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Abstract

We consider a new class of quasilinear elliptic equations witbveep-like reaction term: the differential operator weights
partial derivatives with different powers, so that the underlying functional-analytic framework involves anisotropic Sobolev
spaces. Critical exponents for beddings of these spaces intd have two distinct expressions according to whether the
anisotropy is “concentrated” or “spread out”. Existence results in the subcritical case are influenced by this phenomenon. On
the other hand, nonexistence results are abthin the at least critical case in domaivith a geometric property which modifies
the standard notion of starshapedness.
© 2004 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

Résumé

Nous considérons une nouvelle classeqd@tions elliptiques quasilinéaires avectarme de réaction de type puissance : les
dérivées partielles ont des puissances différentes dans I'opérateur différentiel, de fagcon que I'espace fonctionnel naturel devier
un espace de Sobolev anisotrope. Les exposgaittques pour les injeons de ces espaces dah$ ont des expressions
différentes qui dépendent de la “concentration” de I'antgutr. Nos résultats d’existence dans le cas sous-critique sont
influencés par ce phenoméne. D’autre part, nos résultats de non existence dans le cas critique et sur-critique sont obtent
dans des domaines ayant une propriété qui modifie la notion usuelle d’ensemble étoilé.

© 2004 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved
MSC:35J70; 46E35; 35B65

Keywords:Anisotropic Sobolev spaces; Critical exponents; Minimax methods; PohoZaev identity

1. Introduction
We are interested in existence and nonexistence rdsultse following anisotrom quasilinear elliptic problem
=3 8 ([diu|™ T 28u) = auP7L in 2,
uz0 in$2, (1)
u=0 on d e,
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where2 Cc R" (n > 2) is a smooth bounded domain; > 1 for all i, A > 0 andp > 1. Note that ifm; = 2 for
all i, then (1) reduces to the well-known semilinear equatiaxu = ru? 1.

There is by now a large number of papers and an increasing interest about anisotropic problems. With no hope o
being complete, let us mention some pioneering warkanisotropic Sobolev spaces [14,19,24,25,27] and some
more recent regularity resultsrfminimizers of anisotropicunctionals [1,5,10,17,18,28].

Historically, the study of the semilinear problert\u = f (x, u) started by settling thieackground of a rigorous
functional-analytic framework (Sobolev spaces) and by distdhg the existence of solutions in a variational way,
that is, minimizing suitable functionals. But then, the following step was to find solutions by means of minimax
methods such as Birkhoff theory, Ljusternik—Schnirelmann category, mountain-pass and linking theorems. As far
as we are aware, minimax methods have not yet been used for problems like (1), so the present paper is a fir:
contribution in this direction.

A further motivation for the study of (1) is given by the necessity of an explanation of the link between
quasilinear elliptic equations and embedding inequalities. It is known that for quasilinear elliptic equations
involving them-Laplace operatoa,, (m > 1), power-like reaction terms exhibit several critical exponents, see [9]
and references therein. More preciseljtical exponents of suitable embeddiinequalities are also the borderline
between existence and nonexistence results for solsitdf such equations. Théoee, one may wonder if these
results may be obtained only using ftienal analysis, without exploiting thigpical features of elliptic operators
such as regularity theory, maximum principles, homogeneous eigenvalue problems. And the elliptic operatorin (1)
precisely fails to possess these properties.

Our starting point is the observation that embaddiheorems for anisotropic Sobolev spaces occur below
a critical exponent which has a different value if the anisotropy is spread out or concentrated. More precisely, let
m = (ma, ..., m,) and denote b)Wol’m (£2) the closure of”2°(£2) with respect to the norm

n
leellam =Y 119:1llm;
i=1

When the exponenis; are not “too far apart”, the critical exponent for the embedding’vol’m (2) CL1(2) is

just the usual critical exponent corresponding to the harmonic mean af; ttom the other hand, if the; are “too
much spread out” it coincides with the maximuwm. of them;. Therefore the effective critical exponent is in fact
the maximum of these two values,, = maxm*, m}, see Theorem 1 below. Existence results for (1) are quite
different in the two mentioned situations.

However, before wondering about existence results, due to the lack of a satisfactory regularity theory, one must
be careful in describing what is meant bgalutionof (1). In the next section (Omition 1), we introduce three
different kinds of solutions, weak, mild, and strong, adiog to their summability. In Theorem 2 we prove that,
in the subcritical case, weak solutions of (1) are actually strong, namely they are summable at any power. In ordel
to prove this fact, due to the anisotropy of the differential operator, we need several essential modifications of the
method developed by Brezis and Kato in [4].

Once the different kinds of solutions are clarified, we may turn to existence results. In Theorems 3 and 4
we apply respectively constrained minimization methods and the mountain-pass Theorem in order to prove the
existence of strong solutions of (1) in the “compact” case. It turns out that also the application of these by now
standard tools is not straightforward. First of all, the “kinetic functional” (which coincides with the Dirichlet
integral whenm; = 2) is not homogeneous and rescaling is not allowed. Therefore, the minimization method
merely enables us to find sorhdor which (1) admits nontrivial solutions. Moreover, it is not clear which exponents
p yield a resonance situation, i.e. eigenvalue problems, see Problem 2 in Section 8.3. On the other hand, th
application of the mountain-pass Theoremuies further restrictions on the exponemts see (5) below and the
remarks in Section 8.1.

In order to prove nonexistence results for at lea#tical growth problems, the most common tool is the
celebrated PohoZaev identity [21,22]. However, even its weaker formulations require solutions @f'gl@ss



I. Fragala et al. / Ann. |. H. Poincaré — AN 21 (2004) 715-734 717

in order to have well-defined boundary terms, see [7,8,12]. And it seems a challenging problem to obtain such
regularity for weak solutions of (1), see [10]. To overcome this difficulty we introduce a sequence of “doubly
approximating” problems inspired by a nice idea of Otani [20]. This procedure turns out to be quite delicate, due to
the anisotropy of the operator. Indeed, we need to prove a strong regularity result for the approximating problems,
see Theorem 5. When the approximation procedure is over, we are able to prove our main nonexistence resul
see Theorem 6. It states that, in the at leagicat case, (1) admits no mild solutions other thar= 0. This
result requires two assumptions of different kind. First, the domaimust have a new geometrical feature, which
modifies the classical notion of starshapedness accorditigetanisotropy of the opem; we call this property
a-starshapedness and we feel that it sheds some light on the interplay between the structure of the differentia
operator and the geometry of the domain. Second, the expongntast be sufficiently concentrated: this technical
assumption, which might probably be relaxed (see Problem 3), guarantees the regularity of solutions to the coercivi
approximating problem.

The precise statements of the results are given in Section 2, and their proofs are postponed to the subseque
sections. Finally in Section 8, we collect some gt remarks and we address some related open problems.

2. Results
2.1. Functional setting ansummability of solutions

Throughout the paper we assume tkiais an open bounded domain with (at least) Lipschitz boundazy
and we denote by, ) the Euclidean scalar product &f. We also always assume, without recalling it at each
statement, that the exponeptgindm; appearing in (1) satisfy the conditions

n
1
p>1, m;>1 Vi=1...,n, E — > 1. (2)
; mi
i=1

The last condition in (2) ensures that the anisotropic Sobolev sﬂ%c’@(ﬂ) embeds into some Lebesgue
spaceslL?(£2); if it is violated, one has embeddings into @dis or Holder's spaces. Embeddings of the kind
W&”" (£2) c L1(£2) are in fact a fundamental tool to study the existence of solutions for the boundary value
problem (1). Let us set

m* = #, my :=maxX{may,...,my,}, Mso = MaxX{my, m*}. 3)

Zi:l m_, -1

Note thatm* is well-defined thanks to (2), and that it coincides with the usual critical expament nm/(n — i)
for the harmonic meam of the m;. Note also that it may well happen that. > m* (this occurs for instance if
n=4,m =my=m3=2,ms =myg=100), thus it is meaningful to define the maximal exponegt. Actually,
Mo turns out to be the “true” critical exponent. In Section 1 we prove the following result, which we could not
find in the literature.

Theorem 1.Let$2 c R" be an open bounded domain with Lipschitz boundari2)holds, then foraly € [1, mo]
there is a continuous embeddiﬂa\g)l’m((z) C L9(£2). For g < m«, the embedding is compact.

Remark 1. Theorem 1 is no longer true if the zero trace condition on the boundary is removed. More precisely,
denote byw™(2) the closure of the restrictions t® of functions in C(R™) with respect to the norm

Il llm + Il - Il1. Then, even for smooth domais, in order to have the embedding™” (2) c L™ (£2) some
geometric restrictions of2 are needed, see e.g. [14,19,24,25].
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We are now going to characterize three different kinds of solutions to the boundary value problem (1). To this
end, we also need to consider the smallest exponent

m_ :=min{ma, ..., my},

and, for givery € [1, +o0], we denote by’ := g /(g — 1) its conjugate exponent.

Definition 1. We say that: € Wol’m (2) N LP~Yms () is aweaksolution of (1) ifu > 0 a.e. in $2and

n
Z /|a,~u|mf*23,»ua,»u:xful’*lv Vo e Wy (92). (4)

i=l g Q

If in additionu € L»~Y""(22), we say that is amild solution. Finally, ifu € L>°(£2) we say that is astrong
solution.

Clearly, every strong solution is also a mild solution, and the latter is also a weak solution. In some cases, we
may prove the converse implications:

Theorem 2.If one of the two following situations occurs

(i) p<meo,
(i) p=me andmy, > m,

then every weak solution ¢i) is also a strong solution.

A proof of Theorem 2 is given in Section 4. For related results concerning local minimizers, we refer to [5,
Theorem 2]. We believe that Theorem 2 holds under the mere assumpption.., see Problem 1 in Section 8.3.
In Section 8.2 we discuss an example which suggéstkind of solutions we should expect, according to the
value of p. We also stress that, in the semilinear caseii;e= 2), elliptic theory enables one to show that a strong
solution of (1) in a smooth domain is a classical solutio@#{£2), but for generak; this regularity seems out of
reach.

2.2. Existence results

First of all, we remark that it is not clear which yields the so-called resonance for (1). Namely, is there
somep which gives rise to a “generalized eigenvalue” problem? Obvioushy,if=m_, the resonance problem
corresponds tp =m_, see [3]. In the general case, we have

Theorem 3.Assume thap < m. Then, for any > Othere exisk, > 0andu, < W&””(.Q) such thatlu, ||, =y
andu,, is a strong solution of1) wheni = A,,.

In other words, there exists a continuum of pais, u, ) € (0, 00) x W&””(Q) which solve (1), seen as an
eigenvalue problem. We point out that Theorem 3 cannot be used to deduce the existence of a solution to probler
(1) for a givena. In fact, unless all the:; are equal, rescaling methods fail due to the lack of homogeneity of the
differential operator.

Then, to recover an existence result for fixgdve apply the mountain-pass Theorem [2]. In order to deal with
a “superlinear” subcritical problem we need to assume that

my <m®. (5)
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Note that ifm; = m for n — 1 indicesi, then (5) is automatically fulfilled; in particular, it holdsrif= 2.
Then we prove:

Theorem 4.Assume that the exponentssatisfy assumptiofb) and letp € (m, m*). Then, for allx > 0 problem
(1) admits a nontrivial strong solution.

Due to assumption (5), this statement is probably not optimal, but it seems not clear at all which are the
sharp assumptions that ensure both@ntain-pass geometri¢racture and the Palais-Smale condition for the
involved functional, see Problem 2 in Section 8.3. In Section 8.1 we exhibit two examples where the assumptions
of Theorem 4 are violated and the mountain-pass Theorem cannot be applied.

2.3. Regularity and nonexistence results

We now require that the:; satisfy the additional assumption
m; =2 (6)
and the “not too far apart condition”

n+2

m_. (7)

my <

Note that if (6) and (7) hold, we necessarily hawve 3 and (5), so thatio, = m™*. In order to establish our main
nonexistence result, we consider some approximating enaglwhich are coercive duniformly elliptic, and we
prove that they admit a unique and smooth solution.

Theorem 5.Assume tha@$2 € C27, and that the exponents; satisfy assumption®) and(7). Letp > 1,1 >0
and f € C°(£2). Then, for alle > 0, the problem

{— T 0i[(w|™ 2 + e(14 | Dw|?) -2 qw] + Aw|P 2w = f in L2, ®)

w=0 onoas

admits a uniquéclassica) solutionw € C2(£2).

We finally turn to the at least critical cage> m*. We prove nonexistence results in domains which ha&é
boundary and satisfy the folling geometrical condition.

Definition 2. Leto = (a1, ..., a,) € R" with «; > 0 for all i. We say that a bounded smooth dom&inc R” is
a-starshaped with respect to the origin if

n
Zaix,-v,- >0 onds2, (9)
i=1
with v = (v1, ..., v,) denoting the outer normal @2. We say thaf? is strictly a-starshaped with respect to the
origin if (9) holds with strict inequality. If these inequalities hold after replacintyy x; — P;, we say that? is
(strictly) «-starshaped with respect to the cenbes (P1, ..., P,). If §2 is (strictly) a-starshaped with respect to
some of its points, we simply say th&tis (strictly) «-starshaped.

Several remarks about this notion of “anisotropic starshapedness” are in order. We collect them in Section 2.5.
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Since the solution in Theorem 5 is smooth up to the boundary, we may write the PohoZaev identity, see
Proposition 1. Then, thanks to a suitable double passage to the limit, we prove:

Theorem 6. Assume thabs2 € C%7, and that the exponents; satisfy assumptiongs) and (7). Let o =
(a1, ..., a,) with

()
o =n———).
m; m*

Assume that eithep > m* and 2 is «-starshaped, olp = m* and §2 is strictly «¢-starshaped. Then, for every
A > 0, the unique mild solution fl) isu = 0.

Note that by (5) thay; in Theorem 6 are all strictly positive. . = m_, theno; = 1 for all i, anda-
starshapedness reduces to standard starshapedness.

2.4. Miscellaneous consequences
Thanks to Theorem 2, we calightly improve Theorem 6 whep = m*.

Corollary 1. Assume thabs2 € C27, and that the exponents; satisfy assumption&) and (7). Let o« =
(a1, ...,0,) be as in Theorend. Assume thap = m* and £2 is strictly a-starshaped. Then, for every> 0,
the unique weak solution ¢fl) isu = 0.

As already mentioned, existence results are strongdctdfl by the validity of conditio(5); notice indeed that,
as a consequence of Theorems 3 and 6, there holds

Corollary 2. If p =m* < m, then for any domaif2 there exists. > 0 such that(1) admits a nontrivial strong
solution. If p = m* > m, and(6) and (7) hold, then there exist domai2 such that for every. > 0 the unique
weak solution of1) isu =0.

By analyzing the proof of Theorem 6, we realize that in some cases we may state a stronger result, which
excludes also the existence of sign-changing solutions. Indeed we have:

Corollary 3. Assume thabs2 € C%7, and that the exponents; satisfy assumption) and (7). Let o =
(a1,...,a,) be as in Theorend. Assume thap > m* and §2 is «-starshaped. Then = 0 is the unique mild
solution to the problem
{ =3 8 (18wl 28u) = Alu|P%u in £2,
u=0 onos2.

2.5. Aboutx-starshapedness

The notion ofx-starshapedness with respect to the ceBteray be reformulated in a more geometric way as
(Tu(x = P),v)=(x — P, Tyv) 20 0nog, (10)

where T, denotes the second order tengof_; «;e; ® ;. In the following, by starshapedness we mean the
classical notion, which corresponds to our definition when all ¢hecoincide, namely when the tensay,

is a positive multiple of the identity matrix. Some basic differences betwestarshapedness and (ordinary)
starshapedness as well as the relationship between the two notions reveal themselves by looking at simple exampl
in dimensiom = 2.
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Fig. 3. Fig. 4.

Example 1.The simplest example of-starshaped domain is a bat it is immediate that it isx-starshaped with
respect to its centap for any choice otv. Nevertheless, i#1 # a2, and we move the centér of a-starshapedness
away from the cente© of the ball, B may result not-starshaped with respect ® (recalling (10), see Fig. 1).
This shows that, as it happens for starshapedness, the notestafshapedness is sensitive to the choice of the
center. But, in contrast to starshapedness, even a convex domain mayebstarthaped with respect to some of
its points.

Example 2.Consider an ellips& with equationux? + y? < 1 (@ > 0). One can check tha is «-starshaped with
respect ta) = (0, 0) for everya. Now rotateE clockwise by an angle/4: the rotated domaif’ may be no longer
a-starshaped with respect & (recalling (10), see Fig. 2). Thus, in contrast to starshapedmegarshapedness is
not invariant under rotations.

Example 3. For fixed o with a1 # a2, it may happen that a domain is starshaped with respect to some
center, butnot «-starshaped with respect &my center. For instance, consider the 8étrepresented in Fig. 3.
Clearly, it is starshaped with respect @b. However, takex with o1 > a2, and letP € M. To make the sum
a1(x1 — P1)vi + a2(x2 — P2)vp positive ond M, the pointP should belong to both shadowed subseta3fofThe
intersection between such regions is empty.
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Example 4.Again for fixeda with a1 # a2, the converse situation with respécthe previous example may occur,
that is, it may happen that a domairvisstarshaped with respect to some centerplotistarshaped with respect to
any center. Consider for instance the gétrepresented in Fig. 4. Since the produgb; remains positive on the
whole boundary oV, choosingx with a1 3> as the conditionw1x1v1 + a2x2vp > 0 is satisfied ordN, SON is
strictly a-starshaped with respect @. On the other handy cannot be starshaped with respect to #ypecause
such aP should belong to the intersection of the two disjoint shadowed subsats of

3. Proof of Theorem 1

The continuity of the embeddinﬁg’&”" (£2) c L™+ (£2) relies on a well-known Poincaré-type inequality. More
precisely, denoting byes, .. ., ¢,} the canonical basis &”, assume tha® has widthaz > 0 in the direction ot;,
namely SUR yen (X —y,€) =a. We claim that, for every > 1, we have
aq |
2

lully < =-lldiull, YueCH(). (11)

We prove (11) in the casg > 1, the case = 1 being simpler. Assume without loss of generality theatt {x
R"; 0 < x; <a}, and, for allx € R", setx = (x;, x’) in order to emphasize itsth component. Let € C}(.Q) and
let v(x) = u(x)d;u(x). We consider: (andv) as defined on the whole”, set to 0 outside spi). Denote byv™
(respectively ™) the positive part (respectively negative partpofrhen, we have

_ lula, x| — |u(0,x")|4

q

0

a
=/|u(t,x’)|q‘2u(t,x’)dt
0

a a
=/|u(t,x’)|q‘2u+(t,x’)dt+/|u(t,x’)|"‘2v—(t,x’)dt
0 0
and
a a a
/|u(t,x’)‘q72v+(t,x/)dt—/‘u(t,x/)|q72v7(t,x’)dt=/|u(t,x’)‘q72‘v(t,x’)|dt
0 0 0
which show that
a a
/|u(t,x’)|q_2v+(t,x')dt=%/|u(t,x’)|q_2|v(t,x’)|dt.
0 0
Therefore, we also have

Xi Xi
‘u(x,',x')‘q=q/|u(t,x’)‘q_2v(t,x')dt<q/|u(t,x’)‘q_2v+(t,x')dt
0 0

a a
gq/|u(t,x’)\"‘2u+(t,x’)dt=%/|u(z,x’)\"‘l\a,-u(t,x’)\dt.
0 0
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Hence, by integrating first with respectitpe (0, ) and then with respect to € R”~1 we obtain

aq -1
lllg < =Nl 13l
2

via Holder's inequality and (11) follows. Hence, by density, the embedﬂ@bﬁ‘ (£2) C L™+ (£2) is continuous. On
the other hand, for the continuity of the embeddWé’m(Q) C L™ (£2), we refer to [27, Teorema 1.2] and [29,

1,m

Corollary 2]. Thus, the embeddiigy™ (£2) C L™= ($2) is also continuous.

In order to show the compactness of the embeddmbm(sz) C L1(£2) for g < ms, we combine the
continuous embeddingfol’m (£2) C W&”"‘(Q) with the compact embeddin@’&”"‘(fz) c L1(£2) to deduce the
compact embeddingfg””(ﬂ) c L1(£2). Then we conclude by interpolation betweleh(£2) and L~ (£2). O

4. Proof of Theorem 2

We first show that any weak solution of (1) belongdtt(£2) for all ¢ € [1, co). We have two different proofs
under assumptions (i) and (ii), and we begin with

(i) The caseny <m* = p.
Let u be a weak solution to (1). The assertion thabelongs toL?(§2) for all ¢ < co may be equivalently
reformulated as
ue L@t (@) foralla > 0. (12)

By Theorem 1, to have (12) it is enough to show thfat! e W&”"(Q), which is in turn equivalent to

n

1/m;
lim Z (/ \8,-(14 -min[u?, L])|mi> < 400. (13)

L
——+00 i—1 2

In any case (i.e. if the |.h.s. of (13) is bounded or unbounded),-asoo, up to a subsequence, there exists at least
one index;j such that

1/m;

n 1/m;
Z(/ |9 (u - min[u“,L])|'"i> < c(/ 19 (u - min[ua,L])\’"f) , (14)
=1 "9 2

where C denotes some positive constant independent ofix such an indexj, and, for everyL > 0, set
oL == u - min[u®™i, L] € Wy (£2). Note that

|8iu|m’728,-u8,-<pL > min[u®™, L™i|0;u|™ foraexef2,Vi=1,...,n, (15)
and

|9; (- min[u®, L1)[™ < (a + D™ min[u®", L™]|3;u|™ foraexe2, Vi=1,...,n. (16)
Test (1) withg,, integrate by parts and use (15), Holder’s inequality and Theorem 1 to obtain (fér-aQy

n
2 / min[u™, L™ - [o;ul"

i=1 g

n
< Z / |8,-u|'"i_28iu dipr = X/um* ~min[u®™i, L™i]

i=1 5 o
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=Cr+1 / w"™ M min[u™, L")
>k

u

. (m*—mj)/m* . o
< Ck+)»( / u™ ) . < / (umj .min[uamj’Lmj])m /mf)

u>k u>k

N\ mi/m
< Ck+8k</(u -min[u®, L])" )
2

n 1/m; ™
< Ck+ek[z</\a,-(u.min[u“,L])\’"") } ,
i=1"p

where C; — oo andg; — 0 ask — oo and they may denote different constants from line to line (with
independent of. provided one take& > k%). We also stress that in applying the Hélder's inequality, we have
used the assumption, < m*). From the last inequality and from (16) we infer (fbr> k%)

n l/m,- m;
/|8./(”'min[”a,L])|mj<Ck+8k|:2(/|8i(”'min[”a’l‘])|'ni> } : (17)
2 =10
Inserting (14) into (17), we get

/|a,'(u-min[u“,L])|’”f < Gy +sk/|a,'(u-min[u“,L])|’"f.
2 2

Choosingk sufficiently large (i.e.s; sufficiently small), this shows that the r.h.s. of (14) remains bounded as
L — +o00 and (13) follows.

(i) The casep < moo.

Letu be a weak solution to (1). We claim that, if the implication
ue LV (Q) = ue LMo () (18)
holds for alla > 0, thenu € L9(£2) for all ¢ < co. Indeed, define the sequenieg} by setting
_ Moo —p

Moo Moo — P
ap= ) Ak+1= —ak + .
my my my

Sincea; — +oo (thanks to the assumptign < my,), applying (18) witha = a,, we deduce that € L9 (£2) for
everyqg < oo.
Let us prove (18). By arguing as in the casg < m* = p, with m ; = m_, we arrive at

n
Z /min[u“’"+,L’"+] | 9ju|™ gx/ul’-min[u“’"+,L'"+] <C, (19)
i=l o Q

whereC is a positive constant independentlobecauser € L4“"+TP ().
Assume thal > 1, let£2; = {x € £2; u(x) < 1} and note that

min[u®™+, L] > min[u®", L™ a.e.in2\ 21, Vi=1,...,n. (20)
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Then, by (16), (19) and (20) we obtain (for constafitsmdependent ol.)

Z / |9 (u - min[u“, L1)| CZ / min[u®™, L™ - |g;u™ < C. (21)
=l ove =l ova

On the other hand,

/|a u - minfu®, L1)|™ Z(a+1)m'/ ami 1 g;u|™ < CZ /|au|m, < 400. (22)

i=1 2 i=1 o
Hence, combining (21) and (22) and lettihg— oo we obtain that

n
> / |9; (@ T™H|™ < +oo.
i=1 0
By Theorem 1y € L@ +tDm=(2) and (18) is proved.
ConclusionPut f (x) := AuP~1(x) so that alsof € L7(£2) for all ¢ < co. Then, (1) reads
{ =Yg i (19| 20u) = fin 2
u=20 onos.
In view of [13, Theorem 2], we obtaime L*°(2). O

5. Proof of Theorems 3 and 4

By Theorem 2, for both statements it suffices to prove the existence of weak solutions.
We first prove Theorem 3. Let > 0 and consider the minimization problem

. 19; u|
min
i= l 0

Consider a minimizing sequenée} for (23). Since it is bounded iW&””(Q), by Theorem 1 up to a subsequence
{ur} convergesirL?(£2) to someu. Clearly,||u||, = y, so that # 0. By weak lower semicontinuity of the norm,
we also infer

we Wy (2), llull, = } (23)

liminf |0;ukllm;, = 10iullm; VYi=1,....n
k— 00

Thereforeyu is a minimizer for (23) and there exists a Lagrange multiplier> 0 satisfying the requirements of
the statement. Moreover,may be taken nonnegative sinieg has the same normsas 0O

The proof of Theorem 4 is obtained as a consequendeeofrfountain-pass Theorem [2] in its simplest form.
Therefore, we just quickly outline it.
On the spaceW&""(.Q) consider the functional

dyul™
) = /'”' ——/||P

i= 19
Theorem 1 ensures thdte Cl(W&”"(Q)). Its Fréchet derivativd’ is defined by

(7', v) Z/wm’”r 29iu v — A /|u|1’ 2y Yo e Wy ().

i=1 g
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By elementary calculus, it is not diffitito show that there exists a constaht- 0 independent of such that

n n m;
. al
ai>0vi, Y ai=te(©1) = Y p (24)
i=1 i=1
By the embeddingvg”"(!z) C L?(£2) we obtain
I iu Iml 1m
J(u) > —cllu |I1m Vu € Wy (£2).
i= l o)
This, combined with (24) by taking; = ||9;u||,»,, proves that there exists g > 0 such that
Jw)za Vlullim=8. (25)
Moreover, ifu € Wl " (2)\ {0} andt > O is sufficiently large, them := ru satisfies
J()<0 and |vlim > B. (26)

Conditions (25) and (26) show that the functiodahas a mountain-pass geometry.
Consider now a Palais—Smale sequepqgé for J. It satisfies (for some)

Ju) —c and J'(u) — 0in[Wy"(2)] ask — oo.

To derive a contradiction, assume thay| 1., diverges; then,

1 /11
o(llurllzm) = J (ux) — ;(J'(Mk), ug) = Z(m_, - ;)! |0 uge|™

i=1

against the assumption; < p for all i. Therefore, up to a subsequen&e,} converges weakly irWé’m(.Q) to
someu. By the compact embedding stated in Theorem 1, we also have u in L”(£2). Hence, since both
(J’(uk), ur) — 0and(J'(uy), u) — 0, we have

/|8 ug|™ —>k/|u|p— /|a u|™. (27)

i=1 o i=1 0
By weak lower semicontinuity of the norms, for allve have limin [|9; u |/, = ||9;iu|lm;; this, together with (27)

and weak convergence, shows that> u in W, L ’"(.(2) Therefore, the Palais—Smale condition holds.

As a straightforward consequence of Mmeuntam pass Theorem, we deduce tlhiaadmits a critical point.
SinceJ (u) = J(|u|) for all u, we may assume that such a critical point is nonnegative. This concludes the proof of
Theorem 4. O

6. Proof of Theorem 5

It is not restrictive to assume that= 1. The proof consists of four steps.
Stepl. There exists a unique functiane X := W&””(Q) N L?(£2) which solves (8). For all test functions
@ € X it satisfies
n

/ { Z[(|a,-w|mf—2+e(1+|Dw|2)("1“2”2)aiw]a,»¢+|w|”—2w¢, - / fo. (28)
2

o i=1
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In fact, Eq. (28) holds if and only if'(w) = 0, whereJ is the integral functional

. 1
J(M)=/[J(Du)+—|u|p—fu}, ueX,
)4

2

with j (&) :=Y"_, % + -E (14 £]?)™-/2. If we endowX with the weakW," (£2) topology, the functional is
lower semicontinuous, becaugés convex and coercive. Thus, by the direct method of the calculus of variafions,
admits at least one minimizar € X, which satisfies (28). Finally, the uniqueness is gained by the strict convexity
of the functional/.

Step2. The weak solutionw found in Step 1 belongs ta>(£2). Setk := (sup fNY PV, and§2; := {x

2 |lw(x)| > k}. By takinge = (sighw) maxX|w| — k, 0} as a test function in (28), we have:

n n
/Zla,»ww“ </[Z|aiw|”” +8(l+|Dw|2)(m2)/2|Dw|2]

2 i=1 2 i=1

= [ (1wl = B)Ls - signu) ~ w4 <0,
2
which shows thaljw|| o < k.

Step3. The weak solutiomw found in Step 1 belongs ttzvkl)’c‘”(.(z) N ngc(.(z). The first equation in (8) may be
written in the form)_}"_; 8;a; (Du) = b(x), by setting

ai(®) = [la" 2+ 1+ 1ER) " PG, @) =00 + w]P 2w, (29)
The functionsy; satisfy assumptions (2.3)—(2.6) of [18] (taking thergia= m_ andg = m). The functionb(x)
is in L*°(£2) (using the global boundednesswflready proved in Step 2). Finally, (4.2) in [18]is valid in view of
(6) and (7). Hence, by Theorem 4.1 of [18], there exists a funtﬁi@mm(l)’é’ (£2) which satisfies, for ever®’ cC £2,

n
f[za,»(l)w)a,»<p + b(x)(p:| =0 Vype W(}*”” (£2). (30)
Q i=1
We notice that alsa satisfies (30); then, since the functioals strictly convex, we deduce that= w. Using
again Theorem 4.1 of [18], we deduce that W5 (2) N H2.(£2).

Step4. The weak solutiomw is of classC2(2).
The coefficients;; anda defined in (29) are differentiable in their variables, bounded with their first derivatives
on every compact region @2 x R x R", and satisfy a uniform ellipticity conditionzci’j dja;(E)nin; = enl?).
Therefore, the interioC? regularity of w is obtained in a standard way, by applying the theory of uniformly
elliptic equations (see e.g. [11, Chapters 13, 14, 15] or Theorems 6.2 and 6.3 in Chapter 4 of [15]). In order to
obtain gradient bounds up to the boundary (which eniail C2(£2)), one may either combine the interior gradient
bound with the boundary Lipschitz estimate in [11, Theorem 14.1], or adapt the technique used by Lieberman in
[16] or by Tolksdorfin [26]. O

7. Proof of Theorem 6

The proof of Theorem 6 is inspired by a work of Otani [20], and is based on the construction of a sequence of
“doubly approximating” problems for (1). More precisely, lebe a mild solution to (1). Let; = gx(u), where
theg: (k € N) areC1(R") functions such that

gk(s)=s Vs<k, () =k+1 Vs>k+2 0<g(s)<1 Vs>0.
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Then, for allk € N and alle € (0, 1) there exists a functioff® € C2°(§2) such that

-1

I Félloe <Ck Ve>D0, fE—=2wl™ inL'(£2), Vrell,o0) (31)

for some constanty > 0 independent of. By Theorem 5, we know that for adl € (0, 1) there exists a unique
solutionw® e C%(2) to:

i=

w=0 onos2.

The structure of the proof will be the following. We first establish some a priori estimates satisfield foy
fixed k (see (33)). Then we apply m’; a generalized PohoZaev identity for solutions to variational equations, see
Proposition 1. Thanks to the a priori estimates we deduce an integral inequality satisfied by the Ia'rhib’; as
¢ — 0 (Lemma 1). In the next step, we pass to the limit jproving that the limitwg of w; ask — +oo coincides
with u (the initial mild solution to (1)), and that satisfies in turn an integral inequality. Finally, we conclude the
proof by showing that, wheg is «-starshaped (respectively strictlystarshaped), ang is strictly supercritical
(respectively critical), such integral inequality is fulfilled if and onlyifs identically zero.

We now begin with the a priori estimates. We drop the intleince we maintain it fixed, so we simply denote
by w, the unique solution to (32). By using (31) and by arguing as in the proof of Step 2 in Theorem 5 we infer
that ||we|lco < Cl/(”’l) for everye € (0, 1). Then, multiplying (32) byw, and integrating ovef2 gives

Z /|aw " </f€we<|9|C”/(” b

{ — Y1 dilllaiw|™ 2 4+ e (L4 | Dw[?) "2 2gw] + Alw|P 2w = ¢ in £, (32)

i=1 o
We have thus obtained that, for sofie- 0 and alle € (0, 1),
lwell1,m < C, lwelloo < C. (33)

By (33), Theorem 1 and interpolation, up to a subsequence, there existsch that
we = wy N Wy (), we — wr  INL(R) Vrell,o0). (34)

Test (32) with somey € Wol’m(.Q) and lete — 0. By (34), we know thatd; w,|?~23;w, remains bounded in

L™ () foralli =1,...,n, thus Theorem 1 in [6] gives,; we|?~20;w, — |9;wk|P~29;wy in L™ (£2). Hence,
using also (31), we obtain

Z /|8 wie|™ 20; wied; v_—A/ |wi|P~ wkv+2A/ =Ly wye WOl’m(.Q). (35)
i=1 o
In particular, taking = wy, in (35), yields

Z /|awk|"“ =—xf|wk|”+2x/ e (36)

119

Next, multlply (32) byw, and integrate by parts. Lettirg— 0 and taking into account (31) and (34), gives

/|8w i s A/lwk|p+2A/ L.

i=1 o
This, together with (36) and (34), shows that

we = wy in Wy (£2). 37)
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Without loss of generality, in the sequel we assume that the cendestafrshapedness is the origin, that is (10)
holds (with strict inequality ifp = m*).

In order to derive an integral inequality far,, we shall apply tou’; the generalized PohoZaev identity [22], as
stated in [23, 81].

Proposition 1.Let £2 be a smooth bounded open seR#, and letu be a function inC2(£2) N C1(£2) withu =0
onas2. Assume that solves the Euler-Lagrange equation

div Fe (x, u, Du) = Fy(x, u, Du),
where the integrand = F(x, s, £) is supposed to be oiclass‘L on £ x R x R" together with7:. Then, for any
scalar functiorz and vector field: of classC1(£2) N C(£2) the functioru satisfies the identity

f[]-‘(x, 0, Du) — (Du, F¢(x,0, Du))|(h, v) ds

a0

=/f(x,u,Du)divh—i—/(h,}'x(x,u,Du))
Q

_/(DuDh +D(au),fg(x,u,Du)) —/aufs(x,u,Du).
2 2

We are now ready to prove

Lemma 1.Letm;, a, 2, and p satisfy the assumptions of TheorénmAssume that; € Wol’m (£2) satisfieq35).
Then

i=1 0 0
whereR; :=limsup._ Z?zl(l— mi,)fa.o |0; we|™i (x, Tyv)ds.

Proof. Letw, € C%(£2) be the unique solution of (32), see Theorem 5. We observe that (32) is the Euler—Lagrange
equation of the integral functional with integrand

. |&i ™ am-/2 | A op )

F(x,s,€) = Z +—(1+|fs|) +=ls? = f7(x)s.
i=1 i p

Then, we apply Proposition 1, by choosing as a scalar funationthe constant = n/m* and as a vector function

h(x) the fieldx deformed through the tens@y, namelyh(x) = (x1x1, ..., ayx,). We obtain

/[Z(mi — 1)|a we ™+ —(1+ 1Dw, 12" 214 1 - m_)lDwS|2):| - (x, Tyv) ds
982

i=1

0w £ 2 A "
O 2 @t 1D Bl — o —mengia,»fs
n— p i=1 o

Z / 0w ™ + e (L+ [Dwe|2) "2 2 9w, 2]
2



730 I. Fragala et al. / Ann. |. H. Poincaré — AN 21 (2004) 715-734

_-2)/2
-— [Da we|™ +(1+ | D |2) "2 |Dwg|2+x|ws|"—f€we}.
2

m* i=1
We observe that, by the present choice (6) ofithand (3) ofin*, the terms containinﬁQ |0;w,|™ forall i cancel.

We now want to send — 0. First note that

lim sups/(l—i— |Dwe[?) " "2 (14 (L= m_)| Dwe?) - (x, Tuv) ds <O
e—0
82

because the map— (1 + s2)™-=2/2(1 + (1 — m_)s?) is bounded from above oR, and(x, 7,v) > 0 by the
a-starshapedness assumption. Moreover, integrating by parts and using (32), yields

n
. _-2)/2
—/ngia,-fs=ff€x,-a,~wg+/[x|w8|f’+§ 18 wel™ +&(L+ | Dwg ?) "2 |Dwg|2].
j=1

2 2 2
Therefore, using (31), (34), (37) and Lemma 1,

1
0>I|msup/2<1— —>|8 we|™ (x, Ty v)ds+nk/|:—|wk|p 2u,f lwki|
m
2

e—0 5

_ A _
+2)\Za,-/u,f Ly 3iwk+n/|:k|wk|p+2|8 wk|’"f:| - n_/[|wk|p 2ul lwk].
X m*
i=1 Q Q 2
Finally, using (36), we obtain the result

Next, we letk — oo and we obtain

Lemma 2.Letm;, «, 2, and p satisfy the assumptions of Theor6m\ssume that is a mild solution of(1). Then

whereR :=limsup,_, | o, R, with Ry as in Lemmal.

Proof. By (36), Holder’s inequality, and the convergenge— u in L”(£2), we have

n 1/p
> [ [ <e( frur) " wen.
i=1 o Q Q

Hence {wy} is bounded in.? (£2) and in W&"”(Q), and therefore there exisis) € W&""(.Q) N L?(£2) such that,
up to a subsequence; — wg in Wl’m(.(z) and inL?(£2). Thus, lettingk — +o0 in (36), we get

inT |: /|8,wk|m' +)»/|wk|p:| —2)»/14” Lwo. (38)

i=1 ¢ o
On the other hand, taking= wq in (35), and lettingk — +o00, gives

Z /|8,wo|m' +)»/|wo|p—2k/up Lwo,

i=1 o
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which together with (38) and weak convergence provesithat> wg (strongly) in W&”"(Q) NLP(£2).
We claim thatwo = u. Indeed, by letting — +o0 in (35), we infer thatwg satisfies

n
> / 18; wo|™ ~28;wo ;v = —x/ lwol?2wov + 21/141’*11; Vv e Wy (2) N LP(£2).
i=l g 2 2

Sinceu is a mild solution to (1), the above identity holds when replacingvith «, and by subtracting we obtain,
forall v e Wy (2) N LP(£2),

n
> / (18;wol™ ~20;wo — |9u|™~%0;u)d;v = 1 / (lul”~2u — Jwol "~ ?wo)v. (39)
i=1 5 0
Choosingv = wo — #, and taking into account that
f(|a,~wo|mf—za,~wo — [5u|™ 2 9u) (3;wo — du) > f(|a,-wo|"“—1 — 19ue™ 1) (18;wol — [3;ul). (40)
2 2

the left hand side of (39) is nonnegative. Since its right hand side is nonpositive, we get immediately.
We can now pass to the limit #&s— +o0 in Lemma 1. Since is a mild solution we have

/ufflxi Biwk—>/u”_1x,- ou Vi=1,...,n. (41)
2 2
Therefore, using the identities

1 n
/up_lx,' 3,~u=——/up and Z /|8,-u|'"i :A/u”,
p

Q2 Q i=l o Q
we obtain the statement.0

We are now in a position to give the proof of Theorem 6.

If p>m*, sinceR >0, by Lemma 2 we obtain = 0.
If p=m*, Lemma 2 yields

n

. . 1 .

0:R:I|msupllmsupz<l— —) / |0;we | (x, Tyv) ds. (42)
k—+co -0 T mi o

Integrating (32) (withw = w,) overs2, by the divergence theorem, we obtain
n
‘ wagV’—zws —ff=> /[|a,-wg|"“—2 +e(1+1Dwe2) ™ "2 0wevy |
2 =150

Letting firste — 0 and then k&~ +o00, we deduce

n
A/u”_lglimsuplimsupz /[|B,~w|’""_1+8|8,-w|(1+|Dw|2)(m__2)/2]ds.
a5 k—+oc0 e—0 i=1 0

Since inf (x, T,v) > 0 (by strict «-starshapedness), by (42), the righhtiside above equals zero. We deduce
thatu = 0, and the proof of Theorem 6 is complete.

Remark 2. To ensure the convergence (41), it is sufficient to hgue~1 ¢ L™ (£2) for all i. Actually, for £2
a-starshaped with respect to the origin, the conditianL (=Y~ (£2) for mild solutions in Definition 1, may be
relaxed tay,u?~Le L™ () foralli =1,...,n.
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8. Concluding remarks and open problems
8.1. About Theorem 4

We show here that the assumptipn- m in Theorem 4 is necessary to apply the mountain-pass theorem.
o An example of an unbounded Palais—Smale sequence.

Assume tharz c RYjs the cylinden2 = (0, ) x By, whereBy is the unit ball inR®. Taker =1, m; =m =
p=2 mi=3 dfori=2,...,10 and letn = (m4, ..., m10). Then, the corresponding functional reads

J<u>=—/|alu| 43 Z/|au|4/3 /| 2.

i=2 0
For allk € N, consider the functiomy : [0, 1] — R defined by
1 ifrel0,k3,
-1 ifrek31],
Consider also the sequence of functions

if r € [0, k3),

kl5
k
e(r) = {r —578 if r e (k73,1].

¢k()—{

up(x1, x') =sinxy- ¢ (1x'l),  x'=(x2,...,x10.
Then, we havedq denotes possibly different positive constants)

1

m
N2 = g2 = ¢ / iy dx1 - / r862(r) dr
0

0

> % r8(r_10—2r_5+1)dr> % / r_zdr+0(1) >ck
k=3 k=3
so that the sequenge; } is unbounded irW&”"(Q). On the other hand,

1

/Ia uk|4/3<0/|v /uk|4/3_C/ 8o Par <

14/3"
=29 0 e
Hence, by Hélder’s inequality
10
(7" ), )] < Zf 101730 < O(D) - [[vllam Vv € Wy (82).
i:2s2

Therefore, ag — oo we have
Ju) —0 and Ju) —0in[Wy " ()]

so that{u;} is an unbounded Palais—Smale sequencd for
o Failure of the mountain-pass geometry.
Taken =2,m1 = %, mo = 3, and note that* = 24, so that (2) and (5) are satisfied. Take- 2, then

3 Ao
J(w) =~ ||31M||4/3+ ||31M||3—§||u||2~
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Hence, by inequality (11) and interpolation we obtain

4/3 Ao 4/5  6/5
Jw) > Callulls + Callul = 5 lullgjlull3”.

By applying Young's inequality we then obtaif(i) > O for all u # 0, provided is sufficiently small. Clearly, in
this case/ does not have the standard mountain-pass geometry.

An even simpler argumentworks wher= m . Take any:, anym; and assume that=m .. Then, by applying
inequality (11), we see that does not have a mountain-pass geometay<f (2/ap)?, wherea is the width ofs2
in the direction corresponding to the maximal exponent

8.2. About mild solutions

Consider the semilinear problem (= 2)

—Au=1A+u)?"1 inB,
u>0 in B, (43)
u=~0 onadnB,

wherei > 0, p > 1 and Bdenotes the unit ball iR" (n > 3).

It is well-known [4] (see also Theorem 2 above), that any weak solution of (43) is a strong solution whenever
p <2

A simple calculation shows that, jf > 2/=2 andi = -2, (n — 2252), then the functior (x) = |x|2/(?=2 — 1

) —
satisfies (43) imB \ {0}. It is also not diffictllt to prove tﬁe following facts
2n -2
UeHMB) & p>—2" UeliB) & q<"P2
n—2 2
Therefore:

(i) U is aweak solution of (43) (i.&/ € H}(B) N L#»~D/+2(py) if and only if p > -2
(i) U is amild solution of (43) (i.eU € L2~V (B)) ifand only ifn > 4 andp > 22

These statements suggest that, in general, one cannot expect a weak solution of (1) to be a mild solutiog,if
Moreover, it seems more likely that a weak solution is indeed a mild solution for large values of the exponent

8.3. Some open problems

Problem 1. Prove Theorem 2 under the only assumption {hat m~,. The example in Section 8.2 shows that it
is not reasonable to expect strong solutions of () # m,. Note that our proof of Theorem 2, case (i), does not
work if p =ms = m4 due to the failure of the step which uses Hélder’s inequalitysnappears. On the other
hand, our proof in case (ii) cannot be followed wheg:= m ., because there is no positiug which can initialize
(18).

Problem 2. Find sharp statements in the situation of Theorems 3 and 4. For which expgnenis,, does (1)
admit a solution for alk > 07? It seems that the resonance situation occurs as sqog @as, (see also Section 8.1)
but maybe there are some “spectral gaps”, namely spraém _, m) such that (1) admits a strong solution for
all A > 0.

Problem 3.Prove Theorems 5 and 6 under less restrictive assumptions on the expendtusinstance, one could
try to relax (6) and (7) with (5). In fact, (6) and (7) are used in Step 3 of the proof of Theorem 5. As suggested
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in [1], we actually believe that a gradient estimate for the solution of the approximating problems can be obtained
under thesoleassumption (5). Assumption (6) is also needed in some of the estimates in the proof of Theorem 6,
but the case whena; < 2 for somei may be handled in a similar way as in (4.22) in [20].
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