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Abstract

We study the following linearly coupled Schrödinger equations:⎧⎪⎨
⎪⎩

−ε2�u + a(x)u = up + λv, x ∈R
N,

−ε2�v + b(x)v = v2∗−1 + λu, x ∈R
N,

u, v > 0 in R
N, u(x), v(x) → 0 as |x| → ∞,

where N � 3, 2∗ = 2N
N−2 , 1 < p < 2∗ − 1, and a(x), b(x) are positive continuous potentials which are both bounded away from 0.

Under some assumptions on a(x) and λ > 0, we obtain positive solutions of the coupled system for sufficiently small ε > 0, which
have concentration phenomenon as ε → 0. It is interesting that we do not need any further assumptions on b(x).
© 2013 Elsevier Masson SAS. All rights reserved.

1. Introduction

In this paper we study standing waves for the following system of time-dependent nonlinear Schrödinger equations⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−ih̄
∂ψ1

∂t
− h̄2

2
�ψ1 + a(x)ψ1 = |ψ1|p−1ψ1 + λψ2, x ∈ R

N, t > 0,

−ih̄
∂ψ2

∂t
− h̄2

2
�ψ2 + b(x)ψ2 = |ψ2|2∗−2ψ2 + λψ1, x ∈R

N, t > 0,

ψj = ψj (x, t) ∈ C, j = 1,2,

ψj (x, t) → 0, as |x| → +∞, t > 0, j = 1,2,

(1.1)

where i denotes the imaginary unit, h̄ is the Plank constant, N � 3, 1 < p < 2∗ − 1 and 2∗ = 2N
N−2 is the Sobolev

critical exponent.
Nonlinear Schrödinger equations (NLS) have been broadly investigated in many aspects. In particular, there has

been an ever-growing interest in the study of standing wave solutions to NLS starting from the cerebrated works
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[8,14,28]. For system (1.1), a solution of the form (ψ1(x, t),ψ2(x, t)) = (e−iEt/h̄u(x), e−iEt/h̄v(x)) is called a stand-
ing wave. Then (ψ1,ψ2) is a solution of (1.1) if and only if (u, v) solves the following system⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

− h̄2

2
�u + (

a(x) − E
)
u = |u|p−1u + λv, x ∈R

N,

− h̄2

2
�v + (

b(x) − E
)
v = |v|2∗−2v + λu, x ∈ R

N,

u(x), v(x) → 0 as |x| → ∞.

(1.2)

In this paper we are concerned with positive solutions for small h̄ > 0. For sufficiently small h̄ > 0, the standing
waves are referred to as semiclassical states. Replacing a(x) − E,b(x)− E by a(x), b(x) for convenience, we turn to
consider the following system of NLS

⎧⎨
⎩

−ε2�u + a(x)u = up + λv, x ∈ R
N,

−ε2�v + b(x)v = v2∗−1 + λu, x ∈ R
N,

u, v > 0 in R
N, u(x), v(x) → 0 as |x| → ∞,

(1.3)

where λ > 0, and ε > 0 is sufficiently small.
The mathematical interest in (1.3) relies on its criticality, due to the fact that 2∗ is the critical exponent. Critical

exponent elliptic problems create some difficulties in using variational methods due to the lack of compactness, and
have received great interest since the cerebrated work by Brezis and Nirenberg [10]. Before saying more about the
background for problems like (1.3), we would like to introduce our main result first. Let Cp+1 be the sharp constant
of the Sobolev embedding H 1(RN) ↪→ Lp+1(RN)

∫

RN

|∇u|2 + |u|2 dx � Cp+1

( ∫

RN

|u|p+1 dx

) 2
p+1

,

and S the sharp constant of D1,2(RN) ↪→ L2∗
(RN)

∫

RN

|∇u|2 dx � S

( ∫

RN

|u|2∗
dx

) 2
2∗

. (1.4)

Here, D1,2(RN) := {u ∈ L2(RN): |∇u| ∈ L2(RN)} with the norm

‖u‖D1,2 :=
( ∫

RN

|∇u|2 dx

)1/2

.

Define

μ0 :=
[

2(p + 1)

N(p − 1)
S

N
2 C

− p+1
p−1

p+1

](
p+1
p−1 − N

2 )−1

. (1.5)

Assume that

(V1) a, b ∈ C(RN,R) and there exist some constants a0 > 0, b0 > 0 such that

inf
x∈RN

a(x) = a0 � μ0, inf
x∈RN

b(x) = b0.

(V2) There exists a smooth open bounded domain Λ ⊂R
N such that

inf
x∈Λ

a(x)� μ0 < a1 := inf
x∈∂Λ

a(x). (1.6)

Then the main result of this paper is the following
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Theorem 1.1. Let N � 3 and assumptions (V1)–(V2) hold. Assume that

0 < λ < min
{√

a0b0,
√

(a1 − μ0)b0
}
. (1.7)

Then there exists ε0 > 0 such that for any ε ∈ (0, ε0), problem (1.3) has a positive solution (ũε, ṽε), which satisfies

(i) there exists a maximum point x̃ε of ũε + ṽε such that x̃ε ∈ Λ;
(ii) for any such an x̃ε , (w1,ε(x),w2,ε(x)) := (ũε(εx + x̃ε), ṽε(εx + x̃ε)) converge (up to a subsequence) to a positive

ground state solution (w1(x),w2(x)) of⎧⎪⎨
⎪⎩

−�u + a(P0)u = up + λv, x ∈R
N,

−�v + b(P0)v = v2∗−1 + λu, x ∈R
N,

u, v > 0 in R
N, u, v ∈ H 1(

R
N

)
,

(1.8)

where x̃ε → P0 ∈ Λ as ε → 0;
(iii) there exist c,C > 0 independent of ε > 0 such that

(ũε + ṽε)(x) � C exp

(
−c

ε
|x − x̃ε|

)
.

Remark 1.1. The constant μ0, that is defined in (1.5) and appears in assumptions (V1)–(V2), plays a crucial role
in Theorem 1.1. As we will see in Lemma 2.2, the assumptions infx∈RN a(x) � μ0 and infx∈Λ a(x) � μ0 are both
necessary for Theorem 1.1.

Remark 1.2. It is interesting that we only assume infx∈RN b(x) > 0 without any further assumptions on the potential
b(x). In contrast, there have been many papers working on other kinds of elliptic systems (see [21,23,24,26] for
example), where further assumptions on b(x) seem always to be needed in the literature.

Remark 1.3. It was pointed out in [16, Remark 1.4] that, by Pohozaev Identity, the limit problem (1.8) has no non-
trivial solutions if p = 2∗ − 1. That is why we assume 1 < p < 2∗ − 1 in this paper.

For the scalar case of (1.3)

−ε2�u + a(x)u = up, x ∈R
N, u > 0, (1.9)

where 1 < p < N+2
N−2 , there are many works on the existence of solutions which concentrate and develop spike layers,

peaks, around some points in R
N while vanishing elsewhere as ε → 0. The related results can be seen in [11–13,17,

18,25,27] and the references therein. On the other hand, the following critical problem

−ε2�u + a(x)u = f (u) + u2∗−1, x ∈ R
N, u > 0, (1.10)

has also been well studied, where f (u) is a subcritical nonlinearity, see [3,29] for example. Remark that in [3], a(x)

is assumed to be locally Hölder continuous. Recently, under more general assumptions on both a(x) and f (u) than
those in [3], Zhang and the authors [29] proved the same result as in [3].

Meanwhile, there are an increasing interest in studying coupled nonlinear Schrödinger equations in recent years,
which is motivated by applications to nonlinear optics and Bose–Einstein condensation (cf. [1,2,19]). For example,
the following coupled Schrödinger equations⎧⎪⎪⎪⎨

⎪⎪⎪⎩

−ε2�u + a(x)u = μ1u
3 + βuv2, x ∈R

N,

−ε2�v + b(x)v = μ2v
3 + βvu2, x ∈R

N,

u > 0, v > 0 in R
N,

u(x), v(x) → 0 as |x| → ∞,

(1.11)

in subcritical case N � 3 have been well studied by [21,23,24,26]. Remark that, further assumptions on b(x) are
needed in all these works.
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Note that the coupling term of (1.11) is nonlinear. Recently, linearly coupled Schrödinger equations of the following
type ⎧⎪⎨

⎪⎩
−�u + μu = |u|p−1u + λv, x ∈R

N,

−�v + νv = |v|p−1v + λu, x ∈ R
N,

u, v ∈ H 1(
R

N
)
,

(1.12)

have been well studied from the cerebrated works by Ambrosetti et al. [4–6]. Systems of this type arise in nonlinear
optics (cf. [1]). In the case of N � 3, μ = ν = 1, p = 3 and λ > 0 small enough, Ambrosetti, Colorado and Ruiz [5]
proved that (1.12) has multi-bump solitons. When |u|p−1u and |v|p−1v are replaced by f (x,u) = (1 + c(x))|u|p−1u

and g(x, v) = (1 + d(x))|v|p−1v respectively, system (1.12) has been studied by Ambrosetti [4] with dimension
N = 1 and Ambrosetti, Cerami and Ruiz [6] with dimension N � 2. When |u|p−1u and |v|p−1v are replaced by
general subcritical nonlinearities f (u) and g(v) respectively, (1.12) was studied by the authors [15].

Note that all works mentioned above deal with subcritical case. Recently, the authors [16] studied the ground state
solutions of the following system with critical exponent⎧⎪⎨

⎪⎩
−�u + μu = up + λv, x ∈R

N,

−�v + νv = v2∗−1 + λu, x ∈ RN,

u, v > 0 in R
N, u, v ∈ H 1

(
R

N
)
,

(1.13)

where μ,ν > 0 and 0 < λ <
√

μν. Note that system (1.13) appears as a limit problem after a suitable rescaling of
(1.3), see Theorem 1.1(ii) for example. As far as the semiclassical states related to (1.13) are concerned, we are
naturally led to study system (1.3), and this is the goal of this paper.

There are several useful approaches to study semiclassical states. One is the classical Lyapunov–Schmidt reduction
method, which cannot be used here, since the uniqueness and nondegeneracy of the ground state solutions of (1.13)
are not known. Another one is Byeon and Jeanjean’s variational approach [11], which cannot be used here either,
since we have no any further assumptions on b(x). Here, to prove Theorem 1.1, we will mainly follow the variational
penalization scheme introduced by Del Pino and Felmer [17]. However, we should point out that the compactness is
the main difficulty since (1.3) is a critical problem. Therefore, the method of Del Pino and Felmer [17] cannot be used
directly and some crucial modifications and new tricks are needed.

The paper is organized as follows. In Section 2, we give a general assumption (V3) on a(x) and b(x) instead of
(V2), and then give a general result. Theorem 1.1 will be a direct corollary of this general result. Some comments
about (V2) and (V3) are also given. We will prove the general result in Section 3.

We give some notations here. Throughout this paper, we denote the norm of Lp(RN) by |u|p = (
∫
RN |u|p dx)

1
p , and

the norm of H 1(RN) by ‖u‖ =
√

|∇u|22 + |u|22. We denote positive constants (possibly different in different places)

by c,C,C0,C1, . . . , and B(x, r) := {y ∈R
N : |x − y| < r}.

2. A general result and some comments

Consider the following coefficient problem⎧⎪⎨
⎪⎩

−�u + a(P )u = up + λv, x ∈RN,

−�v + b(P )v = v2∗−1 + λu, x ∈R
N,

u, v > 0 in R
N, u, v ∈ H 1

(
R

N
)
.

(2.1)

Define H := H 1(RN) × H 1(RN) with the norm ‖(u, v)‖2 := ‖u‖2 + ‖v‖2. It is well known that solutions of (2.1)
correspond to the critical points of C2 functional LP,λ : H → R given by

LP,λ(u, v) = 1

2

∫

RN

(|∇u|2 + a(P )u2 + |∇v|2 + b(P )v2)dx

− 1

p + 1

∫
N

|u|p+1 dx − 1

2∗

∫
N

|v|2∗
dx − λ

∫
N

uv dx. (2.2)
R R R
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Define the Nehari manifold

NP,λ := {
(u, v) ∈ H \ {

(0,0)
}
: L′

P,λ(u, v)(u, v) = 0
}
, (2.3)

and

mλ(P ) := inf
(u,v)∈NP,λ

LP,λ(u, v),

then (u, v) ∈NP,λ satisfying LP,λ(u, v) = mλ(P ) will be a ground state solution of (2.1) (see [16]). Let us introduce
the following assumption

(V3) There exists a smooth open bounded domain Λ ⊂R
N such that

m0,λ := inf
P∈Λ

mλ(P ) < inf
P∈∂Λ

mλ(P ).

Define

Mλ := {
P ∈ Λ: mλ(P ) = m0,λ

}
. (2.4)

In the sequel, the subscript λ will be dropped when there is no possible misunderstanding. Now we can state a
general result.

Theorem 2.1. Let N � 3 and assumptions (V1) hold. Assume that (V3) holds for some λ ∈ (0,
√

a0b0 ), then there
exists ε0 > 0 such that for any ε ∈ (0, ε0), problem (1.3) has a positive solution (ũε, ṽε), which satisfies

(i) there exists a maximum point x̃ε of ũε + ṽε such that x̃ε ∈ Λ and

lim
ε→0

dist(x̃ε,M) = 0;
(ii) for any such an x̃ε , (w1,ε(x),w2,ε(x)) = (ũε(εx + x̃ε), ṽε(εx + x̃ε)) converge (up to a subsequence) to a positive

ground state solution (w1(x),w2(x)) of (2.1) with P = P0, where x̃ε → P0 ∈ M as ε → 0, and it satisfies that
LP0(w1,w2) = m(P0) = m0;

(iii) there exist c,C > 0 independent of ε > 0 such that

(ũε + ṽε)(x) � C exp

(
−c

ε
|x − x̃ε|

)
.

Remark 2.1. Assumption (V3) is an abstract condition, since we cannot write down explicitly the function mλ(P ).
Such type of abstract assumptions for system (1.11) can be seen in [21,24]. As we will see in Lemma 2.1, for our
problem (1.3), we can show that (V2) implies (V3). However, for (1.11), (V2) cannot imply (V3) obviously, and
further assumptions on b(x) are needed (see [21,24]).

Recall μ0 in (1.5); the following results have been proved by the authors [16].

Lemma A. (See [16, Lemma 2.4].) Let 0 < λ <
√

a(P )b(P ).

(1) If 0 < a(P ) � μ0, then mλ(P ) < 1
N

SN/2.
(2) If a(P ) > μ0, then there exists λP ∈ [√(a(P ) − μ0)b(P ),

√
a(P )b(P ) ), such that

(i) if 0 < λ � λP , then mλ(P ) = 1
N

SN/2;
(ii) if λP < λ <

√
a(P )b(P ), then mλ(P ) < 1

N
SN/2.

Lemma B. (See [16, Lemma 2.6].) Let 0 < λ <
√

a(P )b(P ). If mλ(P ) < 1
N

SN/2, then problem (2.1) has a positive
ground state (u0, v0) ∈ C2(RN,R) such that u0, v0 are both radially symmetric decreasing.

Theorem A. (See [16, Theorem 1.1].) Assume N � 3, 1 < p < 2∗ − 1 and 0 < λ <
√

a(P )b(P ).
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(1) If 0 < a(P ) � μ0, then problem (2.1) has a positive ground state (u, v), such that LP (u, v) = mλ(P ) and u,v ∈
C2(RN,R) are both radially symmetric decreasing.

(2) If a(P ) > μ0, then
(i) if λ < λP , then mλ(P ) is not attained, that is, problem (2.1) has no ground state solutions.

(ii) if λ > λP , then problem (2.1) has a positive ground state (u, v), such that LP (u, v) = mλ(P ) and u,v ∈
C2(RN,R) are both radially symmetric decreasing.

Remark 2.2. The assumption 0 < λ <
√

a(P )b(P ) is needed in Lemmas A and B and Theorem A to guarantee that
the Nehari manifold NP,λ is bounded away from 0, and 0 < λ <

√
a0b0 is assumed in Theorems 1.1 and 2.1 such that

NP,λ is bounded away from 0 for all P ∈ R
N .

Lemma 2.1. Assume (V2). Then (V3) holds for any λ satisfying (1.7). Therefore, Theorem 1.1 is a direct corollary of
Theorem 2.1.

Proof. Fix any λ that satisfies (1.7). By (V2), there exists some P1 ∈ Λ such that a(P1) � μ0, then we see from
Lemma A that

inf
P∈Λ

mλ(P ) � mλ(P1) <
1

N
SN/2.

On the other hand, for any P ∈ ∂Λ, we have

λ <
√

(a1 − μ0)b0 �
√(

a(P ) − μ0
)
b(P ) � λP ,

then we see from Lemma A that mλ(P ) = 1
N

SN/2, that is,

inf
P∈∂Λ

mλ(P ) = 1

N
SN/2.

Therefore, (V3) holds. �
Lemma 2.2. Assumptions infx∈RN a(x)� μ0 and infx∈Λ a(x) � μ0 in (V1)–(V2) are both necessary for Theorem 1.1.

Proof. Suppose that Theorem 1.1 holds. Assume by contradiction that a2 := infx∈Λ a(x) > μ0. Fix any λ that satisfies

0 < λ < min
{√

a0b0,
√

(a1 − μ0)b0,
√

(a2 − μ0)b0
}
.

Theorem 1.1(ii) says that there exists some P0 ∈ Λ such that (2.1) has a ground state solution when P = P0. On the
other hand, since

λ <
√

(a2 − μ0)b0 �
√(

a(P0) − μ0
)
b(P0) � λP0 ,

Theorem A says that (2.1) has no ground state solutions when P = P0, a contradiction. So infx∈Λ a(x) � μ0, and this
implies infx∈RN a(x) � μ0. �
Lemma 2.3. Let {Pn: n ∈ N} ⊂ R

N such that Pn → P0 ∈ R
N as n → ∞, and fix any λ ∈ (0,

√
a(P0)b(P0) ). If

mλ(P0) < 1
N

SN/2, then

lim
n→∞mλ(Pn) = mλ(P0).

Proof. Since Pn → P0, we may assume that

λ <
√

a(Pn)b(Pn) − δ, ∀n ∈N, (2.5)

where δ > 0 is a small constant. In this proof, the subscript λ will be dropped. Then it is standard to prove that

m(Pn) = inf
(u,v)∈N

LPn(u, v) = inf
(u,v) �=(0,0)

max
t>0

LPn(tu, tv). (2.6)

Pn
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Since m(P0) < 1
N

SN/2, we see from Lemma B that problem (2.1) has a ground state (u0, v0) ∈ C2(RN,R) when
P = P0, and LP0(u0, v0) = m(P0). It is easy to see that there exists tn > 0 such that (tnu0, tnv0) ∈ NPn and tn → 1 as
n → ∞. Then

lim sup
n→∞

m(Pn) � lim sup
n→∞

LPn(tnu0, tnv0) = LP0(u0, v0) = m(P0), (2.7)

and so we may assume that m(Pn) < 1
N

SN/2 for any n ∈ N. Combining this with (2.5) and Lemma B, we see that
(2.1) has a positive ground state solution (Un,Vn) when P = Pn, and LPn(Un,Vn) = m(Pn). Moreover, Un,Vn are
both radially symmetric decreasing. By (2.5) we have

m(Pn) = LPn(Un,Vn) − 1

p + 1
L′

Pn
(Un,Vn)(Un,Vn)

� p − 1

2p + 2

∫

RN

(|∇Un|2 + a(Pn)U
2
n + |∇Vn|2 + b(Pn)V

2
n − 2λUnVn

)

� C
(‖Un‖2 + ‖Vn‖2), ∀n ∈N,

where C > 0 is independent of n. Hence, (Un,Vn) is uniformly bounded in H . Passing to a subsequence, we may
assume that (Un,Vn) ⇀ (U0,V0) weakly in H . Then by repeating the proof of Lemma B in [16] with minor modi-
fications, we can prove that (Un,Vn) → (U0,V0) strongly in H and (U0,V0) is a nontrivial critical point of LP0 . By
(2.7) we have

lim sup
n→∞

m(Pn) �m(P0) � LP0(U0,V0) = lim
n→∞LPn(Un,Vn) = lim

n→∞m(Pn).

This completes the proof. �
In fact, assumption (V3) is more general than (V2), and we believe that there may be some other kinds of conditions

on a(x) and b(x) such that (V3) holds. For example, we can show the following result.

Proposition 2.1. Suppose (V1) holds. Assume that there exist a smooth open bounded domain Λ ⊂ R
N and some

P1 ∈ Λ such that supx∈Λ a(x) � μ0, and either

a(P1) < inf
x∈∂Λ

a(x), b(P1) � inf
x∈∂Λ

b(x),

or

a(P1) � inf
x∈∂Λ

a(x), b(P1) < inf
x∈∂Λ

b(x). (2.8)

Then (V3) holds for any λ ∈ (0,
√

a0b0 ).

Proof. Without loss of generality, we assume that (2.8) holds. Fix any λ ∈ (0,
√

a0b0 ). In this proof, the subscript λ

will be dropped. Lemma A says that m(P ) < 1
N

SN/2 for any P ∈ Λ, so we see from Lemma 2.3 that m(P ) is
continuous with respect to P ∈ Λ. Then there exists P2 ∈ ∂Λ such that m(P2) = infP∈∂Λ m(P ). By Lemma B we
know that (2.1) has a positive ground state solution (U,V ) when P = P2, and LP2(U,V ) = m(P2). Noting that
a(P1) � a(P2) and b(P1) < b(P2), it is easy to see that there exists 0 < t0 < 1 such that (t0U, t0V ) ∈NP1 . Therefore,

m(P1) � LP1(t0U, t0V ) =
(

1

2
− 1

p + 1

)
t
p+1
0 |U |p+1

p+1 +
(

1

2
− 1

2∗

)
t2∗
0 |V |2∗

2∗

<

(
1

2
− 1

p + 1

)
|U |p+1

p+1 +
(

1

2
− 1

2∗

)
|V |2∗

2∗

= LP2(U,V ) = m(P2),

that is,

inf
P∈Λ

m(P ) �m(P1) < m(P2) = inf
P∈∂Λ

m(P ),

that is, (V3) holds. �
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3. Proof of Theorem 2.1

In the rest of this paper, we only need to prove Theorem 2.1. From now on, we assume that (V1) hold, and we fix
any λ ∈ (0,

√
a0b0 ) such that (V3) holds.

Define aε(x) := a(εx), bε(x) := b(εx). To study (1.3), it suffices to consider the following system
⎧⎪⎪⎨
⎪⎪⎩

−�u + aεu = up + λv, x ∈ R
N,

−�v + bεv = v2∗−1 + λu, x ∈R
N,

u > 0, v > 0, x ∈ RN,

u(x), v(x) → 0 as |x| → ∞.

(3.1)

Let H 1
a,ε (resp. H 1

b,ε) be the completion of C∞
0 (RN) with respect to the norm

‖u‖a,ε =
( ∫

RN

|∇u|2 + aεu
2 dx

) 1
2

(
resp. ‖u‖b,ε =

( ∫

RN

|∇u|2 + bεu
2 dx

) 1
2
)

.

Define Hε := H 1
a,ε × H 1

b,ε with a norm ‖(u, v)‖ε =
√

‖u‖2
a,ε + ‖v‖2

b,ε .

Define Λε := {x ∈R
N : εx ∈ Λ} and

χΛε(x) :=
{

1 if x ∈ Λε,

0 if x /∈ Λε.

Note that λ <
√

a0b0 implies the existence of δ0 > 0 such that a0 − δ0λ > 0 and b0 − λ/δ0 > 0. Define

α :=
(

1

2
min

{
1, a0 − δ0λ,b0 − λ

δ0

}) 1
p−1

, (3.2)

then α < 1 and α2∗−2 < αp−1. Define

f (s) :=
{ |s|p−1s if |s| � α,

αp−1s if |s| > α,
g(s) :=

{ |s|2∗−2s if |s| � α,

α2∗−2s if |s| > α,

and

fε(x, s) := χΛε(x)|s|p−1s + (
1 − χΛε(x)

)
f (s);

gε(x, s) := χΛε(x)|s|2∗−2s + (
1 − χΛε(x)

)
g(s). (3.3)

Let Fε(x, s) := ∫ s

0 fε(x, t) dt , F(s) := ∫ s

0 f (t) dt and Gε(x, s) := ∫ s

0 gε(x, t) dt , G(s) := ∫ s

0 g(t) dt . Then
∣∣fε(x, s)

∣∣ � |s|p,
∣∣gε(x, s)

∣∣ � |s|2∗−1, x ∈ R
N, (3.4)

(p + 1)Fε(x, s) = fε(x, s)s, 2∗Gε(x, s) = gε(x, s)s, x ∈ Λε, (3.5)

2Fε(x, s) � fε(x, s)s � αp−1s2, 2Gε(x, s) � gε(x, s)s � αp−1s2, x /∈ Λε. (3.6)

Define a functional Jε : Hε →R by

Jε(u, v) := 1

2
‖u‖2

a,ε + 1

2
‖v‖2

b,ε −
∫

RN

(
Fε

(
x,u+) + Gε

(
x, v+) + λuv

)
dx. (3.7)

Here and in the following, u+(x) := max{u(x),0} and so is v+. By (V1) we see that Hε ↪→ H and there exists some
C > 0 independent of ε > 0 such that∥∥(u, v)

∥∥ � C
∥∥(u, v)

∥∥
ε
. (3.8)

Then it is standard to show that Jε is well defined and Jε ∈ C1(Hε,R). Furthermore, any critical points of Jε are weak
solutions of the following system
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⎧⎪⎨
⎪⎩

−�u + aεu = fε

(
x,u+) + λv, x ∈R

N,

−�v + bεv = gε

(
x, v+) + λu, x ∈R

N,

u(x), v(x) → 0 as |x| → ∞.

(3.9)

For each small ε > 0, we will find a nontrivial solution of (3.9) by applying mountain-pass argument to Jε . Then
we shall prove that this solution is a positive solution of (3.1) for ε > 0 sufficiently small.

By (V1), (3.2) and (3.6), there exists C > 0 independent of ε > 0 such that

‖u‖2
a,ε + ‖v‖2

b,ε −
∫

RN\Λε

(
fε(x,u)u + gε(x, v)v

) − 2λ

∫

RN

uv � 2C
∥∥(u, v)

∥∥2
ε
. (3.10)

Then by (3.6)–(3.8) we have

Jε(u, v) � C
∥∥(u, v)

∥∥2
ε
− 1

p + 1

∫
Λε

∣∣u+∣∣p+1
dx − 1

2∗

∫
Λε

∣∣v+∣∣2∗
dx

� C
∥∥(u, v)

∥∥2
ε
− C‖u‖p+1 − C‖v‖2∗

� C
∥∥(u, v)

∥∥2
ε
− C

∥∥(u, v)
∥∥p+1

ε
− C

∥∥(u, v)
∥∥2∗

ε
, (3.11)

where C > 0 is independent of ε > 0. Therefore, there exist small r,α1 > 0 independent of ε > 0, such that

inf‖(u,v)‖ε=r
Jε(u, v) � α1 > 0, ∀ε > 0. (3.12)

Define

cε := inf
γ∈Φε

sup
t∈[0,1]

Jε

(
γ (t)

)
, (3.13)

where Φε = {γ ∈ C([0,1],Hε): γ (0) = (0,0), Jε(γ (1)) < 0}. Take ψε ∈ C∞
0 (Λε,R) such that ψε � 0 and ψε �≡ 0,

then Jε(tψε, tψε) → −∞ as t → +∞. So Φε �= ∅ and cε is well defined. By (3.12) we get

cε � α1 > 0, ∀ε > 0. (3.14)

By Lemma A we have m(P ) � 1
N

SN/2 for all P ∈R
N , and by (V3) there holds

m0 <
1

N
SN/2. (3.15)

Then by repeating the proof of Lemma 2.3 we obtain M �= ∅.

Lemma 3.1. lim supε→0 cε � m0 < 1
N

SN/2.

Proof. Take any P ∈ M, then m(P ) = m0 < 1
N

SN/2. By Lemma B we know that (2.1) has a positive ground state
(U,V ) such that LP (U,V ) = m0. Take T > 1 such that LP (T U,T V ) � −1. Noting that there exists R > 0 such that
B(P,R) := {x: |x −P | < R} ⊂ Λ, we take φ ∈ C1

0(RN,R) with 0 � φ � 1, φ(x) ≡ 1 for |x| � R/2 and φ(x) ≡ 0 for
|x| � R. Define φε(x) := φ(εx), then φε(x − P/ε) �= 0 implies x ∈ Λε . Combining this with (3.3) and the Lebesgue
Dominated Convergence Theorem, one has that

Jε

(
t (φεU)(· − P/ε), t (φεV )(· − P/ε)

)

= t2

2

∫
|x|�R/ε

(∣∣∇(φεU)
∣∣2 + a(εx + P)φ2

εU2 + ∣∣∇(φεV )
∣∣2 + b(εx + P)φ2

εV 2)

− tp+1

p + 1

∫
|x|�R/ε

|φεU |p+1 − t2∗

2∗

∫
|x|�R/ε

|φεV |2∗ − λt2
∫

|x|�R/ε

φ2
εUV

→ LP (tU, tV ), as ε → 0, uniformly for t ∈ [0, T ].
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So Jε(T (φεU)(· − P/ε),T (φεV )(· − P/ε)) < 0 for ε > 0 sufficiently small, that is, γε(t) := (tT (φεU)(· −
P/ε), tT (φεV )(· − P/ε)) ∈ Φε , so

lim sup
ε→0

cε � lim sup
ε→0

max
t∈[0,1]

Jε

(
tT (φεU)(· − P/ε), tT (φεV )(· − P/ε)

)
= max

t∈[0,1]
LP (tT U, tT V ) = LP (U,V ) = m0.

This completes the proof. �
Lemma 3.2. There exists small ε1 > 0 such that for any ε ∈ (0, ε1), Jε has a nontrivial critical point (uε, vε) ∈ Hε ,
which satisfies that uε > 0, vε > 0 and Jε(uε, vε) = cε .

Proof. By Lemma 3.1, there exists small ε1 > 0 such that for any ε ∈ (0, ε1), we have cε < 1
N

SN/2. Fix any ε ∈
(0, ε1). By the Mountain Pass Theorem [7], there exists (un, vn) ∈ Hε such that

lim
n→∞Jε(un, vn) = cε, lim

n→∞J ′
ε(un, vn) = 0.

By (3.4)–(3.6) and (3.10), it is easy to see that

cε + o
(∥∥(un, vn)

∥∥
ε

) + o(1)� Jε(un, vn) − 1

p + 1
J ′

ε(un, vn)(un, vn)

� p − 1

2(p + 1)
C
∥∥(un, vn)

∥∥2
ε
, (3.16)

which implies that (un, vn) is uniformly bounded in Hε . Up to a subsequence, we may assume that (un, vn) ⇀ (uε, vε)

weakly in Hε . Then J ′
ε(uε, vε) = 0.

Step 1. We prove that un → uε strongly in H 1
a,ε .

Take R0 such that Λε ⊂ B(0,R0/2). For any R � R0, we take a cut-off function ηR ∈ C∞(RN,R) such that
0 � ηR � 1, ηR ≡ 0 on B(0,R/2), ηR ≡ 1 on R

N \ B(0,R) and |∇ηR| � 10/R. Then ηR ≡ 0 on Λε . By (V1), (3.2)
and (3.6), there exists C > 0 independent of n such that∫

RN

(|∇un|2 + aεu
2
n + |∇vn|2 + bεv

2
n

)
ηR dx −

∫

RN

(
fε(x,un)un + gε(x, vn)vn + 2λunvn

)
ηR dx

� C

∫

RN

(|∇un|2 + aεu
2
n + |∇vn|2 + bεv

2
n

)
ηR dx. (3.17)

Then we deduce from J ′
ε(un, vn)(ηRun, ηRvn) = o(1) that∫

RN

(|∇un|2 + aεu
2
n + |∇vn|2 + bεv

2
n

)
ηR dx � C

∫

RN

(|∇un||∇ηR||un| + |∇vn||∇ηR||vn|
)
dx + o(1)

� C

R
+ o(1), (3.18)

that is,

lim sup
n→∞

∫

RN\B(0,R)

(|∇un|2 + aεu
2
n + |∇vn|2 + bεv

2
n

)
dx � C

R
. (3.19)

On the other hand, we may assume that (un, vn) → (uε, vε) strongly in L
q

loc(R
N) × L

q

loc(R
N), where 2 � q < 2∗. So

lim sup
n→∞

∫

RN

∣∣aεu
2
n − aεu

2
ε

∣∣dx � lim sup
n→∞

∫
B(0,R)

∣∣aεu
2
n − aεu

2
ε

∣∣dx + lim sup
n→∞

∫

RN\B(0,R)

∣∣aεu
2
n

∣∣ + ∣∣aεu
2
ε

∣∣dx

� C
holds for any R � R0,
R
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that is,

lim
n→∞

∫

RN

aεu
2
n dx =

∫

RN

aεu
2
ε dx. (3.20)

Similarly we can prove that

lim
n→∞

∫

RN

bεv
2
n dx =

∫

RN

bεv
2
ε dx; (3.21)

lim
n→∞

∫

RN

fε

(
x,u+

n

)
un dx =

∫

RN

fε

(
x,u+

ε

)
uε dx; (3.22)

lim
n→∞

∫

RN\Λε

gε

(
x, v+

n

)
vn dx =

∫

RN\Λε

gε

(
x, v+

ε

)
vε dx; (3.23)

lim
n→∞

∫

RN

Fε

(
x,u+

n

)
dx =

∫

RN

Fε

(
x,u+

ε

)
dx; (3.24)

lim
n→∞

∫

RN\Λε

Gε

(
x, v+

n

)
dx =

∫

RN\Λε

Gε

(
x, v+

ε

)
dx; (3.25)

lim
n→∞

∫

RN

unvn dx =
∫

RN

uεvε dx. (3.26)

Then by J ′
ε(un, vn)(un,0) = o(1) we get that

lim
n→∞‖un‖2

a,ε = lim
n→∞

∫

RN

fε

(
x,u+

n

)
un + λunvn dx =

∫

RN

fε

(
x,u+

ε

)
uε + λuεvε dx = ‖uε‖2

a,ε,

that is, un → uε strongly in H 1
a,ε .

Step 2. We prove that vn → vε strongly in H 1
b,ε .

Denote ωn = vn − vε and A := limn→∞
∫
RN |∇ωn|2 dx. Fix any δ > 0, then it is easy to prove the existence of

Cδ > 1 such that
∣∣∣∣(a + b)+

∣∣2∗ − ∣∣a+∣∣2∗ ∣∣� δ|a|2∗ + Cδ|b|2∗
, ∀a, b ∈R. (3.27)

Here a+ := max{a,0} and so is (a + b)+. Note that (3.27) can be easily checked by considering three different cases
separately: (1) a � 0, a + b � 0; (2) a � 0, a + b < 0; (3) a < 0, a + b � 0. Then

f δ
n := (∣∣∣∣v+

n

∣∣2∗ − ∣∣ω+
n

∣∣2∗ − ∣∣v+
ε

∣∣2∗ ∣∣ − δ
∣∣ω+

n

∣∣2∗)+ � (1 + Cδ)|vε|2∗
.

By the Lebesgue Dominated Convergence Theorem, we see that
∫
Λε

f δ
n dx → 0 as n → ∞. Note that

∣∣∣∣v+
n

∣∣2∗ − ∣∣ω+
n

∣∣2∗ − ∣∣v+
ε

∣∣2∗ ∣∣ � f δ
n + δ

∣∣ω+
n

∣∣2∗
,

so

lim sup
n→∞

∫
Λε

∣∣∣∣v+
n

∣∣2∗ − ∣∣ω+
n

∣∣2∗ − ∣∣v+
ε

∣∣2∗ ∣∣� Cδ.

Since δ > 0 is arbitrary, we get that

lim
n→∞

∫ (∣∣v+
n

∣∣2∗ − ∣∣ω+
n

∣∣2∗) =
∫ ∣∣v+

ε

∣∣2∗
.

Λε Λε
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Combining this with (3.20)–(3.26), we deduce from J ′
ε(un, vn)(0, vn) = o(1) that

lim
n→∞‖vn‖2

b,ε = lim
n→∞

∫

RN

|∇ωn|2 dx + ‖vε‖2
b,ε

= lim
n→∞

∫

RN

gε

(
x, v+

n

)
vn + λunvn dx

= lim
n→∞

∫
Λε

∣∣ω+
n

∣∣2∗ +
∫

RN

gε

(
x, v+

ε

)
vε + λuεvε dx

= lim
n→∞

∫
Λε

∣∣ω+
n

∣∣2∗ + ‖vε‖2
b,ε,

that is,

A = lim
n→∞

∫
Λε

∣∣ω+
n

∣∣2∗
� lim

n→∞

∫

RN

|ωn|2∗ � lim
n→∞

(
S−1

∫

RN

|∇ωn|2
)2∗/2

= S−2∗/2A2∗/2.

If A > 0, then A � SN/2. Similarly as (3.16), we have

Jε(uε, vε) = Jε(uε, vε) − 1

p + 1
J ′

ε(uε, vε)(uε, vε) �
p − 1

2(p + 1)
C
∥∥(uε, vε)

∥∥2
ε
� 0. (3.28)

Combining this with (3.20)–(3.26), we get that

cε = lim
n→∞Jε(un, vn)

= 1

2
lim

n→∞

∫

RN

|∇ωn|2 − 1

2∗ lim
n→∞

∫
Λε

∣∣ω+
n

∣∣2∗ + Jε(uε, vε)

= 1

N
A + Jε(uε, vε) �

1

N
SN/2,

a contradiction. So A = 0, that is, vn → vε strongly in H 1
b,ε .

Step 3. We prove that (uε, vε) is a nontrivial critical point of Jε , which satisfies Jε(uε, vε) = cε and uε > 0, vε > 0.
By Step 1 and Step 2, we have Jε(uε, vε) = limn→∞ Jε(un, vn) = cε > 0, so (uε, vε) is a nontrivial critical point

of Jε , and we may assume that uε �≡ 0. Then (3.9) implies that vε �≡ 0. Define u−(x) := max{−u(x),0}, then we see
from J ′

ε(uε, vε)(u
−
ε , v−

ε ) = 0 that

∥∥u−
ε

∥∥2
a,ε

+ ∥∥v−
ε

∥∥2
b,ε

= −λ

∫

RN

uεv
−
ε + u−

ε vε dx � 2λ

∫

RN

u−
ε v−

ε dx � δ0λ

∫

RN

∣∣u−
ε

∣∣2
dx + λ/δ0

∫

RN

∣∣v−
ε

∣∣2
dx,

so (u−
ε , v−

ε ) = (0,0), that is, uε � 0 and vε � 0. On the other hand, by a Brezis–Kato type argument [9] on uε + vε ,

we see that uε + vε ∈ Lq(RN) for any q � 2, and so uε, vε ∈ W
2,q

loc (RN) for any q � 2. Then by Sobolev embedding

we get that uε, vε ∈ C
1,β

loc (RN) for any β ∈ (0,1). Therefore, by the strong maximum principle, we have uε > 0 and
vε > 0. �
Lemma 3.3. For any ε ∈ (0, ε1), there holds ‖uε + vε‖L∞(Λε) � α > 0.

Proof. If ‖uε + vε‖L∞(Λε) < α for some ε ∈ (0, ε1), then

fε(x,uε)uε � αp−1u2
ε, gε(x, vε)vε � α2∗−2v2

ε � αp−1v2
ε , ∀x ∈R

N.
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So

‖uε‖2
a,ε + ‖v‖2

b,ε �
∫

RN

(
αp−1u2

ε + αp−1v2
ε + 2λuεvε

)
dx.

Combining this with (3.2), we deduce that (uε, vε) = (0,0), a contradiction. �
Lemma 3.4. There exist ε3 ∈ (0, ε1), C0 > 0 and {yε ∈ Λε: ε ∈ (0, ε3)} such that∫

B(yε,1)

(
u2

ε + v2
ε

)
dx � C0 > 0, ∀ε ∈ (0, ε3). (3.29)

Proof. Assume by contradiction that there exists εn → 0 as n → ∞ such that

lim
εn→0

sup
y∈RN

∫
B(y,1/2)

(
u2

εn
+ v2

εn

)
χΛεn

dx = 0,

then Lions Lemma [22] says that (uεnχΛεn
, vεnχΛεn

) → (0,0) strongly in Lq(RN) × Lq(RN) for all q ∈ (2,2∗), and
so

lim
εn→0

∫
Λεn

|uεn |p+1 dx = 0.

We write ε for εn for convenience. Note that

S

( ∫

RN

|vε|2∗
dx

)2/2∗

�
∫

RN

|∇vε|2 dx

� ‖uε‖2
a,ε + ‖vε‖2

b,ε −
∫

RN\Λε

(
fε(x,uε)uε + gε(x, vε)vε

) − 2λ

∫

RN

uεvε

=
∫
Λε

|uε|p+1 +
∫
Λε

|vε|2∗
. (3.30)

Letting ε → 0 and denoting A := limε→0
∫
Λε

|vε|2∗
, we get that SA2/2∗ � A, so A = 0 or A � SN/2. Meanwhile, we

see from Sobolev inequalities, (3.10) and (3.30) that
∥∥(uε, vε)

∥∥2
ε
� C

∥∥(uε, vε)
∥∥p+1

ε
+ C

∥∥(uε, vε)
∥∥2∗

ε
,

where C > 0 is independent of ε > 0. Since (uε, vε) �= (0,0), so∫
Λε

|uε|p+1 +
∫
Λε

|vε|2∗ � C
∥∥(uε, vε)

∥∥
ε
� C > 0, ∀ε > 0.

Letting ε → 0 we see that A > 0. So A� SN/2, and by (3.5)–(3.6) we obtain

lim
ε→0

cε = lim
ε→0

(
Jε(uε, vε) − 1

2
J ′

ε(uε, vε)(uε, vε)

)
� lim

ε→0

1

N

∫
Λε

|vε|2∗ � 1

N
SN/2,

which contradicts with Lemma 3.1. Therefore there exists C0 > 0 such that

lim inf
ε→0

sup
y∈RN

∫ (
u2

ε + v2
ε

)
χΛε dx � 2C0.
B(y,1/2)



442 Z. Chen, W. Zou / Ann. I. H. Poincaré – AN 31 (2014) 429–447
That is, there exist ε3 ∈ (0, ε1) and {zε ∈R
N : ε ∈ (0, ε3)} such that∫

B(zε,1/2)∩Λε

(
u2

ε + v2
ε

)
dx � C0 > 0, ∀ε ∈ (0, ε3).

Taking yε ∈ B(zε,1/2) ∩ Λε , we see that (3.29) holds. �
Lemma 3.5. There hold limε→0 dist(εyε,M) = 0 and limε→0 cε = m0. Moreover, for any εn → 0, (w1,εn(x),

w2,εn(x)) := (uεn(x + yεn), vεn(x + yεn)) converge (up to a subsequence, in the sense of ‖ · ‖ in H ) to a positive
ground state solution (w1(x),w2(x)) of (2.1) with P = P0, where εnyεn → P0 ∈ M as εn → 0, and it satisfies that
LP0(w1,w2) = m(P0) = m0.

Proof. By Lemma 3.1 and (3.28), we may assume that {(uε, vε): ε ∈ (0, ε3)} is uniformly bounded in Hε and so
in H . Take any εn → 0. Up to a subsequence, we may assume that (w1,εn ,w2,εn) ⇀ (w1,w2) weakly in H . Then we
see from Lemma 3.4 that∫

B(0,1)

(
w2

1 + w2
2

)
dx � C0 > 0,

that is, (w1,w2) �= (0,0) and w1,w2 � 0. For convenience, we write ε for εn. Since yε ∈ Λε , up to a subsequence, we
may assume that εyε → P0 ∈ Λ. Since Λ is smooth, up to a subsequence, we may assume that χΛε(· + yε) converges
almost everywhere to χ , where 0 � χ � 1. In fact, χ is either the characteristic function of RN or the characteristic
function of a half space. Then (w1,w2) satisfies⎧⎪⎨

⎪⎩
−�u + a(P0)u = χup + (1 − χ)f (u) + λv, x ∈R

N,

−�v + b(P0)v = χv2∗−1 + (1 − χ)g(v) + λu, x ∈ R
N,

u, v ∈ H 1(
R

3), u > 0, v > 0.

(3.31)

Define the functional of (3.31) as

L(u, v) := 1

2

∫

RN

(|∇u|2 + a(P0)u
2 + |∇v|2 + b(P0)v

2 − 2λuv
)
dx

−
∫

RN

[
χ

( |u|p+1

p + 1
+ |v|2∗

2∗

)
+ (1 − χ)

(
F(u) + G(v)

)]
dx. (3.32)

Noting that F(u) � |u|p+1

p+1 and G(v) � |v|2∗
2∗ , we see from (2.6) that

L(w1,w2) = max
t>0

L(tw1, tw2) � max
t>0

LP0(tw1, tw2) �m(P0) � m0.

Then by (3.4)–(3.6) and Fatou Lemma we have

m0 � m(P0) � L(w1,w2) = L(w1,w2) − 1

2
L′(w1,w2)(w1,w2)

=
∫

RN

[(
1

2
− 1

p + 1

)
χw

p+1
1 +

(
1

2
− 1

2∗

)
χw2∗

2

]

+
∫

RN

(1 − χ)

(
1

2
f (w1)w1 − F(w1) + 1

2
g(w2)w2 − G(w2)

)

� lim
ε→0

∫
N

[
1

2
fε(x + yε,w1,ε)w1,ε − Fε(x + yε,w1,ε)

]

R
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+ lim
ε→0

∫

RN

[
1

2
gε(x + yε,w2,ε)w2,ε − Gε(x + yε,w2,ε)

]

= lim
ε→0

[
Jε(uε, vε) − 1

2
J ′

ε(uε, vε)(uε, vε)

]
= lim

ε→0
cε

� m0. (3.33)

This means that all inequalities in (3.33) are identities. Firstly, limε→0 cε = m0. Secondly, we have m(P0) = m0,
so P0 ∈ M, which implies limε→0 dist(εyε,M) = 0 and so Λε − yε → R

N , that is, χ ≡ 1. Then L(w1,w2) =
LP0(w1,w2) = m(P0), that is, (w1,w2) is a ground state solution of (2.1) with P = P0. By the strong maximum
principle, w1,w2 > 0. Thirdly, by putting χ ≡ 1 into (3.33), we have

lim
ε→0

∫
Λε−yε

w
p+1
1,ε dx =

∫

RN

w
p+1
1 dx,

lim
ε→0

∫
Λε−yε

w2∗
2,ε dx =

∫

RN

w2∗
2 dx.

By (V1), (3.2) and (3.6), there exists small δ > 0 independent of ε > 0 such that

Aε :=
∫

RN

(
aε(x + yε) − δ

)
w2

1,ε + (
bε(x + yε) − δ

)
w2

2,ε dx

−
∫

x+yε∈RN\Λε

(
f (w1,ε)w1,ε + g(w2,ε)w2,ε

) − 2λ

∫

RN

w1,εw2,ε � 0. (3.34)

Then by Fatou Lemma we have∫

RN

(|∇w1|2 + δw2
1 + |∇w2|2 + δw2

2

) +
∫

RN

[(
a(P0) − δ

)
w2

1 + (
b(P0) − δ

)
w2

2 − 2λw1w2
]
dx

=
∫

RN

(
w

p+1
1 + w2∗

2

)
dx = lim

ε→0

∫
Λε−yε

(
w

p+1
1,ε + w2∗

2,ε

)
dx

= lim
ε→0

∫

RN

(|∇w1,ε|2 + δw2
1,ε + |∇w2,ε|2 + δw2

2,ε

) + lim
ε→0

Aε

�
∫

RN

(|∇w1|2 + δw2
1 + |∇w2|2 + δw2

2

) +
∫

RN

[(
a(P0) − δ

)
w2

1 + (
b(P0) − δ

)
w2

2 − 2λw1w2
]
dx,

which implies that (w1,ε,w2,ε) → (w1,w2) strongly in H . �
To continue our proof, we need the following lemma which is a special case of Lemma 8.17 in [20] for �.

Lemma 3.6. (See [20, Lemma 8.17].) Let Ω be an open subset of RN . Suppose that t > N , h ∈ L
t
2 (Ω) and u ∈ H 1(Ω)

satisfies −�u(y) � h(y), y ∈ Ω in the weak sense. Then for any ball B(y,2r) ⊂ Ω ,

sup
B(y,r)

u � C
(∥∥u+∥∥

L2(B(y,2r))
+ ‖h‖Lt/2(B(y,2r))

)
,

where C = C(N, t, r) is independent of y, and u+ = max{0, u}.

Lemma 3.7. There exist ε4 ∈ (0, ε3) and C2 > 0 such that

‖uε + vε‖L∞(RN) � C2, ∀0 < ε < ε4.
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Proof. In this proof, we use the Moser iteration. Assume by contradiction that there exists εn → 0 such that

lim
n→∞‖uεn + vεn‖L∞(RN) = +∞. (3.35)

Recall (w1,εn ,w2,εn) in Lemma 3.5, up to a subsequence, we may assume that (w1,εn ,w2,εn) → (w1,w2) strongly
in H . Denote wn = w1,εn + w2,εn and w = w1 + w2, then wn → w strongly in H 1(RN) and (3.35) implies that

lim
n→∞‖wn‖L∞(RN) = +∞. (3.36)

Since (uεn, vεn) is a solution of (3.9), by (3.4) we see that

−�wn �w
p
n + w2∗−1

n + λwn � 2w2∗−1
n + λ1wn, x ∈R

N, (3.37)

where λ1 = λ + 1 > 0.
First, for any s � 0, we claim that

sup
n

|wn|2(s+1) � C1(s) �⇒ sup
n

|wn|2∗(s+1) � C2(s), (3.38)

where Ci(s) (i = 1,2) are positive constants independent of n.
Choose l > 0 and set

ψn,l := min
{
ws

n, l
}
, ϕn,l = wnψ

2
n,l, Ωn,l = {

x ∈ R
N : ws

n � l
}
,

χΩn,l
=

{
1 if x ∈ Ωn,l,

0 if u /∈ Ωn,l.

Then

∇(wnψn,l) = (1 + sχΩn,l
)ψn,l∇wn, ∇ϕn,l = (1 + 2sχΩn,l

)ψ2
n,l∇wn,

and ϕn,l ∈ H 1(RN). By (3.37) we have∫

RN

|∇wn|2ψ2
n,l �

∫

RN

∇wn · ∇ϕn,l �
∫

RN

(
λ1wn + 2w2∗−1

n

)
wnψ

2
n,l

� λ1

∫

RN

w2(s+1)
n + 2

∫

RN

w2∗
n ψ2

n,l � C + 2
∫

RN

w2∗
n ψ2

n,l .

While, by Sobolev embedding (1.4) we have∫

RN

w2∗
n ψ2

n,l �
∫

RN

w2∗−2w2
nψ

2
n,l +

∫

RN

∣∣w2∗−2
n − w2∗−2

∣∣w2
nψ

2
n,l

� k2∗−2
∫

{w�k}
w2(s+1)

n +
∫

{w>k}
w2∗−2w2

nψ
2
n,l +

( ∫

RN

∣∣w2∗−2
n − w2∗−2

∣∣N/2
)2/N( ∫

RN

w2∗
n ψ2∗

n,l

)2/2∗

� C(k,n)

∫

RN

∣∣∇(wnψn,l)
∣∣2 + Ck2∗−2, (3.39)

where

C(k,n) := S−1
( ∫

RN

∣∣w2∗−2
n − w2∗−2

∣∣N/2
)2/N

+ S−1
( ∫

{w>k}
w2∗

)2/N

. (3.40)

Therefore,∫
N

∣∣∇(wnψn,l)
∣∣2 � (1 + s)2

∫
N

|∇wn|2ψ2
n,l � 2(1 + s)2C(k,n)

∫
N

∣∣∇(wnψn,l)
∣∣2 + Ck2∗−2 + C.
R R R
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Since wn → w in H 1(RN), we have w2∗−2
n → w2∗−2 in LN/2(RN). By (3.40), there exist k0 > 0 and n0 > 0 large

enough, such that for any n� n0 we have 2(1 + s)2C(k0, n)� 1
2 , where k0 is independent of n ∈N. This implies that∫

Ωn,l

∣∣∇(
ws+1

n

)∣∣2 �
∫

RN

∣∣∇(wnψn,l)
∣∣2 � 2Ck2∗−2

0 + 2C = C(s), n� n0.

Letting l → +∞, we get that
∫
RN |∇(ws+1

n )|2 � C(s), n � n0. By (1.4) again, we have that
∫
RN w

2∗(s+1)
n �

S−2∗/2C(s)2∗/2, n� n0. On the other hand,∫

RN

w2∗
n ψ2

n,l � k2∗−2
∫

{wn�k}
w2(s+1)

n +
∫

{wn>k}
w2∗−2

n w2
nψ

2
n,l � C̃(k, n)

∫

RN

∣∣∇(wnψn,l)
∣∣2 + Ck2∗−2, (3.41)

where

C̃(k, n) := S−1
( ∫

{wn>k}
w2∗

n

)2/N

. (3.42)

Since there exists k̃0 > 0 large enough, such that 2(1 + s)2C̃(k̃0, n) � 1
2 for any n � n0, then by repeating the argu-

ments above, we have supn�n0

∫
RN w

2∗(s+1)
n � C. This proves the claim (3.38).

Note that wn is uniformly bounded in H 1(RN) and so in L2(RN). Letting s1 = 0 and using a bootstrap argument,
we see from the claim that for any q � 2, there exists C(q) > 0 such that supn |wn|q � C(q). By (3.37) and Lemma 3.6
we see that {wn}n is uniformly bounded in L∞(RN), a contradiction with (3.36). This completes the proof. �
Proof of Theorem 2.1. Define (w1,ε(x),w2,ε(x)) := (uε(x + yε), vε(x + yε)) and wε := w1,ε + w2,ε . Similarly as
(3.37), by Lemma 3.7 and N � 3 we have

−�wε � (1 + λ)wε + 2w2∗−1
ε � Cw

4
N+1
ε , (3.43)

where C > 0 is independent of ε > 0.
Step 1. We prove that there exists ε5 ∈ (0, ε4) such that

lim
R→∞

∫
|x|�R

w2
ε dx = 0, uniformly for 0 < ε < ε5. (3.44)

If not, then there exist εn → 0, Rn → ∞ and γ > 0 such that∫
|x|�Rn

w2
εn

dx � γ > 0, ∀n ∈ N. (3.45)

By Lemma 3.5, up to a subsequence, we may assume that (w1,εn ,w2,εn) → (w1,w2) strongly in H . Denote w =
w1 + w2, then wεn → w strongly in H 1(RN), and so

lim
n→∞

∫
|x|�Rn

w2
εn
� lim

n→∞ 2
∫

RN

|wεn − w|2 + lim
n→∞ 2

∫
|x|�Rn

w2 = 0,

a contradiction with (3.45).

Note that w
4

N+1
ε ∈ L

N+1
2 (RN) and

∣∣w 4
N+1
ε

∣∣
L

N+1
2 (B(y,2r))

= |wε|
4

N+1

L2(B(y,2r))
,

then by (3.43)–(3.44) and Lemma 3.6, we deduce that

lim wε(x) = 0, uniformly for 0 < ε < ε5. (3.46)
|x|→∞



446 Z. Chen, W. Zou / Ann. I. H. Poincaré – AN 31 (2014) 429–447
Step 2. We prove that there exists ε6 ∈ (0, ε5) such that (uε, vε) is a solution of the original problem (3.1) for all
0 < ε < ε6.

By (3.46), there exists R > 0 such that

wε(x) � α/2, ∀|x|� R, ∀0 < ε < ε5. (3.47)

Assumption (V3) implies that dist(M,RN \ Λ) = 2δ1 for some δ1 > 0. Note that εyε ∈ Λ and limε→0 dist(εyε,

M) = 0, therefore we may assume that dist(εyε,R
N \ Λ) � δ1 for all 0 < ε < ε5. Let ε6 := min{ε5,

δ1
R

} and fix any

ε ∈ (0, ε6). Then x /∈ Λε implies that |x − yε| � δ1
ε
� R, so

uε(x) + vε(x) = wε(x − yε) � α/2, ∀x /∈ Λε, (3.48)

that is, fε(x,uε(x)) ≡ u
p
ε (x) and gε(x, vε(x)) ≡ v2∗−1

ε (x), and so (uε, vε) is a solution of the original problem (3.1)
for all 0 < ε < ε6.

Step 3. We prove that wε(x) � C exp(−c|x|), ∀0 < ε < ε6, where c,C > 0 are independent of ε > 0.
Recall δ0 in (3.2); we denote w̃ε := w1,ε + δ0w2,ε . Then it is easy to see that

−�w̃ε + δ2w̃ε � −�w̃ε + (a0 − δ0λ)w1,ε +
(

b0 − λ

δ0

)
δ0w2,ε � w

p

1,ε + δ0w
2∗−1
2,ε ,

where δ2 > 0 is a small constant independent of ε > 0. By (3.46) there exists R1 > 0 such that

w
p

1,ε(x) + δ0w
2∗−1
2,ε (x) � δ2

2
w̃ε(x), ∀|x| � R1, ∀0 < ε < ε6,

that is,

−�w̃ε + δ2

2
w̃ε � 0, ∀|x| � R1, ∀0 < ε < ε6.

Then by Lemma 3.7 and a comparison principle, there exist c,C > 0 independent of ε > 0 such that w̃ε(x) �
C exp(−c|x|), ∀0 < ε < ε6. Therefore,

wε(x) � C exp
(−c|x|), ∀0 < ε < ε6. (3.49)

Step 4. We complete the proof of Theorem 2.1.
By Lemma 3.3 and (3.48), there exists xε ∈ Λε such that

(uε + vε)(xε) = max
x∈RN

(uε + vε)(x) � α, ∀0 < ε < ε6. (3.50)

Moreover, (3.47) implies |xε − yε| < R for all ε ∈ (0, ε6).
Define (ũε(x), ṽε(x)) := (uε(x/ε), vε(x/ε)) and x̃ε := εxε ∈ Λ. Then (ũε, ṽε) is a positive solution of (1.3). More-

over, x̃ε is a maximum point of ũε + ṽε , and

lim
ε→0

dist(x̃ε,M)� lim
ε→0

dist(εyε,M) + lim
ε→0

ε|yε − xε| = 0,

that is, Theorem 2.1(i) holds. By (3.49) and |xε − yε| < R we have

(ũε + ṽε)(x) = wε

(
x

ε
− yε

)

� C exp

(
−c

∣∣∣∣xε − yε

∣∣∣∣
)
� C exp

(
−c

∣∣∣∣xε − xε

∣∣∣∣
)

= C exp

(
−c

ε
|x − x̃ε|

)
, ∀0 < ε < ε6,

that is, Theorem 2.1(iii) holds. Finally, for any such x̃ε and (w̃1,ε(x), w̃2,ε(x)) := (ũε(εx + x̃ε), ṽε(εx + x̃ε)), we have(
w̃1,ε(x), w̃2,ε(x)

) = (
uε(x + xε), vε(x + xε)

) = (
w1,ε(x + xε − yε),w2,ε(x + xε − yε)

)
.

Combining this with |xε − yε| < R, it is easy to see that Theorem 2.1(ii) follows directly from Lemma 3.5. This
completes the proof. �
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