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Abstract

A new proof is given of results in (V. Bangert, AIHP Anal. Nonlin. 6 (1989) 95) on the existence of minimal (in the sense of
Giaquinta and Guisti) heteroclinic solutions of a nonlinear elliptic PDE. Bangert's work is based on an earlier paper of Moser
(AIHP Anal. Nonlin. 3 (1986) 229). Unlike (V. Bangert, AIHP Anal. Nonlin. 6 (1989) 95), the proof here is variational in nature,
and involves the minimization of a ‘renormalized’ functional. It is meant to be the first step towards finding locally vs. globally
minimal solutions of the PDE.
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Résumé

Nous donnons une démonstration nouvelle des résultats de Bangert sur I'existence d’'une solution minimale (au sens d
Giaquinta et Guisti) hétértinique d'un EDP elliptique nonlinéaire. Le tralae Bangert est basé sur un article de Moser
(AIHP Anal. Nonlin. 3 (1986) 229). Contrairement a (V. Bangert, AIHP Anal. Nonlin. 6 (1989) 95), la démonstration est
variationelle en nature, et utigsa minimisation d'une fonctionelle «renortisge ». C'est une tentative de premier pas pour
trouver des solutions minimales localement, plutdt que globalment de 'EDP.
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1. Introduction

Motivated by work of Aubry [3] and of Mather [7] on monotone twist maps, Moser [8] made the first steps
towards finding analogues of their theory in the settihguasilinear elliptic partial differential equations &#.
He studied the equation

!

: :a fpi('x’uvDu)_‘Et(xsuvDu):()y (11)
Xi

i=1

which arises formally as the Euler equation of the functional

/f(x,u,Du) dx, 1.2)
R’l

where F(x, u, p) is e.9.C? in its arguments and 1-periodic in the components & R” and inu. F further
satisfies structural conditions that imply weak solutions of (1.1) are actually classical solutions of the equation [8].
Let NV, denote the set of solutions of (1.1) that have a prescribed®” as rotation vector, that are minimal in

the sense of Giaquinta and Guisti [6], and whose graphs viewddbhhave no self intersections. The notion of
rotation vector here is the extensionRé8 of the usual rotation number used in dynamical systems. Likewise the
minimal and non-self intersection properties are the@mats for solutions of (1.1) of properties of monotone twist
maps. Among other things, Moser showkg # ¢ for all « € R" and obtained various qualitative and quantitative
properties for the members df,. E.g. for Vo, he obtained solutions that are 1-periodicxiny. .., x,. Letting

M, denote the subset df}, whose existence Moser established, he further provedis an ordered set, i.e.

v, w € M, impliesv=w, v <w, orv > w.

Bangert carried Moser’s analysis further in various ways. Among other things, he showed that when&/er
and.M, possesses a gap, i.e. there are adjageatwg in M, then there is &1 € NV, which is heteroclinic in an
appropriate sense from to wo and likewise another solution of (1.1) heteroclinic framp to vg. E.g. if« =0 so
vo andwg are adjacent members 8flg, there is al/; € Np heteroclinic inxy from vg to wg. (Similarly there are
members of\p heteroclinic inx; from vg to wo, 2<i < n.) Moreover if/\/l(l) denotes the set of such heteroclinic
solutions,M(l) is ordered. If there is a gap < w1 in M(l), there is als € M(lj which is also heteroclinic i
from v1 to wy. Further gap conditions lead to yet more complicated heteroclinics.

There are analogues @f; in the Aubry—Mather Theory: gaps between periodic invariant sets lead to the
existence of heteroclinic invariant curves joining the periodic sets. Moreover given any formal chain of such
heteroclinic invariant curves, there are actual invar@mves shadowing the chain. Thus it is natural to seek such
shadowing solutions of (1.1). In recent years, variatiomethods have been devisedtarry out such constructions
in dynamical systems or PDE settings, see e.g. [10,5,1,Ph@se methods require a vditgal characterization
of the basic solutions such &§ above. However Bangert’s clever existence argument in [4] is not variational in
nature. Therefore as a first step towards constructinggroomplex solutions of (1.1), in this paper we provide a
variational approach to find the typésolutions Bangert discovered. Thidll only be done for the special but still
significant setting ot = 0 and Hx, u, p) = %|p|2 + F(x,u) where

(F1) F e C3(R" x R, R),
(F2) F(x,u)is l-periodicinxs,..., x, andu, and
(F3) Fiseveninxy,...,x,.

Thus (1.1) becomes

—Au+ F,(x,u)=0. (PDE)
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A serious difficulty that has to be overcome in the variational approach to (PDE) is that the associated functionals
defined on the classes of functions of the heteroclinic typés pt/,, etc. are infinite. Thus to obtaiii; requires
a renormalization, i.e. subtracting an infinitentefrom the natural functional. Likewise obtainiri¢p requires a
second renormalization, etc.

The existence of/1 will be carried out in Section 2 and its (Giaquinta—Guisti) minimality will be established in
Section 3. An inductive argument will then be given in Section 4 to treat the general case.

2. Thesimplest heteroclinics

In this section, it will be shown how to obtain solutions of (PDE) that are heteroclini¢cfrom vg to wo where
vo < wo are an adjacent pair of solution§(PDE) that are 1-periodic img, ..., x,.
For ease of notation, set

1 2
L(u)= Equl + F(x,u)
with F satisfying (R)—(Fg). Let
Io={ue Wlé’CZ(R") | u is 1-periodic inxy, ..., x,}.

Fort=(l1,...,¢,) € 2", setT (£) =[£1, €1+ 1] X --- X [£y, £, + 1]. Define

Jo(u) = / L(u)dx.

7(0)
Finally define
co= inf Jo(u). (2.1)
uelp

In [3], Moser showed:
Proposition 2.2. If Mo ={u € Iy | Jo(u) = co}, then

1° Mo # ¢ andif u € Mg, u isaclassical solution of (PDE).
2° Mg isan ordered set.

A further property ofMg is:
Corollary 2.3. Ifu € Mo, uiseveninxy, ..., x,.

Proof. Sets;(x) = (x1, ..., Xi—1, —Xi, Xi41, ..., Xn), L<i <n. If u e Mg, thenu; (x) = u(¢; (x)) € Mg via (Fs3).
If u; # u, by 2 of Proposition 2.2, either (i); (x) > u(x) or (i) u; (x) < u(x) for all x € R". If (i) occurs,

wi (5 () = u(x) <ui(x) =u(gix)), (2.4)

a contradiction. Similarly (ii) cannot hold. Thus=u, 1<i <n. O
To continue, assume there is a gap\ty:

(x)o There are adjacent, wg € Mg with vg < wo.
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Set
Fi={ueWE2R") | vo<u <wo a.e.and: is 1-periodic inxz, . .., x,}.
Now the renormalized functionadh () for this setting can be introduced. Fpe Z andk € {1, ..., n}, set
tfju(x)zu(xl, ces Xk Gy Xn)
and fori € Z, define
Jui(u) = Jo(t2;u) — co. (2.5)
Alternatively sete; = (1,0, ...,0),...,e, = (0, ..., 0, 1), the usual basis iR". Then

J1i(u) = / L(u)dx — co.

T(ie1)
Now define
JiGu) =Y Jriu).
i€Z

The next proposition provides the properties/pthat will be required here. Hypothesissfplays its main role
in 1°-2°,

Proposition 2.6. For u € fl,

1° J1i(u) > Ofor all i € Z.
2° J1(u) = 0.
3° fT(l.el) L(u)dx < J1(u) +cofor anyi € Z.

4° J; isweakly lower semicontinuous (Isc) (with respect to Wlé’cz(R”)) on 1.
Proof. Foru e It andxy € [i + 3, + 1], set

o () =11 2.7)
and forxy € [i,i + 31, set

o ) =7tu. (2.8)

Extendgo,.i(u) first as even functions abowi =i + % and then 1-periodically in1. Continuing to denote these
extensions by (u), their definition impliesy; (u) € I'; and

1
Jr,i(u) = E(Jl,i(ﬁl’;r(”)) + J1.i(¢; w))) = 0. (2.9)
Thus P and hence 2hold. By 1°,
Jri(u) = / L(u)dx —co < Ji(u) (2.10)
T(ie1)

so 2 is valid. To prove &, note first that/g is weakly Isc on/p. Let (u;) be a sequence iy anduy; — u weakly
in Wl(l)’cz(R”) ask — oo. Set

q
Jipq@) =y Jiw).
p
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Then by the weak Isc afy, (2.5), (2.9) and 9,

I\)II—‘

Ji; i Ds q(”)

q
Y (ief @) + Ji(e; W)
p

1¢ _ _
EXP: k|l_>moo Jyi (e ) + k|l_>_moo J1i (97 wp))
1 q
Ekhm > (Jwief @) + i (e )
— 00 P
= lim J1:p.q i) < lim J1(ug). (2.11)
k—o00 k— 00

Since (2.11) is valid foralp < g € Z,
Ji(u) < lim Ja(ug) (2.12)

k— 00

and # holds. O

Remark 2.13. The argument used to prov& g¢hows

co= inf Jo(u)
ueWl2(T(0))

and ifu € WH2(T (0)) with J (1) = co, thenu € M. See e.g. [9] for a similar argument.

Next the class of functions that will be used to find a solution of (PDE) heteroclini¢ from vg to wo can be
introduced. Set

F]_:{uEfﬂuétiluandvoiuiwo}.

The members of; automatically are heteroclinic ity from vg to wg (in a weak sense) as the next result shows.

Proposition 2.14. If u € I'1 and J1(u) < oo, then tjlu — vp and r}ju — wo weakly in WL-2(T(0)) as j — oo.

Proof. Sincevo < ; L(u) < wo for all j € Z, 3° of Proposition 2.6 show(sfjlu) is bounded inW1-2(T(0)). This
with the monoton|C|ty property < t1,u, shows there is a uniquee W1-2(7'(0)) such thatr fu — v weakly in
w12(1(0)) and strongly inL2(7'(0)) as j — oo and

vo<v<u<wo. (2.15)

Since J1(u) < 00, Jo(tjlu) — co as|j| — oo. But Jy is weakly Isc soJp(v) < cg. Now Remark 2.13 shows
Jo(v) = co andv € Mg. Hence (2.15)(x)g, andu # wg imply v = vg. Similarly rjlu — wp asj — —oo weakly
in wk2(7(0)). O

Remark 2.16. In fact, by arguments in [9], the convergenca@ﬁ is in WL2(T(0)).

Now to obtain a solution of (PDE) heteroclinic.in from vg to wo, set

c1= inf Ji(u). (2.17)
uely
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Theorem 2.18. Let F satisfy (F1)—(Fs) and let (x)o hold. Then

1° Thereisa Uy € I't suchthat J1(U) = c1.

2° Any such U; isaclassical solution of (PDE).

3% Uy isheteroclinic (in C2) fromvg to wo, i.e. U1 —vollc2(7(jey)) = 0a@sj — —oo and [[U1r — woll c2(7(jey)) =
Oasj — oo.

40 yg<Ug < r}lUl < wo.

5° Mi={uerl1|Ji(u)=c1}isanordered st.

6° Ifue Mq,uiseveninxo, ..., x,.

Remark 2.19. In Section 3, it will be further shown thaf; is minimal in the sense of Giaquinta and Guisti.

Proof of Theorem 2.18. Let (ux) C I'1 be a minimizing sequence for (2.17). Normalizg) so that fori < 0,

1
/ ukdxgé /(vo+wo)dx< / uy dx. (2.20)
T(ieg) T(0) T(0)

That this can be done follows from Proposition 2.14. Bydd Proposition 2.6(ux) is bounded inW-2(R").
Therefore there is &/1 € Wkl)’CZ(R"), 1-periodic inxy, ..., x; such that along a subsequenegg,—~ Uj; weakly in
Wé’Z(R") and strongly inL2 (R"). Hence by the properties of , vo < Uz < t_1U1 < wo and by (2.20)[/; € I1.

c loc
Thus

J1(U1) > c1. (2.21)
On the other hand,*4of Proposition 2.6 and/; € I'1 imply
J1(U1) < c1. (2.22)

Combining (2.21)—(2.22) give® bf Theorem 2.18.

To verify 2°-5°, modifications of arguments from [9] will be employed. To prove thatsatisfies (PDE), let
z € R" and letB,(z) be a ball of radius- aboutz with r < % ForjeZ" setz;=z+ j. LetU*=U; in
R™\ U.jezn B, (z;) andU* = u’; in B-(z;) whereu’; minimizes

/ L(p)dx (2.23)
Br(Z_/)
over
S(zj)=|o e WE2R") |9 = U1inR"\ B.(z)}. (2.24)

As in Lemma 2.4 of [9], there is&; € S, (z;) minimizing (2.23) and any such minimizer of (2.23) is a solution of
(PDE) in B (z;). A priori, there may not be a unigue minimizer but as in Lemma 2.5 of [9], the set of minimizers
is ordered and there is a unique smallest one which is chosemtp biote that

/ L(Up)dx > / L(u%)dx (2.25)
B, (z)) B, (z)
forall j € Z". Hence
J1(Uy) = 1(U). (2.26)
We claimU* € I'1 and therefore
J1(U*) = J1(U1). (2.27)
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But then by (2.25), for alj € 2",

/L(Ul)dxz / L(u;’f)dx.

B (z)) B (z))

ThusU is a minimizer of (2.23) irS, (z;) and hence a solution of (PDE).

To verify thatU* e I'1, observe first that the 1-periodicity &f; in xo, ..., x, implies the same fot/*. Thus
U*enif(a)vo<U*<wo, (b)U* < r}lU*, and (c)vg # U™ # wo. To prove (a), sinceg < Uz < wo, it suffices
to showvg < u; < wo in B-(z;). Suppose e.g¢;(y) < vo(y) for somey € B,(z;). Sety; = min(vo, ;). Then
¥ =voin R"\ B,(z;). Let S be a unitz-cube centered at;. Theny; = v in S\ B-(z;), ¥; = u; neary, and
¥;ls extends naturally t&R” as an element afp. Continuing to denote this extension fy,

co = Jo(vo) < Jo(¥))

= / L(vg) dx + / L(vg) dx + / L(uj)dx. (2.28)
S\B(z;) By (zj)N{vo<u j} By (zj)N{vo>u,}
Hence
/ L(vg) dx < / L(u;)dx. (2.29)
By (zj)N{vo>u;} By (zj)N{vo>u;}

Sety; = max(vo, ;) SO x; € Sr(z;) and

/ L(uj)dx < / L(xj)dx= / L(vo) dx + / L(uj)dx
By (z)) By (z)) B (zj)N{vo>u} B (zj)N{vo<u j}
SO
L(uj)dx < / L(vg) dx. (2.30)
By (zj)M{vo>u i} By (zj)N{vo>u i}
Combining (2.29) and (2.30) yields equality in these expressions and returning to (2.28) shows
co = Jo(vo) < Jo(¥;) = Jo(vo). (2.31)

Hencey; € My. But by Proposition 2.2y; cannot both=vg in S\ B, (z;) and= u; neary. Thus the assumption
thatu ; (y) < vo(y) is not tenable andp < u ;. Similarly u; < wo and (a) has been proved.

To obtain (b), suppose not. Then as in greof of Proposition 2.3f [9], for somej, there is amg € B, (z;)
such that

U7 ye, (X0 +€1) <uj(xo). (2.32)
Forx € By2(z)), sety(x) = u’;.+81(x +e1), x = max(ujf, ¥), ¢ = min(ujf, ¥). Then¢ = u’; =U; < tflUl =
¥ = x on B1/2(z;) \ Br(z;). Thus

/ (L) +L(x))dx = / (L@ + L)) dx (2.33)

B/ (z)) B (z))

which shows that minimizes (2.23) oves, (z;) andrix minimizes (2.23) oves,(z; + e1). Therefore by the
definitions ofU* and¢,

i (x0) < ¢ (x0) < Y (x0) = uj,, (xo+e1) (2.34)
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contrary to (2.32). Thus (b) is verified. To prove that (c) is valid, suppose nét* & wo, then Uy = wo in
R"\ Ujezn(z) S0 11Uy 4 vo in L3(T (0)) asj — oo, contrary to Proposition 2.14 fdy1. Similarly U*  vo.
Thus (a), (b), and (c's hold arid; satisfies (PDE). Since ariy € M is trivially the limit of a minimizing sequence
for (2.17), the argument just given showssatisfies (PDE) and®2f the theorem is satisfied.

To prove 3 of Theorem 2.18, observe thil/; — Voll 2(7(iey)) — O @SI — —00 by Proposition 2.14. SincE1

anduvg are bounded i.*° (R™"), local Schauder estimates shéw — vg is bounded irle)’g (R™) for anya € (0, 1).

Standard interpolation inequalities then yieRlf8r U1 — vo and a similar argument appliesta — wo.

To establish 4-5°, we begin with 8. Let V, W € M. If 5° is false, settingy = max(V, W) and ¢ =
min(V, W), theng(z) = ¥ (z) for somez € R". Suppose for the moment thatr € I'1. Arguing as in the proof
of Proposition 2.2 [8], for all € Z,

/ L(p)dx + / L) dx = / L(V)dx + / L(W)dx (2.35)
T(ie1) T(ier) T(ie1) T(ier)
and this implies
2c1 < Ji(p) + J1(¥) = J1(V) + J1(W) = 2c1. (2.36)

ThusJi(¢), J1(¥) = c1 and by P-2°, ¢ and+r are solutions of (PDE). But — ¢ > 0, ¢(z) = ¥ (z), andg —
is a solution of the linear elliptic partial differential equation

—AD+AXx)P =0 (2.37)
where

_ Fux, o) — Fulx, Y (x))
Alx) = 20— v ) .op(x) > ¥(x)
= Fuu(x, 9(0)), @)=y (x).
Further writing (2.37) as

—A® +max(A,0)® = —min(A,0)® >0, (2.38)

the maximum principle implieg = v, a contradiction.
To verify thatp, ¥ € I, it suffices to prove that

x> x (2.39)
for x = ¢, . First for g, note that
Lo =1+ 1xp,..) =maxV(x1+1,xz,...), Wx1+ 1, x2,...). (2.40)

If t10(x) =1, V(x), sincerl, V(x) > V(x), then by (2.40),
v =W = w).

A similar argument applies i1 (x) = t1, W (x). Hence (2.39) holds fop.
Next to prove (2.39) foiy, if 1,y (x) =1, V(x) andy(x) = V(x), (2.39) is valid while ifr! y = 71, V (x)
andy (x) = W(x),

Ly =t V) > V) = W) =yk).

A similar argument obtains if the roles & andW are reversed. Thug, v € I'1 and ¥ is proved.
To get #, note that

vo < U < t14 U1 < wo. (2.41)
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Now the maximum principle can be used exactly as in (2.37)—(2.38) to get strict inequalities in (2.41). Lastly 6
follows from 5 and the argument of Corollary 2.3.
The proof of Theorem 2.18 is completen

3. Minimality of Uy
As was mentioned in the introduction, Moser studied solutions of (1.1) that were minimal in the sense of

Giaquinta and Guisti. In this section it will be shown tliatis a minimal solution of (PDE) in this sense.
Following [6], U is a minimal solution of (PDE) if for any bounded domahc R” with a smooth boundary,

/L(u)dx > / L(Uy) dx (3.1)
2 2
for anyu e Wlé’CZ(R") with u = Uy in R" \ £2. In other wordsU minimizes [, L(-) dx over the class oW 12(£2)

functions having/; as boundary values. The proof of Theorem 2.18 showslhaatisfies (3.1) whet is any

ball of radiusr < % To extend this property to the more general class of boudglsdvith a smooth boundary

requires showing that andcs can be characterized as minimizers of functionals in broader classes of functions.
To begin, letp = (p1, ..., py) € N* and set

Io(p) ={ue Wlé’cz(R") | uis p; periodic inx;, 1<i <n},
pP1 Pn

Ip(u)=/---/L(u)dx,
0 o
co(p) = uelpof(p) I,(u),

and

Mo(p) = {u € To(p) | 1) = co(p)}.
The proof of Proposition 2.2 shows th&to(p) # ¢ and is an ordered set.

Lemma 3.2. Mo(p) = My (and therefore co(p) = ([ 17 pi)co)-

Proof. It suffices to show thatrilu =u for 1 <i < n and anyu € Mo(p). If not, since Mo(p) is ordered,
either (i)t’ ju > u or (i) ' ;u < u. If e.g. (i) occurs,

u<tu<---<tl u=u,

u
Pi
a contradiction. Similarly (ii) cannot occur and the lemma followsl

Next it will be shown that there is an analogue of Lemma 3.2 in the setting of Theorem 2.18.=Let
(b2, ..., 4,) e N*~1 and define
e = {ue Wl(l)f(R”) | vo < u < wo andu is ¢; periodic inx;, 2<i <n}.
Let p € N" with p = (p1, ¢) and leti € Z. Foru e I'1(¢), define
lo—1 lp—1

I ) = Z Z( / L(u)dx—co>

k2=0 k=07 (ipy.)
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and
=Y "I w).
i€Z

Observe that with slight modifications in the promf, has the same properties di(¢) as does/; on I'; given by
Proposition 2.6. Set

Ii(p) = {ue () |u <, uandvo # u # wo}.

Replacinglt, J1, and T (0) by I'i(p), Jf, and Uogkrgpr T (kie1 + -+ + kyen), the proof of Poposition 2.14
carries over to the current setting.
Now define

= inf J®).
c1(p) UL )

By the above observations, the argument of Theorem 2.18 (V\#tﬂ% miny<; <, pi NOW permitted) applies here so

Ma(p) = {u e N(p) | I ) = c1(p)}
is a nonempty ordered set of solutions of (ADEhe analogue of Lemma 3.2 in this setting is:

Lemma 3.3. M1(p) = M1 and c1(p) = ([ 1] pi)ca.

Proof. It suffices to show that whenevere M1(p): (i) t° ju =u, 2<i <n,and (i)t u > u. The proof of (i) is
the same as that of Lemma 3.2. For (ii), observe tﬂ@h € M1(p) which is ordered. Hence if (ii) fails; > tflu
so by the definition of 1 (p),

1

1
ULt U<TZ, U <--<,

pP1
a contradiction. O

Remark 3.4. By (), the replacement dip1,ip1 + 1] in T'(ip1, k) by [ip1+ j,ip1+ j + 1] foranyj € Z does
not effect the above arguments. The same is tréasfreplaced by + ¢ for anyg € R*~1.

Theorem 3.5. Any U € M isaminimal solution of (PDE) in the sense of Giaquinta and Guisti.
Proof. To show that (3.1) is satisfied, lee R" andr > 0 such that2 C B,(z). Set
S(2)={ueWE2R" |lu=UinR"\ B.(2)}.
It suffices to prove that
/ Lu)dx > / LU)dx (3.6)

Br(z) Br(z)
for anyu € 5,(z). By Lemma 3.3,M1 = M1(p) for any p € N*. Choosep so that ming;, pi > 2r. Further
exploiting Remark 3.4, it can be assumed tkaic B,(z) C T(p). Hence by the proof of Theorem 2.18,
minimizeszr(Z) L(-)dx overS, (z) and the proof is complete.O
An immediate consequence of Theorem 3.5 is

Corollary 3.7. U1 isthe unique minimizer of fBr(Z) L(H)dxinS, (2).
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Proof. Suppose: € S, (z) so that

/ Lu)dx = / L(U7)dx. (3.8)
Br(z) Br(z)
Letr* > r. Then by (3.8),
/ Lu)dx = / LUy dx + / Lu)dx = / L(U7) dx. (3.9)
B+ (2) B+ (2)\B,(2) B, (2) B,x(2)

HenceU; € S,+(z) and minimizes L(-)dx over S,«(z). Again as in Lemma 2.5 of [9], the set of such
B+

minimizers is ordered. Since and Uy belong to this set and = Uy in B,«(z) \ B,(z), u = U1. The proof is
complete. O

4. Thegeneral case

The goal of this section is to show how the results of Sections 1-2 together with induction and minimization
arguments can be used to obtain more complex heteroclinic solutions of (PDE) corresponding to those obtained b
Bangert [4] via his nonvariational approach.

To give an idea of the inductive procedure at level two, suppdseas obtained in Theorem 1.18 satisfies a gap
condition:

(¥)1 There are adjacent < wj in Mj.

Define the set of functionk, via
o= {ueWE2®R") | vi <u < tlyu < wy andu is 1-periodicinys, .. ., x, ).
The renormalized functional, on fz is defined by

Tou) =" Jpi(u)
i€Z

where

Jo,i(u) = J1(v2u) — c1.
Suppose thaf, on I has the analogues of the propertiegpbn I as given by Proposition 2.6 witt? 3eplaced
by

Lu)dx < Jo(u) +co+c1
T (L1e1+£2e2)

for any¢,, €2 € Z. Suppose also that Proposition 2.14 is valid with appropriate changes of sub- or superscript 1's
to 2’s. Setting

Fzz{ueI/':2|u<tgluandv1§éu$w1}
and

o = inf J. ,
c2= Inf 2(u)
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the analogue of Theorem 2.18 holds here providing a solution of (PDE) that is heterocknit@m vg to wg and
heteroclinic inx2 from v; to wi. Moreover as in Theorem 3.5z is a minimal solution of (PDE) in the sense of
Giaquinta and Guisti.

Now setting

Mo ={ue 2| Ja(u) =cz},

a gap conditior(x), can be introduced and the process continues. To carry out the induction argument properly, let
m < n and assume the gap condition:

(x); There are adjacent < w; in M; holdsfori =0,...,m — 1. Let
= {ue Wkl)’CZ(R”) |vicg <u < rflu <wj—1, 1< j <i andu is 1-periodic inxj 1, ..., x,} (4.1)

for 1 <i <m. Theith renormalized functionall; (u), is given by

Jiw)="Ji p(u) (4.2)
PEL
where
Jipu) = Ji—l(ripu) —Ci—1. (4.3)

Suppose that; on I possesses the following properties fo 1 < m:
Proposition 4.4;. For u f,

1° J; p(u) > Ofor all p € Z.
2° J;(u) = 0. 1
30 fT(ZWrﬂ L(u)dx < J;(w) + ZE,‘A cq-
4° J; isweakly Isc (in W,-2(R")) on T
For 1<i < m, set
E:{ueﬁ | u gtiu andvl;l;—éuiw,-,l} (4.5)

and assume (with the understanding tht ¢, ¢, = 0):
Proposition 4.6;. If u € I'; and J; (u) < oo, then as j — oo, rju — v;—1 weakly in WE2(T (X e e,)) for all
£1,...,4i—1€Zandas j - —oo, 'L’ji-u — w;_1 weaklyin Wl*z(T(Z"l‘lzqeq)) forall ¢1,...,¢;_1€Z.

Finally define
¢ =inf Ji(u), 1<i<m, 4.7)

uel;

and assume:

Theorem 4.8;. Let F satisfy (F1)—(Fs) and let (x); hold. Then

1° Thereisa U; € I'; suchthat J; (U;) =¢;.
2° Any such U; isaclassical solution of (PDE).
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3° U; isheteroclinic from v;_1 to w;_1:

|U; —-0 as¢;— —oo and

—Vi-1llczr (s trer)
”Ul - wi—l”cZ(T(Zl:'lekek)) —0 aSE,' — OQ.

40 v, 1 < U; < ‘L’ilU,' <wi—1,1<j<i.

5° M; ={ueT;|Ji(u)=c;} isanordered set.
6° Ifuec M;,uiseveninx;y1,...,x,.

Finally suppose that for £ i <m.
Theorem 4.9;. Any U € M; isa minimal solution of (PDE) in the sense of Giaquinta and Guisti.
Corollary 4.10;. U; isthe unique minimizer of fB,(z) L(-)dxover S, (z) ={p € Wkl;cz(R”) o =U; inR"\ B.(2)}.

With these inductive facts at hand, the results can be extended tardewvdl. To do so, begin by assuming there
is agap inM,,:

(*)m There are adjacent, < w,, in M,,.
Then withT},,1 defined in (4.1),4+1 andJ,,41 from (4.2),1, we can give the

Proof of Proposition 4.4,,,1. To verify 1°_,-2°

0 1= 1 letu e 1 andforx, 1 € [p+ 3. p+ 11, set

o ) =17"Ftu (4.11)
and forx,, 41 € [p, p + 31, set
0, ) =" tu. (4.12)

Extend these functions to 1-periodic functionstjjp,1 as in the proof of Proposition 2.6. The:rjt(u) e I, and
either (i) o= (u) € I}, or (ii) ¢ (u) € {vm. wy}. If (i) holds,

Jm+1,p(‘p;;t(u)) = Jm (w;t(u)) —cm =20
SO
1
Jm+l,p(u) = E(Jerl,p((D;(u)) + Jm+l,p((p;(u))) >0

and P, is valid while if (ii) holds, (4.3),+1 and (4.7), yield 19 ., with equality. Now 3, ., is immediate.
Arguing as in then = 0 case, using;;,t,

In (T 1) < g2 (@) + e (4.13)
follows from 10 .-2° .. Now applying (4.3) and ¥ of Proposition 4.4 gives 3 ,. Lastly # of

Proposition 4.4 and the analogue here of the argument centered around (2.11) &iﬂd 40
Next with 7,41 as provided by (4.5)+1, we have the

Proof of Proposition 4.6,,11. Since J,;,+1(u) < oo, by 3 of Proposition 4.4, the sequenceré"“u)gez is
bounded inWL2(T (37 ¢;e;)) for eachty, ..., £, € Z. Therefore there is a e Wkl;cz(R’" x [0, 1] x Rr—(m+Dy,
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1-periodic inx,; 12, . .., x, such that along a subsequentﬁ*lu converges weakly to in Wl’Z(T(Z’l" Lie))) as

£ — oo for eachty, ..., ¢,, € Z. Moreoveru < '"+lu shows the sequence converges monotonically tdence
ast — oo, 1"l — "1y = v, i.e. vis 1-periodic inx,41 S0 v € W2 (R"). Moreover the corresponding
properties fow imply

Up S UK Tilv Wy <Wp-1, 1<j<m. (4.14)

Thereforev € I,.
By (4.2),+1—(4.3),+1, 1° of Proposition 4.4,1 and J,,,41(u) < oo, as|p| — oo,

Jm( m+1 )_>Cm~ (415)
Observe that ifp:(u) are as in the proof of Proposition 4,41, ¢ (u) — 95 (v) as p — oo weakly in
WEA(T (31 tie)) for eachty, ... €, € Z. The functionspt (u), 7 (v) belong tof,. Hence
and

1 1
< In(v) = Jm((p (U)) + 3 Jm((po (U))

E lim Jm(fp (u)) = I|m Jm(fpp (u))

p—>00 p%oo
1 .
<3) im (o (9 @) + I (0, )))

= lim J (" u) = cm (4.17)
p—)OO
via (4.15). Consequently by (4.17), (v) = ¢,,. Therefore (4.14) an@k),, showv € {v,,, w;,}. Butu € I},41 SO
v being the monotone limit oM;lu) asp — oo impliesv = v,,. Similarly rﬁ‘l‘fl — w,, asp — —oo and the
proof of Proposition 4.6 1 is complete. O

Finally definingc,,, 11 via (4.7),,+1 brings us the

Proof of Theorem 4.8,,.1. Let (u,;,) C I, 41 be a minimizing sequence for (4,Z)1. Then there is a/ > 0
such that

In+1(ur) <M, keN. (4.18)
By Proposition 4.6 +1, ux can be normalized so that fér< 0,
1
/ up dx < > / (U + wy) dx < / uy dx. (4.19)
T(eenH»l) T(O) T(O)

By (4.18) and 8 of Proposition 4.4,+1, (ux) is bounded mWI (R") Therefore there is&l = Uj,4+1 € WI (R")

such that, along a subsequengg;—~ U weakly in WIOC (R™), strongly in IOC(R") and pointwise a.e. d@s— oo.
Hence

Un SUSTL U< w,, 1<j<m+1 (4.20)
andU is 1-periodic inx,, 42, ..., x,. The normalization (4.19) implies
1
/ Udx < > / (Um + wp) dx < / U dx (4.21)

T(tem+1) T(0) T(0)
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and therefore,, # U # w,,. HenceU € I, +1 and

Jn+1(U) = cmy1- (4.22)
Since(uy) is a minimizing sequence, by 4f Proposition 4.4,11,
In+1(U) < cm1. (4.23)

Thus P of Theorem 4.8 ;1 is valid.

Assuming 2 of Theorem 4.8 1 for the moment, theiVé’CZ(R") bounds forU given by (4.13) together with
Proposition 4.6 1 yields @ of Theorem 4.8 .1 with C? replaced by.2. But then the argument of Theorem 2.18
gives convergence i?. Likewise, replacing;f1 byt',, 1<i <m+1,in (2.32)—(2.33) and following sentences
showsg, ¥ € I,+1. Then replacindg’ (ie1) in (2.27) byT(Z’{'*leiei) showscy,+1 = Ju+1(9) = Jm+1(¥) and
the reasoning following this implies4f Theorem 4.8.+1. Then $—6° also follow as earlier.

Lastly to verify 2 of Theorem 4.8.1, the proof of 2 of Theorem 2.18 can be applied here provided that (a)
v < @ < wy,, for any minimizeryp; of (2.23) over

Srmt1(z)) = {9 € Wel(®R") | ¢ = Upnyain R"\ B, (z))}.

(b) U* < rilU*, 1<i<m+1, and (c)v, # U* # wy,. To prove (a), note that,, < U,,+1 < wy,. Therefore
Y =min(g;, vm) € Spm(z;) (With Uy, = vy) andy = max(e;, vm) € Sr.m+1(z;). Hence by Theorem 4,9

/L(¢)dx> / L(vm) dx (4.24)
Br(Zj) Br(zj)

and by the definition op;,

/L(X)dx> / L(pj)dx. (4.25)
B (z)) B (z))

Adding (4.24)—(4.25) shows:

/L(vm)dx+ / L(pj)dx = / L(y)dx + / L(x)dx

By (zj) By (zj) By (zj) By (z)
> / L(v,,) dx + / L(pj)dx. (4.26)
B, (z) B, (z)
Hence
/L(w)dx= / L(vp) dx (4.27)
Br(Z_/) Br(Z_/)
and
/L(x)dx: / L(pj)dx.
Br(z)) By(z))

But (4.27) and Corollary 4.30imply ¥ = vy, i.€.¢; > vy. Similarly ¢; < w,, and (a) is proved.

To check that (b) holds, we argue exactly as in the proof of the analogous situation in Theorem 2.18 — see
(2.32)—(2.34) withe1 replaced by, 1 < £ <m + 1. Lastly (c) follows the same lines as its analogue in the proof
of Theorem 2.18. This completes the proof of Theorem,4:8 O
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Next to prove Theorem 4,9 1 requires the extension of Lemmas 3.2 and 3.3 from levé levelm + 1 and
is carried out exactly as earlier. Likewise Corollary 4,19 is proved exactly as in Corollary 3.7 and the induction
process is complete.
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