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Abstract

In this paper, we prove that there exist at least [n+1
2 ] + 1 geometrically distinct brake orbits on every C2 compact convex sym-

metric hypersurface Σ in R2n for n � 2 satisfying the reversible condition NΣ = Σ with N = diag(−In, In). As a consequence,
we show that there exist at least [n+1

2 ] + 1 geometrically distinct brake orbits in every bounded convex symmetric domain in Rn

with n � 2 which gives a positive answer to the Seifert conjecture of 1948 in the symmetric case for n = 3. As an application, for
n = 4 and 5, we prove that if there are exactly n geometrically distinct closed characteristics on Σ , then all of them are symmetric
brake orbits after suitable time translation.
© 2013 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Let V ∈ C2(Rn,R) and h > 0 be such that Ω ≡ {q ∈ Rn | V (q) < h} is nonempty, bounded, open and connected.
Consider the following fixed energy problem of the second order autonomous Hamiltonian system

q̈(t) + V ′(q(t)
) = 0, for q(t) ∈ Ω, (1.1)

1

2

∣∣q̇(t)
∣∣2 + V

(
q(t)

) = h, ∀t ∈ R, (1.2)

q̇(0) = q̇

(
τ

2

)
= 0, (1.3)

q

(
τ

2
+ t

)
= q

(
τ

2
− t

)
, q(t + τ) = q(t), ∀t ∈ R. (1.4)
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A solution (τ, q) of (1.1)–(1.4) is called a brake orbit in Ω . We call two brake orbits q1 and q2 : R → Rn geomet-
rically distinct if q1(R) �= q2(R).

We denote by O(Ω) and Õ(Ω) the sets of all brake orbits and geometrically distinct brake orbits in Ω respectively.

Let Jk =
(

0 −Ik

Ik 0

)
and Nk =

( −Ik 0
0 Ik

)
with Ik being the identity in Rk . If k = n we will omit the subscript k for

convenience, i.e., Jn = J and Nn = N .
The symplectic group Sp(2k) for any k ∈ N is defined by

Sp(2n) = {
M ∈ L

(
R2k

) ∣∣ MT JkM = Jk

}
,

where MT is the transpose of matrix M .
For any τ > 0, the symplectic path in Sp(2k) starting from the identity I2k is defined by

Pτ (2k) = {
γ ∈ C

([0, τ ],Sp(2k)
) ∣∣ γ (0) = I2k

}
.

Suppose that H ∈ C2(R2n \ {0},R) ∩ C1(R2n,R) satisfying

H(Nx) = H(x), ∀x ∈ R2n. (1.5)

We consider the following fixed energy problem

ẋ(t) = JH ′(x(t)
)
, (1.6)

H
(
x(t)

) = h, (1.7)

x(−t) = Nx(t), (1.8)

x(τ + t) = x(t), ∀t ∈ R. (1.9)

A solution (τ, x) of (1.6)–(1.9) is also called a brake orbit on Σ := {y ∈ R2n | H(y) = h}.

Remark 1.1. It is well known that via

H(p,q) = 1

2
|p|2 + V (q), (1.10)

x = (p, q) and p = q̇ , the elements in O({V < h}) and the solutions of (1.6)–(1.9) are one-to-one correspondent.

In more general setting, let Σ be a C2 compact hypersurface in R2n bounding a compact set C with nonempty
interior. Suppose Σ has non-vanishing Gaussian curvature and satisfies the reversible condition N(Σ − x0) = Σ −
x0 := {x − x0 | x ∈ Σ} for some x0 ∈ C. Without loss of generality, we may assume x0 = 0. We denote the set of all
such hypersurfaces in R2n by Hb(2n). For x ∈ Σ , let NΣ(x) be the unit outward normal vector at x ∈ Σ . Note that
by the reversible condition there holds NΣ(Nx) = NNΣ(x). We consider the dynamics problem of finding τ > 0 and
an absolutely continuous curve x : [0, τ ] → R2n such that

ẋ(t) = JNΣ

(
x(t)

)
, x(t) ∈ Σ, (1.11)

x(−t) = Nx(t), x(τ + t) = x(t), for all t ∈ R. (1.12)

A solution (τ, x) of the problem (1.11)–(1.12) is a special closed characteristic on Σ , here we still call it a brake
orbit on Σ .

We also call two brake orbits (τ1, x1) and (τ2, x2) geometrically distinct if x1(R) �= x2(R), otherwise we say they
are equivalent. Any two equivalent brake orbits are geometrically the same. We denote by Jb(Σ) the set of all brake
orbits on Σ , by [(τ, x)] the equivalent class of (τ, x) ∈ Jb(Σ) in this equivalent relation and by J̃b(Σ) the set of
[(τ, x)] for all (τ, x) ∈ Jb(Σ). From now on, in the notation [(τ, x)] we always assume x has minimal period τ . We
also denote by J̃ (Σ) the set of all geometrically distinct closed characteristics on Σ .

Let (τ, x) be a solution of (1.6)–(1.9). We consider the boundary value problem of the linearized Hamiltonian
system

ẏ(t) = JH ′′(x(t)
)
y(t), (1.13)

y(t + τ) = y(t), y(−t) = Ny(t), ∀t ∈ R. (1.14)
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Denote by γx(t) the fundamental solution of the system (1.13), i.e., γx(t) is the solution of the following problem

γ̇x(t) = JH ′′(x(t)
)
γx(t), (1.15)

γx(0) = I2n. (1.16)

We call γx ∈ C([0, τ/2],Sp(2n)) the associated symplectic path of (τ, x).
Let Bn

1 (0) denote the open unit ball Rn centered at the origin 0. In [20] of 1948, H. Seifert proved Õ(Ω) �= ∅
provided V ′ �= 0 on ∂Ω , V is analytic and Ω is homeomorphic to Bn

1 (0). Then he proposed his famous conjecture:
#Õ(Ω) � n under the same conditions.

After 1948, many studies have been carried out for the brake orbit problem. S. Bolotin proved first in [4] (also
see [5]) of 1978 the existence of brake orbits in general setting. K. Hayashi in [10], H. Gluck and W. Ziller in [8], and
V. Benci in [2] in 1983–1984 proved #Õ(Ω) � 1 if V is C1, Ω̄ = {V � h} is compact, and V ′(q) �= 0 for all q ∈ ∂Ω .
In 1987, P.H. Rabinowitz in [19] proved that if H satisfies (1.5), Σ ≡ H−1(h) is star-shaped, and x ·H ′(x) �= 0 for all
x ∈ Σ , then #J̃b(Σ) � 1. In 1987, V. Benci and F. Giannoni gave a different proof of the existence of one brake orbit
in [3].

In 1989, A. Szulkin in [21] proved that #J̃b(H
−1(h)) � n, if H satisfies conditions in [19] of Rabinowitz and the

energy hypersurface H−1(h) is
√

2-pinched. E.W.C. van Groesen in [9] of 1985 and A. Ambrosetti, V. Benci, Y. Long
in [1] of 1993 also proved #Õ(Ω) � n under different pinching conditions.

Without pinching condition, in [17] Y. Long, C. Zhu and the first author of this paper proved the following result:
For n� 2, suppose H satisfies

(H1) (smoothness) H ∈ C2(R2n \ {0},R) ∩ C1(R2n,R),
(H2) (reversibility) H(Ny) = H(y) for all y ∈ R2n,
(H3) (convexity) H ′′(y) is positive definite for all y ∈ R2n \ {0},
(H4) (symmetry) H(−y) = H(y) for all y ∈ R2n.

Then for any given h > min{H(y) | y ∈ R2n} and Σ = H−1(h), there holds

#J̃b(Σ)� 2.

As a consequence they also proved that: For n � 2, suppose V (0) = 0, V (q) � 0, V (−q) = V (q) and V ′′(q) is
positive definite for all q ∈ Rn \ {0}. Then for Ω ≡ {q ∈ Rn | V (q) < h} with h > 0, there holds

#Õ(Ω) � 2.

Under the same condition of [17], in 2009 Liu and Zhang in [14] proved that #J̃b(Σ) � [n
2 ] + 1, also they proved

#Õ(Ω) � [n
2 ] + 1 under the same condition of [17]. Moreover if all brake orbits on Σ are nondegenerate, Liu and

Zhang in [14] proved that #J̃b(Σ) � n + A(Σ), where 2A(Σ) is the number of geometrically distinct asymmetric
brake orbits on Σ .

Definition 1.1. We denote

Hc
b(2n) = {

Σ ∈Hb(2n)
∣∣ Σ is strictly convex

}
,

Hs,c
b (2n) = {

Σ ∈ Hc
b(2n)

∣∣ −Σ = Σ
}
.

Definition 1.2. For Σ ∈ Hs,c
b (2n), a brake orbit (τ, x) on Σ is called symmetric if x(R) = −x(R). Similarly, for a C2

convex symmetric bounded domain Ω ⊂ Rn, a brake orbit (τ, q) ∈O(Ω) is called symmetric if q(R) = −q(R).

Note that a brake orbit (τ, x) ∈ Jb(Σ) with minimal period τ is symmetric if x(t + τ/2) = −x(t) for t ∈ R, a brake
orbit (τ, q) ∈ O(Ω) with minimal period τ is symmetric if q(t + τ/2) = −q(t) for t ∈ R.

In this paper, we denote by N, Z, Q and R the sets of positive integers, integers, rational numbers and real numbers
respectively. We denote by 〈·, ·〉 the standard inner product in Rn or R2n, by (·, ·) the inner product of corresponding
Hilbert space. For any a ∈ R, we denote E(a) = inf{k ∈ Z | k � a} and [a] = sup{k ∈ Z | k � a}.

The following are the main results of this paper.
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Theorem 1.1. For any Σ ∈Hs,c
b (2n) with n� 2, we have

#J̃b(Σ) �
[
n + 1

2

]
+ 1.

Corollary 1.1. Suppose V (0) = 0, V (q) � 0, V (−q) = V (q) and V ′′(q) is positive definite for all q ∈ Rn \ {0} with
n� 3. Then for any given h > 0 and Ω ≡ {q ∈ Rn | V (q) < h}, we have

#Õ(Ω) �
[
n + 1

2

]
+ 1.

Remark 1.2. Note that for n = 3, Corollary 1.1 yields #Õ(Ω) � 3, which gives a positive answer to Seifert’s conjec-
ture in the convex symmetric case.

As a consequence of Theorem 1.1, we can prove

Theorem 1.2. For n = 4,5 and any Σ ∈ Hs,c
b (2n), suppose

#J̃ (Σ) = n.

Then all of them are symmetric brake orbits after suitable translation.

Example 1.1. A typical example of Σ ∈ Hs,c
b (2n) is the ellipsoid En(r) defined as follows. Let r = (r1, . . . , rn) with

rj > 0 for 1 � j � n. Define

En(r) =
{

x = (x1, . . . , xn, y1, . . . , yn) ∈ R2n
∣∣∣ n∑

k=1

x2
k + y2

k

r2
k

= 1

}
.

If rj /rk /∈ Q whenever j �= k, from [7] one can see that there are precisely n geometrically distinct symmetric brake
orbits on En(r) and all of them are nondegenerate.

2. Index theories of (iLj , νLj ) and (iω, νω)

Let L(R2n) denote the set of 2n × 2n real matrices and Ls(R2n) denote its subset of symmetric ones. For any
F ∈ Ls(R2n), we denote by m∗(F ) the dimension of maximal positive definite subspace, negative definite subspace,
and kernel of any F for ∗ = +,−,0 respectively.

In this section, we make some preparation for the proof of Theorem 3.1 below. We first briefly review the index
function (iω, νω) and (iLj

, νLj
) for j = 0,1, more details can be found in [11,12,14,16]. Following Theorem 2.3

of [23] we study the differences iL0(γ )− iL1(γ ) and iL0(γ )+νL0(γ )− iL1(γ )−νL1(γ ) for γ ∈Pτ (2n) by computing
sgnMε(γ (τ)). We obtain some basic lemmas which will be used frequently in the proof of the main theorem of this
paper.

For any ω ∈ U, the following codimension 1 hypersurface in Sp(2n) is defined by:

Sp(2n)0
ω = {

M ∈ Sp(2n)
∣∣ det(M − ωI2n) = 0

}
.

For any two continuous paths ξ and η : [0, τ ] → Sp(2n) with ξ(τ ) = η(0), their joint path is defined by

η ∗ ξ(t) =
{

ξ(2t) if 0 � t � τ
2 ,

η(2t − τ) if τ
2 � t � τ.

Given any two (2mk × 2mk)-matrices of square block form Mk =
(

Ak Bk

Ck Dk

)
for k = 1,2, as in [16], the �-product of

M1 and M2 is defined by the following (2(m1 + m2) × 2(m1 + m2))-matrix M1 � M2:

M1 � M2 =
⎛
⎜⎝

A1 0 B1 0
0 A2 0 B2
C1 0 D1 0

⎞
⎟⎠ .
0 C2 0 D2
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A special path ξn is defined by

ξn(t) =
(

2 − t
τ

0
0 (2 − t

τ
)−1

)�n

, ∀t ∈ [0, τ ].

Definition 2.1. For any ω ∈ U and M ∈ Sp(2n), define

νω(M) = dimC ker(M − ωI2n).

For any γ ∈ Pτ (2n), define

νω(γ ) = νω

(
γ (τ)

)
.

If γ (τ) /∈ Sp(2n)0
ω, we define

iω(γ ) = [
Sp(2n)0

ω : γ ∗ ξn

]
, (2.1)

where the right-hand side of (2.1) is the usual homotopy intersection number and the orientation of γ ∗ ξn is its
positive time direction under homotopy with fixed endpoints. If γ (τ) ∈ Sp(2n)0

ω, we let F(γ ) be the set of all open
neighborhoods of γ in Pτ (2n), and define

iω(γ ) = sup
U∈F(γ )

inf
{
iω(β)

∣∣ β(τ) ∈ U and β(τ) /∈ Sp(2n)0
ω

}
.

Then (iω(γ ), νω(γ )) ∈ Z × {0,1, . . . ,2n} is called the index function of γ at ω.
For any M ∈ Sp(2n) we define

Ω(M) = {
P ∈ Sp(2n)

∣∣ σ(P ) ∩ U = σ(M) ∩ U and νλ(P ) = νλ(M), ∀λ ∈ σ(M) ∩ U
}
,

where we denote by σ(P ) the spectrum of P .
We denote by Ω0(M) the path connected component of Ω(M) containing M , and call it the homotopy component

of M in Sp(2n).

Definition 2.2. For any M1,M2 ∈ Sp(2n), we call M1 ≈ M2 if M1 ∈ Ω0(M2).

Remark 2.1. It is easy to check that ≈ is an equivalent relation. If M1 ≈ M2, we have Mk
1 ≈ Mk

2 for any k ∈ N and
M1 � M3 ≈ M2 � M4 for M3 ≈ M4. Also we have PMP −1 ≈ M for any P,M ∈ Sp(2n).

The following symplectic matrices were introduced as basic normal forms in [16]:

D(λ) =
(

λ 0
0 λ−1

)
, λ = ±2,

N1(λ, b) =
(

λ b

0 λ

)
, λ = ±1, b = ±1,0,

R(θ) =
(

cos θ − sin θ

sin θ cos θ

)
, θ ∈ (0,π) ∪ (π,2π),

N2(ω, b) =
(

R(θ) b

0 R(θ)

)
, θ ∈ (0,π) ∪ (π,2π),

where b =
(

b1 b2
b3 b4

)
with bi ∈ R and b2 �= b3.

For any M ∈ Sp(2n) and ω ∈ U, splitting number of M at ω is defined by

S±
M(ω) = lim

ε→0+ iω exp(±√−1ε)(γ ) − iω(γ )

for any path γ ∈ Pτ (2n) satisfying γ (τ) = M .
Splitting numbers possesses the following properties.
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Lemma 2.1. (Cf. [15], Lemma 9.1.5 and List 9.1.12 of [16].) Splitting numbers S±
M(ω) are well defined, i.e., they are

independent of the choice of the path γ ∈Pτ (2n) satisfying γ (τ) = M . For ω ∈ U and M ∈ Sp(2n), S±
Q(ω) = S±

M(ω)

if Q ≈ M . Moreover we have

(1) (S+
M(±1), S−

M(±1)) = (1,1) for M = ±N1(1, b) with b = 1 or 0;
(2) (S+

M(±1), S−
M(±1)) = (0,0) for M = ±N1(1, b) with b = −1;

(3) (S+
M(e

√−1θ ), S−
M(e

√−1θ )) = (0,1) for M = R(θ) with θ ∈ (0,π) ∪ (π,2π);
(4) (S+

M(ω),S−
M(ω)) = (0,0) for ω ∈ U \ R and M = N2(ω, b) is trivial i.e., for sufficiently small α > 0,

MR((t − 1)α)�n possesses no eigenvalues on U for t ∈ [0,1);
(5) (S+

M(ω),S−
M(ω)) = (1,1) for ω ∈ U \ R and M = N2(ω, b) is non-trivial;

(6) (S+
M(ω),S−

M(ω)) = (0,0) for any ω ∈ U and M ∈ Sp(2n) with σ(M) ∩ U = ∅;
(7) S±

M1�M2
(ω) = S±

M1
(ω) + S±

M2
(ω), for any Mj ∈ Sp(2nj ) with j = 1,2 and ω ∈ U.

Let

F = R2n ⊕ R2n

possess the standard inner product. We define the symplectic structure of F by

{v,w} = (J v,w), ∀v,w ∈ F, where J = (−J ) ⊕ J =
(−J 0

0 J

)
.

We denote by Lag(F ) the set of Lagrangian subspaces of F , and equip it with the topology as a subspace of the
Grassmannian of all 2n-dimensional subspaces of F .

It is easy to check that, for any M ∈ Sp(2n) its graph

Gr(M) ≡
{(

x

Mx

) ∣∣∣ x ∈ R2n

}
is a Lagrangian subspace of F .

Let

V1 = L0 × L0 = {0} × Rn × {0} × Rn ⊂ R4n,

V2 = L1 × L1 = Rn × {0} × Rn × {0} ⊂ R4n.

By Proposition 6.1 of [18] and Lemma 2.8 and Definition 2.5 of [17], we give the following definition.

Definition 2.3. For any continuous path γ ∈ Pτ (2n), we define the following Maslov-type indices:

iL0(γ ) = μCLM
F

(
V1,Gr(γ ), [0, τ ]) − n,

iL1(γ ) = μCLM
F

(
V2,Gr(γ ), [0, τ ]) − n,

νLj
(γ ) = dim

(
γ (τ)Lj ∩ Lj

)
, j = 0,1,

where we denote by iCLM
F (V,W, [a, b]) the Maslov index for Lagrangian subspace path pair (V ,W) in F on [a, b] de-

fined by Cappell, Lee, and Miller in [6]. For any M ∈ Sp(2n) and j = 0,1, we also denote νLj
(M) = dim(MLj ∩Lj ).

Definition 2.4. For two paths γ0, γ1 ∈ Pτ (2n) and j = 0,1, we say that they are Lj -homotopic and denoted by
γ0 ∼Lj

γ1, if there is a continuous map δ : [0,1] → P(2n) such that δ(0) = γ0 and δ(1) = γ1, and νLj
(δ(s)) is

constant for s ∈ [0,1].

Lemma 2.2. (See [11].)

(1) If γ0 ∼Lj
γ1, there hold

iLj
(γ0) = iLj

(γ1), νLj
(γ0) = νLj

(γ1).
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(2) If γ = γ1 � γ2 ∈ P(2n), and correspondingly Lj = L′
j ⊕ L′′

j , then

iLj
(γ ) = iL′

j
(γ1) + iL′′

j
(γ2), νLj

(γ ) = νL′
j
(γ1) + νL′′

j
(γ2).

(3) If γ ∈ P(2n) is the fundamental solution of

ẋ(t) = JB(t)x(t)

with symmetric matrix function B(t) =
(

b11(t) b12(t)

b21(t) b22(t)

)
satisfying b22(t) > 0 for any t ∈ R, then there holds

iL0(γ ) =
∑

0<s<1

νL0(γs), γs(t) = γ (st).

(4) If b11(t) > 0 for any t ∈ R, there holds

iL1(γ ) =
∑

0<s<1

νL1(γs), γs(t) = γ (st).

Definition 2.5. For any γ ∈ Pτ and k ∈ N ≡ {1,2, . . .}, in this paper the k-time iteration γ k of γ ∈ Pτ (2n) in brake
orbit boundary sense is defined by γ̃ |[0,kτ ] with

γ̃ (t) =
{

γ (t − 2jτ)(Nγ (τ)−1Nγ (τ))j , t ∈ [2jτ, (2j + 1)τ ], j = 0,1,2, . . . ,

Nγ (2jτ + 2τ − t)N(Nγ (τ)−1Nγ (τ))j+1, t ∈ [(2j + 1)τ, (2j + 2)τ ], j = 0,1,2, . . . .

By [17] or Corollary 5.1 of [14] limk→∞
iL0 (γ k)

k
exists, as usual we define the mean iL0 index of γ by îL0(γ ) =

limk→∞
iL0 (γ k)

k
.

For any P ∈ Sp(2n) and ε ∈ R, we set

Mε(P ) = P T

(
sin 2εIn − cos 2εIn

− cos 2εIn − sin 2εIn

)
P +

(
sin 2εIn cos 2εIn

cos 2εIn − sin 2εIn

)
.

Then we have the following

Theorem 2.1. (See Theorem 2.3 of [23].) For γ ∈Pτ (2k) with τ > 0, we have

iL0(γ ) − iL1(γ ) = 1

2
sgnMε

(
γ (τ)

)
,

where sgnMε(γ (τ)) = m+(Mε(γ (τ ))) − m−(Mε(γ (τ ))) is the signature of the symmetric matrix Mε(γ (τ)) and
0 < ε � 1. We also have

(
iL0(γ ) + νL0(γ )

) − (
iL1(γ ) + νL1(γ )

) = 1

2
signMε

(
γ (τ)

)
,

where 0 < −ε � 1.

Remark 2.2. (See Remark 2.1 of [23].) For any nj × nj symplectic matrix Pj with j = 1,2 and nj ∈ N, we have

Mε(P1 � P2) = Mε(P1) � Mε(P2),

sgnMε(P1 � P2) = sgnMε(P1) + sgnMε(P2),

where ε ∈ R.

In the following of this section we will give some lemmas which will be used frequently in the proof of our main
theorem later.
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Lemma 2.3. For k ∈ N and any symplectic matrix P =
(

Ik 0
C Ik

)
, there holds P ≈ I

�p

2 � N1(1,1)�q � N1(1,−1)�r with

p,q, r satisfying

m0(C) = p, m−(C) = q, m+(C) = r.

Proof. It is clear that

P ≈
(

Ik 0
B Ik

)
,

where B = diag(0,−Im−(C), Im+(C)). Since J1N1(1,±1)(J1)
−1 =

(
1 0

∓1 1

)
, by Remark 2.1 we have N1(1,±1) ≈(

1 0
∓1 1

)
. Then

P ≈ I
�m0(C)
2 � N1(1,1)�m−(C) � N1(1,−1)�m+(C).

By Lemma 2.1 we have

S+
P (1) = m0(C) + m−(C) = p + q. (2.2)

By the definition of the relation ≈, we have

2p + q + r = ν1(P ) = 2m0(C) + m+(C) + m−(C). (2.3)

Also we have

p + q + r = m0(C) + m+(C) + m−(C) = k. (2.4)

By (2.2)–(2.4) we have

m0(C) = p, m−(C) = q, m+(C) = r.

The proof of Lemma 2.3 is complete. �
Definition 2.6. We call two symplectic matrices M1 and M2 in Sp(2k) special homotopic (or (L0,L1)-homotopic)
and denote by M1 ∼ M2, if there are Pj ∈ Sp(2k) with Pj = diag(Qj , (Q

T
j )−1), where Qj is a k × k invertible real

matrix, and det(Qj ) > 0 for j = 1,2, such that

M1 = P1M2P2.

It is clear that ∼ is an equivalent relation.

Lemma 2.4. For M1,M2 ∈ Sp(2k), if M1 ∼ M2, then

sgnMε(M1) = sgnMε(M2), 0 � |ε| � 1, (2.5)

NkM
−1
1 NkM1 ≈ NkM

−1
2 NkM2. (2.6)

Proof. By Definition 2.6, there are Pj ∈ Sp(2k) with Pj = diag(Qj , (Q
T
j )−1), Qj being k × k invertible real matrix,

and det(Qj ) > 0 such that

M1 = P1M2P2.

Since det(Qj ) > 0 for j = 1,2, we can joint Qj to Ik by invertible matrix path. Hence we can joint P1M2P2 to M2
by symplectic path preserving the nullity νL0 and νL1 . By Lemma 2.2 of [23], (2.5) holds. Since PjNk = NkPj for
j = 1,2. Direct computation shows that

Nk(P1M2P2)
−1Nk(P1M2P2) = P −1

2 NkM
−1
2 NkM2P2. (2.7)

Thus (2.6) holds from Remark 2.1. The proof of Lemma 2.4 is complete. �
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Lemma 2.5. Let P =
(

A B
C D

)
∈ Sp(2k), where A,B,C,D are all k × k matrices. Then

(i) 1
2 sgnMε(P ) � k − νL0(P ), for 0 < ε � 1. If B = 0, we have 1

2 sgnMε(P ) � 0 for 0 < ε � 1.
(ii) Let m+(AT C) = q , we have

1

2
sgnMε(P ) � k − q, 0 � |ε| � 1. (2.8)

(iii) 1
2 sgnMε(P ) � dim kerC − k for 0 < ε � 1. If C = 0, then 1

2 sgnMε(P ) � 0 for 0 < ε � 1.
(iv) If both B and C are invertible, we have

sgnMε(P ) = sgnM0(P ), 0 � |ε| � 1.

Proof. Since P is symplectic, so is for P T . From P T JkP = Jk and PJkP
T = Jk we get AT C,BT D,ABT ,CDT

are all symmetric matrices and

ADT − BCT = Ik, AT D − CT B = Ik. (2.9)

We denote s = sin 2ε and c = cos 2ε. By definition of Mε(P ), we have

Mε(P ) =
(

AT CT

BT DT

)(
sIk −cIk

−cIk −sIk

)(
A B

C D

)
+

(
sIk cIk

cIk −sIk

)

=
(

AT CT

BT DT

)(
sIk −2cIk

0 −sIk

)(
A B

C D

)
+

(
sIk 2cIk

0 −sIk

)

=
(

sAT A − 2cAT C − sCT C + sIk ∗
sBT A − 2cBT C − sDT C sBT B − 2cBT D − sDT D − sIk

)

=
(

sAT A − 2cAT C − sCT C + sIk sAT B − 2cCT B − sCT D

sBT A − 2cBT C − sDT C sBT B − 2cBT D − sDT D − sIk

)
, (2.10)

where in the second equality we have used that P T JkP = Jk , in the fourth equality we have used that Mε(P ) is a
symmetric matrix. So

M0(P ) = −2

(
AT C CT B

BT C BT D

)
= −2

(
CT 0
0 BT

)(
A B

C D

)
,

where we have used AT C is symmetric. So if both B and C are invertible, M0(P ) is invertible and symmetric, its
signature is invariant under small perturbation, so (iv) holds.

If νL0(P ) = dim kerB > 0, since BT D = DT B , for any x ∈ kerB ⊆ Rk , x �= 0, and 0 < ε � 1, we have

Mε(P )

(
0
x

)
·
(

0
x

)
= (

sBT B − 2cDT B − sDT D − sIk

)
x · x

= −s
(
DT D + Ik

)
x · x

< 0. (2.11)

So Mε(P ) is negative definite on (0⊕kerB) ⊆ R2k . Hence m−(Mε(p)) � dim kerB which yields that 1
2 sgnMε(P ) �

k − dim kerB = k − νL0(P ), for 0 < ε � 1. Thus (i) holds. Similarly we can prove (iii).
If m+(AT C) = q > 0, let AT C be positive definite on E ⊆ Rk , then for 0 � |s| � 1, similar to (2.11) we have

Mε(P ) is negative on E ⊕ 0 ⊆ R2k . Hence m−(Mε(P )) � q , which yields (2.8). �
Lemma 2.6. (See [23].) For γ ∈ Pτ (2), b > 0, and 0 < ε � 1 small enough we have

sgnM±ε

(
R(θ)

) = 0, for θ ∈ R,

sgnMε(P ) = 0, if P = ±
(

1 b

0 1

)
or ±

(
1 0

−b 1

)
,
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sgnMε(P ) = 2, if P = ±
(

1 −b

0 1

)
,

sgnMε(P ) = −2, if P = ±
(

1 0
b 1

)
.

3. Proofs of Theorems 1.1 and 1.2

In this section we prove Theorems 1.1 and 1.2. The proof mainly depends on the method in [14] and the following

Theorem 3.1. For any odd number n � 3, τ > 0 and γ ∈ Pτ (2n), let P = γ (τ). If iL0 � 0, iL1 � 0, i(γ ) � n,
γ 2(t) = γ (t − τ)γ (τ ) for all t ∈ [τ,2τ ], and P ∼ (−I2) � Q with Q ∈ Sp(2n − 2), then

iL1(γ ) + S+
P 2(1) − νL0(γ ) >

1 − n

2
. (3.1)

Proof. If the conclusion of Theorem 3.1 does not hold, then

iL1(γ ) + S+
P 2(1) − νL0(γ ) � 1 − n

2
. (3.2)

In the following we shall obtain a contradiction from (3.2). Hence (3.1) holds and Theorem 3.1 is proved.
Since n � 3 and n is odd, in the following of the proof of Theorem 3.1 we write n = 2p + 1 for some p ∈ N. We

denote Q =
(

A B
C D

)
, where A,B,C,D are (n − 1) × (n − 1) matrices. Then since Q is a symplectic matrix we have

AT C = CT A, BT D = DT B, ABT = BAT , CDT = DCT , (3.3)

ADT − BCT = In−1, AT D − CT B = In−1, (3.4)

dim kerB = νL0(γ ) − 1, dim kerC = νL1(γ ) − 1. (3.5)

Since γ 2(t) = γ (t − τ)γ (τ ) for all t ∈ [τ,2τ ] we have γ 2 is also the twice iteration of γ in the periodic boundary
value case, so by the Bott-type formula (cf. Theorem 9.2.1 of [16]) and the proof of Lemma 4.1 of [17] we have

i
(
γ 2) + 2S+

P 2(1) − ν
(
γ 2)

= 2i(γ ) + 2S+
P (1) +

∑
θ∈(0,π)

S+
P

(
e
√−1θ

) −
∑

θ∈(0,π)

S−
P

(
e
√−1θ

) + (
ν(P ) − S−

P (1)
) + (

ν−1(P ) − S−
P (−1)

)
� 2n + 2S+

P (1) − n

= n + 2S+
P (1)

� n, (3.6)

where we have used the condition i(γ ) � n and S+
P 2(1) = S+

P (1)+S+
P (−1), ν(γ 2) = ν(γ )+ν−1(γ ). By Proposition C

of [17] and Proposition 6.1 of [14] we have

iL0(γ ) + iL1(γ ) = i
(
γ 2) − n, νL0(γ ) + νL1(γ ) = ν

(
γ 2). (3.7)

So by (3.6) and (3.7) we have(
iL1(γ ) + S+

P 2(1) − νL0(γ )
) + (

iL0(γ ) + S+
P 2(1) − νL1(γ )

)
= i

(
γ 2) + 2S+

P 2(1) − ν
(
γ 2) − n

� n − n

= 0. (3.8)

By Theorem 2.1 and Lemma 2.6 we have
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(
iL1(γ ) + S+

P 2(1) − νL0(γ )
) − (

iL0(γ ) + S+
P 2(1) − νL1(γ )

)
= iL1(γ ) − iL0(γ ) − νL0(γ ) + νL1(γ )

= −1

2
sgnMε(Q) − 1

2
sgnMε(−I2)

= −1

2
sgnMε(Q)

� 1 − n. (3.9)

So by (3.8) and (3.9) we have

iL1(γ ) + S+
P 2(1) − νL0(γ ) � 1 − n

2
. (3.10)

By (3.2), the inequality of (3.10) must be equality. Then both (3.6) and (3.9) are equality. So we have

i
(
γ 2) + 2S+

P 2(1) − ν
(
γ 2) = n, (3.11)

iL1(γ ) + S+
P 2(1) − νL0(γ ) = 1 − n

2
, (3.12)

iL0(γ ) + νL0(γ ) − iL1(γ ) − νL1(γ ) = n − 1. (3.13)

Thus by (3.6), (3.11), Theorem 1.8.10 of [16], and Lemma 2.1 we have

P ≈ (−I2)
�p1 � N1(1,−1)�p2 � N1(−1,1)�p3 � R(θ1) � R(θ2) � · · · � R(θp4),

where pj � 0 for j = 1,2,3,4, p1 + p2 + p3 + p4 = n and θj ∈ (0,π) for 1 � j � p4. Otherwise by (3.6) and
Lemma 2.1 we have i(γ 2) + 2S+

P 2(1) − ν(γ 2) > n which contradicts to (3.11). So by Remark 2.1, we have

P 2 ≈ I
�p1
2 � N1(1,−1)�p2 � R(θ1) � R(θ2) � · · · � R(θp3), (3.14)

where pi � 0 for 1 � i � 3, p1 + p2 + p3 = n and θj ∈ (0,2π) for 1 � j � p3.
Note that, since γ 2(t) = γ (t − τ)γ (τ ), we have

γ 2(2τ) = γ (τ)2 = P 2. (3.15)

By Definition 2.5 we have

γ 2(2τ) = Nγ (τ)−1Nγ (τ) = NP −1NP. (3.16)

So by (3.15) and (3.16) we have

P 2 = NP −1NP. (3.17)

By (3.17), Lemma 2.4, and P ∼ (−I2) � Q we have

P 2 = NP −1NP

≈ N
(
(−I2) � Q

)−1
N

(
(−I2) � Q

)
= I2 � (

Nn−1Q
−1Nn−1Q

)
. (3.18)

So by (3.14), we have

p1 � 1. (3.19)

Also by (3.18) and Lemma 2.5, we have

P 2 ≈ I2 � (
Nn−1Q

′ −1Nn−1Q
′), ∀Q′ ∼ Q where Q′ ∈ Sp(2n − 2). (3.20)

By (3.14) it is easy to check that

tr
(
P 2) = 2n − 2p3 + 2

p3∑
cos θj . (3.21)
j=1
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By (3.11), (3.14) and Lemma 2.1 we have

n = i
(
γ 2) + 2S+

P 2(1) − ν
(
γ 2) = i

(
γ 2) − p2 � i

(
γ 2) − n + 1.

So

i
(
γ 2)� 2n − 1. (3.22)

By (3.7) we have

i
(
γ 2) = n + iL0(γ ) + iL1(γ ). (3.23)

Since iL0(γ ) � 0 and iL1(γ ) � 0, we have n � i(γ 2) � 2n − 1. So we can divide the index i(γ 2) into the following
three cases.

Case I. i(γ 2) = n.

In this case, by (3.7), iL0(γ ) � 0, and iL1(γ )� 0, we have

iL0(γ ) = 0 = iL1(γ ). (3.24)

So by (3.13) we have

νL0(γ ) − νL1(γ ) = n − 1. (3.25)

Since νL1(γ ) � 1 and νL0(γ ) � n, we have

νL0(γ ) = n, νL1(γ ) = 1. (3.26)

By (3.7) we have

ν
(
γ 2) = ν

(
P 2) = n + 1. (3.27)

By (3.12), (3.24) and (3.26) we have

S+
P 2(1) = 1 − n

2
+ n = 1 + n

2
= p + 1. (3.28)

So by (3.14), (3.27), (3.28), and Lemma 2.1 we have

P 2 ≈ I
�(p+1)

2 � R(θ1) � · · · � R(θp), (3.29)

where θj ∈ (0,2π). By (3.5) and (3.26) we have B = 0. By (3.18), (3.3), and (3.4), we have

P 2 = NP −1NP ≈ I2 � (
Nn−1Q

−1Nn−1Q
)

= I2 �
(

DT 0
CT AT

)(
A 0
C D

)

= I2 �
(

DT A 0
2CT A ADT

)

= I2 �
(

I2p 0
2AT C I2p

)
.

Hence σ(P 2) = {1} which contradicts to (3.29) since p � 1.

Case II. i(γ 2) = n + 2k, where 1 � k � p.

In this case by (3.7) we have

iL0(γ ) + iL1(γ ) = 2k.
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Since iL0(γ ) � 0 and iL1(γ ) � 0 we can write iL0(γ ) = k + r and iL1(γ ) = k − r for some integer −k � r � k. Then
by (3.13) we have

n − 1 � νL0(γ ) − νL1(γ ) = n − 2r − 1. (3.30)

Thus r � 0 and 0 � r � k.
By Theorem 2.1 and (i) of Lemma 2.5 we have

2r = iL0(γ ) − iL1(γ ) = 1

2
Mε(P ) � n − νL0(P ) (3.31)

which yields that νL0(γ ) � n − 2r . So by (3.30) and νL1(γ ) � 1 we have

νL0(γ ) = n − 2r, νL1(γ ) = 1. (3.32)

Then by (3.12) we have

S+
P 2(1) = (n − 2r) + 1 − n

2
− (k − r) = 1 + n

2
− k − r = p + 1 − k − r. (3.33)

Then by (3.14) and ν(P 2) = n − 2r + 1 and Lemma 2.1 we have

P 2 ≈ I
�(p+1−k−r)

2 � N1(1,−1)�2k � R(θ1) � · · · � R(θq), (3.34)

where q = n − (p + 1 − k − r) − 2k = p + r − k � 0. Then we have the following three subcases (i)–(iii).
(i) q = 0.
The only possibility is k = p and r = 0, in this case P 2 ≈ I2 � N1(1,−1)�2p and B = 0. By direct computation we

have

N1(1,−1)�2p ≈ N2pQ−1N2pQ =
(

In−1 0
2AT C In−1

)
. (3.35)

Then by Lemma 2.3 we have

m+(
AT C

) = 2p.

By (ii) of Lemma 2.5 we have

1

2
sgnMε(Q) � 2p − 2p = 0, 0 < −ε � 1. (3.36)

Thus by (3.36) and Theorem 2.1, for 0 < −ε � 1 we have(
iL0(γ ) + νL0(γ )

) − (
iL1(γ ) + νL1(γ )

)
= 1

2
sgnMε(P )

= 1

2
sgnMε(I2) + 1

2
Mε(Q)

= 0 + 1

2
Mε(Q)

� 0

which contradicts (3.13).
(ii) q > 0 and r = 0.
In this case νL0(γ ) = n and νL1(γ ) = 1, also we have B = 0. By the equality of (3.35) we have

tr
(
P 2) = 2n

which contradicts to (3.21) with p3 = q > 0.



544 D. Zhang, C. Liu / Ann. I. H. Poincaré – AN 31 (2014) 531–554
(iii) q > 0 and r > 0.
In this case, by (3.33) we have r < p. (Otherwise, then p = r = k. From (3.19) there holds S+

P 2(1) � 1, so from

(3.33) we have 1 � S+
P 2(1) = 1 − p � 0 a contradiction.) Here it is easy to see rankB = 2r . Then there are two

invertible 2p × 2p matrices U and V with detU > 0 and detV > 0 such that

UBV =
(

I2r 0
0 0

)
.

So there holds

Q ∼ diag
(
U,

(
UT

)−1)
Qdiag

((
V T

)−1
,V

) =
⎛
⎜⎝

A1 B1 I2r 0
C1 D1 0 0
A3 B3 A2 B2
C3 D3 C2 D2

⎞
⎟⎠ := Q1, (3.37)

where for j = 1,2,3, Aj is a 2r×2r matrix, Dj is a (2p−2r)×(2p−2r) matrix for j = 1,2,3, Bj is a 2r×(2p−2r)

matrix, and Cj is (2p − 2r) × 2r matrix. Since Q1 is still a symplectic matrix, we have QT
1 J2pQ1 = J2p , then it is

easy to check that

C1 = 0, B2 = 0. (3.38)

So

Q1 =
⎛
⎜⎝

A1 B1 I2r 0
0 D1 0 0
A3 B3 A2 0
C3 D3 C2 D2

⎞
⎟⎠ . (3.39)

So for the case (iii) of Case II, we have the following Subcases 1–3.

Subcase 1. A3 = 0.

In this case since Q1 is symplectic, by direct computation we have

N2pQ−1
1 N2pQ1 =

⎛
⎜⎝

I2r ∗ ∗ ∗
∗ I2p−2r ∗ ∗
∗ ∗ I2r ∗
∗ ∗ ∗ I2p−2r

⎞
⎟⎠ .

Hence we have

tr
(
N2pQ−1

1 N2pQ1
) = 4p.

Since Q1 ∼ Q, we have

P ∼ (−I2) � Q1. (3.40)

Then by the proof of Lemma 2.4 we have

trP 2 = tr
(
NP −1NP

)
= trN

(
(−I2) � Q1

)−1
N

(
(−I2) � Q1

)
= tr I2 � (

N2pQ−1
1 N2pQ1

)
= 4p + 2 = 2n. (3.41)

By (3.21) and p3 = q > 0 we have

tr
(
P 2) < 2n. (3.42)

(3.41) and (3.42) yield a contradiction.
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Subcase 2. A3 is invertible.

By Q1 is symplectic we have(
AT

1 0
BT

1 DT
1

)(
A2 0
C2 D2

)
−

(
AT

3 CT
3

BT
3 DT

3

)(
I2r 0
0 0

)
= I2p. (3.43)

Hence

DT
1 D2 = I2p−2r . (3.44)

By direct computation we have⎛
⎜⎝

A1 B1 I2r 0
0 D1 0 0
A3 B3 A2 0
C3 D3 C2 D2

⎞
⎟⎠

⎛
⎜⎝

I2r −A−1
3 B3 0 0

0 I2p−2r 0 0
0 0 I2r 0
0 0 BT

3 (AT
3 )−1 I2p−2r

⎞
⎟⎠ =

⎛
⎜⎝

A1 B̃1 I2r 0
0 D1 0 0
A3 0 A2 0
C3 D̃3 C̃2 D2

⎞
⎟⎠ .

So by (3.44) we have⎛
⎜⎝

I2r −B̃1D
T
2 0 0

0 I2p−2r 0 0
0 0 I2r 0
0 0 D2B̃

T
1 I2p−2r

⎞
⎟⎠

⎛
⎜⎝

A1 B̃1 I2r 0
0 D1 0 0
A3 0 A2 0
C3 D̃3 C̃2 D2

⎞
⎟⎠ =

⎛
⎜⎝

A1 0 I2r 0
0 D1 0 0
A3 0 A2 0
C̃3 D̃3 Ĉ2 D2

⎞
⎟⎠ := Q2.

Then we have

Q2 ∼ Q1 ∼ Q. (3.45)

Since Q2 is a symplectic matrix, we have QT
2 J2pQ2 = J2p , then it is easy to check that

C̃3 = 0, Ĉ2 = 0. (3.46)

Hence we have

Q2 =
(

A1 I2r

A3 A2

)
�

(
D1 0
D̃3 D2

)
. (3.47)

Since

N2p−2r

(
D1 0
D̃3 D2

)−1

N2p−2r

(
D1 0
D̃3 D2

)
=

(
I2p−2r 0

2DT
1 D̃3 I2p−2r

)
, (3.48)

by (3.45), (3.20), and Lemma 2.4, there is a symplectic matrix W such that

P 2 ≈ I2 � W �
(

I2p−2r 0
2DT

1 D̃3 I2p−2r

)
. (3.49)

Then by (3.14) and Lemma 2.3, DT
1 D̃3 is semipositive and

1 + m0(DT
1 D̃3

)
� S+

P 2(1).

So by (3.33) we have

m0(DT
1 D̃3

)
� p + 1 − k − r − 1 = p − k − r = (2p − 2r) − (p + k − r) � 2p − 2r − 1. (3.50)

Since DT
1 D̃3 is a semipositive (2p−2r)×(2p−2r) matrix, by (3.50) we have m+(DT

1 D̃3) > 0. Then by Theorem 2.1,
(ii) of Lemma 2.5 and Lemma 2.6, for 0 < −ε � 1 we have
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(
iL0(γ ) + νL0(γ )

) − (
iL1(γ ) + νL1(γ )

)
= 1

2

(
Mε(−I2) + Mε

((
A1 I2r

A3 A2

))
+ Mε

((
D1 0
D̃3 D2

)))

� 1

2

(
0 + 4r + 2(2p − 2r − 1)

)
= 2p − 1

= n − 2 (3.51)

which contradicts to (3.13).

Subcase 3. A3 �= 0 and A3 is not invertible.

In this case, suppose rankA3 = λ, then 0 < λ < 2r . There is an invertible 2r × 2r matrix G with detG > 0 such
that

GA3G
−1 =

(
Λ 0
0 0

)
, (3.52)

where Λ is a λ × λ invertible matrix. Then we have⎛
⎜⎝

(GT )−1 0 0 0
0 I2p−2r 0 0
0 0 G 0
0 0 0 I2p−2r

⎞
⎟⎠

⎛
⎜⎝

A1 B1 I2r 0
0 D1 0 0
A3 B3 A2 0
C3 D3 C2 D2

⎞
⎟⎠

⎛
⎜⎝

(G)−1 0 0 0
0 I2p−2r 0 0
0 0 GT 0
0 0 0 I2p−2r

⎞
⎟⎠

=
⎛
⎜⎝

Ã1 B̃1 I2r 0
0 D1 0 0

GA3G
−1 B̃3 Ã2 0

C̃3 D3 C̃2 D2

⎞
⎟⎠ := Q3. (3.53)

By (3.52) we can write Q3 as the following block form

Q3 =

⎛
⎜⎜⎜⎜⎜⎝

U1 U2 F1 Iλ 0 0
U3 U4 F2 0 I2r−λ 0
0 0 D1 0 0 0
Λ 0 E1 W1 W2 0
0 0 E2 W3 W4 0

G1 G2 D3 K1 K2 D2

⎞
⎟⎟⎟⎟⎟⎠ . (3.54)

Let R1 =
(

Iλ 0 0
0 I2r−λ 0

−G1Λ
−1 0 I2p−2r

)
and R2 =

(
Iλ 0 −Λ−1E1
0 I2r−λ 0
0 0 I2p−2r

)
. By (3.54) we have

diag
((

RT
1

)−1
,R1

)
Q3 diag

(
R2,

(
RT

2

)−1) =

⎛
⎜⎜⎜⎜⎜⎝

U1 U2 F̃1 Iλ 0 0
U3 U4 F̃2 0 I2r−λ 0
0 0 D1 0 0 0
Λ 0 0 W1 W2 0
0 0 E2 W3 W4 0
0 G2 D̃3 K̃1 K̃2 D2

⎞
⎟⎟⎟⎟⎟⎠ := Q4.

Since Q4 is a symplectic matrix we have

QT
4 JQ4 = J .

Then by (3.55) and direct computation we have U2 = 0, U3 = 0, W2 = 0, W3 = 0, F̃1 = 0, K̃1 = 0, and U1, U4, W1,
W4 are all symmetric matrices, and
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U4W4 = I2r−λ, (3.55)

D1D
T
2 = I2p−2r , (3.56)

U4Ẽ2 = GT
2 D1, (3.57)

So

Q4 =

⎛
⎜⎜⎜⎜⎜⎝

U1 0 0 Iλ 0 0
0 U4 F̃2 0 I2r−λ 0
0 0 D1 0 0 0
Λ 0 0 W1 0 0
0 0 Ẽ2 0 W4 0
0 G2 D̃3 0 K2 D2

⎞
⎟⎟⎟⎟⎟⎠ . (3.58)

By (3.55)–(3.57), we have both Ẽ2 and G2 are zero or nonzero. By Definition 2.3 we have Q4 ∼ Q3 ∼ Q. Then

by (3.32),

(
Λ 0 0
0 0 Ẽ2

0 G2 D̃3

)
is invertible. So both Ẽ2 and G2 are nonzero.

Since Q4 is symplectic, by (3.57) we have(
U1 0 0
0 U4 F̃2
0 0 D1

)T (
Λ 0 0
0 0 Ẽ2
0 G2 D̃3

)
=

(
U1Λ 0 0

0 0 U4Ẽ2
0 (U4Ẽ2)

T DT
1 D̃3 + B̃T

2 Ẽ2

)
(3.59)

which is a symmetric matrix.

Denote F =
(

0 U4Ẽ2

(U4Ẽ2)
T DT

1 D̃3+B̃T
2 Ẽ2

)
. Since U4Ẽ2 is nonzero, in the following we prove that m+(F ) � 1.

Note that here U4Ẽ2 is a (2r − λ) × (2p − 2r) matrix and DT
1 D̃3 + B̃T

2 Ẽ2 is a (2p − 2r) × (2p − 2r) ma-
trix. Denote U4Ẽ2 = (eij ) and DT

1 D̃3 + B̃T
2 Ẽ2 = (dij ), where eij and dij are elements on the i-th row and j -th

column of the corresponding matrix. Since U4Ẽ2 is nonzero, there exists an eij �= 0 for some 1 � i � 2r − λ and
1 � j � 2p − 2r . Let x = (0, . . . ,0, eij ,0, . . . ,0)T ∈ R2r−λ whose i-th row is eij and other rows are all zero, and
y = (0, . . . ,0, ρ,0, . . . ,0)T ∈ R2p−2r whose j -th row is ρ and other rows are all zero. Then we have

F

(
x

y

)
·
(

x

y

)
= 2ρe2

ij − ρ2djj > 0

for ρ > 0 small enough. Hence the dimension of positive definite space of F is at least 1, thus m+(F ) � 1. Then

m+
((

U1Λ 0 0
0 0 U4Ẽ2
0 (U4Ẽ2)

T DT
1 D̃3 + B̃T

2 Ẽ2

))
= m+(Λ) + m+(F ) � 1. (3.60)

Then by (3.59), (3.60) and (ii) of Lemma 2.5, we have

1

2
sgnMε(Q4) � 2p − 1 = n − 2, 0 < −ε � 1. (3.61)

Since Q ∼ Q4, by (3.61) and Lemma 2.4 we have

1

2
sgnMε(Q) � 2p − 1, 0 < −ε � 1. (3.62)

Then since P ∼ (−I2) � Q, by Theorem 2.1, Remark 2.2 and Lemma 2.4 we have(
iL0(γ ) + νL0(γ )

) − (
iL1(γ ) + νL1(γ )

)
= 1

2
Mε(P )

= 1

2
sgnMε

(
(−I2) � Q

)
= 1

sgnMε(−I2) + 1
sgnMε(Q)
2 2
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= 0 + 1

2
sgnMε(Q)

� n − 2. (3.63)

Thus (3.13) and (3.63) yields a contradiction. And in Case II we can always obtain a contradiction.

Case III. i(γ 2) = n + 2k + 1, where 0 � k � p − 1.

In this case by (3.7) we have

iL0(γ ) + iL1(γ ) = 2k + 1. (3.64)

Since iL0(γ ) � 0 and iL1(γ ) � 0 we can write iL0(γ ) = k + 1 + r and iL1(γ ) = k − r for some integer −k � r � k.
Then by (3.13) we have

n − 1 � νL0(γ ) − νL1(γ ) = n − 2r − 2. (3.65)

Thus r � 0 and 0 � r � k.
By Theorem 2.1 and (i) of Lemma 2.5 we have

2r + 1 = iL0(γ ) − iL1(γ ) = 1

2
Mε(P ) � n − νL0(γ ) (3.66)

which yields νL0(γ )� n − 2r − 1. Then by (3.65) and νL1(γ ) � 1 we have

νL0(γ ) = n − 2r − 1, νL1(γ ) = 1. (3.67)

Then by (3.12) we have

S+
P 2(1) = (n − 2r − 1) + 1 − n

2
− (k − r) = 1 + n

2
− k − r − 1 = p − k − r � 1. (3.68)

Then by (3.14) and ν(P 2) = νL0(γ ) + νL1(γ ) = n − 2r and Lemma 2.1 we have

P 2 ≈ I
�(p−k−r)

2 � N1(1,−1)�(2k+1) � R(θ1) � · · · � R(θq),

where q = n − (p − k − r) − (2k + 1) = p + r − k � p − k � 1.
Since in this case rankB = 2r + 1 � n − 2, by the same argument of (iii) in Case II, we have

Q ∼ Q1 =
⎛
⎜⎝

A1 B1 I2r+1 0
0 D1 0 0
A3 B3 A2 0
C3 D3 C2 D2

⎞
⎟⎠ .

Then by the same argument of Subcases 1, 2, 3 of Case II, we can always obtain a contradiction in Case III. The proof
of Theorem 3.1 is complete. �

Now we are ready to give a proof of Theorem 1.1. For Σ ∈Hs,c
b (2n), let jΣ : Σ → [0,+∞) be the gauge function

of Σ defined by

jΣ(0) = 0, and jΣ(x) = inf

{
λ > 0

∣∣∣ x

λ
∈ C

}
, ∀x ∈ R2n \ {0},

where C is the domain enclosed by Σ .
Define

Hα(x) = (
jΣ(x)

)α
, α > 1, HΣ(x) = H2(x), ∀x ∈ R2n. (3.69)

Then HΣ ∈ C2(R2n\{0},R) ∩ C1,1(R2n,R).
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We consider the following fixed energy problem

ẋ(t) = JH ′
Σ

(
x(t)

)
, (3.70)

HΣ

(
x(t)

) = 1, (3.71)

x(−t) = Nx(t), (3.72)

x(τ + t) = x(t), ∀t ∈ R. (3.73)

Denote by Jb(Σ,2) (Jb(Σ,α) for α = 2 in (3.69)) the set of all solutions (τ, x) of problem (3.70)–(3.73) and by
J̃b(Σ,2) the set of all geometrically distinct solutions of (3.70)–(3.73). By Remark 1.2 of [14] or discussion in [17],
elements in Jb(Σ) and Jb(Σ,2) are one-to-one correspondent. So we have #J̃b(Σ) = #J̃b(Σ,2).

For readers’ convenience in the following we list some known results which will be used in the proof of Theo-
rem 1.1. In the following of this paper, we write (iL0(γ, k), νL0(γ, k)) = (iL0(γ

k), νL0(γ
k)) for any symplectic path

γ ∈ Pτ (2n) and k ∈ N, where γ k is defined by Definition 2.5. We have

Lemma 3.1. (See Theorem 1.5 of [14] and Theorem 4.3 of [18].) Let γj ∈ Pτj
(2n) for j = 1, . . . , q . Let Mj =

γ 2
j (2τj ) = Nγj (τj )

−1Nγj (τj ), for j = 1, . . . , q . Suppose

îL0(γj ) > 0, j = 1, . . . , q.

Then there exist infinitely many (R,m1,m2, . . . ,mq) ∈ Nq+1 such that

(i) νL0(γj ,2mj ± 1) = νL0(γj ),
(ii) iL0(γj ,2mj − 1) + νL0(γj ,2mj − 1) = R − (iL1(γj ) + n + S+

Mj
(1) − νL0(γj )),

(iii) iL0(γj ,2mj + 1) = R + iL0(γj ).

and

(iv) ν(γ 2
j ,2mj ± 1) = ν(γ 2

j ),

(v) i(γ 2
j ,2mj − 1) + ν(γ 2

j ,2mj − 1) = 2R − (i(γ 2
j ) + 2S+

Mj
(1) − ν(γ 2

j )),

(vi) i(γ 2
j ,2mj + 1) = 2R + i(γ 2

j ),

where we have set i(γ 2
j , nj ) = i(γ

2nj

j , [0,2nj τj ]), ν(γ 2
j , nj ) = ν(γ

2nj

j , [0,2nj τj ]) for nj ∈ N.

Lemma 3.2. (See Lemma 1.1 of [14].) Let (τ, x) ∈ Jb(Σ,2) be symmetric in the sense that x(t + τ
2 ) = −x(t) for all

t ∈ R and γ be the associated symplectic path of (τ, x). Set M = γ ( τ
2 ). Then there is a continuous symplectic path

Ψ (s) = P(s)MP(s)−1, s ∈ [0,1],
such that

Ψ (0) = M, Ψ (1) = (−I2) � M̃, M̃ ∈ Sp(2n − 2),

ν1
(
Ψ (s)

) = ν1(M), ν2
(
Ψ (s)

) = ν2(M), ∀s ∈ [0,1],
where P(s) =

(
ψ(s)−1 0

0 ψ(s)T

)
and ψ is a continuous n × n matrix path with detψ(s) > 0 for all s ∈ [0,1].

For any (τ, x) ∈ Jb(Σ,2) and m ∈ N, as in [14] we denote iLj
(x,m) = iLj

(γ m
x , [0, mτ

2 ]) and νLj
(x,m) =

νLj
(γ m

x , [0, mτ
2 ]) for j = 0,1 respectively. Also we denote i(x,m) = i(γ 2m

x , [0,mτ ]) and ν(x,m) = ν(γ 2m
x , [0,mτ ]).

If m = 1, we denote i(x) = i(x,1) and ν(x) = ν(x,1). By Lemma 6.3 of [14] we have

Lemma 3.3. Suppose #J̃b(Σ) < +∞. Then there exist an integer K � 0 and an injection map φ : N + K �→
Jb(Σ,2) × N such that
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(i) For any k ∈ N + K , [(τ, x)] ∈ Jb(Σ,2) and m ∈ N satisfying φ(k) = ([(τ, x)],m), there holds

iL0(x,m) � k − 1 � iL0(x,m) + νL0(x,m) − 1,

where x has minimal period τ .
(ii) For any kj ∈ N + K , k1 < k2, (τj , xj ) ∈ Jb(Σ,2) satisfying φ(kj ) = ([(τj , xj )],mj ) with j = 1,2 and

[(τ1, x1)] = [(τ2, x2)], there holds

m1 < m2.

Lemma 3.4. (See Lemma 7.2 of [14].) Let γ ∈ Pτ (2n) be extended to [0,+∞) by γ (τ + t) = γ (t)γ (τ ) for all t > 0.
Suppose γ (τ) = M = P −1(I2 � M̃)P with M̃ ∈ Sp(2n − 2) and i(γ ) � n. Then we have

i(γ,2) + 2S+
M2(1) − ν(γ,2) � n + 2.

Lemma 3.5. (See Lemma 7.3 of [14].) For any (τ, x) ∈ Jb(Σ,2) and m ∈ N, we have

iL0(x,m + 1) − iL0(x,m)� 1,

iL0(x,m + 1) + νL0(x,m + 1) − 1 � iL0(x,m + 1) > iL0(x,m) + νL0(x,m) − 1.

Proof of Theorem 1.1. By Theorem 1.1 of [14] we have #J̃b(Σ) � [n
2 ] + 1 for n ∈ N. So we only need to prove

Theorem 1.1 for the case n� 3 and n is odd. The method of the proof is similar as that of [14].
It is suffices to consider the case #J̃b(Σ) < +∞. Since −Σ = Σ , for (τ, x) ∈ Jb(Σ,2) we have

HΣ(x) = HΣ(−x),

H ′
Σ(x) = −H ′

Σ(−x),

H ′′
Σ(x) = H ′′

Σ(−x). (3.74)

So (τ,−x) ∈ Jb(Σ,2). By (3.74) and the definition of γx we have that

γx = γ−x.

So we have(
iL0(x,m), νL0(x,m)

) = (
iL0(−x,m), νL0(−x,m)

)
,(

iL1(x,m), νL1(x,m)
) = (

iL1(−x,m), νL1(−x,m)
)
, ∀m ∈ N. (3.75)

So we can write

J̃b(Σ,2) = {[
(τj , xj )

] ∣∣ j = 1, . . . , p
} ∪ {[

(τk, xk)
]
,
[
(τk,−xk)

] ∣∣ k = p + 1, . . . , p + q
}
, (3.76)

with xj (R) = −xj (R) for j = 1, . . . , p and xk(R) �= −xk(R) for k = p + 1, . . . , p + q . Here we remind that (τj , xj )

has minimal period τj for j = 1, . . . , p + q and xj (
τj

2 + t) = −xj (t), t ∈ R for j = 1, . . . , p.
By Lemma 3.3 we have an integer K � 0 and an injection map φ : N +K → Jb(Σ,2)× N. By (3.75), (τk, xk) and

(τk,−xk) have the same (iL0 , νL0)-indices. So by Lemma 3.3, without loss of generality, we can further require that

Im(φ) ⊆ {[
(τk, xk)

] ∣∣ k = 1,2, . . . , p + q
} × N. (3.77)

By the strict convexity of HΣ and (6.19) of [14], we have

îL0(xk) > 0, k = 1,2, . . . , p + q.

Applying Lemma 3.1 to the following associated symplectic paths

γ1, . . . , γp+q, γp+q+1, . . . , γp+2q

of (τ1, x1), . . . , (τp+q, xp+q), (2τp+1, x
2
p+1), . . . , (2τp+q, x2

p+q) respectively, there exists a vector (R,m1, . . . ,

mp+2q) ∈ Np+2q+1 such that R > K + n and
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iL0(xk,2mk + 1) = R + iL0(xk), (3.78)

iL0(xk,2mk − 1) + νL0(xk,2mk − 1) = R − (
iL1(xk) + n + S+

Mk
(1) − νL0(xk)

)
, (3.79)

for k = 1, . . . , p + q , Mk = γ 2
k (τk), and

iL0(xk,4mk + 2) = R + iL0(xk,2), (3.80)

iL0(xk,4mk − 2) + νL0(xk,4mk − 2) = R − (
iL1(xk,2) + n + S+

Mk
(1) − νL0(xk,2)

)
, (3.81)

for k = p + q + 1, . . . , p + 2q and Mk = γ 4
k (2τk) = γ 2

k (τk)
2.

By Lemma 3.1, we also have

i(xk,2mk + 1) = 2R + i(xk), (3.82)

i(xk,2mk − 1) + ν(xk,2mk − 1) = 2R − (
i(xk) + 2S+

Mk
(1) − ν(xk)

)
, (3.83)

for k = 1, . . . , p + q , Mk = γ 2
k (τk), and

i(xk,4mk + 2) = 2R + i(xk,2), (3.84)

i(xk,4mk − 2) + ν(xk,4mk − 2) = 2R − (
i(xk,2) + 2S+

Mk
(1) − ν(xk,2)

)
, (3.85)

for k = p + q + 1, . . . , p + 2q and Mk = γ 4
k (2τk) = γ 2

k (τk)
2.

From (3.77), we can set

φ
(
R − (s − 1)

) = ([
(τk(s), xk(s))

]
,m(s)

)
, ∀s ∈ S :=

{
1,2, . . . ,

[
n + 1

2

]
+ 1

}
,

where k(s) ∈ {1,2, . . . , p + q} and m(s) ∈ N.
We continue our proof to study the symmetric and asymmetric orbits separately. Let

S1 = {
s ∈ S

∣∣ k(s) � p
}
, S2 = S \ S1.

We shall prove that #S1 � p and #S2 � 2q , together with the definitions of S1 and S2, these yield Theorem 1.1.

Claim 1. #S1 � p.

Proof. By the definition of S1, ([(τk(s), xk(s))],m(s)) is symmetric when k(s) � p. We further prove that m(s) =
2mk(s) for s ∈ S1.

In fact, by the definition of φ and Lemma 3.3, for all s = 1,2, . . . , [n+1
2 ] + 1 we have

iL0

(
xk(s),m(s)

)
�

(
R − (s − 1)

) − 1 = R − s

� iL0

(
xk(s),m(s)

) + νL0

(
xk(s),m(s)

) − 1. (3.86)

By the strict convexity of HΣ and Lemma 2.2, we have iL0(xk(s)) � 0, so there holds

iL0

(
xk(s),m(s)

)
� R − s < R �R + iL0(xk(s)) = iL0(xk(s),2mk(s) + 1), (3.87)

for every s = 1,2, . . . , [n+1
2 ] + 1, where we have used (3.78) in the last equality. Note that the proofs of (3.86) and

(3.87) do not depend on the condition s ∈ S1.
By Lemma 3.2, γxk

satisfies conditions of Theorem 3.1 with τ = τk

2 . Note that by definition iL1(xk) = iL1(γxk
) and

νL0(xk) = νL0(γxk
). So by Theorem 3.1 we have

iL1(xk) + S+
Mk

(1) − νL0(xk) >
1 − n

2
, ∀k = 1, . . . , p. (3.88)

Also for 1 � s � [n+1
2 ] + 1, we have

−n + 3 = −
([

n + 1
]

+ 1

)
�−s. (3.89)
2 2
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Hence by (3.86), (3.88) and (3.89), if k(s) � p we have

iL0(xk(s),2mk(s) − 1) + νL0(xk(s),2mk(s) − 1) − 1

= R − (
iL1(xk(s)) + n + S+

Mk(s)
(1) − νL0(xk(s))

) − 1

< R − 1 − n

2
− 1 − n = R − n + 3

2
� R − s

� iL0

(
xk(s),m(s)

) + νL0

(
xk(s),m(s)

) − 1. (3.90)

Thus by (3.87) and (3.90) and Lemma 3.5 of [14] we have

2mk(s) − 1 < m(s) < 2mk(s) + 1. (3.91)

Hence

m(s) = 2mk(s). (3.92)

So we have

φ(R − s + 1) = ([
(τk(s), xk(s))

]
,2mk(s)

)
, ∀s ∈ S1. (3.93)

Then by the injectivity of φ, it induces another injection map

φ1 : S1 → {1, . . . , p}, s �→ k(s). (3.94)

Therefore #S1 � p. Claim 1 is proved.

Claim 2. #S2 � 2q .

Proof. By the formulas (3.82)–(3.85), and (59) of [13] (also Claim 4 on p. 352 of [16]), we have

mk = 2mk+q for k = p + 1,p + 2, . . . , p + q. (3.95)

We set Ak = iL1(xk,2) + S+
Mk

(1) − νL0(xk,2) and Bk = iL0(xk,2) + S+
Mk

(1) − νL1(xk,2), p + 1 � k � p + q , where

Mk = γk(2τk) = γ (τk)
2. By (3.7), we have

Ak +Bk = i(xk,2) + 2S+
Mk

(1) − ν(xk,2) − n, p + 1 � k � p + q. (3.96)

By similar discussion of the proof of Lemma 3.2, for any p + 1 � k � p + q there exist Pk ∈ Sp(2n) and M̃k ∈
Sp(2n − 2) such that

γ (τk) = P −1
k (I2 � M̃k)Pk.

Hence by Lemma 3.4 and (3.96), we have

Ak +Bk � n + 2 − n = 2. (3.97)

By Theorem 2.1, there holds

|Ak −Bk| =
∣∣(iL0(xk,2) + νL0(xk,2)

) − (
iL1(xk,2) + νL1(xk,2)

)∣∣� n. (3.98)

So by (3.97) and (3.98) we have

Ak �
1

2

(
(Ak +Bk) − |Ak −Bk|

)
� 2 − n

2
, p + 1 � k � p + q. (3.99)

By (3.81), (3.86), (3.89), (3.95) and (3.99), for p + 1 � k(s) � p + q we have
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iL0(xk(s),2mk(s) − 2) + νL0(xk(s),2mk(s) − 2) − 1

= iL0(xk(s),4mk(s)+q − 2) + νL0(xk(s),4mk(s)+q − 2) − 1

= R − (
iL1(xk(s),2) + n + S+

Mk(s)
(1) − νL0(xk(s),2)

) − 1

= R −Ak(s) − 1 − n

�R − 2 − n

2
− 1 − n

= R −
(

2 + n

2

)

< R − n + 3

2
�R − s

� iL0

(
xk(s),m(s)

) + νL0

(
xk(s),m(s)

) − 1. (3.100)

Thus by (3.87), (3.100) and Lemma 3.5, we have

2mk(s) − 2 < m(s) < 2mk(s) + 1, p < k(s) � p + q.

So

m(s) ∈ {2mk(s) − 1,2mk(s)}, for p < k(s) � p + q.

Especially this yields that for any s0 and s ∈ S2, if k(s) = k(s0), then

m(s) ∈ {2mk(s) − 1,2mk(s)} = {2mk(s0) − 1,2mk(s0)}.
Thus by the injectivity of the map φ from Lemma 3.3, we have

#{s ∈ S2
∣∣ k(s) = k(s0)

}
� 2

which yields Claim 2.

By Claim 1 and Claim 2, we have

#J̃b(Σ) = #J̃b(Σ,2) = p + 2q � #S1 + #S2 =
[
n + 1

2

]
+ 1.

The proof of Theorem 1.1 is complete. �
Proof of Theorem 1.2. By [13], there are at least n closed characteristics on every C2 compact convex central
symmetric hypersurface Σ of R2n. Hence by Example 1.1 the assumption of Theorem 1.2 is reasonable. Here we
prove the case n = 5, the proof of the case n = 4 is the same.

We call a closed characteristic x on Σ a dual brake orbit on Σ if x(−t) = −Nx(t). Then by the similar proof of
Lemma 3.1 of [22], a closed characteristic x on Σ can became a dual brake orbit after suitable time translation if and
only if x(R) = −Nx(R). So by Lemma 3.1 of [22] again, if a closed characteristic x on Σ can both became brake
orbits and dual brake orbits after suitable translation, then x(R) = Nx(R) = −Nx(R). Thus x(R) = −x(R).

Since we also have −NΣ = Σ , (−N)2 = I2n and (−N)J = −J (−N), dually by the same proof of Theorem 1.1,
there are at least [(n + 1)/2] + 1 = 4 geometrically distinct dual brake orbits on Σ .

If there are exactly 5 closed characteristics on Σ . By Theorem 1.1, four closed characteristics of them must be
brake orbits after suitable time translation, then the fifth, say y, must be brake orbits after suitable time translation,
otherwise Ny(−·) will be the sixth geometrically distinct closed characteristic on Σ which yields a contradiction.
Hence all closed characteristics on Σ must be brake orbits on Σ . By the same argument we can prove that all closed
characteristics on Σ must be dual brake orbits on Σ . Then by the argument in the second paragraph of the proof
of this theorem, all these five closed characteristics on Σ must be symmetric. Hence all of them must be symmetric
brake orbits after suitable time translation. Thus we have proved the case n = 5 of Theorem 1.2 and the proof of
Theorem 1.2 is complete. �
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