin

)2

dz

� K0

(∥∥Zin
ε

∥∥2
L2 +

∥∥∥∥ρin − 1

ε

∥∥∥∥
2

L2

)
where the constant K0 is absolute. As we shall see, the expression of the energy in variables (ρ,Zε) suggests a good
candidate for a high order functional, since the weights play the role of a suitable symmetrizer.

Proposition 5. Let s > 1 + d/2. There exists C = C(s, d), depending only on s and d , such that, for any α ∈N
d
0 with

0 < |α| � s, there holds

d

dθ

∫
Rd

4ρ

(1 + ρ)2

∣∣∂α
z Zε

∣∣2 + 4

ε2(1 + ρ)4

[
∂α
z ρ

]2
dz

� C(s, d)

(∥∥∥∥ρ − 1

ε

∥∥∥∥
2

Hs

+ ∥∥Zε

∥∥2
Hs

)(
1 + ε

∥∥∥∥ρ − 1

ε

∥∥∥∥
2

Hs

+ ε‖Zε‖2
Hs

)
.

Remark 5. The nonlinear effect is rather weak in view of the factor ε in front of. This is related to the fact that the
system (49) has a remarkable symmetry property. Indeed, in the regime we are considering, where ρ = 1 + εa this
system is somehow close to⎧⎪⎪⎨

⎪⎪⎩
∂θaε + 2

ε
(1 + εaε)∇ · uε =O

(
ε2)

∂θuε + 1

ε
∇

(
aε

2 + εaε

)
= ∂θuε + 1

2ε
(1 + εaε)∇aε +O(ε) =O

(
ε2)

,

which can be symmetrized by using the constant coefficient symmetrizer
(

1 0
0 4

)
.

Proof. Let α ∈ N
d
0 be such that 0 < |α| � s. As a first step, we compute

d

dθ

∫
Rd

4ρ

(1 + ρ)2

∣∣∂α
z Zε

∣∣2
dz =

∫
Rd

8ρ

(1 + ρ)2

〈
∂α
z Zε, ∂θ ∂

α
z Zε

〉
dz +

∫
Rd

4(1 − ρ)

(1 + ρ)3

∣∣∂α
z Zε

∣∣2
∂θρ dz. (101)

Applying ∂α
z to the third equation in (99) and reporting yields∫

Rd

8ρ

(1 + ρ)2

〈
∂α
z Zε, ∂θ ∂

α
z Zε

〉
dz

=
∫
Rd

8ρ

(1 + ρ)2

〈
∂α
z Zε, i�∂α

z Zε

〉
dz −

∫
Rd

8ρ

(1 + ρ)2

〈
∂α
z Zε, ∂

α
z ∇z

(
1 − ρ

1 + ρ
(Zε · Zε)

)〉
dz

− 1

ε2

∫
d

8ρ

(1 + ρ)2

〈
∂α
z Zε, ∂

α
z ∇z

(
ρ − 1

ρ + 1

)〉
dz. (102)
R
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We integrate by parts the first integral, using that 〈∂j ∂
α
z Zε, i∂j ∂

α
z Zε〉 = 0 pointwise for any 1 � j � d :∫

Rd

8ρ

(1 + ρ)2

〈
∂α
z Zε, i�∂α

z Zε

〉
dz = −

∫
Rd

8(1 − ρ)

(1 + ρ)3
(∇zρ) · 〈

∂α
z Zε, i∇z∂

α
z Zε

〉
dz

= −16
∫
Rd

ρ(1 − ρ)

(1 + ρ)3

〈
∂α
z Zε, iVε · ∇z∂

α
z Zε

〉
dz. (103)

Using (59) and Cauchy–Schwarz, we also have

−
∫
Rd

8ρ

(1 + ρ)2

〈
∂α
z Zε, ∂

α
z ∇z

(
1 − ρ

1 + ρ
(Zε · Zε)

)〉
dz

�−
∫
Rd

8ρ(1 − ρ)

(1 + ρ)3

〈
∂α
z Zε, ∂

α
z ∇z(Zε · Zε)

〉
dz

+ C(s, d)

(∥∥∥∥1 − ρ

1 + ρ

∥∥∥∥
Hs+1

‖Zε · Zε‖L∞ +
∥∥∥∥1 − ρ

1 + ρ

∥∥∥∥
L∞

‖Zε · Zε‖Hs

)

�−
∫
Rd

8ρ(1 − ρ)

(1 + ρ)3

〈
∂α
z Zε, ∂

α
z ∇z(Zε · Zε)

〉
dz + C(s, d)

(
1 + ε

√
Eε(Ψ ) + ‖Zε‖Hs

)‖Zε‖2
Hs . (104)

Here, we have used that Hs is an algebra and that ∇zρ = 2ρVε . Using once again (59), we deduce

−
∫
Rd

8ρ(1 − ρ)

(1 + ρ)3

〈
∂α
z Zε, ∂

α
z ∇z(Zε · Zε)

〉
dz �−

∫
Rd

16ρ(1 − ρ)

(1 + ρ)3

〈
∂α
z Zε,Zε · ∂α

z ∇zZε

〉
dz + C(s, d)‖Zε‖3

Hs .

Furthermore, by integration by parts, we infer

−
∫
Rd

16ρ(1 − ρ)

(1 + ρ)3

〈
∂α
z Zε,Zε · ∂α

z ∇zZε

〉
dz

= −
∫
Rd

16ρ(1 − ρ)

(1 + ρ)3

〈
∂α
z Zε,Re(Zε) · ∇z∂

α
z Zε

〉
dz −

∫
Rd

16ρ(1 − ρ)

(1 + ρ)3

〈
∂α
z Zε, i Im(Zε) · ∇z∂

α
z Zε

〉
dz

= 8
∫
Rd

∣∣∂α
z Zε

∣∣2∇z ·
(

ρ(1 − ρ)

(1 + ρ)3
Uε

)
dz +

∫
Rd

16ρ(1 − ρ)

(1 + ρ)3

〈
∂α
z Zε, iVε · ∇z∂

α
z Zε

〉
dz.

Notice that the last integral is exactly the opposite of the right-hand side of (103) (this is due to the weight 4ρ/(1+ρ)2

for the ∂α
z Zε part) and that the before last integral is, by Sobolev imbedding (s > 1 + d/2),

� C(s, d)‖Zε‖2
Hs

(‖∇z · Uε‖L∞‖ρ − 1‖L∞ + ‖Uε‖L∞‖∇zρ‖L∞
)
� C(s, d)ε‖Zε‖3

Hs .

Therefore, reporting these estimates into (103) and (102) provides∫
Rd

8ρ

(1 + ρ)2

〈
∂α
z Zε, ∂θ ∂

α
z Zε

〉
dz

� C(s, d)
(
1 + ε‖Zε‖Hs

)‖Zε‖2
Hs − 1

ε2

∫
Rd

8ρ

(1 + ρ)2

〈
∂α
z Zε, ∂

α
z ∇z

(
ρ − 1

ρ + 1

)〉
dz. (105)

Inserting (105) into (101) gives

d

dθ

∫
d

4ρ

(1 + ρ)2

∣∣∂α
z Zε

∣∣2
dz
R
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� C(s, d)
(
1 + ε‖Zε‖Hs

)‖Zε‖2
Hs +

∫
Rd

4
∣∣∂α

z Zε

∣∣2
{

1 − ρ

(1 + ρ)3
∂θρ + 2∇z ·

(
ρ(1 − ρ)

(1 + ρ)3
Uε

)}
dz

− 1

ε2

∫
Rd

8ρ

(1 + ρ)2

〈
∂α
z Zε, ∂

α
z ∇z

(
ρ − 1

ρ + 1

)〉
dz

� C(s, d)
(
1 + ε‖Zε‖Hs

)‖Zε‖2
Hs −

∫
Rd

|∂α
z Zε|2 16ρ

(1 + ρ)4
Uε · ∇zρ dz

− 1

ε2

∫
Rd

8ρ

(1 + ρ)2

〈
∂α
z Zε, ∂

α
z ∇z

(
ρ − 1

ρ + 1

)〉
dz,

where we have used the first equation in (99) for the last inequality. By Sobolev imbedding, we have |Uε · ∇zρ| �
Cρ‖Zε‖L∞‖∇zρ‖L∞ � Cε‖Zε‖Hs ‖(ρ − 1)/ε‖Hs � Cε(‖Zε‖2

Hs + ‖(ρ − 1)/ε‖2
Hs ), hence

d

dθ

∫
Rd

4ρ

(1 + ρ)2

∣∣∂α
z Zε

∣∣2
dz � C(s, d)

(
1 + ε‖Zε‖2

Hs + ε
∥∥(ρ − 1)/ε

∥∥2
Hs

)‖Zε‖2
Hs

− 1

ε2

∫
Rd

8ρ

(1 + ρ)2

〈
∂α
z Zε, ∂

α
z ∇z

(
ρ − 1

ρ + 1

)〉
dz. (106)

It remains to study the last integral in (106):

− 1

ε2

∫
Rd

8ρ

(1 + ρ)2

〈
∂α
z Zε, ∂

α
z ∇z

(
ρ − 1

ρ + 1

)〉
dz = 1

ε2

∫
Rd

16ρ

(1 + ρ)2

〈
∂α
z Uε, ∂

α
z

( ∇zρ

(1 + ρ)2

)〉
dz.

Thanks to a new use of (59), there holds∥∥∥∥∂α
z

( ∇zρ

(1 + ρ)2

)
− ∇z∂

α
z ρ

(1 + ρ)2

∥∥∥∥
L2

=
∥∥∥∥∂α

z

([
1

(1 + ρ)2
− 1

4

]
∇zρ

)
−

[
1

(1 + ρ)2
− 1

4

]
∇z∂

α
z ρ

∥∥∥∥
L2

� C(s, d)

(∥∥∥∥ 1

(1 + ρ)2
− 1

4

∥∥∥∥
Hs

‖∇zρ‖L∞ +
∥∥∥∥∇z

[
1

(1 + ρ)2
− 1

4

]∥∥∥∥
L∞

‖∇zρ‖Hs−1

)

� C(s, d)ε2
∥∥∥∥ρ − 1

ε

∥∥∥∥
2

Hs

,

where we have used the Sobolev imbedding for the last inequality, since s > 1 + d/2. Thus, by Cauchy–Schwarz,

− 1

ε2

∫
Rd

8ρ

(1 + ρ)2

〈
∂α
z Zε, ∂

α
z ∇z

(
ρ − 1

ρ + 1

)〉
dz � − 1

ε2

∫
Rd

16ρ

(1 + ρ)4

〈
∂α
z Uε, ∂

α
z ∇zρ

〉
dz + C(s, d)

∥∥∥∥ρ − 1

ε

∥∥∥∥
2

Hs

� 1

ε2

∫
Rd

16ρ

(1 + ρ)4

〈
∂α
z (∇z · Uε), ∂

α
z ρ

〉
dz + C(s, d)

∥∥∥∥ρ − 1

ε

∥∥∥∥
2

Hs

,

after integrating by parts. Inserting this into (106) yields

d

dθ

∫
Rd

4ρ

(1 + ρ)2

∣∣∂α
z Zε

∣∣2
dz � C(s, d)

(
1 + ε‖Zε‖2

Hs + ε

∥∥∥∥ρ − 1

ε

∥∥∥∥
2

Hs

)
‖Zε‖2

Hs

+ C(s, d)

∥∥∥∥ρ − 1

ε

∥∥∥∥
2

Hs

+ 1

ε2

∫
d

16ρ

(1 + ρ)4

〈
∂α
z (∇z · Uε), ∂

α
z ρ

〉
dz. (107)
R
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Now, observe that, by (99),

∂θ

(
4

ε2(1 + ρ)4

[
∂α
z ρ

]2
)

+ 16

ε2(1 + ρ)4

〈
∂α
z ρ, ∂α

z

(
1 − ρ

1 + ρ
Uε · ∇zρ + ρ∇z · Uε

)〉

+ 16

ε2(1 + ρ)5

(
1 − ρ

1 + ρ
Uε · ∇zρ + ρ∇z · Uε

)[
∂α
z ρ

]2 = 0.

Integrating and using (59), we obtain

d

dθ

∫
Rd

4

ε2(1 + ρ)4

[
∂α
z ρ

]2
dz +

∫
Rd

16

ε2(1 + ρ)4

〈
∂α
z ρ,

1 − ρ

1 + ρ
Uε · ∇z∂

α
z ρ

〉
dz +

∫
Rd

16ρ

ε2(1 + ρ)4

〈
∂α
z ρ,∇z · ∂α

z Uε

〉
dz

� C(s, d)

(∥∥∥∥ρ − 1

ε

∥∥∥∥
2

Hs

+ ‖Uε‖2
Hs

)
.

We integrate by parts:∫
Rd

16

ε2(1 + ρ)4

〈
∂α
z ρ,

1 − ρ

1 + ρ
Uε · ∇z∂

α
z ρ

〉
dz =

∫
Rd

8(1 − ρ)

ε2(1 + ρ)5
Uε · ∇z

([
∂α
z ρ

]2)
dz

= − 8

ε2

∫
Rd

[
∂α
z ρ

]2∇z ·
(

(1 − ρ)

(1 + ρ)5
Uε

)
dz.

Therefore,

d

dθ

∫
Rd

4

ε2(1 + ρ)4

[
∂α
z ρ

]2
dz � −

∫
Rd

16ρ

ε2(1 + ρ)4

〈
∂α
z ρ,∇z · ∂α

z Uε

〉
dz

+C(s, d)

(∥∥∥∥ρ − 1

ε

∥∥∥∥
2

Hs

+ ‖Zε‖2
Hs

)
. (108)

Combining (107) and (108), we see that the bad (singular) terms cancel out (due to the choice of the weights) and
infer

d

dθ

∫
Rd

4ρ

(1 + ρ)2

∣∣∂α
z Zε

∣∣2 + 4

ε2(1 + ρ)4

[
∂α
z ρ

]2
dz

� C(s, d)

(∥∥∥∥ρ − 1

ε

∥∥∥∥
2

Hs

+ ‖Zε‖2
Hs

)(
1 + ε

∥∥∥∥ρ − 1

ε

∥∥∥∥
2

Hs

+ ε‖Zε‖2
Hs

)
.

The proof of Proposition 5 is complete. �
Proof of Theorem 10. The uniform bounds (57) for 0 � θ � θ∗, where θ∗ > 0 does not depend on ε, come directly
from Proposition 5 and arguing as in [10], Section 4. For the comparison result with the free wave equation, we need
to estimate the right-hand side of (56) in Hs−2. Let us observe that for the (GP) equation, (56) becomes⎧⎨

⎩
∂tAε + 2∇z · Uε = −2∇z · (AεUε)

∂tUε + 1

2
∇zAε = −ε∇z

(
|Uε|2 + �z

√
1 + εAε√

1 + εAε

)
.

The Hs−2 estimate in [10], Section 4 then follows noticing that ‖∇z · G‖Hs−2 � K‖G‖Hs−1 and ‖∇zg‖Hs−2 �
K‖g‖Hs−1 for any s ∈ R, as can be seen using Fourier transform (K depends only on s and d). For the equation
for Uε in (56), we may use this fact since the right-hand side is a gradient and get∥∥∥∥∂tUε + 1

2
∇zAε

∥∥∥∥
Hs−2

�K(s, d)

∥∥∥∥−ε2Aε|Uε|2
2 + εA

+ ε3|∇zAε|2
2(1 + εA )(2 + εA )

+ εA2
ε

2(2 + εA )
+ ε�z

√
1 + εAε√

∥∥∥∥ .

ε ε ε ε 1 + εAε Hs−1
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Since s > 1 + d/2, Hs−1 is an algebra and the uniform bounds (57) imply∥∥∥∥∂tUε + 1

2
∇zAε

∥∥∥∥
Hs−2

� K(s, d)
(
ε2Λ3 + ε2Λ2 + εΛ

)
� K(s, d)ε

(
Λ + Λ2)

,

since K0(s, d)εΛ � 1. For the equation for Aε in (56), we no longer have a source term in divergence form. We then
modify the argument by invoking the fact that Hs−2 ∩ L∞ is an algebra (see, for instance, [51]) as soon as s − 2 � 0.
Here, s > 1 + d/2 � 3/2 and s is an integer, thus s � 2. As a consequence,

‖Aε∇z · Uε‖Hs−2 �K‖Aε‖Hs−2∩L∞‖∇z · Uε‖Hs−2∩L∞ � KΛ2

using (57) and the Sobolev imbedding ∇z · Uε ∈ Hs−1 ↪→ L∞ (since s − 1 > d/2). Similarly, one has∥∥∥∥ Aε

2 + εAε

Uε · ∇zAε

∥∥∥∥
Hs−2

� KΛ3,

which yields, using once again that K0(s, d)εΛ � 1,

‖∂tAε + 2∇z · Uε‖Hs−2 � K(s, d)εΛ2.

Once one has these estimates, the comparison result with the free wave equation (58) can be shown exactly as in [10]
Section 4, thus we skip the details.

5.2. Proof of the (mKdV)/(mKP-I) limit for the Landau–Lifshitz equation

As for the proof of Theorems 6 and 7, the proof is divided into two steps.

Step 1: Construction of an approximate solution. This time, the expansion in ε is done on the system (51) (in-
stead of what we did with the Madelung system (83) for the (NLS) equation). To construct an approximate solution
(A

app
ε ,U

app
ε ) = (A0,U0) + ε(A1,U1) + ε2(A2,U2), the formal computation is very similar to the one in Section 4.1,

since the quasilinear terms in (51) do not perturb the leading order terms, thus we skip it. However, since it is im-
portant that the vector field Z is a gradient, we shall impose that U

app
ε is a gradient. We thus choose A0(τ ) ≡ ζ(τ ),

2U0(τ ) ≡ ∇z∂
−1
z1

ζ(τ ), U1 = U2 = 0, A1(τ ) ≡ A2
0(τ )/2 = ζ 2(τ )/2, so that A1(τ ) − 2U1

1 (τ ) = A2
0(τ )/2 = ζ 2(τ )/2,

and finally

A2(τ ) ≡ 1

4
ζ 3 + 1

2
∂2
z1

ζ(τ ) + �z⊥∂−2
z1

ζ ∈ L∞([0, τ∗],H s+3)
.

The approximate solution then verifies, uniformly for 0 � θ � τ∗/ε,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂θA
app
ε − 1

ε
∂z1A

app
ε − 2εA

app
ε

2 + εA
app
ε

[
U

app,1
ε ∂z1A

app
ε + ε2U

app,⊥
ε · ∇z⊥A

app
ε

]
+ 2

ε

(
1 + εA

app
ε

)(
∂z1U

app,1
ε + ε2∇z⊥ · U app,⊥

ε

) =OHs+1

(
ε2)

∂θU
app
ε − 1

ε
∂z1U

app
ε − ∇z

(
εA

app
ε

2 + εA
app
ε

[[
U

app,1
ε

]2 + ε2
∣∣U app,⊥

ε

∣∣2])
+ 1

ε
∇z

(
A

app
ε

2 + εA
app
ε

)

− ∇z

(
∂2
z1

√
1 + εA

app
ε + ε2�z⊥

√
1 + εA

app
ε√

1 + εA
app
ε

)
+ ε2∇z

(
(∂z1A

app
ε )2 + ε2|∇z⊥A

app
ε |2

(1 + εA
app
ε )(2 + εA

app
ε )

)
=OHs

(
ε2)

.

Moreover, we have∥∥Ain
ε − A

app
ε (θ = 0)

∥∥
Hs+3 + ∥∥U in

ε − U
app
ε (θ = 0)

∥∥
Hs+3 � Cε2.

As a consequence, denoting ρ
app
ε ≡ 1 + εA

app
ε ,

Z
app
ε ≡ (

U
app,1
ε , εU

app,⊥
ε

) − i
app

(
∂z1ρ

app
ε , ε∇z⊥ρ

app
ε

)
,

2ρε
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we infer⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂θρ
app
ε − 1

ε
∂z1ρ

app
ε + 2

1 − ρ
app
ε

1 + ρ
app
ε

Re
(
Z

app
ε

) · ∇ερ
app
ε + 2ρ

app
ε ∇ε · Re

(
Z

app
ε

) =OHs+1

(
ε5)

∇ερ
app
ε = 2ρ

app
ε Im

(
Z

app
ε

)
∂θZ

app
ε − 1

ε
∂z1Z

app
ε − i�εZ

app
ε + ∇ε

(
1 − ρ

app
ε

1 + ρ
app
ε

(
Z

app
ε · Zapp

ε

))
+ 1

ε2
∇ε

(
ρ

app
ε − 1

ρ
app
ε + 1

)
=OHs

(
ε2)

,

(109)

where ∇ε ≡ t (∂z1 , ε∇z⊥) and �ε ≡ [∇ε]2 = ∂2
z1

+ ε2�z⊥ . In addition, ε−1‖ρin
ε − ρ

app
ε (θ = 0)‖Hs+3 + ‖Zin

ε −
Z

app
ε (θ = 0)‖Hs+3 � Cε2.

Step 2: Nonlinear stability. Let (Aε = (ρε − 1)/ε,Uε) solve (54) (for which we know local well-posedness). We set

ρ̃ε ≡ ρε

ρ
app
ε

, Z̃ε ≡ (
U1

ε , εU⊥
ε

) − i

2ρε

(∂z1ρε, ε∇z⊥ρε) − Z
app
ε ,

so that there holds⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂θ ρ̃ε − 1

ε
∂z1 ρ̃ε + 2

1 − ρε

1 + ρε

Re(Zε) · ∇ερ̃ε + 2
ρ̃ε

ρ
app
ε

1 − ρ
app
ε

1 + ρ
app
ε

Re
(
Z

app
ε

) · ∇ερ
app
ε

−2
ρ̃ε

ρ
app
ε

1 − ρ
app
ε

1 + ρ
app
ε

Re
(
Z

app
ε

) · ∇ερ
app
ε + 2ρ̃ε∇ε · Re(Z̃ε) =OHs+1

(
ε5)

∇ερε

ρε

= ∇ερ
app
ε

ρ
app
ε

+ ∇ερ̃ε

ρ̃ε

= 2 Im
(
Z

app
ε

) + 2 Im(Z̃ε)

∂θ Z̃ε − 1

ε
∂z1Z̃ε − i�εZ̃ε + ∇ε

(
1 − ρε

1 + ρε

(
2Z̃ε · Zapp

ε + Z̃ε · Z̃ε

))
+ ∇ε

([
1 − ρε

1 + ρε

− ρ
app
ε − 1

ρ
app
ε + 1

]
Z

app
ε · Zapp

ε

)

+ 1

ε2
∇ε

(
ρε − 1

ρε + 1
− ρ

app
ε − 1

ρ
app
ε + 1

)
=OHs

(
ε2)

.

(110)

For the initial data, we have by construction

ε−1
∥∥ρ̃ε(θ = 0)

∥∥
Hs+3 + ∥∥Z̃ε(θ = 0)

∥∥
Hs+3 � Cε2.

We define here again 0 < θ̄ε � |ln ε| to be the maximal time for which

sup
0�θ�θ̄ε

∥∥ρ̃ε(θ) − 1
∥∥

Hs � ε,

so that∥∥ρε(θ) − 1
∥∥

Hs = ∥∥ρ
app
ε (θ)ρ̃ε(θ) − 1

∥∥
Hs � K

∥∥ρ
app
ε (θ)

∥∥
Hs

∥∥ρ̃ε(θ) − 1
∥∥

Hs + K
∥∥ρ̃ε(θ)

∥∥
Hs

∥∥ρ
app
ε (θ) − 1

∥∥
Hs

� Cε

for 0 � θ � θ̄ε . Paralleling the proof of Proposition 5, we shall now prove the following result, where the weight for
the potential part has an extra ρ

app
ε compared to the weight in Proposition 5.

Proposition 6. If s > 1 + d/2, there exists C, depending only on Λ, s and d , such that, for any α ∈ N
d
0 with |α| � s

and any 0 � θ � θ̄ε , there holds

d

dθ

∫
Rd

4ρε

(1 + ρε)2

∣∣∂α
z Z̃ε

∣∣2 + 4ρ
app
ε

ε2(1 + ρε)4

[
∂α
z (ρ̃ε − 1)

]2
dz � C

(
ε4 +

∥∥∥∥ ρ̃ε − 1

ε

∥∥∥∥
2

Hs

+ ‖Z̃ε‖2
Hs

)
. (111)
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Proof. We shall assume α �= 0, the case α = 0 could be treated similarly, or using the conservation of the energy
combined with the conservation of

∫
Rd ζ 2 dz. The computations are very close to those for Proposition 5, thus we

shall only emphasize on the differences. Let us observe that the before last term in the equation for Z̃ε is easily
estimated in Hs , in view of the equality 2Im(Z̃ε) = ∇ερ̃ε

ρ̃ε
:∥∥∥∥∇ε

([
1 − ρε

1 + ρε

− ρ
app
ε − 1

ρ
app
ε + 1

]
Z

app
ε · Zapp

ε

)∥∥∥∥
Hs

=
∥∥∥∥∇ε

(
2ρ

app
ε (1 − ρ̃ε)

(1 + ρε)(ρ
app
ε + 1)

Z
app
ε · Zapp

ε

)∥∥∥∥
Hs

� C
(‖ρ̃ε − 1‖Hs + ‖Z̃ε‖Hs

)
.

Similarly to (102) and (103), one has∫
Rd

8ρε

(1 + ρε)2

〈
∂α
z Z̃ε, ∂θ ∂

α
z Z̃ε

〉
dz �

∫
Rd

8ρε(1 − ρε)

(1 + ρε)3
∂z1ρε

∣∣∂α
z Z̃ε

∣∣2
dz

− 16
∫
Rd

ρε(1 − ρε)

(1 + ρε)3

〈
∂α
z Z̃ε, i

(
Im

(
Z

app
ε

) + Im(Z̃ε)
) · ∇ε∂α

z Z̃ε

〉
dz

−
∫
Rd

8ρ

(1 + ρ)2

〈
∂α
z Z̃ε, ∂

α
z ∇ε

(
1 − ρε

1 + ρε

(
2Z̃ε · Zapp

ε + Z̃ε · Z̃ε

))〉
dz

− 1

ε2

∫
Rd

8ρ

(1 + ρ)2

〈
∂α
z Z̃ε, ∂

α
z ∇ε

(
ρε − 1

ρε + 1
− ρ

app
ε − 1

ρ
app
ε + 1

)〉
dz

+ Cε2‖Z̃ε‖Hs + C

(∥∥∥∥ ρ̃ε − 1

ε

∥∥∥∥
2

Hs

+ ‖Z̃ε‖2
Hs

)
,

using an integration by parts for the transport term. The first term is � Cε‖Z̃ε‖2
Hs , and the before last is � Cε4 +

C‖Z̃ε‖2
Hs . Concerning the third term, arguing as for (104) yields

−
∫
Rd

8ρε

(1 + ρε)2

〈
∂α
z Z̃ε, ∂

α
z ∇ε

(
1 − ρε

1 + ρε

(
2Z̃ε · Zapp

ε + Z̃ε · Z̃ε

))〉
dz

� −
∫
Rd

16ρε(1 − ρε)

(1 + ρε)3

〈
∂α
z Z̃ε,Z

app
ε · ∂α

z ∇εZ̃ε + Z̃ε · ∂α
z ∇εZ̃ε

〉
dz + C

(‖ρ̃ε − 1‖2
Hs + ‖Z̃ε‖2

Hs

)

� −
∫
Rd

16ρε(1 − ρε)

(1 + ρε)3

〈
∂α
z Z̃ε,Re

(
Z

app
ε + Z̃ε

) · ∂α
z ∇εZ̃ε

〉
dz

+
∫
Rd

16ρε(1 − ρε)

(1 + ρε)3

〈
∂α
z Z̃ε, iIm

(
Z

app
ε + Z̃ε

) · ∂α
z ∇εZ̃ε

〉
dz + C

(‖ρ̃ε − 1‖2
Hs + ‖Z̃ε‖2

Hs

)

�
∫
Rd

16ρε(1 − ρε)

(1 + ρε)3

〈
∂α
z Z̃ε, iIm

(
Z

app
ε + Z̃ε

) · ∂α
z ∇εZ̃ε

〉
dz + C

(‖ρ̃ε − 1‖2
Hs + ‖Z̃ε‖2

Hs

)
,

where we use that 2〈∂α
z Z̃ε,Re(Zapp

ε + Z̃ε) · ∂α
z ∇εZ̃ε〉 = Re(Zapp

ε + Z̃ε) · ∇ε|∂α
z Z̃ε|2 and an integration by parts to

bound the first integral. Since here again the terms involving Im(Z
app
ε + Z̃ε) cancel out, we deduce∫

Rd

8ρε

(1 + ρε)2

〈
∂α
z Z̃ε, ∂θ ∂

α
z Z̃ε

〉
dz

� − 1

ε2

∫
d

8ρε

(1 + ρε)2

〈
∂α
z Z̃ε, ∂

α
z ∇ε

(
ρε − 1

ρε + 1
− ρ

app
ε − 1

ρ
app
ε + 1

)〉
dz + C

(
ε4 +

∥∥∥∥ ρ̃ε − 1

ε

∥∥∥∥
2

Hs

+ ‖Z̃ε‖2
Hs

)
. (112)
R
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Since, in view of the transport equation on ρε ,

∂θ

(
8ρε

(1 + ρε)2

)
= 8

(1 + ρε)3
× 1 − ρε

ε
× ε∂θρε

is uniformly bounded by some absolute constant K0 for 0 � θ � θ̄ε , we deduce from (112)

d

dθ

∫
Rd

4ρε

(1 + ρε)2

〈
∂α
z Z̃ε, ∂

α
z Z̃ε

〉
dz

�− 1

ε2

∫
Rd

8ρε

(1 + ρε)2

〈
∂α
z Re(Z̃ε), ∂

α
z ∇ε

(
2ρ

app
ε (ρ̃ε − 1)

(ρε + 1)(ρ
app
ε + 1)

)〉
dz + C

(
ε4 +

∥∥∥∥ ρ̃ε − 1

ε

∥∥∥∥
2

Hs

+ ‖Z̃ε‖2
Hs

)
.

Here, we see that the term in bracket in the integral is slightly different from what we had in (106). Thanks to a
new use of (59), we then get, as for (107), keeping aside the terms where we put ∂α

z ∇ε on each one of the factors in
ρ

app
ε

ρ
app
ε +1

× (ρ̃ε − 1) × 1
(ρε+1)

,

d

dθ

∫
Rd

4ρε

(1 + ρε)2

〈
∂α
z Z̃ε, ∂

α
z Z̃ε

〉
dz

�− 1

ε2

∫
Rd

16ρερ
app
ε

(1 + ρε)3(ρ
app
ε + 1)

〈
∂α
z Re(Z̃ε), ∂

α
z ∇ερ̃ε

〉
dz

+ 1

ε2

∫
Rd

16ρερ
app
ε (ρ̃ε − 1)

(1 + ρε)2(ρ
app
ε + 1)

〈
∂α
z Re(Z̃ε), ∂

α
z

( ∇ερε

(1 + ρε)2

)〉
dz

− 1

ε2

∫
Rd

16ρε(ρ̃ε − 1)

(1 + ρε)3

〈
∂α
z Re(Z̃ε), ∂

α
z ∇ε

(
ρ

app
ε

ρ
app
ε + 1

)〉
dz + C

(
ε4 +

∥∥∥∥ ρ̃ε − 1

ε

∥∥∥∥
2

Hs

+ ‖Z̃ε‖2
Hs

)
.

The last integral is easily estimated by C‖ ρ̃ε−1
ε

‖2
Hs + ‖Z̃ε‖2

Hs , since ρ
app
ε − 1 = OHs+1(ε) and ‖ρ̃ε − 1‖L∞ �

C‖ρ̃ε − 1‖Hs by Sobolev imbedding. In the second integral, we replace ∇ερε = ρ
app
ε ∇ερ̃ε − ρ̃ε∇ερ

app
ε = ρ

app
ε ∇ερ̃ε −

ρ̃εOHs (ε) and infer from (59) that it is

� 1

ε2

∫
Rd

16ρε[ρapp
ε ]2(ρ̃ε − 1)

(1 + ρε)4(ρ
app
ε + 1)

〈
∂α
z Re(Z̃ε), ∂

α
z ∇ερ̃ε

〉
dz + C

(
ε4 +

∥∥∥∥ ρ̃ε − 1

ε

∥∥∥∥
2

Hs

+ ‖Z̃ε‖2
Hs

)
.

Consequently, by using another integration by parts,

d

dθ

∫
Rd

4ρε

(1 + ρε)2

〈
∂α
z Z̃ε, ∂

α
z Z̃ε

〉
dz � C

(
ε4 +

∥∥∥∥ ρ̃ε − 1

ε

∥∥∥∥
2

Hs

+ ‖Z̃ε‖2
Hs

)

+ 16

ε2

∫
Rd

ρερ
app
ε

(1 + ρε)4

〈
∂α
z ∇ε · Re(Z̃ε), ∂

α
z ρ̃ε

〉
dz. (113)

Now, observe that, by (109),

∂θ

(
4ρ

app
ε

ε2(1 + ρε)4

[
∂α
z ρ̃ε

]2
)

+ 16ρ
app
ε ∂θρε

ε2(1 + ρε)5

[
∂α
z ρ̃ε

]2 − 4∂θρ
app
ε

ε2(1 + ρε)4

[
∂α
z ρ̃ε

]2

+ 16ρ
app
ε

ε2(1 + ρε)4

〈
∂α
z ρ̃ε, ∂

α
z

(
− 1

2ε
∂z1 ρ̃ε + 1 − ρε

1 + ρε

Re(Zε) · ∇ερ̃ε + ρ̃ε∇ε · Re(Z̃ε)

+ ρ̃ε
app

[
1 − ρε Re(Zε) − 1 − ρ

app
ε
app Re

(
Z

app
ε

)]
· ∇ερ

app
ε +OHs+1

(
ε5))〉

= 0. (114)

ρε 1 + ρε 1 + ρε
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For 0 � θ � θ̄ε , we have

‖∂θρε‖L∞ =
∥∥∥∥−1

ε
∂z1ρε + 1 − ρε

1 + ρε

Uε · ∇ερε + ρε∇ε · Uε

∥∥∥∥
L∞

� C,

and there also holds ‖∂θρ
app
ε ‖L∞ =O(ε) uniformly for θ � τ∗/ε. Furthermore, by Cauchy–Schwarz,∥∥∥∥ 1

ε2

〈
∂α
z ρ̃ε, ∂

α
z

(
OHs+1

(
ε5))〉∥∥∥∥

L1
� Cε4

∥∥∥∥ ρ̃ε − 1

ε

∥∥∥∥
Hs

� C

∥∥∥∥ ρ̃ε − 1

ε

∥∥∥∥
2

Hs

+ Cε8

and ∥∥∥∥ 1

ε2

〈
∂α
z ρ̃ε, ∂

α
z

{
ρ̃ε

ρ
app
ε

[
1 − ρε

1 + ρε

Re(Zε) − 1 − ρ
app
ε

1 + ρ
app
ε

Re
(
Z

app
ε

)]
· ∇ερ

app
ε

}〉∥∥∥∥
L1

� Cε

∥∥∥∥ ρ̃ε − 1

ε

∥∥∥∥
2

Hs

+ Cε
∥∥Re(Z̃ε)

∥∥2
Hs .

Integrating (114) in z ∈ R
d , integrating by parts for the singular transport term and using (59), we then obtain

d

dθ

∫
Rd

4ρ
app
ε

ε2(1 + ρε)4

[
∂α
z ρ̃ε

]2
dz +

∫
Rd

4

ε2
∂z1

(
ρ

app
ε

(1 + ρε)4

)[
∂α
z ρ̃ε

]2
dz

+
∫
Rd

16ρ
app
ε (1 − ρε)

ε2(1 + ρε)5

〈
∂α
z ρ̃ε,Re(Zε) · ∇ε∂α

z ρ̃ε

〉
dz +

∫
Rd

16ρ
app
ε ρ̃ε

ε2(1 + ρε)4

〈
∂α
z ρ̃ε,∇ε · ∂α

z Re(Z̃ε)
〉
dz

� C

(
ε4 +

∥∥∥∥ ρ̃ε − 1

ε

∥∥∥∥
2

Hs

+ ‖Re(Z̃ε)‖2
Hs

)
.

The first integral has absolute value � C‖(ρ̃ε − 1)/ε‖2
Hs since ‖∂z1ρ

app
ε ‖L∞ + ‖∂z1ρε‖L∞ � Cε for 0 � θ � θ̄ε . For

the second integral, we integrate by parts:∫
Rd

16ρ
app
ε (1 − ρε)

ε2(1 + ρε)5

〈
∂α
z ρ̃ε,Re(Zε) · ∇ε∂α

z ρ̃ε

〉
dz = − 8

ε2

∫
Rd

[
∂α
z ρ̃ε

]2∇ε ·
(

ρ
app
ε

(1 − ρε)

(1 + ρε)5
Re(Zε)

)
dz

� −Cε

∥∥∥∥ ρ̃ε − 1

ε

∥∥∥∥
2

Hs

.

Therefore, by another integration by parts,

d

dθ

∫
Rd

4ρ
app
ε

ε2(1 + ρε)4

[
∂α
z ρ̃ε

]2
dz �

∫
Rd

16ρ
app
ε ρ̃ε

ε2(1 + ρε)4

〈
∂α
z ∇ερ̃ε, ∂

α
z Re(Z̃ε)

〉
dz

+C

(
ε4 +

∥∥∥∥ ρ̃ε − 1

ε

∥∥∥∥
2

Hs

+ ‖Z̃ε‖2
Hs

)
. (115)

Combining (113) and (115) provides, in view of the cancellation of the bad singular terms,

d

dθ

∫
Rd

4ρε

(1 + ρε)2

∣∣∂α
z Z̃ε

∣∣2 + 4ρ
app
ε

ε2(1 + ρε)4

[
∂α
z ρ̃ε

]2
dz � C

(
ε4 +

∥∥∥∥ ρ̃ε − 1

ε

∥∥∥∥
2

Hs

+ ‖Z̃ε‖2
Hs

)
,

which is the desired inequality. �
Since at θ = 0, ρ̃ε = 1 +OHs (ε3) and Z̃ε =OHs (ε2), (111) and the Gronwall inequality implies, for 0 � θ � θ̄ε ,∥∥∥∥ ρ̃ε(θ) − 1

ε

∥∥∥∥
2

+ ∥∥Z̃ε(θ)
∥∥2

Hs � Cε4eCθ .

Hs
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This proves that if μ < 1/(2C) and ε � ε0(μ,C) is sufficiently small, then θ̄ε > μ|ln ε|. The end of the proof of
Theorem 9 then follows the lines of Section 4.2 thus we omit it. To compare Aε and A

app
ε , we write

Aε = ρε − 1

ε
= ρ

app
ε ρ̃ε − 1

ε
= ρ

app
ε − 1

ε
+ ρ

app
ε

ρ̃ε − 1

ε
= ζ(εθ) + ε

2
ζ 2(εθ) +OHs

(
ε2eθ/μ

)
,

as wished.
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