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Abstract

Let (M,g) be a Poincaré–Einstein manifold with a smooth defining function. In this note, we prove that there are infinitely many
asymptotically hyperbolic metrics with constant Q-curvature in the conformal class of an asymptotically hyperbolic metric close
enough to g. These metrics are parametrized by the elements in the kernel of the linearized operator of the prescribed constant
Q-curvature equation. A similar analysis is applied to a class of fourth order equations arising in spectral theory.
© 2013 Elsevier Masson SAS. All rights reserved.

1. Introduction

In this note we will discuss the prescribed constant Q-curvature problem for asymptotically hyperbolic manifolds.
We obtain the existence of a family of constant Q-curvature metrics in a small neighborhood of any Poincaré–Einstein
metric, parametrized by elements in the null space of the linearized operator L in (1.3). Much of the analysis follows
from Mazzeo’s microlocal analysis method for elliptic edge operators. Results in this setting have been proved for the
scalar curvature equation, see [1].

For n � 4, a natural conformal invariant and the corresponding conformal covariant operator are the Q-curvature
and the fourth order Paneitz operator. Let Ricg and Rg be the Ricci curvature and the scalar curvature of (M,g).
The Q-curvature and the Paneitz operator are defined as follows,

Qg =
⎧⎨⎩− 1

12 (�gRg − R2
g + 3|Ricg|2), n = 4,

− 2
(n−2)2 |Ricg|2 + n3−4n2+16n−16

8(n−1)2(n−2)2 R2
g − 1

2(n−1)
�gRg, n� 5,

Pg(ϕ) =
{

�2
gϕ − div( 2

3Rgg − 2 Ricg) dϕ, n = 4,

�2
gϕ − divg(anRgg − bn Ricg)∇gϕ + n−4

2 Qgϕ, n� 5,

where an = (n−2)2+4
2(n−1)(n−2)

, bn = 4
n−2 , divg X = ∇iX

i for any smooth vector field X, and ϕ is any smooth function on M .
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Let g̃ = ρg, with ρ a positive function on M , so that

ρ =
{

e2u, n = 4,

u
4

n−4 , n � 5.

The Q-curvature has the following transformation,

Pgu + 2Qg = 2Qg̃e
4u, n = 4,

Pgu = n − 4

2
Qg̃u

n+4
n−4 , n > 4.

Note that Paneitz operator satisfies the following conformal covariance property for ϕ ∈ C∞(M),

Pg̃ϕ = e−4uPgϕ, n = 4,

Pg̃(ϕ) = u− n+4
n−4 Pg(uϕ), n > 4.

We want to find a function u so that the metric g̃ satisfies Qg̃ = Q̃ for a given function Q̃. For the prescribed
Q-curvature problem on closed manifold M of dimension four there are many results, see [3,7,12,13]. In [24] a
boundary value problem for this problem is solved. A flow approach is performed in [2], see also [4]. For n � 5, see
[6,23,27].

There are some interesting results for complete non-compact manifolds. For Euclidean space Rn, n � 4, see [17]
and [26]. In [11], using shooting method, the authors proved that there are infinitely many complete metrics with
constant Q-curvature in the conformal class of the Poincaré disk with dimension n� 5, which are radially symmetric
ODE solutions to the initial value problem parametrized by distinct given initial data at the origin. It is not difficult
to prove that similar results hold for n = 4. Mazzeo pointed out that there should be a more general result of this
type. In this paper, we solve a perturbation problem in the setting of asymptotically hyperbolic metrics close to a
Poincaré–Einstein metric. To give a precise statement we first need some definitions.

Definition 1.1. Let M be a smooth manifold of dimensional n, with smooth boundary ∂M of dimension n − 1. Let
g be a complete metric on M = Int(M). We say that g is conformally compact if there exists a smooth function x

on M , with the property that x > 0 in M , and x = 0 on ∂M , so that the metric h = x2g extends continuously to a
Riemannian metric on M . Here x is called a defining function of g. Moreover, if h ∈ Ck or Ck,α , for some positive
integer k, we say that g is conformally compact of order Ck or Ck,α .

Note that a direct calculation shows that the sectional curvatures of a conformally compact metric g approach
−|dx|g near ∂M . We call (M,g) asymptotically hyperbolic, if |dx|h|∂M = 1; and here g is called an asymptotically
hyperbolic metric, for which the sectional curvatures approach −1 near ∂M .

Definition 1.2. Let (M,g) be an asymptotically hyperbolic manifold. If g is also Einstein, we call g a Poincaré–
Einstein metric, and (M,g) a Poincaré–Einstein manifold.

Let (Mn,g) be an asymptotically hyperbolic manifold of dimension n, with x as its smooth defining function.
Actually, we can choose x so that |dx|h = 1 in a neighborhood of ∂M , see [8], and to simplify notation we always
choose a defining function in this sense except in Section 4. We will mainly focus on the asymptotic behavior of
the metric near ∂M , which is a local matter. Let y be local coordinates on ∂M . In a neighborhood of ∂M in M , we
introduce the local coordinates in the following way: (x, y) ∈ [0, ε) × ∂M represents the point moving from the point
on ∂M with local coordinate y, along the geodesic which is the integral curve of ∇hx for a length x in the metric h.
In local coordinates (x, y),

h = x2g = dx2 +
n−1∑

hij dyi dyj .
i,j=1
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For convenience, let g̃ = ρg, with ρ a positive function on M , so that

ρ =
{

e2u, n = 4,

(1 + u)
4

n−4 , n � 5.

For a given function Q̃, let the operator E be defined by

E(u) =
{

Pgu + 2Qg − 2Q̃e4u, for n = 4,

Pg(1 + u) − n−4
2 Q̃(1 + u)

n+4
n−4 , for n� 5.

(1.1)

To solve the prescribed Q-curvature problem amounts to finding a solution to

E(u) = 0. (1.2)

For Q̃ = Qg , we define the linear operator L = Lg of E as follows,

L(u) =
{

Pgu − 8Qgu, n = 4,

Pgu − n+4
2 Qgu, n� 5.

(1.3)

Let (x, y) be the local coordinates of M near the boundary described above. Let Ve be the collection of the smooth
vector fields on M , which restricted to a neighborhood of ∂M are generated by {x∂x, x∂y1 , . . . , x∂yn−1} with smooth

coefficients on M .
Next we introduce the weighted spaces that we will be using. First, the weighted Sobolev spaces,

xδHm
e

(
M,Ω

1
2
) = {

u = xδv: V1 . . . Vj v ∈ L2(M,Ω
1
2
)
, ∀j � m, Vi ∈ Ve

}
,

where m ∈ N, δ ∈R, and Ω
1
2 = √

dx dy is the half-density. We also introduce the weighted Hölder space,

xδΛm,α = xδΛm,α
(
M,Ω

1
2
) = {

u = xδv
√

dx dy: V1 . . . Vj v ∈ Λ0,α, ∀j � m, Vi ∈ Ve

}
,

with m ∈ N, δ ∈R, and 0 < α < 1, where Λ0,α(M) is the space of half-densities u = v
√

dx dy such that

‖v‖Λ0,α(M) = sup|v| + sup
(x + x̃)α|v(x, y) − v(x̃, ỹ)|

|x − x̃|α + |y − ỹ|α < ∞.

We will use the norm

‖u‖xδΛk,α(M) =
k∑

m=0

∑
|γ |=m

∥∥∂
γ
e v

∥∥
0,α

,

with ∂e ∈ Ve and u = xδv.
In this paper, we always assume n� 4 to be the dimension of M . With these definitions, we can now state our main

result:

Theorem 1.3. Let (Mn,g), n � 4, be a Poincaré–Einstein manifold with defining function x, and assume the metric
h = x2g is smooth up to the boundary. Let L : xνΛ4,α(M) → xνΛ0,α(M), where 0 < ν < n−1

2 and 0 < α < 1 be the
linearized operator defined in (1.3). Then,

(i) The kernel of L ⊂ xνΛ4,α(M) is infinite dimensional, and L is surjective. Furthermore, given Q̃ ∈ Λ0,α(M,√
dx dy ) with ‖Q̃ − Qg‖xνΛ0,α sufficiently small, for each v in the kernel of L there exists a unique solution u to

the problem (1.2) with Π1(u) = v, where Π1 : xνΛ4,α(M) → ker(L) is the projection map (see Theorem 1.5).
(ii) Let u be a solution of (1.2) with Q̃ = Qg . Then u has an expansion near the boundary

u(x, y) ∼ (
u00(y)x

n−1
2 +iβ + u10(y)x

n−1
2 −iβ

) + o
(
x

n−1
2

)
, (1.4)

with β =
√

n2+2n−9 and i = √−1, where u00 and u10 are generally distributions of negative order.
2
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Moreover, suppose v = Π1u has an expansion of the form

v(x, y) ∼
+∞∑
j=0

(
v0j (y)x

n−1
2 +iβ+j + v1j (y)x

n−1
2 −iβ+j + v2j (y)xn+j

)
, (1.5)

in the sense that

v(x, y) −
k∑

j=0

(
v0j (y)x

n−1
2 +iβ+j + v1j (y)x

n−1
2 −iβ+j

) = o
(
x

n−1
2 +k

)
,

for each k � 0, where β =
√

n2+2n−9
2 and the coefficient functions are smooth. Then u has an expansion of the

same form with different smooth coefficients.

For kernel elements having an expansion with smooth coefficients as in (1.5), one can prescribe the leading terms;
see Remark 2.2.

Remark 1.1. Our proof uses in a crucial way that the Laplacian operator � has no embedded eigenvalues in its essen-
tial spectrum. In [21], Mazzeo showed that this holds for any asymptotically hyperbolic manifold (M,g) with smooth
defining function x such that the compactified metric h = x2g is smooth up to the boundary. The smoothness assump-
tion comes up when he uses boundary regularity results of kernel elements and the unique continuation property on
the boundary.

Remark 1.2. For examples of smooth Poincaré–Einstein manifolds (Mn,g), we have the Poincaré ball (Bn
1 (0), gH ),

geometrically finite quotients of hyperbolic space Hn/Γ with infinite volume. For nontrivial examples, Graham and
Lee [9] and Lee [16] proved that there are infinitely many Poincaré–Einstein metrics g near the hyperbolic metric
and a class of known Poincaré–Einstein metrics g with prescribed data of x2g|∂M . Moreover, by the regularity result
in [5], for g asymptotically hyperbolic of order C2, with smooth defining function x and x2g|∂M is a smooth metric
on ∂M , for n even, or n = 3, up to a C1,α diffeomorphism near the boundary, h = x2g extends to boundary smoothly;
while for n odd and n > 3, h has expansion with possible log(x)-terms appearing at x = 0, which does not satisfy the
regularity condition in [21].

Remark 1.3. The ODE result in [11] only gives existence of radially symmetric constant Q-curvature metrics in the
conformal class of the hyperbolic metric, but allows the metric to be far away from the hyperbolic metric. As a pertur-
bation result, our theorem gives the existence of solutions in the conformal class of metrics in a small neighborhood
of the hyperbolic metric, more precisely, see Theorem 4.1.

Since this is a perturbation result, we first discuss the linear problem. We say that a bounded linear operator L is
essentially injective, if the null space of L is at most finitely dimensional; and L is essentially surjective if L has closed
range and with at most finitely dimensional cokernel. Using Mazzeo’s approach in [18], we obtain the semi-Fredholm
property for the linear operator (1.3):

Theorem 1.4. Let (Mn,g) be an asymptotically hyperbolic manifold with defining function x and the metric h = x2g

smooth up to the boundary, then the linear operator L : xδH 4
e (M) → xδL2(M,

√
dx dy ) as in (1.3), is essentially

injective if δ > n
2 and δ �= n + 1

2 , with infinite dimensional cokernel, and L is essentially surjective if δ < n
2 and

δ �= − 1
2 , with infinite dimensional kernel. Moreover, in both cases, L has closed range, and admits a generalized

inverse G and orthogonal projectors Π1 onto the nullspace and Π2 onto orthogonal complement of the range of L

which are edge operators, such that,

GL = I − Π1,

LG = I − Π2.

The corresponding theorem for the weighted Hölder space is as follows.
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Theorem 1.5. Let (Mn,g) be an asymptotically hyperbolic manifold with defining function x and the metric h = x2g

smooth up to the boundary. Let 0 < α < 1. The linear operator L : xνΛ4,α(M) → xνΛ0,α(M) as in (1.3), is essentially
injective if ν > n−1

2 and ν �= n, with infinite dimensional cokernel; and L is essentially surjective if ν < n−1
2 and

ν �= −1, with infinite dimensional kernel. Moreover, in both cases, L has closed range. Also, xνΛ4,α(M) has the
topological splitting of the following direct sum xνΛ4,α(M) = Π1(x

νΛ4,α(M)) ⊕ (I − Π1)(x
νΛ4,α(M)), which is

the projection to the null space of L and its topological complement for the second case. Similarly as the theorem with
weighted Sobolev spaces, there is a corresponding splitting of xνΛ0,α(M) for ν > n−1

2 .

The paper is organized as follows. In Section 2, we study the linear elliptic edge operator L defined in (1.3), and
obtain the semi-Fredholm property of the linear operator L. In Section 3, we obtain that if the linear operator L with
respect to the initial asymptotically hyperbolic metric g is surjective in a suitable weighted Hölder space, there are
infinitely many solutions to the prescribed Q-curvature problem with Q̃ a small perturbation of Qg , and the solutions
are parametrized by the elements in the kernel of L. Then we give the proof of Theorem 1.3. Using a special weighted
Hölder space, in Section 4, we prove a perturbation result for the prescribed constant Q-curvature problem for a
Poincaré–Einstein metric. In Section 5, we give a similar discussion to the prescribed U -curvature equations.

2. Semi-Fredholm properties of the linearized operator

In this section, we will discuss the local parametrix for L and the Fredholm property of L. An important feature is
that the elliptic operator L under consideration here is degenerate near infinity. Here we review some of the material
developed by Mazzeo and others in the theory of elliptic edge operators, see [19].

As in the introduction, let (Mn,g) be an asymptotically hyperbolic manifold of dimension n, with defining func-
tion x and the metric h = x2g smooth up to the boundary. Let (x, y) be the local coordinates of M near the boundary,
and Ve as defined in the introduction. The one forms dual to the vector fields which are elements in Ve are smooth one

forms in M , restricted on the neighborhood of ∂M generated linearly by { dx
x

,
dy1

x
, . . . ,

dyn−1

x
} with coefficients smooth

up to ∂M . Generally, a left or right parametrix E of an elliptic operator L on M is a pseudo-differential operator with
the property that

EL = Id+R1, or LE = Id+R2,

with R1,R2 compact operators.
The Schwartz kernel of an interior parametrix of the linear operator L is a distribution on M ×M , and for “interior”

we mean that the parametrix has singularity near the boundary which will be explained in the following. Let (x, y)

and (x̃, ỹ) be local coordinates on each copy of M near the boundary. We know that the parametrix is smooth, except
for the singularity along the diagonal � = {x = x̃, y = ỹ}, as in the case of compact manifolds. Moreover, due to the
degeneration of the edge operator L, as x, x̃ → 0, we also have the important additional singularity at the intersection
of � and the corner, which is S = {x = x̃ = 0, y = ỹ}. To deal with the boundary singularity, we introduce a new
manifold M2

0 = M ×0 M , by blowing-up M × M along S. Actually, if we use polar coordinates for M × M near the
corner,

r = (
x2 + |y − ỹ|2 + x̃2)1/2 ∈R+,

Θ = (x, y − ỹ, x̃)/r ∈ Sn++ = {
Θ ∈ Sn, Θ0,Θn � 0

}
,

we know that the level set of r = R is a submanifold of dimensional 2n − 1 for R > 0, while S = {r = 0} is singular.
More precisely, let M2

0 be the lift of M × M such that it is the same as M × M away from S, but near the corner, it is
represented by the lift of the polar coordinates, smoothly. Hence, S11 = {r = 0} is a (2n−1)-dimensional submanifold
of M2

0 . Let b be the natural projection map from M2
0 to M × M . For the convenience of calculation, as in [18], we

introduce two systems of local coordinates on M2
e , (s, v, x̃, ỹ) and (x, y, t,w), where

s = x/x̃, v = y − ỹ

x̃
; t = x̃/x, w = ỹ − y

x
.

Changing variables in these two coordinates,

x∂x = s∂s = x∂x − w∂w − t∂t , and x∂y = s∂v = x∂y − ∂w.
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In the following without loss of generality we only need to consider (s, v, x̃, ỹ). Viewing elements in Ve as first order
differential operators, we denote Diff∗e (M) the algebra generated by Ve with coefficients in the ring C∞(M), and with
the product given by composition of operators. We call an element in Diff∗e (M) an edge operator. Let Diffme (M) be
the linear subspace of differential operators which are of m-th order. Then L ∈ Diffme (M) has the form

L =
∑

j+|α|�m

aj,α(x, y)(x∂x)
j (x∂y)

α, (2.1)

with aj,α ∈ C∞(M), in the coordinate chart (x, y). The symbol of L is

σe(L)(x, y; ξ, η) =
∑

j+|α|=m

aj,α(x, y)ξj ηα.

L is elliptic if σe(L)(x, y; ξ, η) �= 0, for (ξ, η) �= 0. It is easy to check that �g and the linear operator L in (1.3) are
elliptic. L in (2.1) can be considered as a lift to M2

e as follows,

L =
∑

j+|α|�m

aj,α(x, y)(x∂x)
j (x∂y)

α =
∑

j+|α|�m

aj,α(sx̃, ỹ + x̃v)(s∂s)
j (s∂v)

α.

Let N(L) be the normal operator of L, so that

N(L) =
∑

j+|α|�m

aj,α(0, ỹ)(s∂s)
j (s∂v)

α,

is the restriction to S11 of the lift of L to M2
e . The normal operator is an important approximation of L near the

boundary. For the linear operator L in (2.1),

Lφ =
∑

j+|α|�m

aj,α(0, y)(x∂x)
j (x∂y)

αφ + Eφ,

for any smooth function φ, with the error term

Eφ = x
∑

j+|α|�m

bj,α(x, y)(x∂x)
j (x∂y)

αφ,

for x > 0 small, with the coefficients bj,α smooth up to the boundary.

Definition 2.1. The indicial family Iζ (L) of L ∈ Diffke(M) is defined to be the family of operators

L
(
xζ

(
log(x)

)p
f (x, y)

) = xζ
(
log(x)

)p
Iζ (L)f (0, y) + O

(
xζ

(
log(x)

)p−1)
,

for f ∈ C∞(M), ζ ∈C, p ∈N0.

There exists a unique dilation-invariant operator I (L), which is called the indicial operator, such that

I (L)(y, s∂s)s
ζ f (y) = sζ Iζ (L)f (y).

In local coordinates near the boundary, I (L) = ∑
j�k aj,0(0, y)(s∂s)

j .

Definition 2.2. If L ∈ Diff∗e (M) is elliptic, we denote specb(L) as the boundary spectrum of L, which is the set of
ζ ∈C, for which Iζ (L) = 0.

Let (M,g), x, and h be defined as above. Denote Sx as the level set of x (x is also denoted as y0 for convenience),
and the coordinates (y1, . . . , yn−1) = y. We now use this point of view to analyze our linearized operator (1.3).

In a neighborhood of ∂M , we have the following,

Ricg = Rich +x−1[(n − 2)Hessh x + �hxh
] − (n − 1)x−2|dx|2hh, (2.2)

and
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Rg = −n(n − 1)|dx|2h + (2n − 2)x(�hx) + x2Rh, (2.3)

where |dx|h = 1, and

(Hessh)ij (x) = ∇h
i ∇h

j (x) = ∂i∂j (x) − Γ s
ij ∂s(x) = −Γ 0

ij = 1

2
∂xhij = Bij ,

with Bij the second fundamental form of Sx , for i, j > 0; while (Hessh)ij (x) = 0 for i = 0 or j = 0. Also �hx =
trh(Hessh) = H(h), with H(h) the mean curvature of the level set of x in the metric h. Also Γ k

ij is the Christoffel
symbol with respect to h. Note that �g in our paper is the trace of Hessg , with negative eigenvalues:

�gu = gij
(
∂i∂j − Γ k

ij ∂k

)
u (2.4)

= x2�hu + (2 − n)x(∇hx, du) (2.5)

= (2 − n)x∂xu + x2(∂2
xu + �yu + H(h)∂xu

)
, (2.6)

where �y is the Laplacian on the level set Sx of x, in the induced metric h|Sx .
Near the boundary, the Q-curvature is

Qg = − 2

(n − 2)2
(n − 1)2n + n3 − 4n2 + 16n − 16

8(n − 1)2(n − 2)2
n2(n − 1)2 + O(x)

= n(n2 − 4)

8
+ O(x),

for n� 5, and Qg = 3 + O(x), for n = 4.
In the rest of this section we will consider the linear operator L in (1.3). Note that

Lφ = �2
gφ − divg(anRgg − bn Ricg)∇gφ − 4f φ

= �2
gφ − anRg�gφ + bn Ricg

ij ∇ i
g∇j

gφ − an(∇gRg,∇gφ) + bn∇ i
g Ricij ∇j

gφ − 4f φ

= �2
gφ − anRg�gφ + bn Ricg

ij ∇ i
g∇j

gφ +
(

−an + bn

2

)
(∇gRg,∇gφ) − 4f φ

= �2
gφ − anRg�gφ + bn Ricg

ij ∇ i
g∇j

gφ + 6 − n

2(n − 1)
(∇gRg,∇gφ) − 4f φ,

with f = Qg for n� 5, and f = 2Qg for n = 4. For the third equality, we use the second Bianchi identity. Also,

�gφ = x2�hφ − (n − 2)x(∇hx, dφ)h = x2�hφ − (n − 2)x∂xφ,

and

Rij (g)∇ i
g∇j

gφ ∼ [−(n − 1)x2hij + O
(
x3)]x−4∇ i∇j

gφ

= −(n − 1)
(
�gφ + O(x)p(x, y, x∂x, x∂y)φ

)
,

for some smooth function p(·). As a consequence,

Lφ = �2
gφ − anRg�gφ + bn Ricg

ij ∇ i
g∇j

gφ + 6 − n

2(n − 1)
(∇gRg,∇gφ) − 4f φ

= �2
gφ − an

(−n(n − 1) + O(x)
)
�gφ + bn

(−(n − 1)�gφ + O(x)p(x, y, x∂x, x∂y)φ
)

+ 6 − n

2(n − 1)

(−(2n − 2)x2H(h|Sx )∂xφ + O
(
x3)|∇yφ|) −

(
1

2
n
(
n2 − 4

) + O(x)

)
φ.

By definition,

N(L) = [
(s∂s)

2 − (n − 1)s∂s + s2�v − n
][

(s∂s)
2 − (n − 1)s∂s + s2�v + n2 − 4

]
.

2
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In addition,

I (L) = (
(s∂s)

2 − (n − 1)s∂s − n
)(

(s∂s)
2 − (n − 1)s∂s + n2 − 4

2

)
.

Suppose I (L)φ = 0, and write φ = sζ . Solving this equation, we get the indicial roots ζ , given by

specb(L) =
{
n,−1,

n − 1

2
− i

√
n2 + 2n − 9

2
,
n − 1

2
+ i

√
n2 + 2n − 9

2

}
.

Let Λ be the index set

Λ =
{

1

2
+ Re(δ); δ ∈ specb(L)

}
. (2.7)

The operator N(L) acts on functions defined on R+
s × Rn−1

v for each fixed ỹ, with coordinates (s, v). For the linear
operator L, N(L) does not depend on ỹ. We now take the Fourier transformation of N(L) in the v direction,

N̂(L) =
∑

j+|α|�m

ai,α(s∂s)
j (isη)α.

We have the symmetry of dilation:

ajα(s∂s)
j (s∂y)

α = ajα(ks∂ks)
j (ks∂ky)

α,

for any k ∈ R− {0}. Let t = s|η|, then

N̂(L)(s, η) =
∑

j+|α|�m

ai,α(0, ỹ)(t∂t )
j (it η̂)α,

which is denoted as L0(t, η̂), where η̂ = η
|η| . This is a family of totally characteristic operators on Rn+ and generally its

coefficients depend on ỹ. Note that we have fixed η̂ in the formula, and there is no scaling freedom in this direction.
Let Hm,δ,l be the weighted Sobolev space

Hm,δ,l = {
f : φ(t)f ∈ tδHm

e

(
R+)

,
(
1 − φ(t)

)
f ∈ t−lHm

(
R+)}

,

with φ ∈ C∞
0 (R+), and φ(t) = 1 in a neighborhood of t = 0. Note that

L0 : tδHm,δ,l → tδHm−4,δ,l+4

is bounded.
For the linear operator L,

N̂(L) = [
(s∂s)

2 − (n − 1)s∂s + s2(−|η|2) − n
][

(s∂s)
2 − (n − 1)s∂s + s2(−|η|2) + n2 − 4

2

]
,

hence

L0(t, η̂) = [
(t∂t )

2 − (n − 1)t∂t − t2 − n
][

(t∂t )
2 − (n − 1)t∂t − t2 + n2 − 4

2

]
= L1 ◦ L2,

with s∂s = s|η|∂s|η| = t∂t . Note that L0 does not depend on ỹ. We have made the formula into the simplest form.

Let us consider the relationship of Fredholm property among N(L), N̂(L) and L0, in tδL2, for δ > n
2 . We know

that the first two operators have the same properties of injectivity and surjectivity. Let

L0ϕ(t) = 0,

by definition, it holds if and only if

N̂(L)ϕ
(
s|η|) = 0.
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But then

N̂(L)
(
a(η)ϕ

(
s|η|)) = a(η)N̂(L)ϕ

(
s|η|) = 0,

for all a(η) smooth, since the derivative is only in s direction, with fixed η. Then, using the inverse Fourier transfor-
mation,

N(L)

∫
Rn−1

e2πi〈y,η〉a(η)ϕ
(
s|η|)dη = 0.

This means one-dimensional kernel of L0 corresponds to the infinite dimensional kernel of N(L), and this construction
also gives the fact that the kernel of N(L) is either trivial or of infinite dimension. But if N̂(L) is injective, then L0

is injective. Conversely, if L0 is injective, then N̂(L) is injective, and so is N(L). We have a dual argument of the
surjectivity for δ < n

2 . As in [18], L0 is Fredholm when δ /∈ Λ, with the set Λ in (2.7), and N(L) is semi-Fredholm
with either infinite dimensional kernel or cokernel. Roughly speaking, L is a small perturbation of N(L) near ∂M .
When N(L) is injective or surjective, L is essentially injective or essentially surjective, which will be Theorem 1.4
and Theorem 1.5.

To see the semi-Fredholm property of L, the strategy is to first study the Fredholm property of L0 and N(L),
and finally obtain the semi-Fredholm property of L using Mazzeo’s theorems which we list here as Theorem 2.4 and
Corollary 2.5.

We consider the Fredholm property of L0, L1 and L2 on weighted spaces. To this end, we introduce Bessel
functions, which are solutions to the Bessel equation

x2 d2y

dx2
+ x

dy

dx
− (

x2 + α2)y = 0,

where α is a complex number.
The Bessel functions Iα and I−α form a basis of linear space of solutions to the Bessel equation above, while

{Iα,Kα} is another basis. For Re(α) > − 1
2 , and −π

2 < arg(x) < π
2 , the integral representations of these solutions are

as follows,

Iα(x) = ( x
2 )α

Γ (α + 1
2 )Γ ( 1

2 )

1∫
−1

e−xt
(
1 − t2)α− 1

2 dt,

Kα(x) = π

2

Iα(x) − I−α(x)

sin(απ)
= Γ ( 1

2 )( x
2 )α

Γ (α + 1
2 )

∞∫
1

e−xt
(
t2 − 1

)α− 1
2 dt,

with x a complex number (see pp. 172 and 77 in [25]). Note that Iα is bounded near x = 0, and it increases exponen-
tially near +∞, and

Kα(x) ∼ C(ε)xRe(α)e−x+ε,

for any ε > 0, as x → +∞. Also Kα(x) is bounded for Re(α) � 0, near x = 0. The form Kα(x) is more useful near
x = ∞, since it decays exponentially.

We want to solve the following ODE, by transforming it into the Bessel type equations as above:

L1u = (
(t∂t )

2 − (n − 1)t∂t − t2 − n
)
u = 0.

Let u = tβ ũ, then we obtain that

tβ
(
(t∂t )

2ũ + (2β + 1 − n)t∂t ũ + (−n − t2 + β2 − β(n − 1)
)
ũ
) = 0. (2.8)

Then, letting 2β + 1 − n = 0, Eq. (2.8) is just the form of the Bessel equation. In this case, β = n−1
2 , and then the

index α = n+1
2 .

Therefore,

u(t) = t
n−1

2
(
C1I n+1 (t) + C2Kn+1 (t)

)
.

2 2
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In fact,

t
n−1

2 I n+1
2

(
t |η|) ∼ tn|η| n+1

2 , t
n−1

2 Kn+1
2

(
t |η|) ∼ t−1|η|− n+1

2 ,

near t = 0. Moreover,

t
n−1

2 I n+1
2

(
t |η|) ∼ t

n
2 −1et |η|/

√
2π |η|, t

n−1
2 Kn+1

2

(
t |η|) ∼ t

n
2 −1e−t |η|

√
π

2|η| ,
as t → ∞.

Similarly,

L2u =
(

(t∂t )
2 − (n − 1)t∂t − t2 + n2 − 4

2

)
u = 0.

Let u(t) = tβ ũ(t), then

tβ
(

(t∂t )
2ũ + (2β + 1 − n)t∂t ũ +

(
n2 − 4

2
− t2 + β2 − β(n − 1)

)
ũ

)
= 0.

Set 2β + 1 − n = 0, so that β = n−1
2 , and then ũ is a solution to the Bessel equation with α = i

√
n2+2n−9

2 ,

u(t) = t
n−1

2
(
C1I i

√
n2+2n−9

2

(t) + C2Ki
√

n2+2n−9
2

(t)
)
.

By the expansion of the series form of the Bessel functions, as in [15, p. 108], we have

t
n−1

2 Iα

(
t |η|) ∼ t

n−1
2 +α|η|α/

(
2αΓ (1 + α)

)
,

and

t
n−1

2 I−α

(
t |η|) ∼ t

n−1
2 −α|η|α/

(
2αΓ (1 − α)

)
,

with α = i
√

n2+2n−9
2 , near t = 0. Now it is easy to see that the linear combination

x
n−1

2
(
C1x

i

√
n2+2n−9

2 + C2x
−i

√
n2+2n−9

2
)

can never vanish to infinite order at t = 0 if either C1 �= 0 or C2 �= 0. Also,

t
n−1

2 Kα

(
t |η|) ∼ t

n−1
2

π

2

Iα(t |η|) − I−α(t |η|)
sin(απ)

,

with α = i
√

n2+2n−9
2 , and |η| �= 0, near t = 0.

Using the integral form as above, we have that Iα(t) grows exponentially, while Kα decays exponentially as

t → +∞, for α = i
√

n2+2n−9
2 .

Denote Lt
0 to be the L2 adjoint of L0 in the measure dt , and

L∗
0 = t2δL0t

−2δ,

to be the adjoint of L0 in tδL2 in the measure t−2δ dt . These are all elliptic operators, with boundary spectra:

specb

(
Lt

0

) = {−ζ − 1: ζ ∈ specb(L0)
}
,

specb

(
L∗

0

) = {−ζ + 2δ − 1: ζ ∈ specb(L0)
}
.

For example, for L1 = (t∂t )
2 − (n − 1)(t∂t ) − t2 − n,∫

L1uv dt =
∫

uLt
1v dt.

Then
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Lt
1 = (−∂t (t ·)

)2 + (n − 1)
(
∂t (t ·)

) − t2 − n,

with

∂t (t ·) = t∂t + 1,

and pt(ξ) = p(−(ξ + 1)), for the quadratic polynomial p. Also, for L∗
1, using the fact that

−∂t

(
t t−2δ·) = −t−2δ(−2δ + 1 + t∂t ) = t−2δ(2δ − 1 − t∂t ),

and ∫
L1uvt2δ dt = −

∫
ut−2δLt

1

(
t2δv

)
t2δ dt,

we obtain the boundary spectra as listed above. For the fourth order differential equation, we have obtained four
linearly independent solutions, and they generalize the solution space.

Let δ = n−1
2 + 1

2 = n
2 , we have L∗

1 = L1, and L∗
2 = L2.

Definition 2.3. We say that an operator L has the unique continuation property on a boundary B if any solution of
Lu = 0 vanishing to infinite order at B vanishes identically.

Hypothesis 1. For each ỹ and η̂, both L0 and its adjoint L∗
0 (the dual of L0 with respect to the space tRe δL2 for any

δ we need) have the unique continuation property at {t = 0}.

We know from the discussion above that L0 satisfies the unique continuation property. Under the continuation
hypothesis, we have that for each element (ỹ, η̂) ∈ N0, L0 is surjective on xδL2 or injective on xδL2 when δ is
sufficiently negative or sufficiently large. For our case, we use δ = n

2 in Hypothesis 1. Now let us define δ to be the
minimal value of δ so that L0 is injective, and meanwhile δ the maximal value so that L0 is surjective dually. These
values must lie in Λ. The following theorem and corollary tell us the relationship between semi-Fredholm properties
of L and the Fredholm properties of L0, for certain cases we need.

Theorem 2.4. (See Theorem 6.1 in [18].) Suppose L ∈ Diffme (M) is elliptic and satisfies the unique continuation
hypothesis, and that specb(L) is discrete. Suppose also that δ /∈ Λ is chosen so that either δ > δ̄ or δ < δ. Then
L : xδHr+m

e (M) → xδHr
e (M) has closed range, and it is either essentially surjective, or essentially injective respec-

tively. Therefore, it admits a generalized inverse G and orthogonal projectors Πi onto the nullspace and orthogonal
complement of the range of L which are edge operators, such that,

GL = I − Π1,

LG = I − Π2.

Since the edge operators used in the proof of the weighted Sobolev spaces are bounded in the appropriate Hölder
spaces, the corresponding result for Hölder spaces follows.

Corollary 2.5. (See Corollary 6.4 in [18].) For L as in Theorem 2.4, k � m a positive integer and 0 < α < 1 the
mapping L : xνΛk,α → xνΛk−m,α is semi-Fredholm provided ν = δ − 1

2 and δ /∈ Λ is as in the previous theorem. If
δ < δ or δ > δ̄ so that L is essentially surjective or essentially injective, then topologically, we have the splitting,

xνΛk,α = Π1
(
xνΛk,α

) ⊕ (I − Π1)
(
xνΛk,α

)
,

xνΛk−m,α = Π2
(
xνΛk−m,α

) ⊕ (I − Π2)
(
xνΛk−m,α

)
.

Let us compute δ and δ for L0. First, for L1, since t
n−1

2 I n+1
2

(t |η|) increases exponentially as t goes to ∞ (here

|η| �= 0), it does not lie in t δL2 for any δ > 0; furthermore,

t
n−1

2 Kn+1

(
t |η|) ∈ t δL2(R+),
2
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for δ < − 1
2 . Similarly, for L2, t

n−1
2 I

i
√

n2+2n−9
2

(t |η|) grows exponentially when t goes to ∞ (with |η| �= 0), and

t
n−1

2 K
i
√

n2+2n−9
2

(
t |η|) ∈ t δL2(R+),

for δ < n−1
2 + 1

2 = n
2 . Therefore, L1 and L2 both have trivial kernel in the space xδL2(M,

√
dx dy ) for δ > n

2 .
But Ker(L2) is nontrivial for δ < n

2 . Also the composition of two injective maps is still injective. Therefore, δ = n
2

for L0 = L1 ◦ L2. Since L0 is self-adjoint in t
n
2 L2(R+), we have that δ = n

2 . Since it satisfies the conditions of
Theorem 2.4 and Corollary 2.5, therefore Theorems 1.4 and 1.5 are proved.

To conclude this section, we want to see when L is injective or surjective in the special case of Poincaré–Einstein
manifolds. For a Poincaré–Einstein manifold (M,g) with g = x−2h, without loss of generality we assume Rg =
−n(n − 1). Let us first consider it in the weighted Sobolev spaces. We have

L = (�g − n)

(
�g + (n + 2)(n − 2)

2

)
= T1 ◦ T2.

We know that L is self-adjoint with respect to x
n
2 L2(M,

√
dx dy ). Then to show that L : xδH 4

e (M) → xδL2(M) is
surjective for 0 � δ < n

2 , since L has close range, we only need to 1 � δ < n
2 , we only need to show that L is injective

when δ > n
2 . For that, we only need to show that T1 and T2 are injective for δ > n

2 .

Lemma 2.6. T1,T2 : xδH 2+m
e (M,

√
dx dy ) → xδHm

e (M,
√

dx dy ), are both injective for δ > n
2 , and all m� 0.

Proof. By the regularity argument, we only need to discuss on the case m = 0. Also, if T1 and T2 are injective in
L2(M,g), which is x

n
2 L2(M,

√
dx dy ), then we are done. The proof is as follows.

If u ∈ xδL2(M,
√

dx dy ), for δ > n
2 , then u ∈ L2(M,g). Moreover, if also

T1u = (�g − n)u = 0,

by Weyl’s lemma, u ∈ H 1(M,g). Now we multiply u on both sides of the equation, and integrate by parts, and then
we have

−
∫
M

(|∇u|2g + u2)dVg = 0.

Therefore, u = 0. Then we have that T1 is injective.
For the Poincaré ball (B,g−1), we know that the Laplacian −�g has pure continuous spectrum, consisting of

[ (n−1)2

4 ,∞), with λ0 = (n−1)2

4 .
For an asymptotically hyperbolic manifold (M,g) with its defining function x and the extending metric h = x2g

smooth up to the boundary, combining the boundary regularity result and the unique continuation result for (−�g −λ),

it was proved in [21] that if λ >
(n−1)2

4 , u ∈ L2(M,g) and (−�g − λ)u = 0 then u = 0. That is to say, −�g has

essential spectrum [ (n−4)2

4 ,+∞), with no embedded eigenvalues. It is easy to check that when n� 4, n2−4
2 >

(n−1)2

4 .

Therefore, for n� 4, T2 is injective in L2(M,g) = x
n
2 L2(M,

√
dx dy ).

It follows that T1 and T2 are both injective when δ > n
2 . This proves the lemma. �

The lemma tells that L is injective for δ > n
2 on the Poincaré–Einstein manifolds. Then dually L is surjective when

0 < δ < n
2 .

The linear edge operators used above are all bounded linear operators in the weighted Hölder spaces, and can
be used correspondingly in the weighted Hölder spaces. Then the corresponding statement for the weighted Hölder
spaces is as follows. Let

L : xνΛ4,α(M) → xνΛ0,α(M).

Here 0 < α < 1. Then L is injective when ν = δ − 1
2 > n−1

2 , while L is surjective when 0 < ν = δ − 1
2 < n−1

2 on the
Poincaré–Einstein manifolds M .
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Remark 2.1. Generally, on an asymptotically hyperbolic manifold (M,g) with a smooth defining function x and
h = x2g smooth, let u ∈ Ker(L) for L defined in (1.3) in the weighted Hölder spaces xνΛ4,α(M,

√
dx dy ), for 0 <

ν < n−1
2 and 0 < α < 1. Then, u ∈ xνΛm,α for all m ∈ N, and u has the following weak expansion with coefficients

which are generally distributions,

u(x, y) ∼
+∞∑
j=0

(
u0j (y)x

n−1
2 +i

√
n2+2n−9

2 +j + u1j (y)x
n−1

2 −i

√
n2+2n−9

2 +j + xn+j u2j (y)
)
, (2.9)

in the sense that

u(x, y) −
k∑

j=0

(
u0j (y)x

n−1
2 +i

√
n2+2n−9

2 +j + u1j (y)x
n−1

2 −i

√
n2+2n−9

2 +j
) = o

(
x

n−1
2 +k

)
,

for k � 0. If either u00 or u01 is smooth, then all the coefficients are smooth. The more precise regularity of the
coefficients in a weighted Sobolev space setting can be found in Chapter 7 in [18].

Remark 2.2. On a Poincaré–Einstein manifold (M,g) with a smooth defining function x and h = x2g smooth, for 0 <

ν < n−1
2 and 0 < α < 1, since T1 is injective, an element u in the kernel of L is exactly an element in the kernel of T2.

By Proposition 3.4 in [10], for any chosen u00 ∈ C∞ or u10 ∈ C∞, there exists a unique u ∈ xνΛ4,α(M,
√

dx dy ), for
0 < ν < n−1

2 , in the kernel of L, so that u has the expansion (2.9) with smooth coefficients.

3. The nonlinear problem

Now let us return to the perturbation problem. It is more convenient to work in weighted Hölder spaces. Let (M,g)

be an asymptotically hyperbolic manifold defined as in the introduction. Let g̃, u also be defined as in the introduction,
and let the prescribed curvature Qg̃ = f . Define the operator T : xνΛ4,α(M) → xνΛ0,α(M) as follows,

T (u) =
{

2f e4u − 2Qg − 8Qgu, n = 4,

n−4
2 (1 + u)

n+4
n−4 f − n−4

2 Qg − n+4
2 Qgu, n� 5.

We rewrite it in the form

T (u) =
{

2(e4u − 1 − 4u)f + 2(f − Qg) − 8(Qg − f )u, n = 4,

n−4
2 ((1 + u)

n+4
n−4 − 1 − n+4

n−4u)f + n−4
2 (f − Qg) + n+4

2 (f − Qg)u, n � 5.

Let L be as in (1.3), then the prescribed Q-curvature equation is

Lu = T (u). (3.1)

Let 0 < ν < ν = n−1
2 and 0 < α < 1, so that L is essentially surjective. Moreover, in the following we assume that L

is surjective. Then

L : V1 = (I − Π1)
(
xνΛ4,α(M)

) → xνΛ0,α(M)

is an isomorphism, using topological splitting of xνΛ4,α(M) in Theorem 1.5 and the open mapping theorem. That is,

C1‖u‖xνΛ4,α(M) � ‖Lu‖xνΛ0,α(M) � C2‖u‖xνΛ4,α(M), (3.2)

for some constant C2 > C1 > 0, for all u ∈ V1. We denote the inverse of L as

L−1 : xνΛ0,α(M) → V1.

Let f ∈ Cα(M), and

(Qg − f ) ∈ xνΛ0,α,
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with its small norm to be determined later. We want to use elements in kernel of L to parametrize the perturbation
solutions to the nonlinear problem at 0. We will define a new map for each element in the kernel of L, and use it to
construct a contraction map. For any fixed u1 ∈ Ker(L), for any u2 ∈ V1, let u = u1 + u2, and

Tu1(u2) = T (u1 + u2).

Now L−1 ◦ Tu1 : V1 → V1.
From now on, let u1 be any fixed element in Bε(0) ∩ Ker(L), and u2 ∈ Bε(0) ∩ V1, with small ε ∈ (0,1) to be

determined. Note that

∥∥Tu1(u2)
∥∥

xνΛ0,α �

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2‖(e4u − 1 − 4u)f ‖xνΛ0,α(M) + 2‖(f − Qg)‖xνΛ0,α(M)

+ 8‖(f − Qg)u‖xνΛ0,α(M), n = 4,

n−4
2 ‖((1 + u)

n+4
n−4 − 1 − n+4

n−4u)f ‖xνΛ0,α(M)

+ n−4
2 ‖(f − Qg)‖xνΛ0,α(M) + n+4

2 ‖(f − Qg)u‖xνΛ0,α(M), n � 5.

Then we have∥∥Tu1(u2)
∥∥

xνΛ0,α � C(n)
(‖f ‖L∞

∥∥(u1 + u2)
2
∥∥

xνΛ0,α + (
1 + ‖u1 + u2‖L∞

)‖f − Qg‖xνΛ0,α

+ ∥∥x−ν(u1 + u2)
∥∥

L∞
∥∥(u1 + u2)

∥∥
L∞

(‖f ‖Λ0,α + ‖Qg‖Λ0,α

)
+ ‖f − Qg‖L∞‖u1 + u2‖xνΛ0,α

)
,

where C > 0 is a constant depending only on n, the diameter of M with respect to x2g, and ν. By the definition of the
weighted norm,

‖φ‖L∞ � ‖φ‖Λ0,α , and ‖φ‖L∞ � C0‖φ‖xνΛ0,α , (3.3)

for a constant C0 > 0 depending on the defining function and ν, for any φ ∈ xνΛ0,α . Therefore,∥∥Tu1(u2)
∥∥

xνΛ0,α � C1
((

ε
(‖f ‖Λ0,α + ‖Qg‖Λ0,α

) + ‖f − Qg‖L∞
)‖u1 + u2‖xνΛ0,α + (1 + ε)‖f − Qg‖xνΛ0,α

)
,

where C1 depends on n, the defining function, the diameter of M with respect to x2g, and ν, so that∥∥L−1 ◦ Tu1(u2)
∥∥

xνΛ4,α (3.4)

� C1
∥∥L−1

∥∥((
ε
(‖f ‖Λ0,α + ‖Qg‖Λ0,α

) + ‖f − Qg‖L∞
)‖u1 + u2‖xνΛ0,α (3.5)

+ (1 + ε)‖f − Qg‖xνΛ0,α

)
. (3.6)

We now choose ε ∈ (0,1) small so that

16C1ε
∥∥L−1

∥∥‖Qg‖Λ0,α < 1, (3.7)

and let f satisfy that

‖f ‖Λ0,α � 2‖Qg‖Λ0,α , and ‖f − Qg‖xνΛ0,α � min

{
1

4(1 + ε)C1‖L−1‖ε,
ε‖Qg‖Λ0,α

C0

}
. (3.8)

Combining (3.3), we have∥∥L−1 ◦ Tu1(u2)
∥∥

xνΛ4,α � 3

4
ε.

Therefore, L−1 ◦ Tu1 maps Bε(0) ∩ V1 into Bε(0) ∩ V1.
For u3, u4 ∈ V1 ∩ Bε(0),∥∥L−1 ◦ Tu1(u3) − L−1 ◦ Tu1(u4)

∥∥
xνΛ4,α

�
∥∥L−1

∥∥∥∥Tu1(u3) − Tu1(u4)
∥∥

xνΛ0,α

=

⎧⎪⎨⎪⎩
‖L−1‖‖2f (e4u1(e4u3 − e4u4) − 4(u3 − u4)) − 8(Qg − f )(u3 − u4)‖xνΛ0,α , n = 4,

‖L−1‖‖n−4
2 ((1 + u1 + u3)

n+4
n−4 − (1 + u1 + u4)

n+4
n−4 − n+4

n−4 (u3 − u4))f

+ n+4 (f − Q )(u − u )‖ ν 0,α , n� 5.
2 g 3 4 x Λ
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But

e4(u1+u3) − e4(u1+u4) − 4(u3 − u4) = 4(u3 − u4)w,

with

w =
(

e4(u1+u3) − e4(u1+u4)

4(u3 − u4)
− 1

)
=

( 1∫
0

e4(u1+u4+t (u3−u4)) dt − 1

)
∈ xνΛ0,α ∩ BCε(0),

with C which does not depend on u3, u4, or ε ∈ (0,1). We have similar results for n� 5. By the discussion above,∥∥L−1 ◦ Tu1(u3) − L−1 ◦ Tu1(u4)
∥∥

xνΛ4,α (3.9)

�
∥∥L−1

∥∥C̃0
(
ε‖f ‖Λ0,α‖u3 − u4‖xνΛ0,α + ‖Qg − f ‖xνΛ0,α‖u3 − u4‖xνΛ0,α

)
(3.10)

= ∥∥L−1
∥∥C̃0

(
ε‖f ‖Λ0,α + ‖Qg − f ‖xνΛ0,α

)‖u3 − u4‖xνΛ0,α , n � 4, (3.11)

where C̃0 depends only on the defining function, the diameter of M with respect to x2g, ν and n. Let ε be small so
that

8C̃0
∥∥L−1

∥∥(
1 + ‖Qg‖Λ0,α

)
ε < 1, (3.12)

and let

‖Qg − f ‖xνΛ0,α � 1

8C̃0‖L−1‖ . (3.13)

Then we have∥∥L−1 ◦ Tu1(u3) − L−1 ◦ Tu1(u4)
∥∥

xνΛ4,α �
3

8
‖u3 − u4‖xνΛ0,α

� 3

8
‖u3 − u4‖xνΛ4,α .

Note that ‖L−1‖ depends on the projection map Π1 that we construct in Theorem 1.5. Therefore, if L is surjective for
ν < n−1

2 , and also ε and f satisfy the above conditions, then for each u1 ∈ Bε(0) ∩ Ker(L),

L−1 ◦ Tu1 : V1 ∩ Bε(0) → V1 ∩ Bε(0)

is a contraction map. This implies that there exists a unique u2 ∈ Bε(0) ∩ V1, solving the equation

L(u1 + u2) = Tu1(u2).

Note that the proof above holds for h = x2g ∈ C4,α(M). Now we have proved the following theorem.

Theorem 3.1. Let (M,g) be an asymptotically hyperbolic manifold of dimensional n� 4, with x the smooth defining
function, and the metric h = x2g ∈ C4,α(M). For 0 < ν < n−1

2 and 0 < α < 1, let

L : xνΛ4,α(M) → xνΛ0,α

be the linear operator defined in (1.3), which by Theorem 1.5 is essentially surjective. Assume that L is surjective.
Then there exists a small constant ε0 > 0, depending on the diameter of M with respect to h, ν, n and also Π1 and L,
so that the following holds:

Let ε be any small real number satisfying 0 < ε < ε0, and let f ∈ Λ0,α(M) satisfy

‖Qg − f ‖xνΛ0,α � C̃ε,

for some positive constant C̃ depending on the diameter of M with respect to h, ν, n, also Π1 and L.
Then for each u1 ∈ Bε(0) ∩ Ker(L), there exists a unique u ∈ B2ε(0) ⊆ xνΛ4,α(M), so that Qg̃ = f , where g̃ =

(1 + u)
4

n−4 g for n� 5, and g̃ = e2ug for n = 4, with Π1u = u1.
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By the discussion at the end of Section 2, for the cases in Theorem 1.3, L is surjective for xνΛ4,α(M),0 < ν < n−1
2 .

This completes the proof of (i) of Theorem 1.3.
Since surjectivity is an open property, L is surjective for xνΛ4,α(M),0 < ν < n−1

2 , for smooth g that is close
enough to these metrics. Theorem 3.1 holds for metrics in a small neighborhood of these metrics.

In the following, we will discuss about the boundary regularity of the solutions. For convenience, we assume that
the defining function x and the metric h = x2g are smooth up to the boundary. The discussion we use here is standard,
see [20]. We will sketch the discussion. Composing the inverse G operator of L on both sides of (3.1),

u − Π1u = GLu = GT (u), (3.14)

with u1 = Π1u the projection of u to the null space of L.
For the regularity of u with respect to the derivative ∂y , which is the derivative in some y direction, we introduce

the following weighted space with k �m:

xνΛm,α,k = {
u ∈ xνΛm,α(M,

√
dx dy ), so that (x∂x)

j (x∂y)
β∂

γ
y u ∈ xνΛ0,α,

for j + |β| + |γ |� m, j � 0, and |γ |� k
}
.

An easy observation is that for u ∈ xνΛm,α and m� 1, ∂yu = x∂y(x
−1u), so that

∂yu ∈ xν−1Λm−1,α. (3.15)

Also for u ∈ xνΛm,α,k and 1 � k � m, ∂yu ∈ xνΛm−1,α,k−1. In Proposition 2.9 in [20], it is proved that the inverse
operator G : xνΛm,α,k → xνΛm+4,α,k is bounded for m � 0 and 0 � k � m; also, Π1 : xνΛm+4,α,k → xνΛm+4,α,k is
bounded for m � 0 and 0 � k �m.

Lemma 3.2. Let u ∈ xνΛ4,α be a solution to (3.1) with 1 � ν < n−1
2 and 0 < α < 1. Assume that (f − Qg) ∈

xνΛm,α,k , and u1 = Π1u ∈ xνΛm+4,α,k , for 0 � k � m. Then we have that u ∈ xνΛm+4,α,k .

Proof. By assumption, x and the metric h are smooth up to the boundary, so that Qg ∈ C∞(M) ⊆ Λm,α,k for any
m� k, and then we have f ∈ Λm,α,k . For m = 0 the claim holds automatically. Now assume m� 1. Using (3.14) and
boundedness of G for k = 0 we obtain that u ∈ xνΛ1+4,α . Then we can substitute the regularity of u into the right-hand
side of (3.14), to gain more regularity. Using this induction argument, we obtain u ∈ xνΛm+4,α = xνΛm+4,α,0. This
proves the lemma for k = 0.

Define the function F on R as follows,

F(u) =
{

e4u − 1 − 4u, n = 4,

(1 + u)
n+4
n−4 − 1 − n+4

n−4u, n� 5.

Noticing that for u ∈ xνΛm,α,k′
with k′ < k, using (3.15) and the fact ν � 1, we have that

u2f = xu
(
x−1u

)
f ∈ xνΛm,α,k′+1,

raising the third index by 1. This holds for the term F(u)f , since F is smooth on R and vanishes quadratically at 0.
Similarly,

u(f − Qg) = xu
(
x−1(f − Qg)

) = x
(
x−1u

)
(f − Qg) ∈ xνΛm,α,k′+1.

By this fact, combining with Eq. (3.14), and also with boundedness of G, an induction argument as the case k = 0
proves the lemma. �

Now we assume that f = Qg . Generally, u1 = Π1u ∈ xνΛ4,α does not have better regularity. In (3.14), the terms
on the right-hand side behave better than Π1u, and u behaves like Π1u near the boundary, and u only has the expan-
sion (1.4) with the coefficients which are distributions of negative order, as discussed in Proposition 3.16 in [20]. If
1 � ν < n−1

2 and u1 = Π1u ∈ xνΛm,α,k for all m � k � 0, which as discussed in [18] is equivalent to say u1 has a
smooth expansion (2.9), then by Lemma 3.2, u has a smooth expansion as in (1.5). Also, for u1 small enough, we
already obtain the existence of u in Poincaré–Einstein manifolds. This completes the proof of Theorem 1.3.
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Here we observe that the expansion of u gives us information on the asymptotic behavior of the curvature. For
n = 4, assume that g and g̃ are asymptotically hyperbolic metrics on M , with the transformation g̃ = e2ug, such that

u has the expansion u ∼ x
3
2 +i

√
15
2 u00(y) + x

3
2 −i

√
15
2 u10(y) + o(x

3
2 ). Let (1 + v)2 = e2u. Denote ν0 = 3

2 + i
√

15
2 , and

ν1 = ν̄0. Then,

Rg̃ = (1 + v)−3(−6�g + Rg)(1 + v) = e−3u(−6�g + Rg)e
u

= −6e−2u
[−3x∂xu + (x∂x)

2u
] + Rg − 2Rgu + Rg

(
e−2u − 1 + 2u

)
+ 6x2e−3u

(
�ye

u + 1

2

∑
4�i,j�2

hij ∂xe
u

)
.

Therefore,

Rg̃ − Rg = −6e−2u
[−3x∂xu + (x∂x)

2u
] − 2Rgu + Rg

(
e−2u − 1 + 2u

)
+ 6x2e−3u

(
�ye

u + 1

2

∑
4�i,j�2

hij ∂xhij ∂xe
u

)
= −6

(−3x∂xu + (x∂x)
2u

) + 6
(
1 − e−2u

)(−3x∂xu + (x∂x)
2u

) + 24u

− 2u(12 + Rg) + Rg

(
e−2u − 1 + 2u

) + 6x2e−3u

[
�ye

u + 1

2

∑
4�i,j�2

hij ∂xhij ∂xe
u

]
= −6

(−3ν0x
ν0u00(y) + ν2

0xν0u00(y) − 3ν1x
ν1u10(y) + ν2

1xν1u10(y) + O
(
x

3
2 +1))

+ 24
(
xν0u00(y) + xν1u10(y) + O

(
x

3
2 +1)) + O

(
x

3
2 +1)

= −6
((

ν2
0 − 3ν0 − 4

)
xν0u00(y) + (

ν2
1 − 3ν1 − 4

)
xν1u10(y)

) + O
(
x

3
2 +1)

= 120u + o
(
x

3
2
)
.

For asymptotically hyperbolic manifolds of higher dimension, with similar calculation, we obtain the formula

Rg̃ − Rg = 4(n − 1)(n2 + 2n − 4)

(n − 4)
u + o

(
x

n−1
2

)
.

4. Constant Q-curvature metrics for perturbed conformal structures

Let (M,g0) be a Poincaré–Einstein manifold, with a defining function x and the metric h0 = x2g0 smooth up to
the boundary. Let

Mτ = {
h: metrics on M, so that h ∈ C4,α(M), with ‖h − h0‖C4,α(M) � τ, and |dx|h|∂M = 1

}
,

for τ > 0 and 0 < α < 1. For h ∈ Mτ , let g = x−2h. We want to see when τ is small enough whether we can find a
constant Q-curvature metric g̃ in the conformal class of g, with Qg̃ = Qg0 . We use the same notation u, Lg and so
on as above. Note that the choice of x with |dx|h = 1 in a neighborhood of the boundary in the preceding sections
is only to make the notation simpler. In this section we only assume that |dx|h = 1 on ∂M , and this only introduces
order terms in E(L). Now let us state the main theorem in this section.

Theorem 4.1. Let (M,g0) be a Poincaré–Einstein manifold with defining function x, such that the metric h0 = x2g0 is
smooth up to the boundary. There exists τ0 > 0, so that for 0 < τ � τ0, and all C4,α Riemannian metrics h on M with
‖h − h0‖C4,α(M) � τ , there exists a family of asymptotically hyperbolic metrics in the conformal class of g = x−2h

with constant Q-curvature Qg0 . Furthermore, these metrics are parametrized by elements in Ker(Lg0).

For the proof of this theorem, we need the following lemma.



608 G. Li / Ann. I. H. Poincaré – AN 31 (2014) 591–614
Lemma 4.2. Let (M,g0) be a Poincaré–Einstein manifold with defining function x and the metric h0 = x2g0 smooth
up to the boundary, and let Mτ be as above, with τ > 0. There exists τ0 > 0, so that for 0 < τ � τ0, and any metric
h ∈ Mτ , there always exist a family of asymptotically hyperbolic metrics in the conformal class of g = x−2h with
constant Q-curvature Qg0 , which are parametrized by elements in Ker(Lg0).

Now let us first use the lemma to prove Theorem 4.1. For a metric h close enough to h0 in C4,α(M), let h1 = sh with
s a smooth function on M so that s = |dx|2h in a small neighborhood of ∂M , and ‖s −1‖C4,α(M) � 10‖h−h0‖C4,α(M).
Then |dx|h1 |∂M = 1. Since |dx|h0 = 1, if ‖h − h0‖C4,α(M) is small enough, then s is close enough to 1 and also h1
is in the class Mτ for τ small. By Lemma 4.2, there are infinitely many asymptotically hyperbolic metrics in the
conformal class of x−2h1 (which is also the conformal class of g = x−2h) with constant Q-curvature Qg0 , which are
parametrized by elements in Ker(Lg0). This proves Theorem 4.1.

Proof of Lemma 4.2. It is easy to check that

xαΛ0,α(M,
√

dx dy ) = {
u ∈ Cα(M), u|∂M = 0

}
.

Let Lg and Lg0 be the linear operators (1.3) with respect to g and g0. Recall that Ricg and Rg satisfy (2.2) and (2.3).
Also we know that(|dx|2h − 1

) ∈ xαΛ0,α(M,
√

dx dy ), and
∥∥|dx|2h − |dx|2h0

∥∥
xαΛ0,α � Cτ,

for some constant C depending on the defining function and h0. Also it is easy to see the following inequalities by
direct calculation∥∥(

�2
g − �2

g0

)
u
∥∥

xαΛ0,α � Cτ‖u‖xαΛ4,α ,∥∥(Rg�g − Rg0�g0)u
∥∥

xαΛ0,α � Cτ‖u‖xαΛ4,α ,∥∥(
Ricij (g)∇ i

g∇j
g − Ricij (g0)∇ i

g0
∇j

g0

)
u
∥∥

xαΛ0,α � Cτ‖u‖xαΛ4,α ,∥∥(∇gRg,∇gu) − (∇g0Rg0,∇g0u)
∥∥

xαΛ0,α � Cτ‖u‖xαΛ4,α ,

‖Qg − Qg0‖xαΛ0,α � Cτ,

with C depending on the defining function x and the metric h0. Moreover, from the discussion in Section 2, we know
that Lg0 is surjective since g0 is a smooth Poincaré–Einstein metric. Let

xαΛ4,α(M,
√

dx dy ) = Ker(Lg0) ⊕ V1(g0), (4.1)

be the splitting as in Theorem 1.5. Restricted to V1(g0), Lg0 is an isomorphism and satisfies (3.2). Let L−1
g0

be the
inverse of the restriction map of Lg0 |V1(g0). By the above estimates, there exists τ1 > 0, so that for 0 < τ � τ1,

‖Lg − Lg0‖�
1

8‖L−1
g0 ‖ . (4.2)

We want to solve Eq. (3.1) with f = Qg0 and the starting metric g. We rewrite the equation as follows:

Lg0u = F(u) ≡ (Lg0 − Lg)u + T (u), (4.3)

and it follows that,

u = L−1
g0

◦ (Lg0 − Lg)u + L−1
g0

◦ T (u). (4.4)

For any u1 ∈ Ker(Lg0), let Fu1 be the function on V1 so that Fu1(u) = F(u1 + u) for u ∈ V1, and also Tu1(u) =
T (u1 + u) as before.

As in Section 3, we want to show that for ε > 0 small enough, L−1
g0

◦ Fu1 is a contraction map on Bε(0) ∩ V1 for
u1 ∈ Bε(0) ∩ Ker(Lg0). To do this, in the following we will essentially follow the arguments of Section 3.

For any ε > 0, let u1 ∈ Ker(Lg0) ∩ Bε(0) and u2 ∈ Bε(0) ∩ V1. Then we get (3.4), with f = Qg0 and the constant
C1 depends on the diameter of M with respect to x2g0 instead. Now let
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ε1 = 1

32C1‖L−1
g0 ‖‖Qg0‖Λ0,α

,

and let ε � ε1. Also, by the above estimates, there exists τ2 = τ2(ε) > 0, so that for 0 < τ � τ2,

‖Qg‖Λ0,α � 2‖Qg0‖Λ0,α , and ‖Qg0 − Qg‖xαΛ0,α � min

{
1

4(1 + ε)C1‖L−1
g0 ‖ε,

ε‖Qg0‖Λ0,α

C0

}
, (4.5)

for C0 in (3.3). Combining (3.3), we have∥∥L−1
g0

◦ Tu1(u2)
∥∥ � 1

2
ε. (4.6)

Now let 0 < ε � ε1 and τ � min{τ1, τ2(ε)}. Using (4.2), (4.4) and (4.6), we have that∥∥L−1
g0

◦ Fu1(u2)
∥∥

xαΛ0,α �
3

4
ε. (4.7)

Therefore, L−1 ◦ Fu1 maps Bε ∩ V1 into itself.
For u3, u4 ∈ V1 ∩ Bε(0), using the same argument as in Section 3, we have similar inequality as (3.9),∥∥L−1

g0
◦ Tu1(u3) − L−1

g0
◦ Tu1(u4)

∥∥
xαΛ4,α (4.8)

� C̃0
∥∥L−1

g0

∥∥(
ε‖Qg0‖Λ0,α + ‖Qg0 − Qg‖xαΛ0,α

)‖u3 − u4‖x0,αΛ0,α , (4.9)

with C̃0 depending on the defining function x, the diameter of M with respect to x2g0, α and n. Let

ε2 = 1

8C̃0‖L−1
g0 ‖(1 + ‖Qg0‖Λ0,α )

.

There exists τ3 > 0, so that for 0 < τ � τ3,

‖Qg0 − Qg‖xαΛ0,α � 1

8C̃0‖L−1
g0 ‖ . (4.10)

Therefore we have that∥∥L−1
g0

◦ Tu1(u3) − L−1
g0

◦ Tu1(u4)
∥∥

xαΛ4,α �
1

4
‖u3 − u4‖xαΛ4,α , (4.11)

for ε � ε2. Now let ε = min{ε1, ε2}, and τ = min{τ1, τ2(ε), τ3}. Combing (4.2) and (4.11), we obtain that∥∥L−1
g0

◦ Fu1(u3) − L−1
g0

◦ Fu1(u4)
∥∥

xαΛ4,α (4.12)

�
∥∥L−1

g0

∥∥‖Lg0 − Lg‖‖u3 − u4‖xαΛ4,α + 1

4
‖u3 − u4‖xαΛ4,α (4.13)

�
(

1

8
+ 1

4

)
‖u3 − u4‖xαΛ4,α = 3

8
‖u3 − u4‖xαΛ4,α . (4.14)

Therefore, L−1
g0

◦ Fu1 is a contraction map on Bε ∩ V1. Then there exists a unique fixed point u2. But then

Lg0(u1 + u2) = Lg0(u2) = Fu1(u2) = F(u1 + u2). (4.15)

So u = u1 + u2 is a solution to the constant Q-curvature equation with u1 = Π1(u). We should also note that the
dimension of Ker(L) is infinity. This completes the proof of the lemma. �
5. Critical metrics of regularized determinants

Let M be a fourth-dimensional asymptotically hyperbolic manifold, with complete metric g and its smooth defining
function x, so that h = x2g is a smooth metric on M . Consider the equation

U = Ug ≡ γ1|W |2 + γ2Q − γ3�R = C, (5.1)
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where γ1, γ2, γ3 and C are some constants, W is the Weyl tensor, and Q, R the Q-curvature and the scalar curvature
with respect to g. This equation arises as the Euler–Lagrange equation for the regularized determinants,

FA[w] = log

(
detAg̃

detAg

)
,

of a conformally covariant operator A = Ag , under the conformal change of metrics g̃ = e2wg, see Chapter 6 in [14].
More precisely, under a conformal change of metric,

Ũe4w = U +
(

1

2
γ2 + 6γ3

)
�2w + 6γ3�|∇w|2 − 12γ3∇ i

[(
�w + |∇w|2)∇iw

]
(5.2)

+ γ2Rij∇i∇jw +
(

2γ3 − 1

3
γ2

)
R�w +

(
2γ3 + 1

6
γ2

)
(∇R,∇w), (5.3)

with Ũ = Ug̃ . Define α = γ2
12γ3

. The following are some examples that we are interested in.

Example 1. For the conformal Laplacian, A = L, we have that (γ1, γ2, γ3) = (1,−4,− 2
3 ), and α = 1

2 .

Example 2. For the spin Laplacian, A = D2, we have that (γ1, γ2, γ3) = (7,−88,− 14
3 ), and α = 11

7 .

Example 3. For the Paneitz operator, A = P , we have that (γ1, γ2, γ3) = (− 1
4 ,−14, 8

3 ), and α = −7
16 .

For convenience, dividing both sides of the function by 6γ3, we have the following equation,

Ũ

6γ3
e4w = (1 + α)�2w + �|∇w|2 − 2∇ i

[(
�w + |∇w|2)∇iw

] + 2αRij∇ i∇jw (5.4)

+
(

1

3
− 2

3
α

)
R�w +

(
1

3
+ 1

3
α

)
(∇R,∇w) + U

6γ3
. (5.5)

By the Bochner formula,

�|∇w|2 − 2∇ i (�w∇iw) = 2 Ric(∇w,∇w) + 2
(∣∣∇2w

∣∣2
g

− (�w)2).
Moreover,

∇ i
(|∇w|2∇iw

) = 2∇ i∇jw∇jw∇iw + |∇w|2�w,

therefore, the equation can be written in the following way,

Ũ

6γ3
e4w = (1 + α)�2w + 2 Ric(∇w,∇w) + 2

(∣∣∇2w
∣∣2
g

− (�w)2) (5.6)

− 4∇i∇jw∇jw∇iw − 2|∇w|2�w + 2αRij∇ i∇jw (5.7)

+
(

1

3
− 2

3
α

)
R�w +

(
1

3
+ 1

3
α

)
(∇R,∇w) + U

6γ3
. (5.8)

We should point out that for α = −1 and γ1 = 0, the equation reduces to a second order differential equation, and in
this case the U -curvature corresponds to the σ2-curvature with respect to the Schouten tensor A(g),

1

12γ3
U(g) = γ1

12γ3
|W |2g + γ2

12γ3
Qg − �Rg

12

= −
(−1

4
|Ricg|2 + 1

12
R2

g − 1

12
�gRg

)
− �Rg

12

= −
(−1 |Ricg|2 + 1

R2
g

)
= −2σ2(Ag).
4 12
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In this case, we have the equation

4σ2(g̃) = −2 Ric(∇gw,∇gw) − 2
(∣∣∇2w

∣∣2
g

− (�w)2) + 4∇ijw∇iw∇jw

+ 2|∇w|2�w + 2 Ricij ∇ i∇jw − Rg�w + 4σ2(Ag).

The prescribed constant σ2-curvature problem for asymptotically hyperbolic metrics is discussed in [22]. From now
on, we assume that α �= −1.

The linearization of (5.6) is given by

Lw = (1 + α)�2w + 2αRij∇ i∇jw +
(

1

3
− 2

3
α

)
R�w +

(
1

3
+ 1

3
α

)
(∇R,∇w) − 2U

3γ3
w.

As x → 0,

Rijkl(g) = x−2
[
Rijkl(h) − hik

(
x−1∇h

j ∇lx + 1

2
x−2hjl

)
− hjl

(
−x−1∇h

i ∇kx + 1

2
x−2hik

)
+ hil

(
−x−1∇h

j ∇kx + 1

2
x−2hjk

)
+ hjk

(
−x−1∇h

i ∇lx + 1

2
x−2hil

)]
= x−4

[
−1

2
hikhjl − 1

2
hjlhik + hilhjk + 1

2
hjkhil + O(x)

]
= x−4[−hikhjl + hilhjk + O(x)

]
,

while

A(g) = 1

4 − 2

(
Ric(g) − 1

2(4 − 1)
R(g)g

)
= 1

2

(−3 + 2 + O(x)
)
g =

(
−1

2
+ O(x)

)
g.

Therefore,

Wijkl(g) = Rijkl(g) − gikAjl(g) + gilAjk(g) + gjkAil(g) − gjlAik(g)

= x−4(−hikhjl + hilhjk + O(x)
) + x−4

[
−hik

(
−1

2
hjl + O(x)

)
+ hil

(
−1

2
hjk + O(x)

)
+ hjk

(
−1

2
hil + O(x)

)
− hjl

(
−1

2
hik + O(x)

)]
= x−4O(x).

Moreover, using the fact �hR = O(x) and Q(g) = 3 + O(x), we have that U(g) = 3γ2 + O(x). We then obtain the
main terms of Lw as follows:

Lw = (1 + α)�2
gw +

(
1

3
− 2

3
α

)
Rg�gw + 2α Ricg

ij ∇ i
g∇j

gw + 1

3
(1 + α)(∇gRg,∇gw) − 2U

3γ3
w

= (1 + α)�2
gw +

(
1

3
− 2

3
α

)(−12 + O(x)
)
�gw + 2α

(−3�gw + O(x)p(x, y, x∂x, x∂y)w
)

+ 1

3
(1 + α)

(−(2 × 4 − 2)x2H(h|Sx )∂xw + O
(
x3)|∇yw|) − (

8 × 3α + O(x)
)
w

= (1 + α)�2
gw − 12

(
1

3
− 2

3
α

)
�gw − 6α�gw − 24αw + O(x)p(x, y, x∂x, x∂y)w

= (1 + α)�2
gw − (4 − 2α)�gw − 24αw + O(x)p(x, y, x∂x, x∂y)w

= (
(1 + α)�g + 6α

)
(�g − 4)w + O(x)p(x, y, x∂x, x∂y)w.

Correspondingly,
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N(L)w = (1 + α)
(
(s∂s)

2 + s2�v − 3s∂s

)2
w + (2α − 4)

(
(s∂s)

2 + s2�v − 3s∂s

)
w − 24αw,

L0(t, η̂)w = (1 + α)
(
(t∂t )

2 + t2 − 3t∂t

)2
w + (2α − 4)

(
(t∂t )

2 + t2 − 3t∂t

)
w − 24αw

= (
(1 + α)

(
(t∂t )

2 + t2 − 3t∂t

) + 6α
)((

(t∂t )
2 + t2 − 3t∂t

) − 4
)
w = L3 ◦ L1w,

I (L)w = (1 + α)
(
(s∂s)

2 − 3s∂s

)2
w + (2α − 4)

(
(s∂s)

2 − 3s∂s

)
w − 24αw

= (1 + α)
(
(s∂s)

2 − 3s∂s + 6α
)(

(s∂s)
2 − 3s∂s − 4

)
w.

Therefore, the indicial roots of L are as follows,

(i) For α = 1
2 , specb(L) = {4,−1,1,2}.

(ii) For α = 11
7 , specb(L) = {4,−1, 3

2 + i
√

51
6 , 3

2 − i
√

51
6 }.

(iii) For α = −7
16 , specb(L) = {4,−1, 3

2 +
√

249
6 , 3

2 −
√

249
6 }.

The solution of L1w = 0 is exactly the same as discussed in Section 2. We solve L3w = 0 by transferring it into the
Bessel type equations discussed as above. Let u(t) = tβw̃(t), then

0 = tβ
(

(t∂t )
2w̃ + (2β − 3)t∂t w̃ +

(
β2 − 3β + 6α

1 + α
− t2

)
w̃

)
.

Let 2β − 3 = 0, and then β = 3
2 . Consequently,[

(t∂t )
2 −

(
t2 + 9

4
− 6α

1 + α

)]
w̃ = 0.

Let α̃2 = 9
4 − 6α

1+α
, then the solution is

w = t
3
2
(
C1Iα̃(t) + C2Kα̃(t)

)
. (5.9)

Here α̃2 is 1
4 , −17

12 , 83
12 , corresponding to the above three cases, with Re(α̃) � 0. For the case α̃2 = − 17

12 , since α̃2 is
negative, L3 behaves the same as L2 in Section 2, and it follows that Theorem 1.4 and Theorem 1.5 with n = 4 hold
for the linear operator L, using the same argument as in Section 2.

By the expansion of the series form of the Bessel functions, as in [15, p. 108], we have

t
3
2 Iα̃

(
t |η|) ∼ t

3
2 +α̃|η|α̃/

(
2α̃Γ (1 + α̃)

)
,

and

t
3
2 I−α̃

(
t |η|) ∼ t

3
2 −α̃|η|−α̃/

(
2−α̃Γ (1 − α̃)

)
,

near t = 0. Here we should note that the series expansion applies for all α̃ ∈ C. Now it is easy to see that the linear
combination

x
3
2
(
C1x

α̃ + C2x
−α̃

)
can never vanish to infinite order at t = 0 if either C1 �= 0 or C2 �= 0. Also,

t
3
2 Kα̃

(
t |η|) ∼ t

3
2
π

2

Iα̃(t |η|) − I−α̃(t |η|)
sin(α̃π)

∼ O
((

t |η|) 3
2 −α̃)

,

near t = 0, with α̃ > 0 and α̃ �= 1,2,3, . . . .
Using the integral form as in Section 2, we have

t
3
2 Iα̃

(
t |η|) grows exponentially, t

3
2 Kα̃

(
t |η|) decays exponentially

near t = +∞. Therefore, t
3
2 Iα̃(t |η|) does not belong to t δL2(R+) for any δ > 0, while
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t
3
2 Kα̃

(
t |η|) ∈ t δL2(R+),

only for δ < 3
2 + 1

2 − α̃ = 2 − α̃. That is, L3 is injective in xδL2 for δ > 2 − α̃.
Summarizing the above discussion, let us compute δ̄ and δ for the linearized operator L

δ̄ = inf
{
δ: L1 and L3 are injective in tδL2} = sup

{
−1 + 1

2
,2 − α̃

}
, and dually,

δ = inf

{(
3

2
+ 1

2

)
× 2 −

(
−1 + 1

2

)
,

(
3

2
+ 1

2

)
× 2 − (2 − α̃)

}
= inf

{
9

2
,2 + α̃

}
.

For the case α = 1
2 , δ̄ = 3

2 , and δ = 5
2 (surjectivity). For the case α = − 7

16 , δ̄ = −1 + 1
2 = − 1

2 , and δ = 9
2 . Then we

can use Theorem 1.4 and Theorem 1.5, to obtain the semi-Fredholm property for these linear operators.
For the Poincaré–Einstein manifold (M,g), we have that the U -curvatures defined above are all constant on M .

We want to consider the corresponding problem of finding constant U -curvature metrics in the same conformal class.
Now Lw = ((1 + α)�g + 6α)(�g − 4)w. Define the operator T : xνΛ4,α(M) → xνΛ0,α(M) as follows,

T (w) =
(

Ũ

6γ3
e4w − U

6γ3
− 2

3γ3
Uw

)
− 2 Ric(∇w,∇w)

− 2
(∣∣∇2w

∣∣2
g

− (�w)2) + 4∇j∇iw∇jw∇ iw + 2|∇w|2�w.

We rewrite it in the form

T (w) = Ũ

6γ3

(
e4w − 1 − 4w

) + (Ũ − U)

(
1

6γ3
+ 2

3γ3
w

)
− 2 Ric(∇w,∇w)

− 2
(∣∣∇2w

∣∣2
g

− (�w)2) + 4∇j∇iw∇jw∇ iw + 2|∇w|2�w.

In this formula, comparing with the nonlinear term defined for Q-curvature equation, a few square terms of w and its
derivatives of order up to 2 are involved, which are small terms in the argument of the perturbation problem. Now, the
nonlinear equation becomes

Lgw = T (w).

To solve this, we argue as we did in Section 3 and Section 4. The only difference is the choice of weighted Hölder
spaces. Note that the index of the weight for the Hölder space is 1

2 less than the index of the weight of the corresponding
Sobolev spaces.

5.1. Summary

Perturbation results for the curvatures defined in (5.1) can be proved along the same lines as the Q-curvature. For
instance, assume (M,g) is a Poincaré–Einstein manifold. For the case α = − 7

16 , by maximum principle, ((1+α)�g +
6α) and (�g − 4) are both injective on L2(M,g). Then similar to the discussion for the Q-curvature equation, there
are infinitely many solutions u ∈ xνΛ4,β(M,

√
dx dy ) for 0 < β < 1 to this equation parametrized by the projection

Π1u to the kernel of the linearized operator L, for ν ∈ (0, 3
2 ). Moreover, if Ũ = U , then w has the weak expansion

w(x,y) ∼ w00(y)x4 + o(x4), and also w has a smooth expansion if 1 � ν < 3
2 and Π1w has a smooth expansion. For

the case α = 11
7 , it is the same as the Q-curvature problem, and the only difference is that here we use i

√
51 in the

indicial roots and in the formula of expansion to replace i
√

15. For the case α = 1
2 , ((1 + α)�g + 6α) is essentially

injective on xνΛ4,β(M,
√

dx dy ) for ν > 1 and ν �= 2, while it is essentially surjective on xνΛ4,β(M,
√

dx dy ) for
ν < 2, also ν �= 1 and 0 < β < 1. Since ( 3

2�g + 3) may have finite dimensional kernel, we do not have perturbation
result for ν in this interval. But note that, using the same argument as in Lemma 2.6 in weighted Hölder spaces, for
ν > 2, the operator(

3
� + 3

)
: xνΛ2+m,β → xνΛm,β,
2
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is injective, for 0 < β < 1 and m � 0. Then dually the operator ( 3
2� + 3) is surjective for ν ∈ (0,1). Also we know

that the operator (�g − 4) is surjective in the weighted Hölder space with 0 < ν < 3
2 , then the linearized operator

L : xνΛ4+m,β → xνΛm,β,

with m � 0 is surjective for 0 < ν < 1 and 0 < β < 1. Therefore, for the case α = 1
2 , the existence result as in (i) in

Theorem 1.3 holds for 0 < ν < 1. For the boundary expansion when Ũ = U , since all the indicial roots are integers in
this case, there may be log(x) terms in the expansion. Also, since ν < 1, the smooth expansion result does not hold.
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[5] P.T. Chruściel, E. Delay, J.M. Lee, D.N. Skinner, Boundary regularity of conformally compact Einstein metrics, J. Differential Geom. 69 (1)

(2005) 111–136.
[6] Z. Djadli, E. Hebey, M. Ledoux, Paneitz-type operators and applications, Duke Math. J. 104 (1) (2000) 129–169.
[7] Z. Djadli, A. Malchiodi, Existence of conformal metrics with constant Q-curvature, Ann. of Math. 168 (2008) 813–858.
[8] R. Graham, Volume and area renormalizations for conformally compact Einstein metrics, preprint, arXiv:math/9909042v1, 1999.
[9] R. Graham, J.M. Lee, Einstein metrics with prescribed conformal infinity on the ball, Adv. Math. 87 (2) (1991) 186–225.

[10] R. Graham, M. Zworski, Scattering matrix in conformal geometry, Invent. Math. 152 (1) (2003) 89–118.
[11] H. Grunau, M. Ould Ahmedou, M. Reichel, The Paneitz equation in hyperbolic space, Ann. Inst. H. Poincaré Anal. Non Linéaire 25 (2007)

847–864.
[12] M. Gursky, Weyl functional, de Rham cohomology, and Kahler–Einstein metrics, Ann. of Math. 148 (1998) 315–337.
[13] M. Gursky, The principal eigenvalue of a conformally invariant differential operator, with an application to semilinear elliptic PDE, Comm.

Math. Phys. 207 (1999) 131–143.
[14] A. Juhl, Families of Conformally Covariant Differential Operators, Q-Curvature and Holography, Progr. Math., vol. 275, Birkhäuser-Verlag,

Basel, 2009.
[15] N.N. Lebedev, Special Functions and Their Applications, Dover, New York, 1972.
[16] J.M. Lee, Fredholm operators and Einstein metrics on conformally compact manifolds, Mem. Amer. Math. Soc. 183 (864) (2006) vi+83 pp.
[17] C. Lin, A classification of solutions of a conformally invariant fourth order equation in Rn, Comment. Math. Helv. 73 (1998) 206–231.
[18] R. Mazzeo, Elliptic theory of differential edge operators I, Comm. Partial Differential Equations 16 (10) (1991) 1615–1664.
[19] R. Mazzeo, The Hodge cohomology of a conformally compact metric, J. Differential Geom. 28 (1988) 309–339.
[20] R. Mazzeo, Regularity for the singular Yamabe problem, Indiana Univ. Math. J. 40 (4) (1991) 1277–1299.
[21] R. Mazzeo, Unique continuation at infinity and embedded eigenvalues for asymptotically hyperbolic manifolds, Amer. J. Math. 113 (1991)

25–45.
[22] R. Mazzeo, F. Pacard, Poincaré–Einstein metrics and the Schouten tensor, Pacific J. Math. 212 (1) (2003) 169–185.
[23] C. Ndiaye, Constant Q-curvature metrics in arbitrary dimension, J. Funct. Anal. 251 (2007) 1–58.
[24] C. Ndiaye, Conformal metrics with constant Q-curvature for manifolds with boundary, Comm. Anal. Geom. 16 (5) (2008) 1049–1124.
[25] G.N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, 1922.
[26] J. Wei, D. Ye, Nonradial solutions for a conformally invariant fourth order equation in R4, Calc. Var. Partial Differential Equations 32 (2)

(2008) 373–386.
[27] X. Xu, P. Yang, Positivity of Paneitz operators, Discrete Contin. Dyn. Syst. 7 (2) (2001) 329–342.

http://refhub.elsevier.com/S0294-1449(13)00072-3/bib414346s1
http://refhub.elsevier.com/S0294-1449(13)00072-3/bib414346s1
http://refhub.elsevier.com/S0294-1449(13)00072-3/bib532E4272656E646C65s1
http://refhub.elsevier.com/S0294-1449(13)00072-3/bib4368616E672D59616E67s1
http://refhub.elsevier.com/S0294-1449(13)00072-3/bib4368656E616E645875s1
http://refhub.elsevier.com/S0294-1449(13)00072-3/bib43444C53s1
http://refhub.elsevier.com/S0294-1449(13)00072-3/bib43444C53s1
http://refhub.elsevier.com/S0294-1449(13)00072-3/bib44484Cs1
http://refhub.elsevier.com/S0294-1449(13)00072-3/bib446A61646C69614D616C6368696F6469s1
http://refhub.elsevier.com/S0294-1449(13)00072-3/bib47726168616Ds1
http://refhub.elsevier.com/S0294-1449(13)00072-3/bib47726168616D4C6565s1
http://refhub.elsevier.com/S0294-1449(13)00072-3/bib47726168616D616E645A776F72736B69s1
http://refhub.elsevier.com/S0294-1449(13)00072-3/bib475241s1
http://refhub.elsevier.com/S0294-1449(13)00072-3/bib475241s1
http://refhub.elsevier.com/S0294-1449(13)00072-3/bib4D6174742E477572736B79s1
http://refhub.elsevier.com/S0294-1449(13)00072-3/bib4D2E477572736B79s1
http://refhub.elsevier.com/S0294-1449(13)00072-3/bib4D2E477572736B79s1
http://refhub.elsevier.com/S0294-1449(13)00072-3/bib416E64726561734A75686Cs1
http://refhub.elsevier.com/S0294-1449(13)00072-3/bib416E64726561734A75686Cs1
http://refhub.elsevier.com/S0294-1449(13)00072-3/bib4E2E4E2E4Cs1
http://refhub.elsevier.com/S0294-1449(13)00072-3/bib4A61636B4C6565s1
http://refhub.elsevier.com/S0294-1449(13)00072-3/bib4C696Es1
http://refhub.elsevier.com/S0294-1449(13)00072-3/bib4D617A7A656F31s1
http://refhub.elsevier.com/S0294-1449(13)00072-3/bib4D617A7A656F32s1
http://refhub.elsevier.com/S0294-1449(13)00072-3/bib4D617A7A656F33s1
http://refhub.elsevier.com/S0294-1449(13)00072-3/bib4D617A7A656Fs1
http://refhub.elsevier.com/S0294-1449(13)00072-3/bib4D617A7A656Fs1
http://refhub.elsevier.com/S0294-1449(13)00072-3/bib4D50s1
http://refhub.elsevier.com/S0294-1449(13)00072-3/bib4E6469617931s1
http://refhub.elsevier.com/S0294-1449(13)00072-3/bib4E64696179s1
http://refhub.elsevier.com/S0294-1449(13)00072-3/bib4757s1
http://refhub.elsevier.com/S0294-1449(13)00072-3/bib576569616E645965s1
http://refhub.elsevier.com/S0294-1449(13)00072-3/bib576569616E645965s1
http://refhub.elsevier.com/S0294-1449(13)00072-3/bib58752D59616E67s1

	Constant Q-curvature metrics near the hyperbolic metric
	1 Introduction
	2 Semi-Fredholm properties of the linearized operator
	3 The nonlinear problem
	4 Constant Q-curvature metrics for perturbed conformal structures
	5 Critical metrics of regularized determinants
	5.1 Summary

	Acknowledgements
	References


