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Abstract

A new proof is given of results in (V. Bangert, AIHP Anal. Nonlin. 6 (1989) 95) on the existence of minimal (in the se
Giaquinta and Guisti) heteroclinic solutions of a nonlinear elliptic PDE. Bangert’s work is based on an earlier paper o
(AIHP Anal. Nonlin. 3 (1986) 229). Unlike (V. Bangert, AIHP Anal. Nonlin. 6 (1989) 95), the proof here is variational in na
and involves the minimization of a ‘renormalized’ functional. It is meant to be the first step towards finding locally vs. g
minimal solutions of the PDE.

Résumé

Nous donnons une démonstration nouvelle des résultats de Bangert sur l’existence d’une solution minimale (au
Giaquinta et Guisti) hétéroclinique d’un EDP elliptique nonlinéaire. Le travail de Bangert est basé sur un article de Mo
(AIHP Anal. Nonlin. 3 (1986) 229). Contrairement à (V. Bangert, AIHP Anal. Nonlin. 6 (1989) 95), la démonstratio
variationelle en nature, et utilise la minimisation d’une fonctionelle « renormalisée ». C’est une tentative de premier pas p
trouver des solutions minimales localement, plutôt que globalment de l’EDP.
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1. Introduction

Motivated by work of Aubry [3] and of Mather [7] on monotone twist maps, Moser [8] made the first
towards finding analogues of their theory in the setting of quasilinear elliptic partial differential equations onRn.
He studied the equation

n∑
i=1

∂

∂xi

Fpi (x,u,Du) −Fu(x,u,Du) = 0, (1.1)

which arises formally as the Euler equation of the functional∫
Rn

F(x,u,Du)dx, (1.2)

whereF(x,u,p) is e.g.C3 in its arguments and 1-periodic in the components ofx ∈ Rn and in u. F further
satisfies structural conditions that imply weak solutions of (1.1) are actually classical solutions of the equa
Let Nα denote the set of solutions of (1.1) that have a prescribedα ∈ Rn as rotation vector, that are minimal
the sense of Giaquinta and Guisti [6], and whose graphs viewed onT n+1 have no self intersections. The notion
rotation vector here is the extension toRn of the usual rotation number used in dynamical systems. Likewise
minimal and non-self intersection properties are the analogues for solutions of (1.1) of properties of monotone tw
maps. Among other things, Moser showedNα �= ∅ for all α ∈ Rn and obtained various qualitative and quantitat
properties for the members ofNα . E.g. forN0, he obtained solutions that are 1-periodic inx1, . . . , xn. Letting
Mα denote the subset ofNα whose existence Moser established, he further provedMα is an ordered set, i.e
v,w ∈ Mα impliesv ≡ w, v < w, or v > w.

Bangert carried Moser’s analysis further in various ways. Among other things, he showed that wheneverα ∈ Qn

andMα possesses a gap, i.e. there are adjacentv0 < w0 in Mα , then there is aU1 ∈ Nα which is heteroclinic in an
appropriate sense fromv0 to w0 and likewise another solution of (1.1) heteroclinic fromw0 to v0. E.g. if α = 0 so
v0 andw0 are adjacent members ofM0, there is aU1 ∈ N0 heteroclinic inx1 from v0 to w0. (Similarly there are
members ofN0 heteroclinic inxi from v0 to w0, 2� i � n.) Moreover ifM1

0 denotes the set of such heteroclin
solutions,M1

0 is ordered. If there is a gapv1 < w1 in M1
0, there is aU2 ∈ M1

0 which is also heteroclinic inx2
from v1 to w1. Further gap conditions lead to yet more complicated heteroclinics.

There are analogues ofUi in the Aubry–Mather Theory: gaps between periodic invariant sets lead t
existence of heteroclinic invariant curves joining the periodic sets. Moreover given any formal chain o
heteroclinic invariant curves, there are actual invariantcurves shadowing the chain. Thus it is natural to seek s
shadowing solutions of (1.1). In recent years, variational methods have been devised tocarry out such construction
in dynamical systems or PDE settings, see e.g. [10,5,1,2,9]. These methods require a variational characterization
of the basic solutions such asU1 above. However Bangert’s clever existence argument in [4] is not variation
nature. Therefore as a first step towards constructing more complex solutions of (1.1), in this paper we provid
variational approach to find the typeof solutions Bangert discovered. Thiswill only be done for the special but sti
significant setting ofα = 0 and F(x,u,p) = 1

2|p|2 + F(x,u) where

(F1) F ∈ C2(Rn × R,R),
(F2) F(x,u) is 1-periodic inx1, . . . , xn andu, and
(F3) F is even inx1, . . . , xn.

Thus (1.1) becomes

−�u + Fu(x,u) = 0. (PDE)
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A serious difficulty that has to be overcome in the variational approach to (PDE) is that the associated fun
defined on the classes of functions of the heteroclinic types ofU1, U2, etc. are infinite. Thus to obtainU1 requires
a renormalization, i.e. subtracting an infinite term from the natural functional. Likewise obtainingU2 requires a
second renormalization, etc.

The existence ofU1 will be carried out in Section 2 and its (Giaquinta–Guisti) minimality will be establishe
Section 3. An inductive argument will then be given in Section 4 to treat the general case.

2. The simplest heteroclinics

In this section, it will be shown how to obtain solutions of (PDE) that are heteroclinic inx1 from v0 to w0 where
v0 < w0 are an adjacent pair of solutionsof (PDE) that are 1-periodic inx1, . . . , xn.

For ease of notation, set

L(u) = 1

2
|∇u|2 + F(x,u)

with F satisfying (F1)–(F3). Let

Γ0 = {
u ∈ W

1,2
loc (Rn) | u is 1-periodic inx1, . . . , xn

}
.

For � = (�1, . . . , �n) ∈ Zn, setT (�) = [�1, �1 + 1] × · · · × [�n, �n + 1]. Define

J0(u) =
∫

T (0)

L(u)dx.

Finally define

c0 = inf
u∈Γ0

J0(u). (2.1)

In [3], Moser showed:

Proposition 2.2. If M0 ≡ {u ∈ Γ0 | J0(u) = c0}, then

1o M0 �= φ and if u ∈ M0, u is a classical solution of (PDE).
2o M0 is an ordered set.

A further property ofM0 is:

Corollary 2.3. If u ∈ M0, u is even in x1, . . . , xn.

Proof. Setζi(x) = (x1, . . . , xi−1,−xi, xi+1, . . . , xn), 1� i � n. If u ∈ M0, thenui(x) = u(ζi(x)) ∈ M0 via (F3).
If ui �≡ u, by 2o of Proposition 2.2, either (i)ui(x) > u(x) or (ii) ui(x) < u(x) for all x ∈ Rn. If (i) occurs,

ui

(
ζi(x)

) = u(x) < ui(x) = u
(
ζi(x)

)
, (2.4)

a contradiction. Similarly (ii) cannot hold. Thusui ≡ u, 1� i � n. �
To continue, assume there is a gap inM0:

(∗)0 There are adjacentv0,w0 ∈ M0 with v0 < w0.
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Set

Γ̂1 = {
u ∈ W

1,2
loc (Rn) | v0 � u � w0 a.e. andu is 1-periodic inx2, . . . , xn

}
.

Now the renormalized functionalJ1(u) for this setting can be introduced. Forj ∈ Z andk ∈ {1, . . . , n}, set

τ k−ju(x) = u(x1, . . . , xk + j, . . . , xn)

and fori ∈ Z, define

J1,i(u) = J0
(
τ1−iu

) − c0. (2.5)

Alternatively sete1 = (1,0, . . . ,0), . . . , en = (0, . . . ,0,1), the usual basis inRn. Then

J1,i(u) =
∫

T (ie1)

L(u)dx − c0.

Now define

J1(u) =
∑
i∈Z

J1,i(u).

The next proposition provides the properties ofJ1 that will be required here. Hypothesis (F3) plays its main role
in 1o–2o.

Proposition 2.6. For u ∈ Γ̂1,

1o J1,i(u) � 0 for all i ∈ Z.
2o J1(u) � 0.
3o

∫
T (ie1)

L(u)dx � J1(u) + c0 for any i ∈ Z.

4o J1 is weakly lower semicontinuous (lsc) (with respect to W
1,2
loc (Rn)) on Γ̂1.

Proof. Foru ∈ Γ̂1 andx1 ∈ [i + 1
2, i + 1], set

ϕ+
i (u) = τ1−iu (2.7)

and forx1 ∈ [i, i + 1
2], set

ϕ−
i (u) = τ1−iu. (2.8)

Extendϕ±
i (u) first as even functions aboutx1 = i + 1

2 and then 1-periodically inx1. Continuing to denote thes
extensions byϕ±

i (u), their definition impliesϕ±
i (u) ∈ Γ0 and

J1,i(u) = 1

2

(
J1,i

(
ϕ+

i (u)
) + J1,i

(
ϕ−

i (u)
))

� 0. (2.9)

Thus 1o and hence 2o hold. By 1o,

J1,i(u) =
∫

T (ie1)

L(u)dx − c0 � J1(u) (2.10)

so 3o is valid. To prove 4o, note first thatJ0 is weakly lsc onΓ0. Let (uk) be a sequence in̂Γ1 anduk → u weakly
in W

1,2
loc (Rn) ask → ∞. Set

J1;p,q(u) ≡
q∑

J1,i(u).
p



P.H. Rabinowitz, E. Stredulinsky / Ann. I. H. Poincaré – AN 21 (2004) 673–688 677

ws.

s

Then by the weak lsc ofJ0, (2.5), (2.9) and 1o,

J1;p,q(u) = 1

2

q∑
p

(
J1,i

(
ϕ+

i (u)
) + J1,i

(
ϕ−

i (u)
))

� 1

2

q∑
p

(
lim

k→∞
J1,i

(
ϕ+

i (uk)
) + lim

k→∞
J1,i

(
ϕ−

i (uk)
))

� 1

2
lim

k→∞

q∑
p

(
J1,i

(
ϕ+

i (uk)
) + J1,i

(
ϕ−

i (uk)
))

= lim
k→∞

J1;p,q(uk) � lim
k→∞

J1(uk). (2.11)

Since (2.11) is valid for allp � q ∈ Z,

J1(u) � lim
k→∞

J1(uk) (2.12)

and 4o holds. �
Remark 2.13. The argument used to prove 1o shows

c0 = inf
u∈W1,2(T (0))

J0(u)

and ifu ∈ W1,2(T (0)) with J (u) = c0, thenu ∈ M0. See e.g. [9] for a similar argument.

Next the class of functions that will be used to find a solution of (PDE) heteroclinic inx1 from v0 to w0 can be
introduced. Set

Γ1 = {
u ∈ Γ̂1 | u � τ1−1u andv0 �≡ u �≡ w0

}
.

The members ofΓ1 automatically are heteroclinic inx1 from v0 to w0 (in a weak sense) as the next result sho

Proposition 2.14. If u ∈ Γ1 and J1(u) < ∞, then τ1
j u → v0 and τ1−ju → w0 weakly in W1,2(T (0)) as j → ∞.

Proof. Sincev0 � τ1
j (u) � w0 for all j ∈ Z, 3o of Proposition 2.6 shows(τ1

j u) is bounded inW1,2(T (0)). This

with the monotonicity property,u � τ1−1u, shows there is a uniquev ∈ W1,2(T (0)) such thatτ1
j u → v weakly in

W1,2(T (0)) and strongly inL2(T (0)) asj → ∞ and

v0 � v � u � w0. (2.15)

SinceJ1(u) < ∞, J0(τ
1
j u) → c0 as |j | → ∞. But J0 is weakly lsc soJ0(v) � c0. Now Remark 2.13 show

J0(v) = c0 andv ∈ M0. Hence (2.15),(∗)0, andu �≡ w0 imply v = v0. Similarly τ1
j u → w0 asj → −∞ weakly

in W1,2(T (0)). �
Remark 2.16. In fact, by arguments in [9], the convergence ofτ1

j u is in W1,2(T (0)).

Now to obtain a solution of (PDE) heteroclinic inx1 from v0 to w0, set

c1 = inf J1(u). (2.17)

u∈Γ1
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Theorem 2.18. Let F satisfy (F1)–(F3) and let (∗)0 hold. Then

1o There is a U1 ∈ Γ1 such that J1(U) = c1.
2o Any such U1 is a classical solution of (PDE).
3o U1 is heteroclinic (in C2) from v0 to w0, i.e. ‖U1−v0‖C2(T (je1))

→ 0 as j → −∞ and ‖U1−w0‖C2(T (je1))
→

0 as j → ∞.
4o v0 < U1 < τ1−1U1 < w0.
5o M1 ≡ {u ∈ Γ1 | J1(u) = c1} is an ordered set.
6o If u ∈ M1, u is even in x2, . . . , xn.

Remark 2.19. In Section 3, it will be further shown thatU1 is minimal in the sense of Giaquinta and Guisti.

Proof of Theorem 2.18. Let (uk) ⊂ Γ1 be a minimizing sequence for (2.17). Normalize(uk) so that fori < 0,∫
T (ie1)

uk dx � 1

2

∫
T (0)

(v0 + w0)dx <

∫
T (0)

uk dx. (2.20)

That this can be done follows from Proposition 2.14. By 3o of Proposition 2.6,(uk) is bounded inW1,2
loc (Rn).

Therefore there is aU1 ∈ W
1,2
loc (Rn), 1-periodic inx2, . . . , xk such that along a subsequence,uk → U1 weakly in

W
1,2
loc (Rn) and strongly inL2

loc(R
n). Hence by the properties ofuk , v0 � U1 � τ−1U1 � w0 and by (2.20),U1 ∈ Γ1.

Thus

J1(U1) � c1. (2.21)

On the other hand, 4o of Proposition 2.6 andU1 ∈ Γ1 imply

J1(U1) � c1. (2.22)

Combining (2.21)–(2.22) gives 1o of Theorem 2.18.
To verify 2o–5o, modifications of arguments from [9] will be employed. To prove thatU1 satisfies (PDE), le

z ∈ Rn and letBr(z) be a ball of radiusr aboutz with r < 1
2. For j ∈ Zn, set zj = z + j . Let U∗ = U1 in

Rn \ ⋃
j∈Zn Br (zj ) andU∗ = u∗

j in Br(zj ) whereu∗
j minimizes∫

Br(zj )

L(ϕ)dx (2.23)

over

Sr (zj ) = {
ϕ ∈ W

1,2
loc (Rn) | ϕ = U1 in Rn \ Br(zj )

}
. (2.24)

As in Lemma 2.4 of [9], there is auj ∈ Sr (zj ) minimizing (2.23) and any such minimizer of (2.23) is a solution
(PDE) inBr(zj ). A priori, there may not be a unique minimizer but as in Lemma 2.5 of [9], the set of minim
is ordered and there is a unique smallest one which is chosen to beu∗

j . Note that∫
Br(zj )

L(U1)dx �
∫

Br(zj )

L(u∗
j )dx (2.25)

for all j ∈ Zn. Hence

J1(U1) � J1(U
∗). (2.26)

We claimU∗ ∈ Γ1 and therefore

J1(U
∗) � J1(U1). (2.27)
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But then by (2.25), for allj ∈ Zn,∫
Br(zj )

L(U1)dx =
∫

Br(zj )

L(u∗
j )dx.

ThusU1 is a minimizer of (2.23) inSr (zj ) and hence a solution of (PDE).
To verify thatU∗ ∈ Γ1, observe first that the 1-periodicity ofU1 in x2, . . . , xn implies the same forU∗. Thus

U∗ ∈ Γ1 if (a) v0 � U∗ � w0, (b)U∗ � τ1−1U
∗, and (c)v0 �≡ U∗ �≡ w0. To prove (a), sincev0 � U1 � w0, it suffices

to showv0 � uj � w0 in Br(zj ). Suppose e.g.uj (y) < v0(y) for somey ∈ Br(zj ). Setψj = min(v0, uj ). Then
ψj = v0 in Rn \ Br(zj ). Let S be a unitn-cube centered atzj . Thenψj = v0 in S \ Br(zj ), ψj = uj neary, and
ψj |S extends naturally toRn as an element ofΓ0. Continuing to denote this extension byψj ,

c0 = J0(v0) � J0(ψj )

=
∫

S\Br(zj )

L(v0)dx +
∫

Br(zj )∩{v0�uj }
L(v0)dx +

∫
Br(zj )∩{v0>uj }

L(uj )dx. (2.28)

Hence ∫
Br(zj )∩{v0>uj }

L(v0)dx �
∫

Br(zj )∩{v0>uj }
L(uj )dx. (2.29)

Setχj = max(v0, uj ) soχj ∈ Sr (zj ) and∫
Br(zj )

L(uj )dx �
∫

Br(zj )

L(χj )dx =
∫

Br (zj )∩{v0>uj }
L(v0)dx +

∫
Br (zj )∩{v0�uj }

L(uj )dx

so ∫
Br(zj )∩{v0>uj }

L(uj )dx �
∫

Br(zj )∩{v0>uj }
L(v0)dx. (2.30)

Combining (2.29) and (2.30) yields equality in these expressions and returning to (2.28) shows

c0 = J0(v0) � J0(ψj ) = J0(v0). (2.31)

Henceψj ∈ M0. But by Proposition 2.2,ψj cannot both= v0 in S \Br(zj ) and= uj neary. Thus the assumptio
thatuj (y) < v0(y) is not tenable andv0 � uj . Similarly uj � w0 and (a) has been proved.

To obtain (b), suppose not. Then as in theproof of Proposition 2.3of [9], for somej , there is anx0 ∈ Br(zj )

such that

u∗
j+e1

(x0 + e1) < u∗
j (x0). (2.32)

For x ∈ B1/2(zj ), setψ(x) = u∗
j+e1

(x + e1), χ = max(u∗
j ,ψ), ζ = min(u∗

j ,ψ). Thenζ = u∗
j = U1 � τ1−1U1 =

ψ = χ onB1/2(zj ) \ Br(zj ). Thus∫
Br(zj )

(
L(ζ ) + L(χ)

)
dx =

∫
Br (zj )

(
L(u∗

j ) + L(ψ)
)
dx (2.33)

which shows thatζ minimizes (2.23) overSr (zj ) andτ1χ minimizes (2.23) overSr (zj + e1). Therefore by the
definitions ofU∗ andζ ,

u∗
j (x0) � ζ(x0) � ψ(x0) = u∗

j+e (x0 + e1) (2.34)

1
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contrary to (2.32). Thus (b) is verified. To prove that (c) is valid, suppose not. IfU∗ ≡ w0, thenU1 = w0 in
Rn \ ⋃

j∈Zn(zj ) so τ1
j U1 �→ v0 in L2(T (0)) asj → ∞, contrary to Proposition 2.14 forU1. Similarly U∗ �≡ v0.

Thus (a), (b), and (c) hold andU1 satisfies (PDE). Since anyU ∈M1 is trivially the limit of a minimizing sequenc
for (2.17), the argument just given showsU satisfies (PDE) and 2o of the theorem is satisfied.

To prove 3o of Theorem 2.18, observe that‖U1 − v0‖L2(T (ie1))
→ 0 asi → −∞ by Proposition 2.14. SinceU1

andv0 are bounded inL∞(Rn), local Schauder estimates showU1 − v0 is bounded inC2,α
loc (Rn) for anyα ∈ (0,1).

Standard interpolation inequalities then yield 3o for U1 − v0 and a similar argument applies toU1 − w0.
To establish 4o–5o, we begin with 5o. Let V,W ∈ M1. If 5o is false, settingϕ = max(V,W) and ψ =

min(V,W), thenϕ(z) = ψ(z) for somez ∈ Rn. Suppose for the moment thatϕ,ψ ∈ Γ1. Arguing as in the proo
of Proposition 2.2 [8], for alli ∈ Z,∫

T (ie1)

L(ϕ)dx +
∫

T (ie1)

L(ψ)dx =
∫

T (ie1)

L(V )dx +
∫

T (ie1)

L(W)dx (2.35)

and this implies

2c1 � J1(ϕ) + J1(ψ) = J1(V ) + J1(W) = 2c1. (2.36)

ThusJ1(ϕ), J1(ψ) = c1 and by 1o–2o, ϕ andψ are solutions of (PDE). Butϕ − ψ � 0, ϕ(z) = ψ(z), andϕ − ψ

is a solution of the linear elliptic partial differential equation

−�Φ + A(x)Φ = 0 (2.37)

where

A(x) = Fu(x,ϕ(x)) − Fu(x,ψ(x))

ϕ(x) − ψ(x)
, ϕ(x) > ψ(x)

= Fuu

(
x,ϕ(x)

)
, ϕ(x) = ψ(x).

Further writing (2.37) as

−�Φ + max(A,0)Φ = −min(A,0)Φ � 0, (2.38)

the maximum principle impliesϕ ≡ ψ , a contradiction.
To verify thatϕ,ψ ∈ Γ1, it suffices to prove that

τ1−1χ � χ (2.39)

for χ = ϕ,ψ . First forϕ, note that

τ1−1ϕ(x) = ϕ(x1 + 1, x2, . . .) = max
(
V (x1 + 1, x2, . . .),W(x1 + 1, x2, . . .)

)
. (2.40)

If τ1−1ϕ(x) = τ1−1V (x), sinceτ1−1V (x) � V (x), then by (2.40),

τ1−1V (x) � τ1−1W(x) � W(x).

A similar argument applies ifτ1−1ϕ(x) = τ1−1W(x). Hence (2.39) holds forϕ.
Next to prove (2.39) forψ , if τ1−1ψ(x) = τ1−1V (x) andψ(x) = V (x), (2.39) is valid while ifτ1−1ψ = τ1−1V (x)

andψ(x) = W(x),

τ1−1ψ(x) = τ1−1V (x) � V (x) � W(x) = ψ(x).

A similar argument obtains if the roles ofV andW are reversed. Thusϕ,ψ ∈ Γ1 and 5o is proved.
To get 4o, note that

v0 � U1 � τ1−1U1 � w0. (2.41)
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Now the maximum principle can be used exactly as in (2.37)–(2.38) to get strict inequalities in (2.41). Lao

follows from 5o and the argument of Corollary 2.3.
The proof of Theorem 2.18 is complete.�

3. Minimality of U1

As was mentioned in the introduction, Moser studied solutions of (1.1) that were minimal in the se
Giaquinta and Guisti. In this section it will be shown thatU1 is a minimal solution of (PDE) in this sense.

Following [6], U1 is a minimal solution of (PDE) if for any bounded domainΩ ⊂ Rn with a smooth boundary∫
Ω

L(u)dx �
∫
Ω

L(U1)dx (3.1)

for anyu ∈ W
1,2
loc (Rn) with u = U1 in Rn \ Ω . In other wordsU minimizes

∫
Ω L(·)dx over the class ofW1,2(Ω)

functions havingU1 as boundary values. The proof of Theorem 2.18 shows thatU1 satisfies (3.1) whenΩ is any
ball of radiusr < 1

2. To extend this property to the more general class of boundedΩ ’s with a smooth boundar
requires showing thatc0 andc1 can be characterized as minimizers of functionals in broader classes of func

To begin, letp = (p1, . . . , pn) ∈ Nn and set

Γ0(p) = {
u ∈ W

1,2
loc (Rn) | u is pi periodic inxi, 1� i � n

}
,

Ip(u) =
p1∫

0

· · ·
pn∫

0

L(u)dx,

c0(p) = inf
u∈Γ0(p)

Ip(u),

and

M0(p) = {
u ∈ Γ0(p) | Ip(u) = c0(p)

}
.

The proof of Proposition 2.2 shows thatM0(p) �= φ and is an ordered set.

Lemma 3.2. M0(p) =M0 (and therefore c0(p) = (
∏n

1 pi)c0).

Proof. It suffices to show thatτ i
−1u = u for 1 � i � n and anyu ∈ M0(p). If not, sinceM0(p) is ordered,

either (i)τ i
−1u > u or (ii) τ i

−1u < u. If e.g. (i) occurs,

u < τ i
−1u < · · · < τi−pi

u = u,

a contradiction. Similarly (ii) cannot occur and the lemma follows.�
Next it will be shown that there is an analogue of Lemma 3.2 in the setting of Theorem 2.18. Le� =

(�2, . . . , �n) ∈ Nn−1 and define

Γ̂1(�) = {
u ∈ W

1,2
loc (Rn) | v0 � u � w0 andu is �i periodic inxi, 2 � i � n

}
.

Let p ∈ Nn with p = (p1, �) and leti ∈ Z. Foru ∈ Γ̂1(�), define

J
p

1,i(u) =
�2−1∑
k2=0

· · ·
�n−1∑
kn=0

( ∫
L(u)dx − c0

)

T ((ip1,k))
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o

and

J
p
1 (u) =

∑
i∈Z

J
p
1,i(u).

Observe that with slight modifications in the proof,J
p

1 has the same properties on̂Γ1(�) as doesJ1 on Γ̂1 given by
Proposition 2.6. Set

Γ1(p) = {
u ∈ Γ̂1(�) | u � τ1−p1

u andv0 �≡ u �≡ w0
}
.

ReplacingΓ1, J1, andT (0) by Γ1(p), J
p

1 , and
⋃

0�kr�pr
T (k1e1 + · · · + knen), the proof of Proposition 2.14

carries over to the current setting.
Now define

c1(p) = inf
u∈Γ1(p)

J
p

1 (u).

By the above observations, the argument of Theorem 2.18 (withr < 1
2 min1�i�n pi now permitted) applies here s

M1(p) ≡ {
u ∈ Γ1(p) | Jp

1 (u) = c1(p)
}

is a nonempty ordered set of solutions of (PDE). The analogue of Lemma 3.2 in this setting is:

Lemma 3.3. M1(p) =M1 and c1(p) = (
∏n

1 pi)c1.

Proof. It suffices to show that wheneveru ∈ M1(p): (i) τ i
−1u = u, 2� i � n, and (ii)τ1−1u � u. The proof of (i) is

the same as that of Lemma 3.2. For (ii), observe thatτ1−1u ∈M1(p) which is ordered. Hence if (ii) fails,u > τ1−1u

so by the definition ofΓ1(p),

u � τ1−p1
u < τ1−p1+1u < · · · < u,

a contradiction. �
Remark 3.4. By (F2), the replacement of[ip1, ip1 + 1] in T (ip1, k) by [ip1 + j, ip1 + j + 1] for anyj ∈ Z does
not effect the above arguments. The same is true if� is replaced by� + q for anyq ∈ Rn−1.

Theorem 3.5. Any U ∈M1 is a minimal solution of (PDE) in the sense of Giaquinta and Guisti.

Proof. To show that (3.1) is satisfied, letz ∈ Rn andr > 0 such thatΩ ⊂ Br(z). Set

Sr (z) = {
u ∈ W

1,2
loc (Rn) | u = U in Rn \ Br(z)

}
.

It suffices to prove that∫
Br(z)

L(u)dx �
∫

Br (z)

L(U)dx (3.6)

for anyu ∈ Sr (z). By Lemma 3.3,M1 = M1(p) for anyp ∈ Nn. Choosep so that min1�i�n pi > 2r. Further
exploiting Remark 3.4, it can be assumed thatΩ ⊂ Br(z) ⊂ T (p). Hence by the proof of Theorem 2.18,U

minimizes
∫
Br(z)

L(·)dx overSr (z) and the proof is complete.�
An immediate consequence of Theorem 3.5 is

Corollary 3.7. U1 is the unique minimizer of
∫

L(·)dx in Sr (z).
Br(z)
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Proof. Supposeu ∈ Sr (z) so that∫
Br(z)

L(u)dx =
∫

Br (z)

L(U1)dx. (3.8)

Let r∗ > r. Then by (3.8),∫
Br∗ (z)

L(u)dx =
∫

Br∗ (z)\Br(z)

L(U1)dx +
∫

Br(z)

L(u)dx =
∫

Br∗ (z)

L(U1)dx. (3.9)

HenceU1 ∈ Sr∗(z) and minimizes
∫
Br∗(z)

L(·)dx over Sr∗(z). Again as in Lemma 2.5 of [9], the set of su

minimizers is ordered. Sinceu andU1 belong to this set andu = U1 in Br∗(z) \ Br(z), u ≡ U1. The proof is
complete. �

4. The general case

The goal of this section is to show how the results of Sections 1–2 together with induction and minim
arguments can be used to obtain more complex heteroclinic solutions of (PDE) corresponding to those ob
Bangert [4] via his nonvariational approach.

To give an idea of the inductive procedure at level two, supposeM1 as obtained in Theorem 1.18 satisfies a g
condition:

(∗)1 There are adjacentv1 < w1 in M1.

Define the set of functionŝΓ2 via

Γ̂2 = {
u ∈ W

1,2
loc (Rn) | v1 � u � τ1−1u � w1 andu is 1-periodic inx3, . . . , xn

}
.

The renormalized functional,J2 on Γ̂2 is defined by

J2(u) =
∑
i∈Z

J2,i(u)

where

J2,i(u) = J1
(
τ2−iu

) − c1.

Suppose thatJ2 on Γ̂2 has the analogues of the properties ofJ1 on Γ̂1 as given by Proposition 2.6 with 3o replaced
by ∫

T (�1e1+�2e2)

L(u)dx � J2(u) + c0 + c1

for any�1, �2 ∈ Z. Suppose also that Proposition 2.14 is valid with appropriate changes of sub- or supersc
to 2’s. Setting

Γ2 = {
u ∈ Γ̂2 | u � τ2−1u andv1 �≡ u �≡ w1

}
and

c2 = inf J2(u),

u∈Γ2
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of

erly, let
the analogue of Theorem 2.18 holds here providing a solution of (PDE) that is heteroclinic inx1 from v0 to w0 and
heteroclinic inx2 from v1 to w1. Moreover as in Theorem 3.5,U2 is a minimal solution of (PDE) in the sense
Giaquinta and Guisti.

Now setting

M2 = {
u ∈ Γ2 | J2(u) = c2

}
,

a gap condition(∗)2 can be introduced and the process continues. To carry out the induction argument prop
m < n and assume the gap condition:

(∗)i There are adjacentvi < wi in Mi holds fori = 0, . . . ,m − 1. Let

Γ̂i = {
u ∈ W

1,2
loc (Rn) | vi−1 � u � τ

j

−1u � wi−1, 1 � j < i andu is 1-periodic inxi+1, . . . , xn

}
(4.1)i

for 1� i � m. Theith renormalized functional,Ji(u), is given by

Ji(u) =
∑
p∈Z

Ji,p(u) (4.2)i

where

Ji,p(u) = Ji−1
(
τ i−pu

) − ci−1. (4.3)i

Suppose thatJi on Γ̂i possesses the following properties for 1� i � m:

Proposition 4.4i . For u ∈ Γ̂i ,

1o Ji,p(u) � 0 for all p ∈ Z.
2o Ji(u) � 0.
3o

∫
T (

∑i
1 �qeq)

L(u)dx � Ji(u) + ∑i−1
0 cq .

4o Ji is weakly lsc (in W
1,2
loc (Rn)) on Γ̂i .

For 1� i � m, set

Γi = {
u ∈ Γ̂i | u � τ i

1u andvi−1 �≡ u �≡ wi−1
}

(4.5)i

and assume (with the understanding that
∑0

1 �qeq = 0):

Proposition 4.6i . If u ∈ Γi and Ji(u) < ∞, then as j → ∞, τ i
ju → vi−1 weakly in W1,2(T (

∑i−1
1 �qeq)) for all

�1, . . . , �i−1 ∈ Z and as j → −∞, τ i
ju → wi−1 weakly in W1,2(T (

∑i−1
1 �qeq)) for all �1, . . . , �i−1 ∈ Z.

Finally define

ci = inf
u∈Γi

Ji(u), 1 � i � m, (4.7)i

and assume:

Theorem 4.8i . Let F satisfy (F1)–(F3) and let (∗)i hold. Then

1o There is a Ui ∈ Γi such that Ji(Ui) = ci .
2o Any such Ui is a classical solution of (PDE).
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re
3o Ui is heteroclinic from vi−1 to wi−1:

‖Ui − vi−1‖C2(T (
∑i

1 �kek))
→ 0 as �i → −∞ and

‖Ui − wi−1‖C2(T (
∑i

1 �kek))
→ 0 as �i → ∞.

4o vi−1 < Ui < τ
j
−1Ui < wi−1, 1 � j � i .

5o Mi = {u ∈ Γi | Ji(u) = ci} is an ordered set.
6o If u ∈ Mi , u is even in xi+1, . . . , xn.

Finally suppose that for 1� i � m.

Theorem 4.9i . Any U ∈Mi is a minimal solution of (PDE) in the sense of Giaquinta and Guisti.

Corollary 4.10i . Ui is the unique minimizer of
∫
Br(z)

L(·)dx over Sr (z) = {ϕ ∈ W
1,2
loc (Rn) | ϕ = Ui in Rn \ Br(z)}.

With these inductive facts at hand, the results can be extended to levelm + 1. To do so, begin by assuming the
is a gap inMm:

(∗)m There are adjacentvm < wm in Mm.

Then withΓ̂m+1 defined in (4.1)m+1 andJm+1 from (4.2)m+1, we can give the

Proof of Proposition 4.4m+1. To verify 1o
m+1–2o

m+1, let u ∈ Γ̂m+1 and forxm+1 ∈ [p + 1
2,p + 1], set

ϕ+
p (u) = τm+1−p u (4.11)

and forxm+1 ∈ [p,p + 1
2], set

ϕ−
p (u) = τm+1−p u. (4.12)

Extend these functions to 1-periodic functions inxm+1 as in the proof of Proposition 2.6. Thenϕ±
p (u) ∈ Γ̂m and

either (i)ϕ±
p (u) ∈ Γm or (ii) ϕ±

p (u) ∈ {vm,wm}. If (i) holds,

Jm+1,p

(
ϕ±

p (u)
) = Jm

(
ϕ±

p (u)
) − cm � 0

so

Jm+1,p(u) = 1

2

(
Jm+1,p

(
ϕ+

p (u)
) + Jm+1,p

(
ϕ−

p (u)
))

� 0

and 1om+1 is valid while if (ii) holds, (4.3)m+1 and (4.7)m yield 1o
m+1 with equality. Now 2om+1 is immediate.

Arguing as in them = 0 case, usingϕ±
p ,

Jm

(
τm+1
−�m+1

u
)
� Jm+1(u) + cm (4.13)

follows from 1o
m+1–2o

m+1. Now applying (4.3)m and 3o of Proposition 4.4m gives 3om+1. Lastly 4o of
Proposition 4.4m and the analogue here of the argument centered around (2.11) yield 4o

m+1. �
Next withΓm+1 as provided by (4.5)m+1, we have the

Proof of Proposition 4.6m+1. SinceJm+1(u) < ∞, by 3o of Proposition 4.4m, the sequence(τm+1
� u)�∈Z is

bounded inW1,2(T (
∑m

1 �iei)) for each�1, . . . , �m ∈ Z. Therefore there is av ∈ W
1,2

(Rm × [0,1] × Rn−(m+1)),
loc
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g

1-periodic inxm+2, . . . , xn such that along a subsequence,τm+1
� u converges weakly tov in W1,2(T (

∑m
1 �iei)) as

� → ∞ for each�1, . . . , �m ∈ Z. Moreoveru � τm+1
−1 u shows the sequence converges monotonically tov. Hence

as � → ∞, τm+1
�−1 u → τm+1

−1 v = v, i.e. v is 1-periodic inxm+1 so v ∈ W
1,2
loc (Rn). Moreover the correspondin

properties foru imply

vm � v � τ i
−1v � wm < wm−1, 1 � j � m. (4.14)

Thereforev ∈ Γm.
By (4.2)m+1–(4.3)m+1, 1o of Proposition 4.4m+1 andJm+1(u) < ∞, as|p| → ∞,

Jm

(
τm+1−p u

) → cm. (4.15)

Observe that ifϕ±
p (u) are as in the proof of Proposition 4.4m+1, ϕ±

p (u) → ϕ±
0 (v) as p → ∞ weakly in

W1,2(T (
∑m

1 �iei)) for each�1, . . . , �m ∈ Z. The functionsϕ±
p (u), ϕ±

0 (v) belong toΓ̂m. Hence

cm � Jm

(
ϕ±

0 (v)
)

(4.16)

and

cm � Jm(v) = 1

2
Jm

(
ϕ+

0 (v)
) + 1

2
Jm

(
ϕ−

0 (v)
)

� 1

2
lim

p→∞
Jm

(
ϕ+

p (u)
) + 1

2
lim

p→∞
Jm

(
ϕ−

p (u)
)

� 1

2
lim

p→∞
(
Jm

(
ϕ+

p (u)
) + Jm

(
ϕ−

p (u)
))

= lim
p→∞

Jm

(
τm+1−p u

) = cm (4.17)

via (4.15). Consequently by (4.17),Jm(v) = cm. Therefore (4.14) and(∗)m showv ∈ {vm,wm}. But u ∈ Γm+1 so
v being the monotone limit of(τm+1−p u) asp → ∞ impliesv = vm. Similarly τm+1−p → wm asp → −∞ and the
proof of Proposition 4.6m+1 is complete. �

Finally definingcm+1 via (4.7)m+1 brings us the

Proof of Theorem 4.8m+1. Let (um) ⊂ Γm+1 be a minimizing sequence for (4.7)m+1. Then there is anM > 0
such that

Jm+1(uk) � M, k ∈ N. (4.18)

By Proposition 4.6m+1, uk can be normalized so that for� < 0,∫
T (�em+1)

uk dx � 1

2

∫
T (0)

(vm + wm)dx <

∫
T (0)

uk dx. (4.19)

By (4.18) and 3o of Proposition 4.4m+1, (uk) is bounded inW1,2
loc (Rn). Therefore there is aU = Um+1 ∈ W

1,2
loc (Rn)

such that, along a subsequence,uk → U weakly inW
1,2
loc (Rn), strongly inL2

loc(R
n), and pointwise a.e. ask → ∞.

Hence

vm � U � τ
j

−1U � wm, 1� j � m + 1 (4.20)

andU is 1-periodic inxm+2, . . . , xn. The normalization (4.19) implies∫
U dx � 1

2

∫
(vm + wm)dx �

∫
U dx (4.21)
T (�em+1) T (0) T (0)
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t (a)

8 – see
roof
and thereforevm �≡ U �≡ wm. HenceU ∈ Γm+1 and

Jm+1(U) � cm+1. (4.22)

Since(uk) is a minimizing sequence, by 4o of Proposition 4.4m+1,

Jm+1(U) � cm+1. (4.23)

Thus 1o of Theorem 4.8m+1 is valid.
Assuming 2o of Theorem 4.8m+1 for the moment, theW1,2

loc (Rn) bounds forU given by (4.13) together with
Proposition 4.6m+1 yields 3o of Theorem 4.8m+1 with C2 replaced byL2. But then the argument of Theorem 2.
gives convergence inC2. Likewise, replacingτ1−1 by τ i

−1, 1� i � m + 1, in (2.32)–(2.33) and following sentenc

showsϕ,ψ ∈ Γm+1. Then replacingT (ie1) in (2.27) byT (
∑m+1

1 �iei) showscm+1 = Jm+1(ϕ) = Jm+1(ψ) and
the reasoning following this implies 4o of Theorem 4.8m+1. Then 5o–6o also follow as earlier.

Lastly to verify 2o of Theorem 4.8m+1, the proof of 2o of Theorem 2.18 can be applied here provided tha
vm � ϕj � wm for any minimizerϕj of (2.23) over

Sr,m+1(zj ) = {
ϕ ∈ W

1,2
loc (Rn) | ϕ = Um+1 in Rn \ Br(zj )

}
.

(b) U∗ � τ i
−1U

∗, 1 � i � m + 1, and (c)vm �≡ U∗ �≡ wm. To prove (a), note thatvm � Um+1 � wm. Therefore
ψ = min(ϕj , vm) ∈ Sr,m(zj ) (with Um = vm) andχ = max(ϕj , vm) ∈ Sr,m+1(zj ). Hence by Theorem 4.9m,∫

Br(zj )

L(ψ)dx �
∫

Br(zj )

L(vm)dx (4.24)

and by the definition ofϕj ,∫
Br(zj )

L(χ)dx �
∫

Br(zj )

L(ϕj )dx. (4.25)

Adding (4.24)–(4.25) shows:∫
Br(zj )

L(vm)dx +
∫

Br(zj )

L(ϕj )dx =
∫

Br(zj )

L(ψ)dx +
∫

Br(zj )

L(χ)dx

�
∫

Br(zj )

L(vm)dx +
∫

Br(zj )

L(ϕj )dx. (4.26)

Hence∫
Br(zj )

L(ψ)dx =
∫

Br(zj )

L(vm)dx (4.27)

and ∫
Br(zj )

L(χ)dx =
∫

Br (zj )

L(ϕj )dx.

But (4.27) and Corollary 4.10m imply ψ ≡ vm, i.e.ϕj � vm. Similarly ϕj � wm and (a) is proved.
To check that (b) holds, we argue exactly as in the proof of the analogous situation in Theorem 2.1

(2.32)–(2.34) withe1 replaced bye�, 1� � � m + 1. Lastly (c) follows the same lines as its analogue in the p
of Theorem 2.18. This completes the proof of Theorem 4.8m+1. �
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ion

6.
n

D 8

)

Next to prove Theorem 4.9m+1 requires the extension of Lemmas 3.2 and 3.3 from levelm to levelm + 1 and
is carried out exactly as earlier. Likewise Corollary 4.10m+1 is proved exactly as in Corollary 3.7 and the induct
process is complete.
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