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Abstract

We consider the elliptic problem Au — Au = a(x)u?, with p > 1 anda(x) sign-changing. Under suitable conditions pn
anda(x), we extend the multiplicity, existen@nd nonexistence results known to dhébr this equation on a bounded domain
(with standard homogeneous boundary conditions) to the tasette bounded domain is replaced by the entire spdte
More precisely, we show that there exists> 0 such that this equation ak¥ has no positive solution for > A, at least two
positive solutions foi € (0, A), and at least one positive solution foe (—oo, 0] U {A}.
© 2004 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

Résumé

On considére le probléme elliptiqueAu — Au = a(x)u”, ol p > 1 eta(x) change le signe. Sous des conditions adéquates
sur p eta(x), nous étendons les résultats connus sur la multiplicitgistence et la non-existence de cette équation sur un
domaine borné (avec des conditions aux limites homogénes naturelles) ou le domaine borné est remplacé par I'espace to
entier. Plus précisement, nous montrons qu'il existe O tel que cette équation da®s¥ n'a aucune solution positive pour
A > A, au moins deux solutions positives poug (0, A), et au moins une solution positive poue (—oo, 0] U {A}.
© 2004 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved
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1. Introduction
The elliptic problem
—Au — du =a(x)u?, (1.2)
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with p > 1 and a(x) sign-changing, has attracted extensivedis recently. This is known as an indefinite
superlinear problem. The fact tha¢x) changes sign in the underlying domain of the differential equation poses
extra difficulties from the well studied cases thdt) is always negative (the sublinear case) ad) is always
positive (the superlinear case).

When (1.1) is considered on a bounded donsaitt RY with standard homogeneous boundary conditions on
052, it follows from recent results (see, for example, [17,1,4,5,19,3]) that, under suitable conditiprsdron the
behaviour oz (x) near its zero set, (1.1) has a positive solutionfer 11 (£2) (the first eigenvalue of the Laplacian
under the correspondirigpundary conditions o8s?) if and only if

/a(x)¢p+l(x) dx <0, (1.2)
19

where ¢ denotes the (normalized) positive eigenfunction corresponding; (). Moreover, when (1.2) is
satisfied, there existd > 0 such that (1.1) has at least two positive solutions for ewesy(11(£2), A), at least
one positive solution foh = A and fori = 11(£2), and no positive solution fok > A. Under less restrictive
conditions, (1.1) has at least one positive solution for eaehi1(£2).

The purpose of this paper is to extend these results to the case tisateplaced by the entire spad.

As will become clear, such an extension involves two kinds of difficulties. One is due to the well-known loss of
compactness, the other is due to the fact thar2) is no longer a simple eigenvalue whenis replaced byr" .

In a recent work of Costa and Tehrani [7], such an esiten was partially achieved through a variational
approach. To overcome these difficulties, [7] considered a proble®*omcluding (1.1) as a typical case, but
with A replaced by.i(x), whereh is a nonnegative function belonging to the spaéé2(RY) N L¥(RN) for some
a > N/2. This allows them to regain compactness for the variational approach. Moreover, the eigenvalue problem

—Au=Ah(x)u, uec Dl’Z(RN)

behaves similarly to the finite domain case, with a simple first eigenval(te > 0. Under conditions op and
a(x) similar to those for the bounded domain case, and furthermore,
lim a(x)=ax <0, (2.3)
|x]—00

it was shown in [7] that the entire space problem has at least one positive solutiofor(k), and at least two
positive solutions foi in a small right neighbourhood af; (). The existence of a critical > 0 as in the finite
domain case was not considered in [7]. The introductio@]redntains a fairly detailkaccount of other studies of
entire space problems, and we retfethat and the references tear for the interested reader.

In this paper, to overcome the above mentionefiatifties, we use a bounded domain approximation approach
to study (1.1) onR™. This allows us to avoid replacingby Ak (x) as in [7], but we have to carefully control the
behavior of the solutions as the domain enlargeRq in particular, we need to obtain good a priori bounds for
the solutions over bounded setsRf and good estimates of the solutions for lafge Under similar conditions
on p > 1 anda(x) as in the bounded domain case, and (1.3), we will obtain a complete extension of the bounded
domain result, namely, there exists> 0 such that (1.1) oR" has no positive solution for > A, at least two
positive solutions fon € (0, A), and at least one positive solution foe (—oco, 0] U {A}. Note that (1.3) implies
(2.2) for all “large” enougls?2.

We would like to point out that a variational approach along the lines of [7] does not seem applicable to problem
(1.1) onRN . In fact, by Lemma 4.3 in this paper, condition (1.3) implies that any positive solutionof (1.1)
satisfies

im u(x)=
|x|—00

max(x, 0} \ /7~
< laco] ) .

Therefore no positive solution of (1.1) with> 0 belongs to the spac®>2(R"). Moreover, this implies that
whatever space one chooses to replaéé(R") in order to apply a variational approach with suitable compactness
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conditions, the space has to beependent. This would make such an approach extremely complicated, if possible
at all. A direct application of the global bifurcation argument parallel to that in the bounded domain case as used
in [3] does not seem to apply to (1.1) either, due to the following reasons. Firstly, the bifurcation approach for
the bounded domain case relies heavily on the factith@®) is a simple eigenvalue of the linearized eigenvalue
problem at the trivial solutiom = 0. But the correspondent af (£2) for (1.1) onR" is 0, and it is well known

that 0 is not a simple eigenvalue of the corresponding linearized problem (it is not even an isolated point in the
spectrum). Secondly, in order to @t suitable compactness, one faces the problem of working viitthegpendent
function space as well.

Let us now briefly explain our approach. The existence of at least one positive solutior i@, A) requires
almost no restriction except that> 1 anda(x) satisfies (1.3) (in fact a less restrictive one, (2.2), is enough).
This is proved in Section 2 by some comparison arguments and local bifurcation analysis for solutions on boundec
domains.

The existence of a positive solution foe= A requires a priori bounds for solutions of bounded domain problems
such that the bounds are independent of the size of the domain. In Section 3, we adapt the techniques in [3] t
establish such bounds. We also use boundary blow-up problems for this purpose.

The central part of this paper is Section 4, where we prove the multiplicity resultdf@0, A) and the existence
of at least one positive solution far< 0. Apart from the a priori bounds established in Section 3, we need a crucial
new ingredient, which comes from a careful analysis of the global bifurcation branches of positive solutions for
bounded domain problems. Roughly speaking, we will show that the global bifurcation branch bifurcating from
(A, u) = (A1(£2), 0) can be decomposed into two connected pafgsandC, WhereCo contains all the minimal
positive solutions on2, andC, is unbounded and contains none of these minimal positive solutions. We will
prove that as? enlarges taR”, the positive solutions o2 chosen fromC,, will converge to solutions of (1.1)
on RN which are not minimal positive solutions. This will give rise to two positive solutiongrfor A € (0, A).

For . < 0, this will guarantee that the solution so obtained is not the trivial solution O.

For simplicity of presentation, tbughout this paper, we have restrictedr discussion to elliptic problems
of the special form (1.1) (in fact an equivalent form (2.1)), and all the bounded domains are chosen as balls.
By suitable modifications obur arguments (without essential difficulties), our results in Sections 2 and 3 can
be extended to the case thatis replaced by a second order elliptic operator with constant coefficients which
can be obtained through a change of variables frorfdue solely to the proof of Lemma 2.5, otherwige can
be replaced by a rather general second order elliptic tmerzot necessarily self-adjoint), and the nonlinearity
replaced by (x)u — b(x) f (1), with o a continuous function satisfying < «(x) < M for all x € RN and some
positive constanta andM, with f («) locally Lipschitz continuous and behaving lik€ near 0 and neaso. Our
main result (Theorem 4.6) holds if we further assume th@) — @~ € (0, 00) as|x| — oo, and thatf (u)/u is
increasing fow > 0. Our results on the bounded domain problemsl(ding Proposition 4.1 but possibly except
Lemma 2.5) hold with much more genétias, for example, theinderlying domain can be rather general with
regular boundary, the differential operator and the nonlinearity can also be very general.

2. Existence and nonexistenceresults

Let us start with an accurate formulation of our problem. We consider the elliptic equation

—Au=ru—bx)uP, xeRVY, (2.1)
wherep > 1, A is a real parameteb,is a continuous function such that
b(x) <0 inaballB,,(xo), b(x)>o0 >0 for|x|> Ro. (2.2)

Here and throughout this papés,,(xo) denotes the open ball iRN with centerxg and radiusg. Note that in
order to match the notations in some of the refeemthat will be frequently used later, we have replaced in
(1.1) by—b(x) in (2.1).
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By a positive solution of (2.1) we mean a functiere C*(R") such tha > 0 onR" and

/(Vu -Vv — (ku - b(x)up)v) dx=0, VYve C8°(RN).
RN

From classical theory on elliptic equations (see [14]) we know mhatwlﬁ’g (RN) for anyq > 1, andu is C?
(hence a classical solution) if furthk¢x) is Holder continuous oR”™ .

Theorem 2.1. Under the above assumptions, there exists 0 such that(2.1) has at least one positive solution
for eachi € (0, A), and it has no positive solution when> A.

The proof of Theorem 2.1 will be based mainly on upper and lower solution arguments. We will use some
known results for (2.1) on bounded domains, which are proved by a combination of local bifurcation analysis and
upper and lower solution techniques.

The first bounded domain result we will use follows easily from a result due to Berestycki, Capuzzo-Dolcetta
and Nirenberg [4, Theorem 2].

Proposition 2.2. Suppose tha2.2)is satisfied. Then there exisks > Rg such that for any balBg = Bg(0) with
R > R, there existsAr € (A1(Br), o0) such that the problem

—Au=xtu—bx)u”, x€Bg, ulsp, =0 (2.3)
has at least one positive solution foke (A1(Bg), Ag), and no positive solution foxr > A. Herei1(Bg) denotes
the first eigenvalue of A on Bg under Dirichlet boundary conditions.

Proof. By Theorem 2 in [4], it suffices to show that

/b(x)¢1’;+ldx > 0, (2.4)
Bpg

for all large R, where¢r denotes the normalized (ih*°) positive eigenfunction corresponding to the first
eigenvalue\1(Bg). We remark that condition (1.5) in [4] is not needed in their proof of Theorem 2.
To show (2.4), we first observe that, through a simple rescalipgx) = ¢1(x/R). Therefore,

/ b(x)ph T (x) dx = / bRy (RN dy
Bp B
=RV / b(Ry)$! () dy + RV f b(Ry)$?(y) dy.
[YISRo/R Ro/R<|y|<1

AS R — o0,

1
b(Ry)$Y ™ (y)dy — 0,
[y|I<Ro/R
while
1 1 1
bR () dy > / o ) dy > o f $7(0) dy > 0.
Ro/R<IyI<1 Ro/R<IyI<1 By

Hence (2.4) holds for all largR. O
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Clearlyr1(Bg) decreases aR increases. The next result shows that is also a decreasing function; it as well
gives some properties of the positive solutions of (2.3).

Proposition 2.3. Under the conditions of Propositich2, for eachi € (A1(Bg), Ar), (2.3)has a minimal positive
solutionuf in the sense that any positive solutiorf (2.3)satisfies: > u§ in Br. Moreover,

Ap, > Ar, wheneveR, < R1 < Ry, (2.5)
and

u, - (x) <uj?(x) whenever both sides are defined and< A, Ry < Ro. (2.6)

Proof. The arguments below are rather standard. We sketch them here for completeness.

Suppose that € (A1(Bg), Ag), andu is a positive solution of (2.3). It is easily checked that for all small 0,
epr < u in Bg (by making use of the Hopf boundary lemma), ang; is a lower solution to (2.3). Suppose that
this is true for alle € (0, eg]. Then by a standard iteration procedure starting fegghr one obtains a minimal
solution of (2.3), say, in the order interval

[copr, ul := {v e C*(Br): cor < v <u}.

We claim thatv is also minimal among all positive solutions of (2.3). Indeed, sinpg is a family of (strict)
lower solutions that varies continuouslyére (0, o], and for any positive solutiow of (2.3), we can find some
€1 € (0, g0l suchthat1¢pr < w in Bg, by a well known sweeping principle due to Serrin, it follows thatr < w.
Now the iteration procedure shows immediately that w. Hencev is the minimal positive solution of (2.3). We
denotev = uX.

To show (2.5), we argue indirectly. Suppose that for satped Ry < Rp, we haveAg, < Ag,. Then we can
choose a. such that

max{A1(Bg,), Ar,} <i < Ag,.

For sucha, the minimal positive solutiorznf2 is defined. Sincetf2 > 0 ondBg,, We can useuf2 as an upper

solution to (2.3) withR = R;. As before, due ta > Ag, > A1(Bg,), forall smalle > 0, e, < ufz in B, and
they are lower solutions of (2.3) witR = R1. This implies that (2.3) wittlR = Ry has at least one positive solution,
contradicting our choice of. This proves (2.5).

To prove (2.6), we observe thaf: can be used as an upper solution for the equation satisfia@llbpn the
other hand, there are arbitrarily small lower solutions giveredy,. Hence (2.3) with(x, R) = (A1, R1) has at

. . . . R> . R1 ; .. .
least one positive solutiom satisfyingu < u; 7. Now (2.6) follows readily ag; * is the minimal solution. O

Theorem 2 in [4] also covers the case of Neumann boundary conditions. We carisusestlt to obtain an
analogue of Proposition 2.2 for the corresponding Neumaaololem of (2.3). Moreover, the argument in the proof
of Proposition 2.3 above shows that the Neumann proliiama minimal positive solution whenever there is a
positive solution withh > 0. These are summarized in the following result.

Proposition 2.4. Under condition(2.2), for all large R, there existsAz > 0 such that the problem
—Au=xtu—b(x)u”, x € Bg, dulsp, =0 2.7
has a minimal positive solution fore (0, A), and no positive solution for > Ag.

One might wonder whether there are corresponding properties to (2.5) and (2.6) for the Neumann problem (2.7).
This, however, is not the case in general.
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We are now ready to present a crucial ingredient for the proof of Theorem 2.1.

Lemma 2.5. Let Ag be given by PropositioB.2 Then
Ay = lim Ag>0.

R—o00

Proof. From (2.2), we find that there exists a continuous radially symmetric funétion= b(r), r = |x|, such
that

b(x) <b(x), Vx € Bry; b(x)=0, V|x|> Ro. (2.8)

Clearly b also satisfies (2.2). By Proposition 2.4, for some laRie> Ry, there exists. > 0 such that (2.7)
with b replaced by andx = & has a minimal positive solution, s@y on Bg,. The minimality ofi forces it to
be radially symmetric, as the equation is invariantler rotations around the origin. The Hopf boundary lemma
implies thatii > 0 on B, .

Let us denoté = ii(R1) > 0 and letro € (0, %) be such that

Lo —oéP <0.

We then choos&, > R; so thati1(Bg) < Ag for all R > Ro. We will show in a moment thattg > Aq for all
R > R». As by Proposition 2.3Ar decreases aB increases, this would guarantee thatdim,, Ag > Ao > 0, as
we wanted.

Let us define

u(x), xe€Bpg,,
&, lx| > Ri.
It is easily checked thatp is a weak upper solution of (2.3) witR > R; andi = A (see also [6]), that is,

uo(x) = {

[ V050> [ oo~ beond)w. v e B0, v 0

Br Br

If further R > Ry, thenig > A1(Bg) and for all smalk > 0, e¢pr < ug in Bg and are lower solutions to (2.3) with
A = Xgo. Hence there is at least one positive solution and §a> Ao, VR > R». Moreover

upf (x) <uo(x), Vx € Bg, VR > Ro. (2.9)
This finishes the proof. O

Proof of Theorem 2.1. Let Ao, ug and Rz be as in the proof of Lemma 2.5. Then, by (2.9) and (2.6), we find that
for arbitraryx € RY, Up(x) = limz_ u)lfo(x) exists andUp(x) < up(x). Through a regularity consideration and

a standard compactness argument, we sed i a solution of (2.1) withh = 1. Up is positive sincd/g > ufo
for everyR > R». Hence (2.1) has a positive solution foe= Ag > 0.
Define

A:=sup{u > 0: (2.1) has a positive solution far= }.

Clearly A > Ag. We also haved < A1(By,(x0)). Indeed, ifA > A1(B,,(x0)), then we can find. > A1(By,(x0))
such that (2.1) has a positive solutierwith suchi. On B, (xo), by (2.2), we have

—Au=xu —b(x)u? > \u.

Let ¢ denotes the normalized positive eigenfunction correspondiag(iB,, (xo)). We deduce
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A / up < / (—Au)p= / (—Ag)u+ / dupu < 11(Bry(x0)) / pu.

Bro (x0) Bro (x0) Bro (x0) aBro (x0) Bro (x0)

Hencel < A1(By,(x0)), contradicting our assumption thiat- A1(By,(x0)).

It remains to show that (2.1) has a positive solution for evegy(0, A). Let A be such fixed. By the definition
of A, we can findi* € (1, A] such that (2.1) has a positive solutiefiwith » = A*. Thenu™* is an upper solution
of (2.3) with the above fixed on anyBg. Let R* > 0 be large enough so thati(Br) < A for all R > R*. Then
for any fixedR > R* and all smalls > 0, e¢g < u™* in Bg and are lower solutions to (2.3) with these giveand
R. Hence (2.3) has a positive solution ang > 1. It follows from Proposition 2.3 thatX exists for allR > R*,
andu® <u*. Now much as beford/* := lim g~ u R is a positive solution of (2.1) with the given The proof is
complete. O

3. A priori estimatesand further existenceresult

In this section, we show that under further restrictionspcand onb(x), a priori estimates (independent Bj
for positive solutions of (2.3) can be established. This will enable us to show that (2.1) has at least one positive
solution forA = A. In the next section, we will show that (2.1) has at least two positive solutiorns a0, A),
and at least one positive solution far< 0. For these, we will need, apart from the a priori estimates in this
section, some global bifurcation arguments, where sarbéesordering properties of positive solutions of (2.3)
will become crucial.

To establish the a priori estimates, we let (2.2) be satisfied and denote

.Q_z{xEBRO: b(x)<0}, !2+={xEBRO: b(x)>0}, b‘(x):min{b(x),O}.
Theorem 3.1. Suppose that2.2) holds, $2_ and 2, are open sets witiC? boundaries, and that there exist

o 2_ — (—o0, 0) which is continuous and bounded away from zero in a neighborhoéeof and a constant
y >0, such that

b~ (x) = a(x)[dist(x,32-)]", Vxe_. 3.1)
Also suppose that

p<(N+1+y)/(N-1) (3.2)
and

p<(N+2)/(N—-2) incaseN >3. (3.3)

Then for any giverM > R, (as in Proposition2.2), we can find a constan® = C (M) such that any positive
solutionu of (2.3)with R > M andA > —M satisfies

llullLoeocsgy < C. (3.4)

Proof. We adapt the techniques of Amann and Lopez¥®p [3]. If we can show that there existy =
Co(M, Mp) > 0 such that

supu < Mg implies  sup u < Co, (3.5)

2_ Br\S2_
for any positive solutiom of (2.3) withA > —M andR > M, then (3.4) can be proved exactly as in [3], where a

standard blow up argument ¢ is used to deduce a contradiction to a Liouville theorem in [4] if (3.4) does not
hold. Let us note that by Proposition 2.3, we hav€ A, whenever (2.3) has a positive solution BR, R > M.
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Therefore, it suffices to establish (3.5). B € (Rg, M). We first show that there exist = C1(M, R1) such
that

sup u<C1 (3.6)
Br\Bg,
for any positive solution of (2.3) with > —M andR > M. To see this, lei be such a positive solution. Then, on
Br \ Bgr,, We have
—Au=xu —b(x)u? < Apyu—ou”.
Letr = R1 — Ro. By [16], the problem
—Av=Ayv—ov” inB.(0), vlpp 0 =00

has a unique positive solutian For fixedxg € Bg \ Bg,, Clearlyv(x — xg) satisfies the same equationas)
but with B, (0) replaced byB, (xg). Since B, (xg) N Br, = @, applying Lemma 1.1 in [16] to compar&x) and
v(x — xp) over B, (xg) N Bg, we obtain that:(x) < v(x — xp) on this set. In particular(xg) < v(0). Hence

u<Cr:=v(0), VxeBgr\Bpg,.

This proves (3.6).

Next we consider on £2 := Bg, \ £2_. Denoteb™ (x) = max{b(x), 0}. We find thatb™ (x) = 0 if and only if
x € D := Bp, \ §2+. By the proof of Theorem 2.3 of [3], we necessarily have i1(D).

Consider now the problem

—Aw=Ar1(D)w—bT(x)w? in$, wlyse, = C1, wlae_ = Mo. (3.7)

Since2o:= {x € 2: bT(x) =0} = D\ £2_, we have 1(£20) > A1(D), and hence, for some smatneighborhood

2. of 20, 11(£2:) > A1(D). Making use of this fact, we can construct an upper solution of the favg) with

k > 0 a large constant, angg(x) = ¢, (x) on 2,2 andwo(x) > 0 on ERl \ £2¢/2, much as in p. 348 of [3].
Clearly 0 is a lower solution of (3.7). It follows that (3.7) has a positive solution. By Lemma 2.1 in [13], we deduce
that (3.7) has a unique solutiam Moreover, noticingb(x) = bT(x) in 2 andx < A1(D), we have

—Au=tu—bx)u? < r(D)u—bT(x)uP, Vxes.
As ulye < w|ye when the condition in (3.5) holds, we use Lemma 2.1 in [13] again and conglsde in £2.
Combining this with (3.6), we obtain (3.5).0
Remark 3.2. (i) As in [3, Theorem 5.2], the conclusion of Theorem 3.1 holds when the conditions (3.1) through to
(3.3) are replaced by

2.N2,=0 (3.8)
and

p<N/(N—2) incaseN >3. (3.9

(ii) In a recent paper [10], we were able to treat the case that (3.2) is relayed 1@V + 2) /(N — 2), by using
the observation that we only need (3.4) for solutions obtained by certain mountain pass processes. In a furthe
recent paper [12], by proving some new Liouville typedhems, we were able to show that (3.4) holds for any
positive solution under the conditign< (N + 2)/(N — 2) only.

Theorem 3.3. Supposé€2.2) holds and that eithe¢3.1) through to(3.3) hold or both(3.8)and (3.9) hold. LetA
and A, be as in Theore2.1 and Lemma2.5, respectively. Themt = A, and (2.1) has a positive solution for
A=A
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Proof. Fromthe definition ofA,, we knowthatAg > A, for everyR > R,. By Proposition 2.3, for all smail > 0,

uf _, exists and is increasing asdecreases. From Theorem 3.1, we infer tft_, < C for some constant

independent of. HenceU® :=lim,_¢ uﬁ*_s exists and is a positive solution of (2.3) with= A,. It follows that

uR, exists. Moreover, the argument in Proposition 2.3 shows:tfjatis increasing withR for R > R,. We now
apply Theorem 3.1 again and find th:af;t < C1 for some constant independent oR. HenceU :=limg_, uA
exists and, as before, is a positive solution of (2.1) with A,. This implies thatA > A*.

Were A > A, (2.1) would have a positive solutianfor somea € (Ay, A]. As in the proof of Theorem 2.1,
this would imply that for all larger, (2.3) has a positive solution with this HenceAg > A for all largeR, and it
follows thatA, =lim Agr > A > A,, a contradiction. Hence we must haxte= A,. O

4. Global bifurcation and multiplicity results

In this section, we make use of global bifurcation arguments to show that (2.1) has at least two positive solutions
for A € (0, A). We also prove that (2.1) has at least one positive solution fgr0. Again we use the bounded
domain problem (2.3) to approximate the entire space problem (2.1). However, it seems that a priori bound alone
is not enough for this purpose. Under the conditions of the last section, we know that for each fixgdositive
solutionu g of (2.3) onBg has anL > bound independent at. From this it is easy to see that by choosing a suitable
sequencer, — oo, ug, converges to a solutiom of (2.1) with suchx. The problem is that wheh € (0, A), we
want to make sure that such a solutiocan be obtained which is different from the one as obtained in the proof
of Theorem 2.1, while wheh < 0, we want to make sure thatis not the zero solution. It turns out that this goal
can be achieved by choosing from a particular part of the global bifaation branch of (2.3). The crucial point
in our proof is an ordering property which comes from a careful analysis of the global bifurcation branch of (2.3).

Let us now describe the global bifurcation branch in endetail. Suppose that (2.2) is satisfied. Then, from the
proof of Proposition 2.2, for all larg®, (2.4) holds. It follows from a local bifurcation analysis (see in particular
Lemma 6.1 in [4], and [8] generally) that ne@r (Bg), 0) in the spaceX := R x C1(By), all the solutiongx, u)
of (2.3) withu > 0 lie in a smooth curve

I :={(x®),u®): 1 €0, )},
wherei(0) = A1(Bgr), u(0) =0, andA(¢) > A1(Bg) fort € (0, &), u(t) = r¢pg + o(1) for smallr.

It is well known that the global bifurcation theory of Rabinowitz can be applied to this case (see [18,
Theorem 2.12]) to conclude that there exists an unbounded connectgg iseX such that,

(i) (A,u) e I'r implies thatx is a positive solution of (2.3),
(i) I'y C IR,
(iii) there is a small neighborhoatls of (A1(Bg), 0) in X such thatNs N I'g = N5 N I

We assume further that the conditions in Theorem 3.3 are satisfied, so that ther€ exi6t&\/) such that any
(A, u) € I'g with A > —M satisfies|u| L~ pg) < C. By Proposition 2.2 we know tha&k, u) € I'r impliesi < Ag.
Thus the unbounded connected Sgtbecomes so only through— —oo, that is,

{A: (A u) € T} D (=00, 21(Bg)). (4.1)

We refer to [2,15] for more detailed discussions for problems of a similar nature.

We are now ready to present some further propertidgofvhich will play a key role in the proof of our main
multiplicity and existence result in this section.

Let us recall that foi € (A1(BRr), Ar], uf denotes the minimal positive solution of (2.3). It is also convenient
to introduce the notation

0;. = (—00, A] x [0, ul],
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where for anyw € C1(Bjy) satisfyingw > 0 in Bg,

[0,w]={ueC Br): 0<u<win Bg}.
Proposition 4.1. Under the conditions of TheoreBa3, the following are true for every large fixekl

(i) O, uf)erg, YAe ((Br), Arl.
(i) I'f:=(Tr\ Oag)U{(Ag, u’jR)} is connected.
(i) {r: (h,u) € g} = (—00, Agl.

Proof. We will use some ideas in [9]. Due to (4.1), we can find a sequénge,,) € 'z such that, - —oco. We
may assume that, < 0 for all n.

Letx, € Bg be suchthat, (x,) = maxg, un. Then it follows from Bona’s maximum principle and the equation
for u,, that

Anttn(Xp) — b(xn)ull;(xn) > 0.
As A, < 0 andu, (x,) > 0, this is possible only ib(x,) < 0. We obtain

1/(p—-1 . 1/(p—-1
i) > [ /b0 ] > [1al /I min[ 777 — oo, (4.2)

Letusfixu € (A1(Br), Ag]. Fromthe properties df, we see thatfo(x, u) € I'z close to(r1(Br), 0), it holds
(A, u) € O,. On the other hand, (4.2) implies that for all lavge(r,, u,) are outsideD,,. As I'y is connected, we
must havel ' N30, # 9.

We claim that

FrNa0, ={(un.ud)}. (4.3)

Clearly (i) is a consequence of this fact.
To prove (4.3), we choose an arbitrapy, u) € I'r N9 O0,,. By the definition of0,,, we inferi < u, u < uff.
If & < u, then fromu < uff andu # ufj we can conclude, by making use of the differential equations they satisfy
and the strong maximum principle together with the Hopf boundary Iemrma,uff —u>0in Bg, d,v <0on
dBpg. Sinceu is a positive solution of (2.3), we also have- 0 in Bg andd, u < 0 ond Bg. These facts imply that
u is in the interior of the sdi0, uff], and hence, ak < u, (A, ) is in the interior ofO,,. This is a contradiction. So
we necessarily have = . But then we must have = uff, since p{j is the minimal positive solution of (2.3) and
u < ”5 is also a positive solution of (2.3). Therefore (4.3) is true.
To prove (ii) we argue indirectly. Suppose thig} is not connected. Then there exist two nonempty Agtand
Az such thatly = A1 U Az andA;, Ap are separated (see [20, p. 9]), that is,

A1N Ay =0, A1NA=0.
Since(Ag, uﬁk) e I's, we may assume that this point liesAn. Then we have
AoN Opp=9. (4.4)

We show nextthat,N O 4, = @. Otherwise, we necessarily hat@ N9 04, # . Let us observe thak, u) € Ay
implies that(x, u) solves (2.3) withu > 0 and A< Ag. Therefore if there exist§i,u) € A2 N 304, then
0<u< uﬁk, AL < Ag and(i, u) solves (2.3). Ifx = Ag, then sinceuﬁk is the minimal positive solution of (2.3),
we have eithern = uﬁR oru = 0. The former possility cannot occur as we have assumed thag, uﬁR) € Aq.
So we must have = 0.

If A < AR, we can also deduce that= 0, for otherwisey is a positive solution of (2.3) and we can use the
same argument used in proving (4.3) to show thai:) is in the interior of0 4.
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So we have proved that in either cae,u) = (1, 0). It follows that there exists a sequen@g, u,) € Az such
that(i,, u,) — (1, 0) in X. The fact thai,, — 0 in C1(By) implies thatu, lies in [0, uﬁR] whenn is large. Since
(An, uy) are positive solutions to (2.3), we must haye< Ag. Hence for all large, (A, u,) € O 4, contradicting
(4.4). This proves thai, N O, =9. As a consequencey, is separated from both; and 04, sinceO,4, is
closed. Now define\z := A1 U (04, N I'r) and we find thaA, and A3 are separated. Bulg = A2 U Az. So the
above conclusion implies thé; is not connected. This contradiction proves thigtis connected. Conclusion (ii)
is thus proved.

(iii) follows from (ii) and the following three facts: (a)Ag, uﬁk) € I's, (b) (2.3) has no positive solution when
A > Ag, (c) I'z contains a sequengg,, u,) with 1, — —oo and (4.2) holds, and hencg,, u,) € I'y for all
largen. O

Remark 4.2. Let us note that for anyx, u) € I'y with A < Ag, u ¢ [0, uﬁk]. This ordering property will play a
key role in the proof of our main results.

Apart from Proposition 4.1, in proving the main multiplicity result, we also need some auxiliary equations on
enlarging balls or annuli.

Lemma 4.3. Suppose thaR, is an increasing sequence convergingtoand B, = Bg, (0). LetA >0andp > 1
be fixed and, be a sequence of positive numbers convergirggtd asn — oco. Then, for all large:, the problem

—Au=htu—&u?’ inBy, ulyp, =0 (4.5)
and the problem

—Av=2rv—&v? inB,, v|yp, =00 (4.6)
have unique positive solutiong andv,, respectively. Moreover,

up(x) > /EYPD v, (0) — 0P, (4.7)
uniformly on any bounded set & asn — oo.

Here and in what follows, by|;, = oo, we mearv(x) — oo asd(x, dB,) — 0.

Proof. Forany given smak € (0, £), we can findig large so that —e < &, < & +¢ foralln > ng. By Lemma 2.2
in [13], (4.5) with&, replaced by — ¢ has a unique positive solution, for all largen, and

lim i, () =2/ — )]0 (4.8)

uniformly on any bounded set @ .
Similarly, (4.5) withg, replaced by + ¢ has a unique positive solution, for all largen, and

lim u, (o) =[A/€ +o)]7 "0 (4.9)

uniformly on any bounded set @ .
Letu,, denote the unique positive solution of (4.5) (which exists whenkwen(B,)). By Lemma 2.1 in [13]
we haveu, < u, < ii,. Now we see immediately that the first part of (4.7) follows from (4.8), (4.9) and the
arbitrariness of.
By Lemma 2.3 in [13], we know that (4.6) wi#) replaced by: — ¢ has a unique positive solutiar for eachn,
and

lim 5, ()= [3/€ —e)]7"7Y

uniformly on any bounded set @ .
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Similarly, (4.6) with&, replaced by + ¢ has a unique positive solutian, for eachn, and
lim v, () =[a/E +0)]7" 0

uniformly on any bounded set @ .
Letv, denote the unique positive solution of (4.6). Then by Lemma 2.1 in [13], we obtain that< v, < v,-1
on B,_1. The second part of (4.7) then followsO

Lemma4.4. Letx > 0, p > 1 be fixed, andR,,, &, as in Lemmat.3. Denote byA, the annulugx € RV: R,/2 <
|x] < R,}. Then for all largen, the problem

—Au=xru—&uP inA,, ulpa,=0 (4.10)
and the problem
—Av=2xv—&,v” inA,, V{jx|=R,/2} = OO, U|{|x|=Rn}=0 (4.11)

have unique positive solutiong andv, respectively. Moreovet,, (x) = u, (|x|), v, (x) = v, (|x]), and if we define,
forr e (—R,/2,0], U, (r) = un(R, +r) andV, (r) = v, (R, + 1), then, as: — oo,

U,— @, V, > ® inCY[-T,0]), VT >0, (4.12)
where® is the unique positive solution to
—@"=AP —EDPP, P(—o0)=(1/E)YPD @) =0. (4.13)

Proof. The existence and uniquenessugffor A > A1(A,) is well known. The existence and uniqueness,pf
follows from [11] (see the arguments in Sectiora@d Remark 2.9 there). The radial symmetryugfand v,
follows from their uniqueness. It remains to prove (4.12).

We considel,, first. It satisfies

N-1
R, +r
Letr, € (—R,/2,0) be such that, (r,) = max_g, /2,01 U,. Then from the equation fdy, we deduce

AU, (ry) — gnUn(rn)p > 0.

It follows easily thatj| Uy, || L(r, /2,01 < C for all n and some positive consta@itindependent of.. Now we can
use standard elliptic estimates and a diagonal arguments to choose a subsequgneéith we still denote by
U, for simplicity, such that/, — U in C1([—T,0]) foranyT > 0, andU satisfies

—U"=MU —£UP in(—00,0), U(0)=0. (4.14)

We claim thatl/ is positive in(—oo, 0). If this is proved, then it follows from a simple phase plane analysislthat
is the unique positive solution of (4.14) and it satisfiss-o0o) = (1/£)Y/ (P~ We will denote the unique positive
solution to (4.14) byd.

To show thatU is positive on(—oo, 0), for a fixedrg > 0, we choose, > rg such thai1(B.,) < A and then
for all largen we choose a balB,, (y,) in A, such that the ball touches the outer boundaryipf Choosé;, > 0
such that, > &, for all n and letw, be the unique positive solution of

_U;;, - Uy,, = )\Un - énUif in (_Rn/zv Rn)v Un(_Rn/z) = Un(o) =0.

—Aw = w —&w” in B, (0), wlyp, 0 =0.

We know thatw, is radially symmetric. Clearly, (x) = w«(x — y,) solves the same differential equation over
B, (y,). Using Lemma 2.1 in [13], we deduce that > w, on B, (y,). Hence,u,(x) > w.(x — y,), and in
particular,u, (R, — ro) = wx(rx — ro). It follows that

U(—rg) =limU,(—rg) > ws(rs —rg) > 0.
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ThusU is positive in(—oo, 0). This finishes our proof that a subsequencé&/pfconverges to the unique positive
solution® of (4.14). Since this limit is unique, the entire sequebigeconverges ta.

Next we considep,, andV,,. We first claim that there exists a constéhindependent of such thaty,, < C on
the annulug2/3)R, < |x| < R, for all largen. Indeed, fixr* > 0 and choosé* > 0 such that* < &, for all n,
and then consider the unique positive solutighof the problem

—Aw=Aiw—E*w? in B, w]yp. = O0.

We will show that, for all large, v, (x) < w*(0) on the annulug2/3) R, < |x| < R,. Indeed, suppose thais large
enough so thak, /6 > r*. Then for any chosexy satisfying(2/3) R, < |xo| < R, we haveB . (xg) N I?R,,/Z(O) =
#. Hence we can use Lemma 2.1 of [13] to comparevith w(x) = w*(x — xo) over B,«(xg) N A, to conclude
thatv, < w in this region. In particulan, (xo) < w(xo) = w*(0), as we claimed.

Thus we haveV,(r) < C for r € [—R,/3,0] for all largen. As before, by elliptic estimates, subject to a
subsequencd, — V in C1([—T,0]) for any T > 0 andV solves (4.14). Since, > u, (by Lemma 2.1 in [13]),
we conclude thaV > U and hencé’ is a positive solution of (4.14). It follows th&t = @. O

Remark 4.5. If A <0, then by [11],u, still exists and is unique. An examination of the above proofifpand

V, shows that, in this case, a subsequencg,ofonverges ircY([—T, 0]), VT > 0, to a nonnegative solutiovi

of (4.14). However, since < 0, it is easily seen that (4.14) has only one nonnegative solution, that is the zero
solution. ThusV = 0 and the entire sequen¥g converges to 0. This fact will be needed later.

We are now ready to prove our main result.

Theorem 4.6. Suppose that the conditions of Theor@idare satisfied. Moreover,
lim b(x)=bs €[8, 00). (4.15)

|x]—00

Then,(2.1) has at least two positive solutions for eack (0, A), and it has at least one positive solution for each
A <0.

Proof. Let us fixA € (0, A). Sincei1(Bg) decreases to 0 andy decreases tal as R — oo, we can find an
increasing sequenck, — oo such thati1(Bg,) < A < Ag, for everyn. We now chooséx, u,) € I'y ; this is
possible due to Proposition 4.1. !

By Theorem 3.1 and Remark 3.2, there exts 0 independent o such that

lunllLosg,) <C, Vnz=1 (4.16)

From (4.16) and the equation foy, we find that for any fixed balB c RV, by theL” theory of elliptic equations,
{un| g} is bounded ifW24 (B) for anyg > 1. It follows from Sobolevimbedding theorems thay | 3} is compactin
C1(B). By choosing a sequence of enlarging balls and a stardiagonal argument, we can extract a subsequence
from {u,}, still denoted by{u,}, such thai,, — u in C1(B) for any bounded sek in RV . Itis easily checked that
u solves (2.1).

Sinceu, > uf” anduf” increases with, we find thatu > uf" for everyn. Thereforeu is a positive solution
of (2.1). Denote, for each € (0, A), uy, = 1lim, 0 u,’f", we know thatt,, is a positive solution of (2.1) (with
replaced byu). (See the proofs of Theorems 2.1 and 3.3; it is easily seenthi in fact the minimal positive
solution.) It remains to show that

U uy. (4.17)
Since (A, u,) € F,gn and A < A < Ag,, we haveu, ¢ [O,uf";e ]. Moreover, by Proposition 2.3, we have

uly' <ul" . Thereforepu, ¢ [0, u’y"]. It follows that there exists, € Bg, such that

up (xp) > Mﬁn (xn). (4.18)
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We claim that{|x,|} is bounded. Arguing indirectly, we assume that this is not true. Then by passing to
a subsequence, we may assume tkgt — oco. By passing to a further subsequence we have exactly three
possibilities:

(@ Ry — |xn| — o0,
(b) R, — |xp| >8>0,
(©) R;,—|x,]—0.
We will deduce a contradiction for each case.

In case (a), we can find a sequence of b&Jls(x,) C Bg, (0) with r, increasing tooo and|x,| — r, — oo. In

view of (4.15), we can find two sequendes} and{c,} such that
O<o,<bx)<o,, VxeB,(xn),
On = boo, 0, = boo.

Let w, denote the unique positive solution of (4.5) wih = B, (0) and§, = o,’, and letv, denote the unique
positive solution of (4.6) witl§, = 0, and B, = B;, (0). Then by Lemma 4.3, we find that (4.7) holds for bath
andv, if we replacet by b, in (4.7).

We now use Lemma 2.1 in [13] to compasg(x) with wy, (x — x,) and withv, (x — x,,) overB,, (x,). We easily
find thatw, (x — x,) <u,(x) < v,(x —x,) onthis ball. In particulany,, (0) < u, (x,) < v, (0). It now follows from
(4.7) that

n (Xn) = (/boo) PP, (4.19)

Applying a similar argument taﬁ” we deduce that

Wy (n) = (A/boo) PP

SinceA < A, we deduce from this and (4.19) that, for all large:, (x,) < uﬁ" (x,). But this contradicts (4.18). So
case (a) leads to a contradiction.

In case (b), we le#d,, denote the annululs: € RY: R,/2 < |x| < R,}. By (4.15), we can find two sequences
{o,,} and{o,’} such that

O<o, <b(x)<o,, VxeA,,
On = bo, 0, = boo.

Let w, denote the unique positive solution of (4.10) with the abdayeandé, = o,7, and letv, denote the unique
positive solution of (4.11) witl§,, = o,, andA,, defined here.
Applying Lemma 2.1 in [13] we easily see tha} < u, < v, onA,. Using Lemma 4.4, we obtain that

up (xp) = D(9). (4.20)
Similarly,
'l (p) = @4(8), (4.21)

where®, is the unique positive solution of (4.13) but withreplaced byA. Sinceir < A, we have @(—o0) >
@ (—00). Hence we can use the one dimensional version of Lemma 2.1 in [1B} @&n0] with largeT > 0 to
deduce tha®, > @ in (—oo, 0). Therefore, by (4.20) and (4.21), for all larggu, (x,,) < uﬁ" (x,). A contradiction
to (4.18). So case (b) also leads to a contradiction.

Consider now case (c). Let, andv, be defined as in the discussion of case (b) aboveyand) = w,, (R, +7r),
Vu(r) = v, (R, +r). Then we have

Wn(|xn| - Rn) Sup(xn) < Vn(|xn| - Rn)-
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SinceW,, — @ andV,, — @ in CY([—T, 0]) forany T > 0, we have the estimates
Wa (x| = Ry) = @' (0)(|xn| — Ry) + O(Rn — [xnl),
and
Vi (1xn| — Ryn) = @' (0)(Ixn] — Ry) + O(Ry — |xnl).
Therefore,
tn (xn) = @' (0)(1xn| — R) + O(Ry — |xnl)- (4.22)
In parallel, we have
ul" (xn) = @LO) (Ixn| — Rn) + O(Ry — |xnl).- (4.23)

Since®,. > @, we must have ¢(0) < &'(0). Therefore, by (4.22) and (4.23), for all largeu,, (x,) < uﬁ" (xn).
Again a contradiction to (4.18). This proves our claim tfat|} is bounded. Let us assume thate B for all n
and some finite closed baf.

We are now ready to prove (4.17). Suppose ¢ontradiction that it is not true. Them = u; and so
1y (x) — u; (x) uniformly on any bounded set & . Sinceu™" < u®" (by Proposition 2.3), we dedueg <u 4.
By the strong maximum principle, we easily deduge< u4 on RY. Therefore, we can find > 0 such that
u) (x) <ua(x) — € on the closed finite balB. It follows that for all largez,

un(x) <utr(x) —e/2, vxeB.

Takingx = x,, € B in this inequality we reach a contradiction to (4.18). Hence we mustiave, . This finishes
the proof that (2.1) has at least two positive solutions for exery0, A).

It remains to consider the cage< 0. Fix 4 <0 and let(x, u,) € I'y , WhereR, increases to infinity. As
before, by passing to a subsequence we may assume,thatu uniformly on any bounded set &t", andu
is a nonnegative solution of (2.1). We need to show th&t 0. This follows from a simple modification of our
arguments for the casee (0, A). So we will be rather brief. As in the previous case, we can find Bg, such
that (4.18) holds. Again it suffices to show that, |} is bounded. If this is not true, thave have three possibilities
(a), (b) and (c) as in the previous situation. In case (a), we have

" () = (4 /boe) /P,

by the same proof as before. By comparingwith the unique positive solution of (4.6) with suitalfie and B,
but with A replaced by an arbitrary > 0, we deduce that

lim up(xp) < (I’L/boo)l/(pilX

This impliesu, (x,) — 0 sinceu > 0 is arbitrary. Hence we obtain a contradiction to (4.18). In cases (b) and (c),
we can use Remark 4.5 to deduce a contradiction to (4.18). Hence (2.1) has at least one positive solution fol
eachr 0.

We would like to point out that the cage< 0 actually has a much simpler proof. Let be as above. Choose
Xp € Bg, such thats, (x,) = maxu,. Then from the equation far, andx < 0 we find, as in (4.2), that

b(xn) <0,  un(xn) = (IAl/] rglivnb(x)|)l/(”’l),
It follows that{x,} C Bg, and max, u(x) = (JA]/| mingy b)Y P—D. Henceu £0. O

Remark 4.7. Under the conditions of Theorem 4.6, it can be shown, by using results in [20] and arguments in the
proof of Theorem 4.6, that (2.1) has anbounded branch of positive solutio, in the spac& x L (R"), that
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bifurcates from(x, u) = (0, 0) and have similar properties to those fG¢ given in Proposition 4.1. Indeed; can
be obtained as the limit afg, for some sequenck, — oo (in the sense of [20]) in the spadex L>®(RY), by
making use of the fact that positive solutiais u) of (2.1) satisfies, due to (4.15),

u(x) = At /boo)P™Y  as|ix| > oo

uniformly in « for A in bounded sets, whese" = max{1, 0.

Remark 4.8. The alternative method at the end of the proof of Theorem 4.6 for theixcageshows that condition
(4.15) is not needed for this case. Therefore, underctralitions of Theorem 3.3 alone, (2.1) has at least one
positive solution for each < 0.
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