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ABSTRACT. – We consider a large class of one-dimensional maps
arising from the contracting Lorenz attractors for three dimensional
flows: the eigenvaluesλ2 < λ1 < 0< λ3 of the flow at the singularity
satisfyλ1+ λ3 < 0 (instead ofλ1+ λ3 > 0 as in the classical geometric
Lorenz models). Such flows were studied by A. Rovella who showed
that non-uniform expansiveness is a persistent form of behavior (positive
Lebesgue measure sets of parameters). Using mainly expansiveness, we
prove the existence of absolutely continuous measures invariant under
these maps, and from this fact we are able to construct Sinai–Ruelle–
Bowen measures for the original flows that generate them.

RÉSUMÉ. – Nous considérons une classe importante de transformations
uni-dimensionelles provenant d’attracteurs de Lorenz contractants des
flots en dimension 3 : les valeurs propresλ2 < λ1 < 0< λ3 du flot au
point singulier satisfontλ1 + λ3 < 0 (au lieu deλ1 + λ3 > 0, comme
dans les modèles geòmétriques de Lorenz standards). Ces flots ont été
etudiés par A. Rovella qui a montré que l’expansion non-uniforme a un
comportament persistant (ensembles de paramètres de mesure positive).
En utilisant cette expansion non-uniform, nous démonstrons l’existence
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de mesures invariantes par ces transformations qui sont absolutement
continues. De ce fait, nous déduisons l’existence de mesures SRB pour le
flots qui les induisent.

1. INTRODUCTION

Sinai–Ruelle–Bowen measures, SRB or physical measures, are those
measures for what the Birkhoff averages converge to a constant for a
large Lebesgue set. More precisely: iff :M→M is a transformation on
a manifoldM , we call anf -invariant measureµ an SRB measure if there
exists a positive Lebesgue measure setB(µ) of pointsx ∈M such that

lim
n→∞

1

n

n∑
i=1

ϕ
(
f i(x)

)= ∫
M

ϕ dµ for everyϕ ∈C0(M,R).

and the setB(µ) is called (ergodic) basin of attraction ofµ.
For a flowf t :M→M the definition is

lim
T→∞

1

T

T∫
0

ϕ
(
f t (x)

)
dt =

∫
M

ϕ dµ for everyϕ ∈C0(M,R).

Lorenz flows are related to the system studied in [8], as a truncation of
a Navier–Stokes equation. Guckenheimer and Williams [3] introduced
a geometric model called expanding Lorenz attractor, in which they
suppose that the eingenvaluesλ2 < λ1 < 0< λ3 at the singularity of the
flow satisfy the expanding conditionλ1+ λ3> 0. In [11], the expanding
conditions is replaced by the contracting oneλ1 + λ3 < 0. The general
assumptions used to construct the geometric models, also permit the
reduction of the 3-dimensional problem, first to a 2-dimensional Poincare
section and then to a one-dimensional map. These maps are also called
Lorenz-like.

We will prove the existence of a unique and ergodic absolutely
continuous invariant measure (a.c.i.m.) for certain one-dimensional
Lorenz-like maps (Theorem A). After this, we will relate these results to
the case of flows and construct an SRB measure in this case too. Since the
a.c.i.m. found for the one-dimensional case is unique, the SRB measure
constructed for the flow is also unique.
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We will use four properties of the one-dimensional Lorenz-like maps
studied by [11]. More precisely. LetI ⊂ [−1,1] be a compact interval
andf : I → I be a map such thatf (I ) ⊂ I with a discontinuity at the
origin. Setc±k = limx→0± f

k(x) for k > 0. So, we will requiref to satisfy
conditions (A0)–(A3) below.

(A0) Outside the origenf is of classC3 and with negative Schwarzian
derivative, and also satisfies

K2|x|s−16 f ′(x)6K1|x|s−1

for some constantsK1,K2 ands with s > 1.
(A1) (f n)′(c±1 ) > λnc , for someλc > 1, and forn> 1.
(A2) |f n−1(c±1 )|> e−αn someα small enough, and alln> 1.
(A3) For any intervalJ ⊂ I there exists a numbern(J ) > 0 such that

I∗ ⊂ f n(J ) (f is topologically mixing onI∗ = [c+1 , c−1 ]).
Rovella in [11] showed the existence of a one parameter family of maps

which exhibit conditions (A0)–(A2) in a set of parameters of positive
Lebesgue measure. For a slightly smaller class of maps it is also true that
conditions (A1) and (A2) implies condition (A3). This fact is proved in
Lemma A. We work here with such a continuous family of maps, but the
arguments, and then the conclusions, remains valid for a larger class of
maps with negative Schwarzian derivative and with a finite number of
non degenerate critical points.

It is clear from our definitions that ifµ is an absolutely continuous
invariant measure forf and ergodic then it is an SRB measure. Now, we
can state our main theorem.

THEOREM 1.1 (Theorem A). –Under conditions(A0)–(A3), f ad-
mits an absolutely continuous invariant probability measure. This mea-
sure is unique and ergodic.

The basic strategy is to reduce the non-uniform hyperbolicity of the
dynamics of our maps to that of piecewise uniformly expanding maps.
That is what conditions (A1)–(A2) are for, which express a kind of
expansiveness. Condition (A3) is used principally for the uniqueness.
The techniques used here resemble that of Viana [14]. Frequently, we
will refer to this work for proofs that do not need major modifications.

The main difference in our aproach comes from the fact that our map
is not continuous and also has two critical orbits. We overcome the prob-
lem defining the tower to keep track of both orbits, resulting in a tower
extension with two blocks. It is also possible to work with maps that
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have more discontinuities or singularities if they have properties similar
to (A0)–(A3).

SRB measures were first proved to exist for Anosov systems [13] and
then for general uniformly hyperbolic diffeomorphisms [12] and flows
[1]. For these systems there are finitely many SRB measuresµ1, . . . ,µN ,
and their basin of attractions cover Lebesgue almost all the phase space
M . Moreover, they are stochastically stable (see Kifer [5,6]). The same
is true for the expanding Lorenz attractor as proved in Chapter 4 of [6].
We shall show that the contracting Lorenz atrractor is also stochastically
stable in a forthcoming work. Here is to be pointed aut that J. Palis
conjectured that every dynamical system can be approximated by another
having only finitely many attractors, supporting physical measures that
describe the time average of Lebesgue almost all points, and that the
statistical properties of this measures are stable under small random
perturbations, see [9,15]. In that sense our present and next works can
be seen as a contribution to, or at least as an example of, Palis conjecture.

Theorem A is proved in Sections 2 through 5. In Section 6 we will
establish some results on decay of correlations. This is made to complete
the description of the dynamics of the one dimensional mapf . In the last
section, we will conclude relating this result to the contracting Lorenz
attractor.

2. SETTINGS

For our constructions and proofs we need several constants, let us fix
them here. First, suppose that the constantα in (A2) has been taken
small enough so that esα/(s−1) < λ1/s

c . In order to construct the tower
extension, we fixβ ∈ ((s + 1)α/s, sα/(s − 1)), andλ > 1. Up to here
these constants are enough for the definitions, but we will need other
constants to establish the expanding behavior of our tower extension. Let
ρ > eα such that e−αλ1/s

c > λρ, and also let 1< σ 6 σ0 and 0< δ 6 δ0,
whereσ0 ∈ (1, λ) andδ0 is much less thanα. These constants are given
by Lemma 3.1 later on this section.

Our next step is the definition of the tower extension (cf. [14]). The
main feature of the tower is that it transforms our mapf , which is not
uniformly expansive, to a map̂f that is uniformly expansive. For this,
setB0 = I andB±k = [c±k − e−βk, c±k + e−βk] for eachk > 1. We let
E±k = B±k × {k} and setÎ = (⋃k>1E

+
k )∪ (

⋃
k>1E

−
k )∪E0. Note that the

critical point 0 is not contained inB±k for anyk > 1, since (A2) implies
|c±k |> e−αk > e−βk .
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We want to definef̂ : Î → Î to be a tower extension in the sense of
[14]. But, since our initial map has a discontinuity, we should establish
that a point(x,0) which is ready to ‘climb a level’ should go up to level
E+1 if x > 0, and to levelE−1 if x < 0.

The precise expression for̂f (x, k) is the following:

f̂ (x, k)=



(f (x),0) if |x|> δ andk = 0,

(f (x),0) if f (x) is not inB+k+1 for (x, k) ∈E+k
or if f (x) is not inB−k+1 for (x, k) ∈E−k ,

(f (x), k + 1) otherwise,
and with the additionally conditions that,
(f (x), k + 1) ∈E+k+1 if (x, k) ∈E+k or
(f (x), k + 1) ∈E−k+1 if (x, k) ∈E−k .

Typically, a point(x,0) moves around in the ground levelE0 for a
while until it hits (0, δ)× {0} or (−δ,0)× {0} at some timem> 0. Then
it starts climbing the tower in the following way

f̂ m+j (x,0)= (f m+j (x), j), 06 j 6 n,

where (f m+j (x), j) ∈ E+j if f m(x) < 0 and (f m+j (x), j) ∈ E−j if
f m(x) > 0.

Unlessf m(x) coincides with the critical point 0, the integern is finite
and in the next iterate the orbit falls back to the ground level, that is,
f̂ m+n+1(x,0) = (f m+n+1(x),0). Observe that we must haven > H(δ)
for some integerH(δ) > 1 which can be made arbitrarily large by
choosingδ small enough.

Now we define the cocycleω0. First, we setω0(x,0) = 1 for every
x ∈ B0. Given any point(x, k) ∈E±k , k > 1, there are two possibilities:

(1) There existsz with |z| < δ such thatf̂ k(z,0) = (x, k), in which
case we define

ω0(x, k)= λk((f k)′(z))−1
.

It’s easy to see that ifz exist then it is unique, and has the additional
property thatz < 0 if (x, k) ∈E+k andz > 0 if (x, k) ∈E−k .

(2) There is no suchz, in which case we simply setω0(x, k)= 0.
For eachk > 1 we shall denoteW±k = {x ∈ B±k : ω0(x, k) > 0} and

W0= {x ∈ B0: ω0(x,0) > 0} (i.e.,W0= B0).
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Note that everyW±k is an interval whose closure containsc±k . We also
write

Ŵ =
( ⋃
k>1

W+k × {k}
)
∪
( ⋃
k>1

W−k × {k}
)
∪W0.

Now, we associate toω0 the Borel measurem0 = ω0m wherem is
the Lebesgue measure on̂I . Moreover if we denote| · | the metric
in Î induced by the standard metric inI , we can associate toω0 the
Riemannian metric‖ · ‖(x,k) = ω0(x, k)| · |.

It results from the definition thatω0 andm0 are both supported on the
subset̂W . Reflecting the fact that points in̂I\Ŵ are transient forf̂ , and
play no role as far as asymptotic behavior is concerned. Let us note that
certain points in the ground level are also transient, specifically,f̂ (Ŵ )

does not intersect{(f (−δ), c−1 )∪ (c+1 , f (δ))} × {0}. In order to see this ,
if there exist(x, k) ∈ Ŵ such that

f̂ (x, k) ∈ {(f (−δ), c−1 )∪ (c+1 , f (δ))}× {0},
then f (x) ∈ (f (−δ), c−1 ) ∪ (c+1 , f (δ)), and in that case we must have
x ∈ (−δ, δ) if δ > 0 is small enough so thatc−2 < f (−δ) < c−1 andc+1 <
f (δ) < c+2 . In order to havef̂ (x, k) ∈ E0 we must havek + 1> H(δ).
Assume that

0< δ <
(
2(16K1)

1/(s−1))−1

so that

length(Bk)6 2e−βk 6
(
2(16K1)

1/(s−1))−1

then, sincex ∈ B±k ∩ (−δ, δ), the intervalBk must be contained in
(−(16K1)

−1/(s−1), (16K1)
−1/(s−1))\{0}, and we have

f ′(y)6K2|y|s−16K1

(
1

(16K1)1/(s−1)

)s−1

6 1/16,

sof ′(y)6 1/16 for everyy ∈ B±k .
On the other hand, from the fact that eβ < es/(s−1) < λ1/s

c < 2 we have

∣∣f (x)− c±k+1

∣∣6 1

16
e−βk 6 eβ

16
e−β(k+1) 6 1

8
e−β(k+1),

which means that̂f (x, k) ∈E±k+1 contradicting the choice of(x, k).
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Now, for any point(y, l) such thatf̂ (y, l) ∈ Ŵ , we set

g(y, l)= 1

f ′(y)
ω0(y, l)

ω0(f̂ (y, l))
.

Clearly, g(y, l) > 0 with this definition. Moreover, when(y, l) ∈ Ŵ ,
1/g(y, l) is the Jacobian of̂f at (y, l), with respect to the metric‖ · ‖ (or
equivalently, with respect to the measurem0).

Now, given a measurable functionϕ : Î →R we define

var(ϕ)=∑
k>1

var(ϕ |E+
k
)+∑

k>1

var(ϕ |E−
k
)+ var(ϕ |E0),

sup(ϕ)= sup
k>1

(
sup(ϕ |E±

k
)
)
, and∫

ϕ dm0=
∑
k>1

∫
E+
k

ϕω0 dm+∑
k>1

∫
E−
k

ϕω0 dm+
∫
E0

ϕω0 dm.

Now we define theBV -norm ofϕ as

‖ϕ‖BV = var(ϕ)+ sup(|ϕ|)+
∫
|ϕ|dm0,

and letB̂V = {ϕ : Î → R: ‖ϕ‖BV <∞}. With this definition, it is clear
thatB̂V is a Banach space.

Finally, we describe the transfer operatorL0 associated tof̂ . Given
ϕ ∈ B̂V and(x, k) ∈ Ŵ , we set

L0ϕ(x, k)=
∑

f̂ (y,l)=(x,k)

ϕ(y, l)ω0(y, l)

f ′(y)ω0(x, k)
= ∑

f̂ (y,l)=(x,k)
gϕ(y, l).

Observe that fork = 0 there may be infinitely many terms. Then we
extendL0ϕ to Î\Ŵ by asking that it be constant on each connected
component ofB±k \W±k for eachk > 1.

More precisely, letak < bk be the endpoints of the intervalW±k , then
we define

L0(ϕ)(x, k)=
{

lim supy→a+
k
L0ϕ(y, k), if y 6 ak ,

lim inf y→b−
k
L0ϕ(y, k), if y > bk .

This definition is made so that var(L0ϕ) and sup|L0ϕ| are not affected
if we restrict ourselves tôW . The variation ofL0ϕ overE±k coincides
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with the variation ofL0ϕ over W±k and a similar fact is true for the
supremum ofL0ϕ. Of course the same holds for

∫
L0ϕ dm0 becausem0

is supported on̂W . In particular, the duality relation∫
L0(ϕ)ψ dm0=

∫
ϕψ ◦ f̂ dm0, (1)

whenever the integrals make sense, is not affected by this convention.
Clearly, L0 is a nonnegative operator, in the sense that it maps

nonnegative functions to nonnegative functions. So, relation (1) also
implies thatL0 is not increasing with respect to theL1-norm, that is∫

L0(ψ)dm06
∫
L0(|ψ |)dm0=

∫
|ψ |dm0 for everyψ ∈ B̂V .

3. EXPANSION LEMMAS

In this section we state two key lemmas on the expanding behavior of
certain iterates of the mapf . They are formulate in the same form as
[14], because they are also true for the maps we are considering here.

LEMMA 3.1 (Vi 5.2). – There are constantsσ0> 1, b > 0 andδ0> 0
such that for any0< δ 6 δ0 there isc(δ) > 0 such that, given anyx ∈ I
andn> 1

(1) if x,f (x), . . . , f n−1(x) /∈ (−δ, δ) then(f n)′(x)> c(δ)σ n0 ;
(2) if in addition,f n(x) ∈ (−δ, δ) then(f n)′(x)> bσ n0 .

Proof. –It was proved in other form by A. Rovella in [11], see Lemma
1, 1.1, 1.2 and their proofs, in the mentioned article.2

Now, we take the constantδ in the definition of the tower, satisfying
0< δ 6 δ0, and fixσ ∈ (1, δ0], and we have

LEMMA 3.2 (Vi 5.3). – There is a constantC > 0 such that for any
z ∈ (−δ,0) andk > 1

(i) if |f j (z)− c−j |6 e−βj for every16 j 6 k then

1

C
6 (f

k)′(f (z))
(f k)′(c−1 )

6 C;

(ii) if in addition, |f k+1(z)− c−k+1|> e−β(k+1), then

(
f k
)′(
f (z)

)
> 1

C
λkc and

(
f k+1)′(z)> 1

C
ρkλkM,
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whereM = e−α(s/(CK1)
(s−1)/s ·K2.

And similar results hold ifz ∈ (0, δ) and |f j (z)− c+j |6 e−βj .

Proof. –Let us proof part (i). First of all note that

(f k)′(f (z))
(f k)′(c−1 )

=
k∏
j=1

f ′(f j (z))
f ′(c−j )

=
k∏
j=1

(
1+ f

′(f j (z))− f ′(c−j )
f ′(c−j )

)

so we only have to get a uniform bound for

k∑
j=1

∣∣∣∣f ′(f j (z))− f ′(c−j )f ′(c−j )

∣∣∣∣.
Now, f has negative Schwarzian derivative inB−j since 0/∈ B−j =
[c−j − eβj , c−j + eβj ], and as long asf j (z) ∈ B−j we have that∣∣∣∣f ′(f j (z))− f ′(c−j )f ′(c−j )

∣∣∣∣6 ∣∣f ′′(y)∣∣∣∣∣∣f j (z)− c−jf ′(c−j )

∣∣∣∣
6A|y|s−2

∣∣∣∣f j (z)− c−jf ′(c−j )

∣∣∣∣.
Then from condition (A0) we obtain:

k∑
j=1

∣∣∣∣f ′(f j (z))− f ′(c−j )f ′(c−j )

∣∣∣∣6 A

K2

k∑
j=1

e−βj

e−αj
.

The right side is bounded provided thatβ > α (remember we have
chosen(s/(s − 1))α > β > ((s + 1)/s)α, soβ > α). This proves part (i).

Now, to prove part (ii), first observe that the first claim in (ii) is a direct
consequence of part (i) and (A1). The second one can be obtained as
follows. Letz andk be as in the statement, then(

f k+1)′(z)= (f k)′(f (z)) · f ′(z)>K2|z|s−1(f k)′(f (z))
> K2

C
|z|s−1(f k)′(c−1 ). (2)

We can estimate the value of|z| from the inequality

e−β(k+1)6
∣∣f k+1(z)− c−k+1

∣∣= (f k)′(ξ)|f (z)− c−1 |
6K1C

(
f k
)′(
c−1
) |z|s
s

(3)
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for someξ ∈ (f (z), c−1 ) from the Mean Value Theorem. For thisξ there
existsy satisfying the conditions in part (i) and such thatf (y)= ξ . The
last inequality is due to (A0). So the inequality above is a consequence of
the Mean Value Theorem and part (i).

Rewriting the equation, it stands that:

|z|s > s

CK1

∣∣(f k)′(c−1 )∣∣−1
e−β(k+1).

Combining this last inequality with (2) we obtain

(
f k+1)′(z)> K2

C

(
e−βs
CK1

)(s−1)/s(
λ1/s
c

)k · e−βk((s−1)/s).

Sinceβ < (s/(s − 1))α andλ1/s
c · e−α > λρ we have

(
f k+1)′(z)> K2

C

(
e−βs
CK1

)(s−1)/s(
λ1/s
c e−α

)k
> K2

C
e−α

(
s

CK1

)(s−1)/s

λkρk,

leading to (
f k+1)′(z)> 1

C
ρkλkM,

whereM = e−α(s/(CK1))
(s−1)/s ·K2.

This end the proof of Lemma 3.2.2
We denote byP(n) the partition ofÎ into monotonicity intervals off̂ n,

for n> 1, and characterized in the following way: For everyk > 1, set

U±k =
{
(x, k) ∈E±k : f̂ (x, k)= (f (x), k + 1)

}
.

Let DL±
k ,DR±

k be the two connected components ofE±k \U±k , that is,
points inU±k are sent byf̂ to an upper level of the tower, whereas points
in DL±

k ∪DR±
k are mapped down to the ground levelE0. For k = 0 we

set

UL
0 = (−δ,0] × {0}, UR

0 = (0, δ] × {0},
DL

0 = [q,−δ] × {0}, DR
0 = [δ,−q] × {0}.

Then we set

P(1) = {U±k ,DL±
k ,DR±

k , k > 1
}∪ {UL

0 ,U
R
0 ,D

L
0 ,D

R
0

}
.
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Now, for anyn > 1, we setP(n) to be thenth iterate byf̂ of P(1), that
is,

P(n)(ξ1)= P(n)(ξ2) if P(1)
(
f̂ i(ξ1)

)= P(1)(f̂ i (ξ2)
)

for each 06 i < n.
From now on, we will always assume that everyη ∈ P(n) has positive

length. Moreover, the intersection ofη with Ŵ is either empty or an
interval with positive length. Note that in order to have this it suffices
that thef̂ -orbits of points

(0±,0), (±δ,0), (
c±k + e−βk

)
and

(
c±k − e−βk

)
for k > 1

be two-by-two disjoint injective sequences onÎ , which can always be
obtained by slightly modifyingβ andα if necessary (so as to avoid a
countable set of relations involving these two constants).

It follows from our definitions that if(x, k) ∈ U±k ∩ Ŵ , k > 1, and
z ∈ (−δ, δ)\{0} such thatf̂ k(z,0)= (x, k), then

g(x, k)= 1

f ′(x)
ω0(x, k)

ω0(f̂ (x, k))
= 1

f ′(x)
λk|(f k)′(z)|−1

λk+1|(f k+1)′(z)|−1

= 1

λ

|(f k+1)′(z)|
(f k)′(z)f ′(f k(z))

= 1

λ
.

The same is true if(x,0) ∈ (−δ, δ)=UL
0 ∪UR

0 .
On the other hand, if(x, k) is in Dk ∩ Ŵ , k > 1, andz as before (Dk

here means some of theD±Lk orD±Rk ) then

g(x, k)= 1

f ′(x)
ω0(x, k)

ω0(f̂ (x, k)
= λ

k|(f k)′(z)|−1

1

= λk

f ′(f k(z))(f k)′(z)
= λk

(f k+1)′(z)
6 C

M
ρ−k.

The last inequality is consequence of Lemma 3.2.
Observe thatk > H(δ), whereH(δ) is the minimum height from

which orbits in(−δ, δ)×{0} can fall down toE0 (see Section 5.3 in [14]).
We suppose thatδ is small, soH(δ) is large and implies(C/M)ρ−k <
1/λ < 1. Therefore,g(x, k) < 1/λ < 1 in all the situations above, which
express the uniformly expanding character off̂ , because 1/g acts as the
Jacobian off̂ respect tom0.
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We shall also need the iterated versiongn of g, which is defined by

g(n)(ξ)= g(ξ)g(f̂ (ξ )) · · ·g(f̂ n−1(ξ)
)= 1

(f n)′
ω0(ξ)

ω0(f̂ (ξ))

for everyξ = (x, k) such thatf̂ i(ξ ) ∈ Ŵ for 16 i 6 n.
The following three lemmas will be stated without proofs because they

are similar to the corresponding lemmas in [14].

LEMMA 3.3 (Vi 5.4). –
(1) Letγ ⊂ η ∈P(n) be such thatf̂ (γ )⊂E0 for every06 j 6 n. Then

sup
γ
g(n) 6

{
Cσ−n, if f̂ n(γ )⊂ (−δ, δ)× {0},
C(δ)σ−n, in general.

Moreover,varγ g(n) 6 2supγ g
(n).

(2) Let γ ⊂ η ⊂ Ŵ for someη ∈ P(n) and let06 l 6 min{k, n − 1}
be such thatf̂ (γ )⊂ E±k−l+i for 06 i 6 l and f̂ (γ )⊂ E0 for l < i 6 n.
Then

sup
γ
g(n) 6

{
Cλ−lρ−kσ−n+l+1, if f̂ n(γ )⊂ (−δ, δ)× {0},
C(δ)λ−lρ−kσ−n+l+1, in general.

Moreover,varγ g(n) 6 2supγ g
(n).

(3) Let γ ⊂ η ∩ Ŵ for someη ∈ P(n) and letl > 0 such thatf̂ i(γ ) ∈
El+i for 06 i 6 n theng(n) = λ−n on γ .

LEMMA 3.4 (Vi 5.5). – There isC > 0 and, for eachn > 1, there is
C(n) > 0 such that for everyϕ ∈ B̂V and every intervalA⊂E0,

varA
(
Ln0ϕ

)
6 var

(
XALn0ϕ

)
6Cσ−n

(
varϕ + sup|ϕ|)+C(n)∫ |ϕ|dm0.

LEMMA 3.5 (Vi 5.6). – Given anyσ̄ ∈ (1, σ ) there isC > 0 such that:

(1) varϕLn0ϕ 6 Cσ̄−n
(
varϕ + sup|ϕ|)+C ∫ |ϕ|dm0,

(2) supϕLn0ϕ 6 Cσ̄−n
(
varϕ + sup|ϕ|)+C ∫ |ϕ|dm0,

for any functionϕ ∈ B̂V and for alln> 1 .
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4. THE MIXING PROPERTY

We establish (A3) in order to make clear that a mixing property
is needed to show uniqueness of the measure and stochastic stability.
However, in our present setting, this can be chosen to be a consequence
of (A1) and (A2) as explained below.

In [11] it is proved that a one-parameter family of maps{fa}a∈[0,2),
satisfying condition (A0) among others, has a positive Lebesgue measure
subsetE ⊂ [0,2) such that for alla ∈ E, fa satisfies (A1) and (A2) with
0∈E as a point of density. This subset can be chosen to satisfy (A3), i.e.,
the following is true.

LEMMA 4.1 (Lemma A). –In a small enough neighborhood of the
density point, if f satisfies(A1) and (A2) then it satisfies(A3).

This makes our construction more relevant since it shows that that
conditions (A1)–(A3) are satisfied for a large set of functions, say, for
maps in a positive Lebesgue measure set in a one parameter family of
maps.

Lemma A seems Lemma 2.1 in [16] so we need properties similar to
P1 and P2 of [16]. Property P1 is the same as Lemma 3.1 and Property
P2 is the contain of Lemma 4.2. To show P2 we need some previous
definition that will be use only for the proof of Lemma A.

Let Im = (e−m−1,em) for m > 0, let Im = −I−m for m < 0, and
I+m = Im−1 ∪ Im ∪ Im+1, δ = e−1, with1 ∈N.

DEFINITION. – Letp(m) be the largest integerp such that∣∣f j (x)− f j−1(c+1 )
∣∣= ∣∣f j (x)− c+j ∣∣6 e−βj , if m> 0,

and ∣∣f j (x)− f j−1(c−1 )
∣∣= ∣∣f j (x)− c−j ∣∣6 e−βj , if m< 0,

for j = 1, . . . , p andx ∈ I+m .
The time interval1, . . . , p(m) is called the bound period forI+m .

LEMMA 4.2. – For each|m|>1p(m) has the following properties.
(a) There is a constantC1(α,β) such that:

(i)

1

C1
6 (f j )′(y)
(f j )′(c+1 )

6 C1 if y ∈ [−1, f (e−|m|+1)
]
,
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(ii)

1

C1
6 (f j )′(y)
(f j )′(c−1 )

6 C1 if y ∈ [f (−e−|m|+1),1]
for j = 0, . . . , p(m).

(b)

s|m|
β + log 4

−K 6 p(m)6 s + 1

β + logλc
|m|,

whereK = (β + log(K1/s)+ s)/(β + log4).

(c)

(
f p+1)′(x)> exp

((
1− β s + 2

β + c
)
|m|
)
,

wherep = p(m) and forx ∈ I+m .

Proof. –Supposey ∈ [c+1 , f (e−|m|+1)] (for y ∈ [f (e−|m|+1), c−1 ] the
proof is similar).

The proofs of parts (a) and (c) are easy consequence of Lemma 3.1. So
we only have to prove (b).

Forx ∈ I+m we have, assumingm> 0 to fix ideas,

e−βp >
∣∣f p(x)− c+p ∣∣= ∣∣f p−1(f (x))− f p−1(c+1 )

∣∣
= (f p−1)′(y)∣∣f (x)− (c+1 )∣∣

for somey ∈ [c+1 , f (x)] ⊂ [−1, f (e−|m|+1)] so,

∣∣f p(x)− f p−1(c+1 )
∣∣= (f p−1)′(y)∣∣f (x)− (c+1 )∣∣> (f p−1)′(y)K2

|x|s
s

> (f
p−1)′(c+1 )
C1

K2

s
e(−|m|−2)s ,

e−βp > λ
(p−1)
c

C1

K2

s
e−|m|s e−2s .

So we have the following bound forp,

log
(
K2

C1s

)
− |m|s − 2s + logλcp− logλc 6−βp
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that is,

p 6 s|m|
logλc + β +

logλc + 2s − log K2
C1s

logλc + β .

If |m| is large enough we can write,

p6 (s + 1)|m|
logλc + β .

For the other inequality, from the definition ofp, there must exists a
z ∈ I+m such that

e−β(p+1) 6
∣∣f p(f (z))− f p(c+1 )∣∣6 (f p)′(y)∣∣f (z)− (c+1 )∣∣.

Supposing thatf ′ 6 4, we obtain,

e−β(p+1) 6 4pK1
zs

s
6 4p

K1

s
e(−|m|+1)s

so

−β(p+ 1)6 p log 4+ log(K1/s)+−|m| + s
which implies that

p > s|m|
β + log 4

− log(K1/s)+ s + β
β + log 4

. 2
Proof of Lemma A. –In [16], it was used the fact that the fixed point of

the mapf in I has dense pre-images. We do not have this fixed point for
f but we have one forf 2 (i.e., we have two periodic points of period
two). Now, observe that our family of maps can be chose so that we
have this fixed point forf 2 with dense preimages, as required in the
arguments of [16]. This is due to the fact that the family (and also the
positive Lebesgue measure set satisfying (A1) and (A2)) has as a point of
density a map which is conjugated to the transformationx→ 2xmodZ.
So the conclusion remains valid.2

5. ABSOLUTELY CONTINUOUS INVARIANT MEASURES

Before going into the proofs of our main results, we need the following
lemma
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LEMMA 5.1 (Vi 5.7). – The measurem0 = ω0m is a finite measure
on Î .

Proof. –It is clear thatm0(E0) = m(E0) = m(I) is finite. Moreover,
for eachk > 1

m0(E
±
k )=

∫
B±
k

ω0(x, k)dm(x)=
∫
W±
k

λk

(f k)′(z)
dm(x),

wherez ∈ (−δ, δ) is uniquely defined byf̂ k(z,0) = (x, k). We change
variablesz= f k(x), and we get

m0(E
±
k )=

∫
Y±
k

λk dm(z)= λkm(Y±k ),

whereY+k = {z ∈ (−δ,0): f k(z) ∈W+k }, andY−k = {z ∈ (0, δ): f k(z) ∈
W−k }.

Next, we observe that

2e−βk >m(B±k )>m(W±k )>
1

C

(
f k−1)′(c±1 )m(f (Y±k ))

> 1

C
λk−1
c

K2

s
m(Y±k )

s,

where the third inequality is a consequence of (A0) and (A1). Replacing
above, and recalling that we have chosenλ1/s

c > eαλρ we obtain that

m0(E
±
k )6

(
2C e−βkλ−k+1

c

s

K2

)1/s

λk 6
(

2C
s

K2
λc

)1/s

e−βk/sρ−k

6Cρ−k, (4)

for every k > 1. Since we choseρ > 1 the claim follows immedi-
ately. 2

THEOREM 5.1. – The mapsf̂ and f have absolutely continuous
invariant measureŝµ0 andµ0 respectively.

Proof. –The proof of this theorem is contained in [14].2
The arguments in [14] assure thatL0 has a unique fixed pointϕ0 in

B̂V . This function is the density of̂µ0 with respect tom0. We only
make a remark on the fact that we are using the arguments that prove
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the existence of the measures. We are left to prove thatµ0 is unique in
the space off -invariant probability measures absolutely continuous with
respect to Lebesgue. To prove this, we first observe that the measureµ0

has positive Lyapunov exponents for a.e.x in I .

THEOREM 5.2. – The measureµ0 is ergodic and it is the unique
f invariant probability measure absolutely continuous with respect to
Lebesgue.

Proof. –Sinceµ0 has positive Lyapunov exponents a.e. and satisfies
(A3), we can use a theorem due to Ledrappier [7] in the form of part (3)
of Proposition 3.3 in [16] to assert thatµ0 is measure theoretically mixing
and so it is ergodic.

We claim thatµ0 is equivalent to the Lebesgue measurem on
I∗ = [c−1 , c+1 ]. This can be seen as follows; sinceϕ0 has Bounded
Variation, and

∫
ϕ0 dm0 = 1, there is some intervalγ ⊂ Ŵ , such that

infγ (ϕ0) > 0 so the density of̂µ0 with respect to the usual length is
bounded away from zero onγ , as a consequence, infπ(γ ) dµ0/dm > 0.
On the other hand, (A3) ensures thatf N(π(γ )) = I∗ for someN > 1.
Therefore

inf
I∗

dµ0

dm
> inf

π(γ )

dµ0

dm

1

sup(f N)′
> 0,

which implies our claim.
Now, letν be anyf -invariant probability measure which is absolutely

continuous with respect to Lebesgue measure. It is easy to see that the
support ofν must be contained inI∗, and soν�µ0 (µ0 is equivalent to
m on I∗). It follows that ν = µ0 because ergodic measures are minimal
for the absolute continuity relation. That proves uniqueness.

Now, joining Theorem 5.1 and 5.2, Theorem A is proved.2
Finishing this section we prove a property of the support of the function

ϕ0. Set

Wδ = Ŵ\((f (−δ), c+1 )∪ (c−1 , f (δ)))× {0}
= Ŵ\[f (δ), f (−δ)]× {0}.

LEMMA 5.2 (Vi 5.9). – The densityϕ0 satisfies
(1) inf(ϕ0|[f (δ),f (−δ)]×{0}) > 0;
(2) inf(ϕ0|W±

k
) > 0, for everyk > 1.

Proof. –Let γ1 ⊂ Ŵ be an interval such that inf(ϕ0|γ1) > 0. By
the topological mixing assumption (A3), there existsn1 > 0 such that
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π(f̂ n1(γ1)) = f n1(π(γ1)) = I∗ = [c−1 , c+1 ]. In particular, π(f̂ n1(γ1))

contains the fixed points off 2, namely p1 and p2 with p1 > p2.
Moreover, up to slightly modifyingβ if necessary, we may suppose that
no endpoint of levelsE±k , for k > 1 projects down top1, nor p2. Then
there exists an open intervalγ2 ⊂ f̂ n1(γ1) such thatπ(γ2) containsp1.
Clearlyπ(f̂ 2n(γ2)) must containp1 for everyn> 0. Now, suppose that
pi 6= c±k for everyk > 1 and fori = 1,2. If this is not true, we simply
replace{pi: i = 1,2} by another periodic orbit not intersecting(−δ, δ),
and the argument proceeds along the same lines. Now we have that,
there exists some finite timen2 > 0 such thatf̂ 2n2(ξ) = (p1,0), where
ξ ∈ γ2 satisfiesπ(ξ)= p1. Up to another arbitrarily small modification
of β, we may suppose that the orbit ofξ does not pass trough any
of the boundary points of the monotonicity intervals inP(1). Therefore
f̂ 2n2(π(γ2)) contains some open neighborhoodγ3 of (p1,0) in E0. Let
n3 > 0 be the minimum time such that̂f 2n3(π(γ3)) intersects(−δ, δ).
Hence

f̂ 2n3(γ3)= f 2n3
(
π(γ3)

)× {0} contains[δ,p1] × {0}.

Setσ1= f̂ ([δ,p1] × {0})= [f (δ),p2] × {0}, soσ1⊂ f̂ n+1(γ1) where
n= n1+ 2n2+ 2n3.

Now, with similar arguments we can setσ2 = f̂ ([p2,−δ] × {0}) =
[p1, f (−δ)] × {0}, with the property thatσ2 ⊂ f̂ m+1(γ1) with m =
n1+ 2m2 + 2m3, for somem2 andm3. Set alsoσ3 = (p2,p1) and note
that f̂ (σ1∪ σ2) containsσ3.

Now, sinceϕ0 is a fixed point for the transfer operator associated
to f̂ , we have that inf(ϕ0|γ ) > 0 implies that inf(ϕ0|f̂ (γ )) > 0, thus
inf(ϕ0|σi ) > 0 for i = 1,2,3, and part (1) follows immediately.

Moreover, given(y, k) ∈ W±k , k > 1, and z ∈ (−δ, δ) such that
f k(z)= y.

ϕ0(y, k)= Lk0(ϕ0)(y, k)= ϕ0(z,0)

λk
> 1

λk
inf
(
ϕ0|[f (−δ),f (δ)]×{0}), (5)

which proves part (2).
This last relation also yields another useful conclusion, namely

ϕ0(y, k)6
1

λk
sup(ϕ0|[f (−δ),f (δ)]×{0})6 1

λk
sup(ϕ0)



R.J. METZGER / Ann. Inst. Henri Poincaré 17 (2000) 247–276 265

and so
∞∑
k=1

sup(ϕ0|E±
k
)6

∞∑
k=1

1

λ|k|
sup(ϕ0),

leading to

sup(ϕ0)=
∞∑
k=1

sup(ϕ0|E+
k
)+

∞∑
k=1

sup(ϕ0|E−
k
)+ sup(ϕ0|E0)

6
∞∑
k=0

2λ−k supϕ0.

Note that Lemma 5.2 implies thatWδ ⊂ suppϕ0 and from this
suppϕ0 = Wδ , sinceϕ0 = Lnϕ0 implies thatϕ0 is identically zero on
Î\f̂ n(Î ) for everyn> 1 and discussion on p. 6 implies that

⋃
n> f̂

n(Î )⊂
Wδ. 2

6. DECAY OF CORRELATIONS

In this section we prove that the measuresµ̂0 andµ0, that we have
just constructed, are exact, and so, also mixing, for the corresponding
dynamical systemŝf andf , respectively, in the same lines as stated in
Proposition 5.13 of [14]. As a consequence, the transfer operatorL0 is
quasi-compact and both systems(f̂ , µ̂0) and (f,µ0) have exponential
decay of correlations in corresponding spaces of functions with bounded
variation. This proposition also provides another proof of the ergodicity
of µ0 (besides implying that̂µ0 is also ergodic). We are not going to
prove the equivalent of Proposition 5.13 of [14], because it follows the
same arguments, provided that we prove some previous lemmas. Before
proving these lemmas, let us make some conventions that will be used
throughout this section. Set

Ek =

E0 if k = 0,
E+k if k > 1,
E−|k| if k 6−1,

and also denote by∂k the set of boundary points of the elements of the
partitionP(1). More precisely

∂0= {q,−δ,0, δ,−q} = ∂DL
0 ∪ ∂UL

0 ∪ ∂UR
0 ∪ ∂DR

0 ,
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and for eachk > 1

∂±k = ∂DL±
k ∪ ∂U±k ∪ ∂DR±

k .

Therefore∂k can be expressed as follows

∂k =

∂0 if k = 0,
∂+k if k > 1,
∂−|k| if k 6−1.

Observe that each∂k, |k|> 1, contains at most eight points.
Now, for n > 1, N > 1 and η∈ P(n+N), let (k(i))i be the sequence

given by

f̂ i(η)⊂Ek(i) for eachi > 0.

Let τ > 0 be fixed and defineQ(n,N) to be the subset of intervals
η ∈P(n+N) such that:

(i) |k(i)|6N + (n− i)τ for 06 i 6 n.
(ii) f̂ i(∂η) is disjoint from∂k(i) for every 06 i 6 n.

LEMMA 6.1 (Vi 5.10). – Givenε > 0 there existsN > 0, such that for
eachn> 1 the setQ(n,N) satisfies the following properties:

(1) for everyη ∈Q(n,N), we havef n(η) ∈P(N) ⊂⋃|k|6N Ek ;
(2) the µ̂0-measure of the union of the intervalsη /∈ Q(n,N) is at

mostε.

Proof. –The statement of this lemma is not exactly the same as Lemma
5.10 of [14], but it is equivalent. The proof comes along the same
arguments. 2

LEMMA 6.2 (Vi 5.11). – Givenn > 1 and ε2 > 0 there existsε1 > 0
for anyn> 1, any intervalη ∈Q(n,N), and any borel subsetξ ⊂ η,

m(ξ)

m(η)
6 ε1⇒m

(
f̂ n(ξ)

)
6 ε2.

Proof. –Most of the proof is based on the same ideas as Lemmas 3.1
and 3.2. The main new ingredient is to use condition (i)|k(i)| 6 n +
(n − i)τ in the definition ofQ(n,N), taking τ small enough, e.g.,
τ 6 logλρ/log 8.

Suppose thatη ⊂ E0 and f̂ n(η) ⊂ E0. In this case we prove that̂f n

has uniformly bounded distortion onη (depending onN , but not onn
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or η). Let us consider the sequence of iterates 06 ν1 < ν1+ p1 < ν2 <

· · ·< νr < νr + pr < n defined by
(a) f̂ j (η) ⊂ E0 for 06 j 6 ν1, for νi + pi < j 6 νi+1 and 16 i 6

r − 1, and forνr + pr < j 6 n.
(b) f̂ j (η) ⊂ Ej−νi if f̂ νi (η) ⊂ (−δ,0) and f̂ j (η) ⊂ E−(j−νi ) if

f̂ νi (η)⊂ (0, δ), for νi 6 j 6 νi + pi , and 16 i 6 r ,
Let γ = π(η)⊂ I andx, y ∈ I .
We first consider 06 j < ν1. Supposex < y, sincef has negative

Schwarzian derivative inγ and from condition (A0), we have

ν1−1∑
j=0

logf ′
(
f j (x)

)− logf ′
(
f j (y)

)

=
ν1−1∑
j=0

log
(

1+ f
′(f j (x))− f ′(f j (y))

f ′(f j (y))

)

6
ν1−1∑
j=0

|f ′(f j (x))− f ′(f j (y))|
f ′(f j (y))

6
ν1−1∑
j=0

A
|xj − yj |
K2|yj | ,

wherexj = f j (x), andyj = f j (y).
But yj /∈ (−δ, δ) gives 1/|yj |< 1/δ and∣∣f ν1−j (f j (x))− f ν1−j (f j (y))∣∣= (f ν1−j )′(z)|xj − yj |

for some z ∈ f j (γ ), which implies |f ν1(γ )| > bσ ν1−j
0 |f j (γ )| using

Lemma 3.1, and leads to

ν1−1∑
j=0

logf ′
(
f j (x)

)− logf ′
(
f j (y)

)
6
ν1−1∑
j=0

constσ j−ν1
∣∣f ν1(γ )

∣∣
6C

∣∣f ν1(γ )
∣∣.

Similar arguments show

ν1−1∑
j=0

logf ′
(
f j (y)

)− logf ′
(
f j (x)

)
6 C

∣∣f ν1(γ )
∣∣.

Thus
ν1−1∑
j=0

∣∣ logf ′
(
f j (x)

)− logf ′
(
f j (y)

)∣∣6 C∣∣f ν1(γ )
∣∣. (6)
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And for the same reasons we have

νi+1−1∑
j=νi+pi+1

∣∣ logf ′
(
f j (x)

)− logf ′
(
f j (y)

)∣∣6C∣∣f νi+1(γ )
∣∣

for every 16 i 6 r − 1, and also

n−1∑
j=νr+pr+1

∣∣ logf ′
(
f j (x)

)− logf ′
(
f j (y)

)∣∣6 C∣∣f n(γ )∣∣. (7)

Now, let j = νi and denote1i = d(f νi (γ ),0). Thus,

logf ′
(
f j (x)

)− logf ′
(
f j (y)

)
6 f

νi (γ )

1i

.

Next, we considerνi < j 6 νi + pi . We are assuming thatf νi (γ ) ⊂
(−δ,0), therefore, in this case we have

νi+pi∑
j=νi+1

logf ′
(
f j (x)

)− logf ′
(
f j (y)

)
6 A

K2

νi+pi∑
j=νi+1

|f j (x)− f j (y)|
|f j (y)| .

Let us see that the terms in the the sum are bounded byf νi (γ )/1i . In
fact, we have∣∣f j (x)− f j (y)∣∣= (f j−νi)′(f νi (z))∣∣f νi (x)− f νi (y)∣∣
for somez ∈ γ , more preciselyz ∈ [x, y], as a consequence of the Mean
Value Theorem. Now, the Chain Rule and condition (A0) imply∣∣f j (x)− f j (y)∣∣6 (f j−νi−1)′(f (f νi (z))) · f ′(f νi (z))∣∣f νi (γ )∣∣

6C
(
f j−νi−1)′(c+1 ) ·K1

∣∣f νi (z)∣∣s−1∣∣f νi (γ )∣∣.
On the other hand, for thisz we have∣∣f j (y)− c+j−νi ∣∣= ∣∣f j−1−νi(f νi+1(y)

)− f j−1−νi (c+1 )
∣∣

= (f j−1−νi )′(z̃)∣∣f (f νi (y))− c+1 ∣∣
> 1

C

(
f j−1−νi )′(c+1 )K2

|f νi (z)|s
s

.

Thus we can write

∣∣f j (x)− f j (y)∣∣6 sC2K1

K2

|f j (z)− c+j−νi |
|f νi (z)|s

∣∣f νi (z)∣∣s−1∣∣f νi (γ )∣∣.
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Now, sinceνi < j 6 νi + pi , andz ∈ [x, y] ⊂ γ
∣∣f j (x)− f j (y)∣∣6 sC2K1

K2

e−β(j−νi )

|f νi (z)|
∣∣f νi (γ )∣∣.

Therefore

|f j (x)− f j (y)|
|f j (y)| 6 C e−β(j−νi)

(e−α(j−νi) − e−β(j−νi ))
|f νi (γ )|
1i

,

sincef j (y) ∈Ej−νi .
That is

νi+pi∑
j=νi+1

|f j (x)− f j (y)|
|f j (y)| 6C |f

νi (γ )|
1i

, (8)

sinceβ > α.
Interchanging the roles ofx andy in the above arguments, we have

νi+pi∑
j=νi+1

∣∣ logf ′
(
f j (x)

)− logf ′
(
f j (y)

)∣∣6 const
|f νi (γ )|
1i

.

Thus, joining all the parts, we obtain

n−1∑
j=0

∣∣ logf ′
(
f j (x)

)− logf ′
(
f j (y)

)∣∣
6 const

r∑
i=1

|f νi (γ )|
1i

+ constf n(γ ) (9)

of coursef n(γ )6 const, thus∣∣f νi (γ )∣∣6 const(λρ)νi−n
∣∣f n(γ )∣∣6 const(λρ)νi−n

for each 16 i 6 r − 1, and from Lemmas 3.1 and 3.2.2.
Now, sincef pi (f νi (γ ))⊂DR−

pi
we have∣∣f pi+1(1i)− c+pi
∣∣> e−β(pi+1),

which implies (assuming thatf ′ 6 4)

4pi1s
i

K1

s
>
(
f pi
)′
(z̃)
∣∣f (1i)− c+1

∣∣> e−β(pi+1).
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This last relation leads to

1s
i >

K1

s
e−β(pi+1)4−pi > const e−2βpi4−pi .

Now, condition (i) in the definition ofQ(n,N) impliespi = |k(i)| 6
N + (n − νi − pi)τ 6 N + (n − νi) and since we have chosenτ =
logλρ/log8 and eβ < λ1/s

c 6 2, we obtain
r∑
i=1

|f νi (γ )|
1i

6
r∑
i=1

(λρ)νi−n
(
2eβ

)pi 6 r∑
i=1

4N
(
λρ4−τ

)νi−n
6 4N

r∑
i=1

2(νi−n)τ 6 const 4N.

Replacing in (9) we conclude thatf n has bounded distortion onγ

n−1∑
j=0

∣∣ logf ′
(
f j (x)

)− logf ′
(
f j (y)

)∣∣6 const 4N. (10)

In equivalent terms,̂f n has bounded distortion onη as we had claimed.
In particular, in this case we may takeε1= (ε2/m(I))exp(−K̃1), where
K̃1> 0 denotes the right hand term in (10).

Now, the remaining cases can be treated easily. Ifη is not contained
in E0 then we define(p0 + 1) > 1 to be the first iterate for which
f̂ p0+1(η)⊂E0. Then, we modify the first condition in (a) tôf j (η)⊂E0

for p0+ 16 j 6 ν1. Therefore, the sum

ν1−1∑
j=p0+1

∣∣ logf ′
(
f j (x)

)− logf ′
(
f j (y)

)∣∣
can be estimated in just the same way as (6).

For the sum over 06 j 6 p0 it is used a simpler version of (8), since
f̂ j (η)⊂ Ek(0)+j , if k(0) > 0, andEk(0)−j , if k(0) < 0, and fork(0) = 0
we have to choose betweenEj or E−j depending uponf j (η) is to the
left or to the right side of the critical point. From this,

p0∑
j=0

logf ′
(
f j (x)

)− logf ′
(
f j (y)

)
6 A

K2

p0∑
j=0

|f j (x)− f j (y)|
|f j (y)| 6 A

K2
const

p0∑
j=0

e−(β−α)(j+|k(0)|)
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6
p0∑
j=0

e−(β−α)(j+|k(0)|) 6 const.

Thus, this last sum just adds a constant term to (9), and so does not
affect the conclusion (10):̂f n has bounded distortion onη also in this
case.

Finally, suppose thatf̂ n(η) is not contained inE0. Then letν = νr
be the last iterate for whicĥf ν(η) ⊂ E0, and we do not definepr . The
previous cases show us thatf̂ ν has bounded distortion onη, see (10)

ν−1∑
j=0

∣∣ logf ′
(
f j (x)

)− logf ′
(
f j (y)

)∣∣6 K̃1.

From this point on, we can follow the arguments in [14] to conclude
the proof of the lemma. 2

Let B the Borelσ -algebra ofI and B̂ the Borelσ -algebra ofÎ . By
definition, the invariant measureµ0 is exact forf if

B ∈ B∞ =
∞⋂
n=0

f −n(B)⇒ µ0(B)= 0 orµ0(I\B)= 0.

Analogously, we say that̂µ0 is exact forf̂ if

B̂ ∈ B̂∞ =
∞⋂
n=0

f −n(B̂)⇒ µ̂0(B̂)= 0 or µ̂0(I\B̂)= 0.

LEMMA 6.3 (Lemma 5.12). –
(1) If A⊂ I belongs toB thenπ−1(A)⊂ Î belongs toB̂∞.
(2) For any Â ⊂ Î in B̂∞ there areA1 ⊂ A2 ⊂ I so thatπ−1(A1) ⊂

Â⊂ π−1(A2) andA2\A1 is a countable set.

Proof. –The first part is easy. In fact ifA = f −n(An) for some Borel
subsetAn ⊂ I then x ∈ π−1(An) if and only if π(x) ∈ A if and only
if π(f̂ n(x)) = f n(π(x)) ∈ An if and only if f̂ n(x) ∈ π−1(An) which is
equivalent tox ∈ f̂ −n(π−1(An)).

That isπ−1(A)= f̂ −n(π−1(An)).
To proof part (2), letA2= π(Â) and

A1=A2\
∞⋃
n=0

f −n
{
0, c+j , c

−
j : j > 0

}
.
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It is clear thatÂ⊂ π−1(A2), so let us prove thatπ−1(A1)⊂ Â.
Given anyz ∈ A1 there is someξ ∈ Â such thatπ(ξ) = z. Thus we

only have to show that any otherη ∈ Î such thatπ(η)= z also belongs
in Â. Now, the elements of̂B∞ are characterized by the property[

ζ1 ∈ Â andf̂ n(ζ1)= f̂ n(ζ2) for somen> 1
]⇒ ζ2 ∈ Â.

Therefore, we are left to show that for anyξ andη as above, there is
n> 1 such thatf̂ n(ξ)= f̂ n(η). To this end, sinceπ(f̂ n(ξ))= π(f̂ n(η))
for everyn> 1, it suffices to show that there existsn> 1 such thatf̂ n(ξ)
andf̂ n(η) are both inE0.

To proof the above assertion we introduce the following notion: Given
x ∈ (−δ, δ), we define the falling timep(x) of x to be the smallest integer
j > 1 such thatf̂ j+1(x,0) ∈ E0. The same kind of argument as in (3)
gives, recall A1,

e−βp(x)>
∣∣f p(x)(x)− c±p(x)∣∣> 1

C

(
f p(x)−1)′(c±1 )∣∣c±1 − f (x)∣∣ (11)

> 1

Cλc
λp(x)c K2

|x|s
s
. (12)

Set γ = 1− eα−β > 0. Up to takingδ small, we may suppose that
p(x)>H(δ) is large enough so that the previous relation implies

λp(x)c |x|s 6 γ s. (13)

in particularx 6= 0 impliesp(x) <∞.
Now, write ξ = (z, k) and η = (z, l). The definition ofA1 ensures

that thef -orbit of z ∈ A1 is disjoint from the critical orbit, and so
p(f n(z)) is finite for everyn > 1. Suppose that there is non > 1 such
that bothf̂ n(ξ) andf̂ n(η) are inE0. Then each of their orbits must start
climbing the tower (in its corresponding block), before the other falls
down toE0. That is, there must be an infinite sequence (in order not to
havef̂ n(ξ) and f̂ n(η) both inE0) of times 0< ν1 < ν2 < · · · such that
f νi (z) ∈ (−δ, δ) (one of the orbits moves fromE0 to E1 or toE−1) and
νi+16 νi + p(f νi (z)) (while the other is still climbing up) for alli > 1.

To check that this leads to a contradiction, we writepi = p(f νi (z))
and note that ifνi+1− νi 6 pi then |f νi+1(z)− c·(νi+1−νi )| 6 e−β(νi+1−νi).
So we have ∣∣f νi+1(z)

∣∣> e−α(νi+1−νi) − e−β(νi+1−νi )

> e−α(νi+1−νi)(1− e−(β−α)(νi+1−νi))
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> e−α(νi+1−νi)γ > γ e−αpi ,

and in the last implication we use (A2).
Combining this with (13) and esα/(s−1) < λ1/s

c , we get

γ s > λpi+1
c

∣∣f νi+1(z)
∣∣s > γ sλpi+1

c

(
e−sα

)pi > γ sλpi+1
c λ−(s−1)pi/s

c .

The last term is greater than or equal toλpi+1−pi (s−1)/s which implies
pi+1 6 pi(s − 1)/s for every i > 1. Sincepi are positive integers, the
sequence(pi)i can not be infinite. This gives the contradiction we are
looking for. 2

Now, Propositions 5.13 (exactness), 5.14 (quasi-compacity), 5.15
(decay of correlations) of [14] and also the Central Limit Theorem are
deduced with the same arguments.

7. THE SRB MEASURE FOR THE CONTRACTING LORENZ
ATTRACTOR

Nowadays there exists many literature about the strange attractor first
discovered by Lorenz [8], as a truncation of a Navier–Stokes equation.
One of them is the geometric model introduced by Guckenheimer
and Williams in [3], called the Expanding Lorenz Attractor. More
explicitly, they found a family ofCr(R3) vector fields such that it is
linear in a neighborhood of the origin containing the cube{(x, y, z) ∈
R3: |x|, |y|, |z| 6 1} and with eigenvaluesλ1, λ2, λ3 satisfying λ2 <

λ1 < 0< λ3 andλ1+ λ3 > 0, and with both trajectories of the unstable
manifold intersecting the top of the cube, as in Fig. 1. So if we callU the
union of the cube with a neighborhood of the unstable manifold, there
exists an attractorΛ = ⋂t>0Xt(U) whereXt is the flow of the vector
field.

The Contracting Lorenz Attractor arises in a similar way if we replace
the expanding conditionλ1 + λ3 > 0 by the contracting conditionλ1 +
λ3< 0, see [11]. By construction, the top of the cube is a cross sectionQ

for the flow. More explicitly, there exist a curveΣ (that we can assume to
be the intersectionQ with the plane{x = 0}). So there exist a first return
map (a Poincare map) of the form

P :Q\Σ→Q,

(x, y) 7→P(x, y)= (f (x), g(x, y)),
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Fig. 1.

This Poincare map reduces in a wide sense the study of the dynamics
of the Lorenz attractor to the study of the mapP . But also the form of
this map, that says that the leaves withx = cte are mapped to leaves with
x = f (cte), allows another simplification if we project along the stable
leaves, see [11]. So, we can study the one-dimensional map defined by
f .

By an SRB measure for the flow we mean a measureν, invariant by
the flow, define onR3 such that its support is contained in the attractor
and satisfying

lim
T→∞

1

T

T∫
0

ϕ
(
Xt(x)

)
dt =

∫
ϕ dν,

for almost allx contained in the basin of attractionU , and for every
continuous functionϕ :R3→R.

To construct an SRB measure for this kind of flows we will assume
that they define one-dimensional maps satisfying conditions (A0)–(A3).
A. Rovella showed that this kind of flows have a kind of persistence, see
[11]. So we are dealing with a wide class of flows.

So letf be the projection along stable leaves of the first return map of
the contracting Lorenz attractor. By Theorem A,f has a SRB measure
µ. We can consider this measure as defined on theσ -algebra generated
by sets containing whole stables leaves. If we consider the push forward
of this measure by the Poincare mapP , i.e.,P∗µ(B)=µ(B) we can take
the weak∗ limit of the sequence of measuresPn∗ µ as a measureµP on the
intersection of the attractor with the cross sectionQ, which is SRB.
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Now, we can saturate this measure along the flow in the following way.
Let τ(z) be the return time of the pointz ∈Q\Σ so thatP(z)=Xτ(z)(z).
With this definition we take our measureν in U as

ν(B)=
∫
(
∫ τ (z)

0 χB(Xt(z))dt)dµP (z)∫
τ(z)dµP (z)

. (14)

The denominator is the term of normalization of the measure. This
procedure gives a well define measure sinceµ is absolutely continuous
with respect to the natural Lebesgue measure of the unstable manifold
and of bounded density. The term of normalization is finite since
τ(z)≈ log(d(z,Σ)). This is a standard procedure, see for example [14]
Chapter 6.

With this construction it is not difficult to verify thatν is a SRB
measure for the Contracting Lorenz Attractor. On the other hand, this
measure is unique. In fact, ifν′ is another SRB measure we can define

µ′ = d

dt
ν′
( ⋃

06s6t
Xt (Γ )

)∣∣∣∣
t=0

for every borelianΓ ⊂ Q and we will obtain an SRB measure on the
sectionQ. Since this measure is unique we haveµ′ = µ and recovering
the measure by means of the definition in (14) we also haveν′ = ν.
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