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Abstract

We prove statistical limit laws for sequences of Birkhoff sums of the type 
∑n−1

j=0 vn ◦ T
j
n where Tn is a family of nonuniformly 

hyperbolic transformations.
The key ingredient is a new martingale–coboundary decomposition for nonuniformly hyperbolic transformations which is useful 

already in the case when the family Tn is replaced by a fixed transformation T , and which is particularly effective in the case when 
Tn varies with n.

In addition to uniformly expanding/hyperbolic dynamical systems, our results include cases where the family Tn consists of 
intermittent maps, unimodal maps (along the Collet–Eckmann parameters), Viana maps, and externally forced dispersing billiards.

As an application, we prove a homogenisation result for discrete fast–slow systems where the fast dynamics is generated by a 
family of nonuniformly hyperbolic transformations.
© 2017 
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1. Introduction

The emergence of statistical and stochastic phenomena in deterministic dynamical systems is currently a very active 
area. Topics of sustained interest include central limit theorems, invariance principles (weak and almost sure conver-
gence to Brownian motion), moment estimates, and homogenisation (whereby deterministic systems with multiple 
timescales converge to a stochastic differential equation).

One of the standard techniques for investigating such phenomena is the martingale–coboundary decomposition 
method of Gordin [26] which has seen extensive development in both the probability theory literature (for example [31,
35,41,51]) and in the dynamical systems literature (for example [39,54,55]).
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In this paper, we introduce a new version of the Gordin method and show that it has significant advantages over 
previous versions when applied to a wide range of questions in nonuniformly hyperbolic dynamics. Even in the case 
of a single nonuniformly hyperbolic transformation, there are advantages to the new approach which seems more ele-
mentary and more powerful than the existing ones in the literature. In addition, our method is well suited for studying 
sequences of Birkhoff sums of the form Sn = ∑n−1

j=0 vn ◦T
j
n where T j+1

n = T
j
n ◦Tn which arise naturally in averaging 

and homogenisation problems. Here, Tn : �n → �n, n ≥ 0 is a sequence of measure-preserving transformations de-
fined on probability spaces (�n, μn). It is assumed that the transformations Tn are nonuniformly expanding/hyperbolic 
with uniform constants, but no restrictions are imposed on how Tn varies with n.

In the case of a single nonuniformly hyperbolic map T , our method applies directly to T bypassing any induced 
limit theorems for the associated induced uniformly hyperbolic map. Unlike other approaches [35,39,41,54], no ap-
proximation arguments are required for the central limit theorem (CLT) and weak invariance principle (WIP) when the 
inducing time is not L3. For moment estimates, the method does not require special arguments when the inducing time 
is not L2 (cf. [22,30]). In addition, we obtain a simple proof of an unexpected CLT for systems with nonsummable 
decay of correlations due to [28], whereas the previous proof relied on operator renewal theory and the Wiener lemma 
in noncommutative Banach algebras.

Still in the case of a single map T , our method is very well-adapted for obtaining a secondary martingale–
coboundary decomposition for the square of the martingale in the decomposition mentioned above. This enables 
control on sums of squares as is often required in more sophisticated limit laws. To illustrate this, we consider an 
almost sure invariance principle with excellent error rates due to [21], and show that our method of applying their 
results leads to stronger conclusions in certain examples.

The main advantage of the approach, however, is that it allows explicit control on various constants associated with 
each transformation T , making the method especially useful for sums of the form 

∑n−1
j=0 vn ◦ T

j
n . This in turn has 

applications to fast–slow systems of the type considered in [37]. Whereas [37] obtained rates of averaging, we prove 
results here on homogenisation.

The remainder of this paper is organised as follows. In Section 2, we establish the new martingale–coboundary 
decomposition for nonuniformly expanding maps and show how this implies moment estimates and the WIP. In 
Section 3, we obtain a secondary martingale–coboundary decomposition and apply this to the almost sure invariance 
principle. In Section 4, we derive limit laws for families of nonuniformly expanding maps. This is extended to families 
of nonuniformly hyperbolic transformations in Section 5. In Section 6, we state and prove an abstract theorem on 
homogenisation for discrete time fast–slow systems, generalising [27]. In Section 7, we verify the hypotheses in 
Section 6 when the fast dynamics is given by a family of nonuniformly hyperbolic transformations.

Notation. We write →μn to denote weak convergence with respect to a specific family of probability measures μn on 
the left-hand side. So An →μn A means that An is a family of random variables on (�n, μn) and An →w A.

For J ∈R
m×n, we write |J | = (∑m

i=1
∑n

j=1 J 2
ij

)1/2.
We use “big O” and � notation interchangeably, writing an = O(bn) or an � bn if there is a constant C > 0 such 

that an ≤ Cbn for all n ≥ 1. As usual, an = o(bn) means that limn→∞ an/bn = 0.
Recall that v : � → R is a Hölder observable on a metric space (�, d) if ‖v‖η = |v|∞ + |v|η < ∞ where |v|∞ =

sup� |v|, |v|η = supx �=y
|v(x)−v(y)|

d(x,y)η
.

2. Martingale–coboundary decomposition for nonuniformly expanding maps

In this section, we prove our main theoretical result on martingale–coboundary decomposition for nonuniformly ex-
panding maps. The notion of nonuniformly expanding map is recalled in Subsection 2.1. The martingale–coboundary 
decomposition is carried out in Subsection 2.2. Subsection 2.3 shows how certain limit laws follow from this decom-
position.

2.1. Nonuniformly expanding maps

Let (�, d�) be a bounded metric space with finite Borel measure ρ and let T : � → � be a nonsingular transfor-
mation. Let Y ⊂ � be a subset of positive measure, and let α be an at most countable measurable partition of Y with 
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ρ(a) > 0 for all a ∈ α. We suppose that there is an integrable return time function τ : Y → Z
+, constant on each a

with value τ(a) ≥ 1, and constants λ > 1, η ∈ (0, 1], C0, C1 ≥ 1 such that for each a ∈ α,

(1) F = T τ restricts to a (measure-theoretic) bijection from a onto Y .
(2) d�(Fx, Fy) ≥ λd�(x, y) for all x, y ∈ a.
(3) d�(T �x, T �y) ≤ C0d�(Fx, Fy) for all x, y ∈ a, 0 ≤ � < τ(a).
(4) ζ0 = dρ|Y

dρ|Y ◦F satisfies | log ζ0(x) − log ζ0(y)| ≤ C1d�(Fx, Fy)η for all x, y ∈ a.

Such a dynamical system T : � → � is called nonuniformly expanding. We refer to F = T τ : Y → Y as the induced 
map. (It is not required that τ is the first return time to Y .) There is a unique absolutely continuous F -invariant 
probability measure μY on Y and dμY /dρ ∈ L∞.

Define the Young tower [57], 
 = {(y, �) ∈ Y × Z : 0 ≤ � ≤ τ(y) − 1}, and the tower map f : 
 → 
 where 

f (y, �) =
{

(y, � + 1), � ≤ τ(y) − 2

(Fy,0), � = τ(y) − 1
. The projection π
 : 
 → �, π
(y, �) = T �y, defines a semiconjugacy 

from f to T . Define the ergodic f -invariant probability measure μ
 = μY × {counting}/ 
∫
Y

τ dμY on 
. Then 
μ = (π
)∗μ
 is an absolutely continuous ergodic T -invariant probability measure.

Remark 2.1. The above definition of nonuniformly expanding map covers many important classes of examples such 
as those mentioned in this paper. Indeed, it is generally true that nonuniform expansivity plus the existence of good 
statistical properties actually implies the existence of an inducing scheme satisfying the conditions above, see [4,5]. 
See [7] for related results in the invertible setting (Section 5).

In this section, we work with a fixed nonuniformly expanding map T : � → �, induced map F = T τ : Y → Y , 
where τ ∈ Lp(Y ) for some p ≥ 1, and Young tower map f : 
 → 
. The corresponding ergodic invariant probability 
measures are denoted μ, μY and μ
. Throughout, | |p denotes the norm in Lp(μ) for functions on �, in Lp(μY ) for 
functions on Y , and in Lp(μ
) for functions on 
. Also, ‖ ‖η denotes the Hölder norm on � and Y .

Although the map T is fixed, the dependence of various constants on T is important in later sections. To simplify 
the statement of results in this section, we denote by C various constants depending continuously on diam�, C0, C1, 
λ, η, p and |τ |p .

Let L : L1(
) → L1(
) and P : L1(Y ) → L1(Y ) denote the transfer operators corresponding to f : 
 → 
 and 
F : Y → Y . (So 

∫



Lv w dμ
 = ∫



v w ◦ f dμ
 for v ∈ L1(
), w ∈ L∞(
), and 
∫
Y

Pv w dμY = ∫
Y

v w ◦ F dμY

for v ∈ L1(Y ), w ∈ L∞(Y ).)
Let ζ = dμY

dμY ◦F . Given y ∈ Y , let ya denote the unique ya ∈ a with Fya = y. Then we have the pointwise expres-
sions for P and L,

(Pψ)(y) =
∑
a∈α

ζ(ya)ψ(ya), (Lψ)(y, �) =
{∑

a∈α ζ(ya)ψ(ya, τ (ya) − 1), � = 0

ψ(y, � − 1), � ≥ 1
. (2.1)

Proposition 2.2. ζ(x) ≤ CμY (a) and |ζ(x) − ζ(y)| ≤ CμY (a)d�(Fx, Fy)η for all x, y ∈ a, a ∈ α.

Proof. By [38, Propositions 2.3 and 2.5], 
∣∣ log ζ(x) − log ζ(y)

∣∣ � d�(Fx, Fy)η . In particular, ζ(x)/ζ(y) � 1. Hence

μY (a) = ∫
Y

1a dμY = ∫
Y

P 1a dμY ≥ infP 1a = infa ζ  supa ζ,

and so ζ(y) � μY (a).
Next, we note the inequality |s − t | ≤ max{s, t}| log s − log t | which is valid for all s, t > 0. Hence |ζ(x) − ζ(y)| �

supa ζd�(Fx, Fy)η � μY (a)d�(Fx, Fy)η . �
2.2. The primary martingale–coboundary decomposition

Let v : � → R
d be Hölder with 

∫
�

v dμ = 0, and define φ = v ◦ π
 : 
 → R
d . Define the induced observable

φ′ : Y →R
d by φ′(y) = ∑τ(y)−1

φ(y, �).
�=0
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Proposition 2.3. ‖Pφ′‖η ≤ C‖v‖η.

Proof. Let x, y ∈ Y , a ∈ α, with corresponding preimages xa, ya ∈ a. Then

|φ′(xa) − φ′(ya)| ≤
τ(a)−1∑

�=0

∣∣v(T �xa) − v(T �ya)
∣∣ � |v|ητ (a)d�(x, y)η. (2.2)

Also |φ′| ≤ |v|∞ τ . By (2.1) and Proposition 2.2,

|(Pφ′)(x) − (Pφ′)(y)| ≤
∑
a∈α

|ζ(xa) − ζ(ya)| |φ′(xa)| +
∑
a∈α

ζ(ya)|φ′(xa) − φ′(ya)|

� ‖v‖η

∑
a∈α

μY (a)τ (a)d�(x, y)η � ‖v‖ηd�(x, y)η.

Hence |Pφ′|η � ‖v‖η. Similarly, |Pφ′|∞ � |v|∞. �
Define χ ′, m′ : Y →R

d as follows:

χ ′ = ∑∞
k=1 P kφ′, φ′ = m′ + χ ′ ◦ F − χ ′.

By Proposition 2.3 and [38, Corollary 2.4 and Proposition 2.5],

‖χ ′‖η ≤
∞∑

k=0

‖P kPφ′‖η � ‖Pφ′‖η � ‖v‖η,

|m′|p ≤ |φ′|p + 2|χ ′|∞ ≤ |v|∞|τ |p + 2|χ ′|∞ � ‖v‖η.

Define χ, m : 
 → R
d by

χ(y, �) = χ ′(y) +
�−1∑
k=0

φ(y, k), m(y, �) =
{

0, � ≤ τ(y) − 2

m′(y), � = τ(y) − 1
.

Proposition 2.4. |m|p ≤ C‖v‖η and |χ |p−1 ≤ C‖v‖η.

Proof. Compute that 
∫



|m|p dμ
 = |τ |−1
1

∫
Y

∑τ(y)−1
�=0 |m(y, �)|p dμY = |τ |−1

1

∫
Y

|m′(y)|p dμY ≤ |m′|pp � ‖v‖p
η . 

Similarly, |χ(y, �)| ≤ |χ ′|∞ + �|v|∞ � τ(y)‖v‖η yielding the estimate for χ . �
Proposition 2.5. φ = m + χ ◦ f − χ and m ∈ kerL.

Proof. If � ≤ τ(y) − 2, then

χ ◦ f (y, �) − χ(y, �) = χ(y, � + 1) − χ(y, �) = φ(y, �) = φ(y, �) − m(y, �).

For p = (y, τ(y) − 1),

χ ◦ f (p) − χ(p) = χ(Fy,0) − χ(y, τ (y) − 1) = χ ′(Fy) − χ ′(y) − ∑τ(y)−2
k=0 φ(y, k)

= φ′(y) − m′(y) − ∑τ(y)−2
k=0 φ(y, k) = φ(p) − m(p).

Hence φ = m + χ ◦ f − χ .
By definition, Pm′ = Pφ′ − χ ′ + Pχ ′ ≡ 0. Using (2.1), observe that (Lm)(y, �) = m(y, � − 1) = 0 if � ≥ 1, and

(Lm)(y,0) = ∑
a∈α ζ(ya)m(ya, τ (ya) − 1) = ∑

a∈α ζ(ya)m
′(ya) = (Pm′)(y) = 0.

Hence m ∈ kerL. �
Proposition 2.6. max0≤k≤n |χ ◦ f k| = o(n1/p) a.e.
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Proof. Since τ ∈ Lp , it follows from the ergodic theorem that τ ◦ Fn = o(n1/p) a.e., and hence that max0≤k≤n τ ◦
Fk = o(n1/p) a.e.

Next, |χ(y, �)| ≤ |χ ′|∞ + �|v|∞ � τ(y)‖v‖η. For any (y, �) ∈ 
 and n ≥ 0, there exists k ∈ {0, . . . , n} and 
�′ ∈ {0, . . . , τ(F ky) − 1} such that f n(y, �) = (F ky, �′). Hence |χ(f n(y, �))| � ‖v‖η max0≤k≤n τ (F ky) and so 
max0≤k≤n |χ(f k(y, �))| � ‖v‖η max0≤k≤n τ (F ky) = o(n1/p) a.e. �

No uniformity of constants is claimed in Proposition 2.6. It is straightforward to show that 
∣∣max0≤k≤n |χ ◦

f k|∣∣
p−1 ≤ C‖v‖ηn

1/(p−1) where C is a uniform constant. However, for various purposes (such as optimal moment 
estimates in Corollary 2.10) we require the following more delicate estimate.

Proposition 2.7. 
∣∣max1≤k≤n |χ ◦ f k − χ |∣∣

p
≤ C‖v‖ηn

1/p . Moreover,∣∣max1≤k≤n |χ ◦ f k − χ |∣∣
p

≤ C‖v‖η(n
1/q + n1/p|1{τ≥n1/q }τ |p) for all n ≥ 0, q ≥ p.

Proof. Define ta = |1{τ≥a}τ |p , a ≥ 0. Then∑
k≥n kp−1μY (τ ≥ k) = ∑

k≥n

∑
j≥k kp−1μY (τ = j)

= ∑
j≥n μY (τ = j)

∑j
k=n kp−1 ≤ ∑

j≥n jpμY (τ = j) = t
p
n . (2.3)

Let 
n = {(y, �) ∈ 
 : � = n} and An = {(y, �) ∈ 
 : � < τ(y) − n}. Then μ
(
n) = |τ |−1
1 μY (τ ≥ n) and 

μ
(An) = μ
(∪k≥n
k) = |τ |−1
1

∑
k≥n μY (τ ≥ k). By (2.3),

np−1μ
(An) = np−1|τ |−1
1

∑
k≥n μY (τ ≥ k) ≤ ∑

k≥n kp−1μY (τ ≥ k) ≤ t
p
n .

If (y, �) ∈ An, then max1≤k≤n

∣∣(χ ◦ f k − χ)(y, �)
∣∣ ≤ n|v|∞. Therefore∣∣1An max1≤k≤n |χ ◦ f k − χ |∣∣

p
≤ n|v|∞[μ
(An)]1/p

= n1/p|v|∞[np−1μ
(An)]1/p ≤ |v|∞n1/ptn. (2.4)

For all (y, �) ∈ 
, we have |χ(y, �)| � τ(y)‖v‖η and so |χ ◦ f k| � ‖v‖η max0≤j≤k τ ◦ Fj . Let a > 0 and denote 
τa = 1{τ>a}τ . Since τp ≤ ap + τ

p
a ,

‖v‖−p
η max1≤k≤n |χ(f k(y, �)) − χ(y, �)|p ≤ 2p‖v‖−p

η max0≤k≤n |χ(f k(y, �))|p
� max0≤k≤n τp(F ky) ≤ ap + ∑

0≤k≤nτ
p
a (F ky). (2.5)

Suppose that ψ : 
 → R has the form ψ(y, �) = ψ0(y) where ψ0 : Y → R. Then∫

\An

|ψ |dμ
 = |τ |−1
1

∫
Y

min{τ,n}|ψ0|dμY ≤ ∫
Y

min{τ,n}|ψ0|dμY . (2.6)

Taking v = 1 in Proposition 2.3 (resulting in φ = 1, φ′ = τ ) and using that P is a contraction yields the estimate 
|P kτ |∞ ≤ |Pτ |∞ � ‖1‖η = 1 for all k ≥ 1. Then by equations (2.5) and (2.6),

‖v‖−p
η

∫

\An

max1≤k≤n |χ ◦ f k − χ |p dμ
 � ap + ∑
0≤k≤n

∫

\An

τ
p
a (F ky) dμ
(y, �)

≤ ap + ∑
0≤k≤n

∫
Y

min{τ,n} τ
p
a ◦ Fk dμY ≤ ap + n|τp

a |1 + ∑n
k=1 |τ τ

p
a ◦ Fk|1

= ap + n|τp
a |1 + ∑n

k=1 |P kτ τ
p
a |1 � ap + n|τp

a |1 = ap + nt
p
a .

Hence∣∣1
\An max
1≤k≤n

|χ ◦ f k − χ |∣∣
p

� ‖v‖η(a
p + nt

p
a )1/p ≤ ‖v‖η(a + n1/pta).

We take a = n1/q . Combining with (2.4) and using tn ≤ tn1/q completes the proof. �



864 A. Korepanov et al. / Ann. I. H. Poincaré – AN 35 (2018) 859–885
Corollary 2.8. 
∣∣max1≤k≤n |χ ◦ f k − χ |∣∣

p
= o(n1/p). �

The next result justifies calling φ = m + χ ◦ f − χ a martingale–coboundary decomposition. Let U denote the 
Koopman operator corresponding to f , i.e. Uv = v ◦ f .

Proposition 2.9. Fix n ≥ 1. Let M denote the underlying σ -algebra on (
, μ
) and define Gj = f −(n−j)M, 1 ≤
j ≤ n. Then {m ◦ f n−j , Gj ; 1 ≤ j ≤ n} is a sequence of martingale differences. That is, G1 ⊂ · · · ⊂ Gn, m ◦ f n−j is 
Gj -measurable for each j , and E(m ◦ f n−j |Gj−1) = 0 for each j .

Proof. Since f −1M ⊂ M, it follows that Gj ⊂ Gj+1. Measurability of m ◦ f n−j with respect to Gj is clear. It is 
standard, and easy to check, that UL =E( · |f −1M). Hence

E(m ◦ f n−j |Gj−1) = E(m|f −1M) ◦ f n−j = (ULm) ◦ f n−j = 0,

since m ∈ kerL. �
2.3. Some limit theorems

Suppose that v : � → R
d is Hölder and 

∫
�

v dμ = 0. By the results from Subsection 2.2 we have the decomposition 
v ◦ π
 = φ = m + χ ◦ f − χ , where m, χ satisfy the estimates in Propositions 2.4 and 2.7.

Corollary 2.10 (Moments). If p ≤ 2, then 
∣∣maxj≤n | ∑j−1

k=0 v ◦ T k|∣∣
p

≤ C‖v‖ηn
1/p and 

∣∣maxj≤n | ∑j−1
k=0 m ◦ f k|∣∣

p
≤

C‖v‖ηn
1/p for all n ≥ 1.

If p ≥ 2, then 
∣∣maxj≤n | ∑j−1

k=0 v ◦ T k|∣∣2(p−1)
≤ C‖v‖ηn

1/2 for all n ≥ 1.

Proof. Since {m ◦f n−j ; 1 ≤ j ≤ n} is a sequence of martingale differences with respect to the filtration Gj = f n−jM
for each n ≥ 1 (Proposition 2.9), it follows from Burkholder’s inequality [15] and Proposition 2.4 that for p ≤ 2,∣∣maxj≤n |∑j

k=1 m ◦ f n−k|∣∣
p

� n1/p|m|p � n1/p‖v‖η.

Writing 
∑j−1

k=0 m ◦ f k = ∑n
k=1 m ◦ f n−k − ∑n−j

j=1 m ◦ f n−k , we obtain that 
∣∣maxj≤n | ∑j−1

k=0 m ◦ f k|∣∣
p

� n1/p‖v‖η. 

Combining this with Proposition 2.7 yields 
∣∣maxj≤n | ∑j−1

k=0 φ ◦ f k|∣∣
p

� n1/p‖v‖η and the result for p ≤ 2 follows.
When p ≥ 2, we use Rio’s inequality [53] following [44]. See [50, Proposition 7] for a statement of Rio’s

inequality. Let Xj = φ ◦ f n−j . For 1 ≤ j ≤ � ≤ n, by Proposition 2.9, 
∑�

k=j E(Xk|Gj ) = m ◦ f n−j +
E(χ ◦ f n+1−�|Gj ) − χ ◦ f n−j . By Proposition 2.4, max1≤j≤�≤n | ∑�

k=j E(Xk|Gj )|p−1 � ‖v‖η. Hence

max1≤j≤�≤n |Xj

∑�
k=j E(Xk|Gj )|p−1 ≤ |φ|∞ max1≤j≤�≤n | ∑�

k=j E(Xk|Gj )|p−1 � ‖v‖2
η. The result follows by 

Rio’s inequality. �
Remark 2.11. The moment estimates for p ≥ 2 were first obtained in [44] and the results for p < 2 are due to [22,30].

Corollary 2.10 is easily seen to be optimal given the formulation of our results in this paper in terms of the in-
tegrability of the return time p. Often a tail estimate of the form μY (τ > n) = O(n−p) is available, and this gives 
rise to some interesting subtleties; such issues are also resolved in [22,30]. On the other hand, these references do not 
explicitly address the uniformity of the constant C which is required in later sections.

Corollary 2.12 (Covariance). Suppose that p ≥ 2. Then limn→∞ n−1
∫
�
(
∑n−1

j=0 v ◦ T j )(
∑n−1

j=0 v ◦ T j )T dμ =∫



m mT dμ
.

Proof. Write Snv = ∑n−1
j=0 v ◦ T j and similarly define Snφ and Snm. Since m ∈ kerL, 

∫



Snm Snm
T dμ
 =

n 
∫

m mT dμ
.
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By Corollary 2.10, |Snφ|2 � n1/2‖v‖η and |Snm|2 � n1/2‖v‖η. Hence,∣∣∣n−1
∫
�

Snv Snv
T dμ −

∫



mmT dμ


∣∣∣ = n−1
∣∣∣ ∫



Snφ Snφ
T dμ
 −

∫



SnmSnm
T dμ


∣∣∣
≤ n−1|Snφ Snφ

T − SnmSnm
T |1 ≤ n−1(|Snφ|2 + |Snm|2)|Snφ − Snm|2

� n−1/2|χ ◦ f n − χ |2‖v‖η → 0

by Corollary 2.8. �
For n ≥ 1, define the process Wn(t) = n−1/2 ∑[nt]−1

j=0 v ◦ T j on (�, μ).

Corollary 2.13 (WIP). Suppose that p ≥ 2. Then Wn →μ W where W is Brownian motion with covariance � =
limn→∞ n−1

∫
�
(
∑n−1

j=0 v ◦ T j )(
∑n−1

j=0 v ◦ T j )T dμ.

Proof. By Corollary 2.12, � = ∫



m mT dμ
 = ∫



UL(m mT ) dμ
. By the ergodic theorem,

n−1 ∑[nt]−1
j=0 {UL(mmT )} ◦ f j → t� a.e. as n → ∞ for all t > 0. Hence we can apply Theorem 7.11 to the pro-

cess Mn(t) = n−1/2 ∑[nt]−1
j=0 m ◦ f j to deduce that Mn →μ
 W .

Next define �n(t) = n−1/2 ∑[nt]−1
j=0 φ ◦ f j . For any T > 0,∣∣ supt∈[0,T ] |�n(t) − Mn(t)|
∣∣
2 ≤ n−1/2

∣∣max1≤j≤nT |χ ◦ f j − χ |∣∣2 → 0,

by Corollary 2.8. Hence �n →μ
 W . Finally, π
 is a measure-preserving semiconjugacy, so the result follows. �
Remark 2.14. As mentioned in the introduction, previous methods [39,41,54] require special techniques for p ≤ 3. In 
particular, a sequence of martingale approximations is needed, whereas we work with a single martingale–coboundary 
decomposition.

Alternatively, [29,43] obtained a single martingale–coboundary decomposition at the level of the induced map. The 
resulting CLT/WIP can then be lifted back to the original system by [46,49].

Finally, we show how to recover a result of [28] where the WIP holds somewhat unexpectedly. Our method of proof 
is significantly simpler than in [28]. On the other hand, [28] also obtained unexpectedly fast decay of correlations in 
this situation.

Corollary 2.15 (WIP with p = 1). Suppose that τ : Y → Z
+ is the first return to Y and that suppv ⊂ Y . (We continue 

to suppose that v is Hölder with mean zero.) Then the WIP above holds for all p ≥ 1.

Proof. The assumptions on τ and v ensure that φ(y, �) = 0 for � ≥ 1. But then the definition of χ reduces to χ(y, �) ={
χ ′(y), � = 0

χ ′(y) + φ(y,0), � ≥ 1
, and it follows that |χ |∞ � ‖v‖η and hence that |m|∞ � ‖v‖η. The arguments above go 

through (with numerous simplifications). �
Remark 2.16. The results in Subsections 2.2 and 2.3 were proved for observables φ = v ◦ π
 where v : � → R

d

is Hölder and mean zero. It is easy to check that the only properties of φ that were used are (i) 
∫



φ dμ
 = 0, 
(ii) φ ∈ L∞, (iii) ‖Pφ′‖η < ∞. For such observables φ : 
 → R

d , all the results go through with ‖v‖η replaced by 
|φ|∞ + ‖Pφ′‖η.

3. Secondary martingale–coboundary decomposition and the ASIP

In this section, we derive a secondary martingale–coboundary decomposition for nonuniformly expanding maps. 
As an illustration of its utility, we obtain an ASIP for nonuniformly expanding maps with improved error rates over 
those in the literature.
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We continue to suppose that v : � → R
d is Hölder with 

∫
�

v dμ = 0 and that φ = v ◦ π
 : 
 → R
d . In addition, 

we suppose that p ≥ 2.
Let

φ = m + χ ◦ f − χ, φ′ = m′ + χ ′ ◦ f − χ ′

be the decompositions from Subsection 2.2. Define φ̆ : 
 → R
d×d ,

φ̆ = UL(mmT ) − ∫



mmT dμ
,

where U and L are the Koopman and transfer operators for f .
There are a number of limit laws in the literature that require control of Birkhoff sums corresponding to φ̆. As 

examples, we mention the martingale CLT/WIP [13] (see Appendix A) and an ASIP for reverse martingale differ-
ences [21] discussed at the end of this section. A third application [9] is to the estimate of convergence rates in the 
WIP. To control the Birkhoff sums of φ̆, a martingale–coboundary decomposition for φ̆ is of great utility; this is the 
topic of the current section.

Proposition 3.1. |φ̆|∞ ≤ ‖v‖2
η and ‖P φ̆′‖η ≤ C‖v‖2

η.

Proof. Let UF and P denote the Koopman and transfer operators on L1(Y ) for F (so P is as in Subsection 2.1 and 
UF v = v ◦ F ). A calculation shows that

(L(mmT ))(y, �) =
{

(P (m′m′ T ))(y) � = 0

0 � ≥ 1
,

and hence that

(UL(mmT ))(y, �) =
{

0 � ≤ τ(y) − 2

(UF P (m′m′ T ))(y) � = τ(y) − 1
.

By Proposition 2.4, |m|2 � ‖v‖η. Also, ‖χ ′‖η � ‖v‖η so |m′| ≤ |φ′| + 2|χ ′|∞ � τ‖v‖η. It follows that 
|P(m′m′ T )(y)| ≤ ∑

a∈α ζ(ya)|m′m′ T (ya)| � ∑
a∈α μY (a)τ (a)2‖v‖2

η � ‖v‖2
η. Hence

|φ̆|∞ ≤ |UL(mmT )|∞ + | ∫



mmT dμ
| ≤ |P(m′m′ T )|∞ + |m|22 � ‖v‖2
η.

It remains to estimate ‖P φ̆′‖η. Now φ̆′(y) = ∑τ(y)−1
�=0 φ̆(y, �) = (UF P (m′m′ T ))(y) − τ(y) 

∫



m mT dμ
, so

P φ̆′ = P(m′m′ T ) − (P τ)|m|22.
In particular, |P φ̆′|∞ ≤ |P(m′m′ T )|∞ + |Pτ |∞|m|22 � ‖v‖2

η.
Let x, y ∈ Y and a ∈ α. Using equation (2.2),

|m′(xa) − m′(ya)| ≤ |φ′(xa) − φ′(ya)| + |χ ′(x) − χ ′(y)| + |χ ′(xa) − χ ′(ya)|
� τ(a)‖v‖ηd�(x, y)η,

and so∣∣m′(xa)m
′(xa)

T − m′(ya)m
′(ya)

T
∣∣ ≤ (|m′(xa)| + |m′(ya)|

)|m′(xa) − m′(ya)|
� τ(a)2‖v‖2

ηd�(x, y)η.

As in the proof of Proposition 2.3,

|(P (m′m′ T ))(x) − (P (m′m′ T ))(y)|
≤

∑
a∈α

|ζ(xa) − ζ(ya)||(m′m′ T )(xa)| +
∑
a∈α

ζ(ya)|(m′m′ T )(xa) − (m′m′ T )(ya)|

� ‖v‖2
η

∑
a∈α

μY (a)τ (a)2d�(x, y)η � ‖v‖2
ηd�(x, y)η.
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Hence |P(m′m′ T )|η � ‖v‖2
η. A simpler computation shows that |Pτ |η � 1. It follows that |P φ̆′|η � ‖v‖2

η, and so 
‖P φ̆′‖η � ‖v‖2

η. �
Proposition 3.1 together with Remark 2.16 allows us to write φ̆ = m̆+ χ̆ ◦f − χ̆ , as in Subsection 2.2. In particular,

|m̆|p ≤ C‖v‖2
η, max

0≤k≤n
|χ̆ ◦ f k| = o(n1/p) a.e.,∣∣ max

1≤k≤n
|χ̆ ◦ f k − χ̆ |∣∣

p
≤ C‖v‖2

η n1/p for all n ≥ 1. (3.1)

We refer to φ̆ = m̆ + χ̆ ◦ f − χ̆ as a secondary martingale–coboundary decomposition.

Corollary 3.2. 
∣∣max1≤k≤n | ∑k−1

j=0 φ̆ ◦ f j |∣∣
p

≤ C‖v‖2
η n1/2.

Proof. This follows from the argument for Corollary 2.10. �
Remark 3.3. In a previous version of this paper, we obtained a similar decomposition for φ̆1 = m mT −∫



m mT dμ
. 

The main difference is that φ̆′
1 = m′m′ T − τ

∫



m mT dμ
. The estimate for ‖P φ̆′
1‖η is unchanged. However, we 

obtain the inferior estimate |m̆|p/2 � ‖v‖2
η, resulting in a weaker estimate in Corollary 3.2.

Since probabilistic results in the literature are typically stated in terms of the conditional variances ULmmT =
E(mmT |f −1M) (where E and M are as in Proposition 2.9), we have chosen to omit the decomposition for φ̆1 in this 
paper.

Corollary 3.4 (ASIP). Suppose that d = 1. Define σ 2 = limn→∞ n−1
∫
�
(
∑n−1

j=0 v ◦ T j )2 dμ and suppose that σ 2 > 0. 
Then there exists a probability space � supporting a sequence of random variables {Sn} with the same joint distribu-
tions as {∑n−1

j=0 v ◦ f j } and a sequence {Zn} of i.i.d. random variables with distribution N(0, σ 2) such that almost 
everywhere as n → ∞

sup1≤k≤n

∣∣Sk − ∑k
j=1 Zj

∣∣ =

⎧⎪⎨⎪⎩
o
(
(n log logn)1/2

)
p = 2,

o
(
n1/p(logn)1/2

)
p ∈ (2,4),

O
(
n1/4(logn)1/2(log logn)1/4

)
p ≥ 4

Proof. Since m ∈ kerL, it follows as in Proposition 2.9 that E(m ◦ f n|f −(n+1)M) = E(m|f −1M) ◦ f n = 0 for all 
n ≥ 0. That is, {m ◦ f n} is a sequence of reverse martingale differences with respect to the nonincreasing sequence 
{f −nM} of σ -algebras.

We apply results of [21] to deduce the conclusion of the corollary with the sequence {∑n−1
j=0 v ◦ T j } replaced by 

the sequence {∑n−1
j=0 m ◦ f j }. Suppose that this is the case. By Proposition 2.6,

max1≤k≤n

∣∣∑k−1
j=0(φ ◦ f j − m ◦ f j )

∣∣ ≤ max1≤k≤n |χ ◦ f k − χ | = o(n1/p) a.e.

Enlarging the probability space � (cf. [51, p. 23]), there exists a sequence {S′
n} with the same joint distributions as 

{∑n−1
j=0 φ ◦ f j } so that sup1≤k≤n |S′

k − ∑k
j=1 Zj | satisfies the desired estimates. Finally, π
 is a measure-preserving 

semiconjugacy, so the joint distributions of {∑n−1
j=0 v ◦ T j } also coincide with those of {S′

n}.
It remains to prove the ASIP (with the appropriate error rates) for the sequence {∑n−1

j=0 m ◦ f j }. The case p = 2 is 
immediate from [21, Corollary 2.5].

When p > 2, we require almost sure estimates for the sequence An = ∑n−1
j=0(E(m2 ◦ f j |Gj+1) − σ 2). For this we 

use the secondary martingale–coboundary decomposition ULm2 − σ 2 = m̆ + χ̆ ◦ f − χ̆ . Then

An = ∑n−1
j=0((ULm2) ◦ f j − σ 2) = ∑n−1

j=0 m̆ ◦ f j + χ̆ ◦ f n − χ̆ .

Since {m̆ ◦ f n} is a sequence of L2 reverse martingale differences, the result for p = 2 implies an ASIP for 
{∑n−1

j=0 m̆ ◦ f j } with error rate o((n log logn)1/2). This is sufficient to deduce the law of the iterated logarithm ∑n−1
j=0 m̆ ◦ f j = O((n log logn)1/2) a.e. Also χ̆ ◦ f n − χ̆ = o(n1/p) a.e., so An = O((n log logn)1/2) a.e.
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For p ∈ (2, 4), the desired ASIP for m now follows from [21, Corollary 2.7] (taking b(n) ≡ 1). For p ≥ 4, the 
desired ASIP for m follows from [21, Corollary 2.8]. �

For the class of (Markovian) nonuniformly expanding maps as defined in Section 2.1, with Hölder observables v, 
our results improve existing results in the literature. The best previous result that we are aware of is [21, Theorem 3.5]
who obtained the error rate O(n1/4(logn)1/2(log logn)1/4) for p > 6 (this constraint is required to ensure that |Lnv|4
decays faster than n−5/4 for mean zero Hölder v so that condition (3.2) in [21] is satisfied), whereas we require only 
that p ≥ 4. (For one-dimensional dynamical systems and certain classes of (unbounded) observables, [21] obtain 
much better results.)

Example 3.5. Consider the map T : [0, 1] → [0, 1] of intermittent type [52] studied by [40], namely T (x) ={
x(1 + 2γ xγ ) x ∈ [0, 1

2 )

2x − 1 x ∈ [ 1
2 ,1] . It is standard that T is a nonuniformly expanding map with absolutely continuous in-

variant probability measure μ for each γ ∈ (0, 1). The inducing time τ lies in Lp if and only if p < 1/γ . Hence, we 
obtain the error rate O(n1/4(logn)1/2(log logn)1/4) for all mean zero Hölder observables v provided γ < 1

4 ; previ-
ously this was known only for γ < 1

6 .

Example 3.6. We consider a family of planar periodic dispersing billiards introduced by [17]. The scatterers have 
smooth strictly convex boundaries with nonvanishing curvature, except that the curvature vanishes at two points. 
Moreover, it is assumed that there is a periodic orbit that runs between the two flat points, and that the boundary near 
these flat points has the form ±(1 + |x|b) for some b > 2.

By [17], quotienting out stable manifolds leads to a nonuniformly expanding map T with inducing time τ
lying in Lp for all p < (b + 2)/(b − 2). Hence at the level of the quotient map we obtain the error rate 
O(n1/4(logn)1/2(log logn)1/4) for all mean zero Hölder observables v provided b < 10

3 ; previous results require 
b < 14

5 . We conjecture that these results go over to the full (unquotiented map); this is the topic of future work.

Example 3.7. Bunimovich flowers [14] are billiards where the boundary components of the billiard table are either 
dispersing, or focusing arcs of circles, subject to some technical constraints. By [19], the quotient map T (obtained by 
quotienting out stable manifolds) is nonuniformly expanding with inducing time τ ∈ Lp for all p < 3. Hence, at least 
at the level of the quotient map we obtain the error rate o(n1/q) for all q < 3.

4. Limit laws for families of nonuniformly expanding maps

In this section, we show how the martingale–boundary decompositions from the previous sections apply to Birkhoff 
sums of the type 

∑n−1
j=0 vn ◦ T

j
n where the dynamical systems Tn vary with n.

Suppose that Tn : �n → �n, n ≥ 0, is a family of nonuniformly expanding maps as defined in Section 2.1, with 
absolutely continuous ergodic Tn-invariant probability measures μn. Let τn : Yn → Z

+ and Fn : Yn → Yn be the 
corresponding inducing times and induced maps with ergodic Fn-invariant probability measures μYn . We say that 
Tn : �n → �n is a uniform family of order p ≥ 1 if

(i) supn≥0 diam�n < ∞ and the constants C0, C1 ≥ 1, λ > 1, η ∈ (0, 1] can be chosen independent of n ≥ 0.
(ii) The family {τp

n , n ≥ 0} is uniformly integrable. (For this it suffices that supn≥0

∫
Yn

τ
q
n dρ < ∞ for some q > p.)

Let vn : �n → R
d be a family of Hölder observables with 

∫
�n

vn dμn = 0. We suppose that supn≥0 ‖vn‖η < ∞.
Let 
n be the corresponding family of Young towers defined as in Section 2.1, with maps fn : 
n → 
n, invariant 

probability measures μ
n and semiconjugacies π
n : 
n → �n.
Let φn = vn ◦ π
n : 
n → R

d . By the results from Section 2.2, we have the primary martingale–coboundary 
decomposition

vn ◦ π
n = φn = mn + χn ◦ fn − χn, (4.1)

where mn, χn satisfy the estimates in Propositions 2.4 and 2.7 uniformly in n.
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Lemma 4.1. If p ≤ 2, then 
∣∣maxj≤n | ∑j−1

k=0 vn ◦T k
n |∣∣

p
≤ C‖vn‖ηn

1/p and 
∣∣maxj≤n | ∑j−1

k=0 mn ◦f k
n |∣∣

p
≤ C‖vn‖ηn

1/p

for all n ≥ 0.
If p ≥ 2, then 

∣∣maxj≤n | ∑j−1
k=0 vn ◦ T k

n |∣∣2(p−1)
≤ C‖vn‖ηn

1/2 for all n ≥ 0.

Proof. This is immediate from Corollary 2.10 since the constant C there is independent of n. �
From now on, we suppose that p ≥ 2. By Corollary 2.12, we can define the family of covariance matrices

�n = lim
k→∞ k−1

∫
�n

( k−1∑
j=0

vn ◦ T
j
n

)( k−1∑
j=0

vn ◦ T
j
n

)T

dμn =
∫

n

mn mT
n dμ
n. (4.2)

Remark 4.2. It follows from the proof of Corollary 2.12 that the convergence in (4.2) is uniform in n.

By the results from Section 3, we have the secondary martingale coboundary decomposition

UnLn(mnm
T
n ) − �n = φ̆n = m̆n + χ̆n ◦ fn − χ̆n, (4.3)

where Un and Ln are the Koopman and transfer operators for fn.

Proposition 4.3. The family {|mn|2, n ≥ 0} is uniformly integrable.

Proof. We start from the primary decomposition (4.1), with φ′
n = m′

n + χ ′
n ◦ Fn − χ ′

n (as in Section 2.2).

Since |vn|∞ is bounded, it is immediate from condition (ii) and the definition φ′
n = ∑τ−1

j=0 vn ◦π
n ◦f
j
n that {|φ′

n|2}
is uniformly integrable. Next, |χ ′

n|∞ is bounded and hence {|m′
n|2} is uniformly integrable. It follows from the proof 

of Proposition 2.4 that the uniform integrability of {|m′
n|2} is inherited by {|mn|2}. �

Let Wn(t) = n−1/2 ∑[nt]−1
j=0 vn ◦ T

j
n .

Proposition 4.4. Suppose that limn→∞ �n = � where � ∈ R
d×d . Then Wn →μn W in D([0, ∞), Rd) where W is 

Brownian motion with covariance �.

Proof. Define processes �n(t) = n−1/2 ∑[nt]−1
j=0 φn ◦ f

j
n , Mn(t) = n−1/2 ∑[nt]−1

j=0 mn ◦ f
j
n .

By Proposition 4.3, the family {|mn|2, n ≥ 0} is uniformly integrable. Next,

n−1
[nt]−1∑
j=0

{UnLn(mnm
T
n )} ◦ f

j
n − t� = n−1

[nt]−1∑
j=0

φ̆n ◦ f
j
n + n−1[nt]�n − t� →μ
n

0,

by Corollary 3.2. By Theorem 7.11, Mn →μ
n
W .

Let T > 0. Since Tn is a uniform family, 
∣∣max1≤k≤nT |χn ◦ f k

n − χn|
∣∣
2 = o(n1/2) by Proposition 2.7. Also,

supt∈[0,T ] |�n(t) − Mn(t)| ≤ n−1/2 max1≤k≤nT |∑k−1
j=0(φn ◦ f

j
n − mn ◦ f

j
n )|

≤ n−1/2 max1≤k≤nT |χn ◦ f k
n − χn|.

Hence limn→∞
∣∣ supt∈[0,T ] |�n(t) −Mn(t)|

∣∣
2 = 0 for each T > 0. It follows that �n →μ
n

W . Also, π
n is a measure-
preserving semiconjugacy for each n, so Wn →μn W . �

Define W ⊂ D([0, ∞), Rd) to be the set of weak limits of {Wn, n ≥ 0} and let S ⊂R
d×d be the set of limit points 

of {�n, n ≥ 0}. By Proposition 4.3, {�n, n ≥ 0} is bounded and hence S �= ∅.

Theorem 4.5. (i) {Wn, n ≥ 0} is tight, (ii) W ∈ W if and only if W is a Brownian motion with covariance matrix in S .
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Proof. Given a covariance matrix � ∈ R
d×d , let W(�) denote Brownian motion with covariance �.

Since {�n} is bounded, for any subsequence Wnk
we can pass to a subsubsequence along which �nk

→ � for some 
� ∈ S . By Proposition 4.4, we then have that Wnk

→μnk
W(�). This shows that {Wn} is tight and that all weak limits 

have the form W(�), � ∈ S .
Conversely, if limk→∞ �nk

= � for some subsequence nk , then Wnk
→μn W(�) by Proposition 4.4. �

Corollary 4.6. Suppose in Theorem 4.5 that Wnk
→μnk

W as k → ∞. Then limk→∞ n
−q/2
k

∫
�nk

| ∑nk−1
j=0 vnk

◦
T

j
nk

|q dμnk
= E|W(1)|q for all q < 2(p − 1).

Proof. This follows immediately from Lemma 4.1 (cf. [47, Lemma 2.1(e)]). �
Remark 4.7. It is not difficult to formulate conditions under which the weak limits of {Wn} are nondegenerate. One 
possibility is to suppose that there is a limiting nonuniformly expanding map T∞ with corresponding observable v∞
and covariance matrix �∞. Typically det�∞ > 0. Under certain conditions (see for example Section 7), it can be 
shown that Wn →μn W where W is Brownian motion with covariance �∞.

An alternative mechanism for nondegenerate limits is the following. Suppose that d = 1. Recall that |χ ′
n|2 ≤

|χ ′
n|∞ ≤ C‖vn‖η ≤ C‖vn‖η|τn|1, where C > 0 is a constant depending only on the induced maps Fn. Hence

σn = |mn|2 = |m′
n|2/|τn|1 ≥ (|φ′

n|2 − 2|χ ′
n|2)/|τn|1 ≥ |φ′

n|2/|τn|1 − C‖vn‖η.

If we arrange that |τn|2 ≥ 2C|τn|1 for all n, then it follows that

σn ≥ C(2|φ′
n|2/|τn|2 − ‖vn‖η).

Suppose for simplicity that Fn = T
τn
n is the first return map for each n. Let kn be largest such that 

∑kn

j=1 jμYn(τn =
j) >

∑∞
j=kn+1 jμYn(τn = j). There is a unique observable vn : �n → R taking values ±1 such that φ′

n(y) = τn(y)

if τn(y) ≤ kn and φ′
n(y) = −τn(y) if τn(y) > kn. By construction 

∫
Yn

φ′
n dμYn ≈ 0 and |φ′

n|2 = |τn|2. A slight modi-
fication produces 

∫
Yn

φ′
n dμYn = 0 and |φ′

n|2 ≈ |τn|2 so that σn � C. Hence this is a robust mechanism for producing 
nondegenerate limits in Theorem 4.5.

We end this section with some examples of nonuniformly expanding maps where uniformity of the constants can 
be verified, and hence to which the results in this section apply.

Example 4.8. Fix a sequence λn ∈ Z such that λn ≥ 2 for all n ≥ 0. Define the family of uniformly expanding maps 
Tn : [0, 1] → [0, 1] given by Tnx = λnx mod 1. Clearly Tn is a uniform family of order p for any p, with Yn = [0, 1], 
τn = 1 and μn = Lebesgue.

This example emphasises that tightness in Theorem 4.5 is unrelated to any accumulation properties of the dynam-
ical systems Tn and is governed purely by accumulation of the bounded set of covariance matrices.

Example 4.9. Fix a sequence γn ∈ (0, 1) and let Tn : [0, 1] → [0, 1] be the corresponding intermittent map defined in 
Example 3.5. As verified in [37, Example 5.1], Tn is a uniform family of order p for any p < supγ −1

n .

Example 4.10. Consider the family of quadratic maps Tn : [−1, 1] → [−1, 1] given by Tn(x) = 1 − anx
2, an ∈ [0, 2]. 

We assume that there exists b, c > 0 such that the Collet–Eckmann condition [20] |(T k
n )′(1)| ≥ cebn holds for all k, 

n ≥ 0. (By [32,12], the set of parameters an for which this condition holds has positive Lebesgue measure for b, c
sufficiently small.) As verified in [37, Example 5.2] (based on arguments of [25]), Tn is a uniform family of order p
for any p. This example generalises to multimodal maps (see [37, Example 5.3]).

Example 4.11. Viana [55] introduced a C3 open class of multi-dimensional nonuniformly expanding maps
Tε : M → M . For definiteness, we restrict attention to the case M = S1 ×R. Fix λn ∈ Z, λn ≥ 16, and let Sn : M → M

be the map Sn(θ, y) = (λnθ mod 1, a0 + a sin 2πθ − y2). Here a0 is chosen so that 0 is a preperiodic point for the 
quadratic map y �→ a0 − y2 and a is fixed sufficiently small. Let Tn be a family of C3 maps each of which is suffi-
ciently close to Sn. It follows from [1,8] that there is an interval I ⊂ (−2, 2) such that, for each n ≥ 0, there is a unique 
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absolutely continuous Tn-invariant ergodic probability measure μn supported in the interior of S1 × I . Moreover the 
invariant set �ε = suppμε attracts almost every initial condition in S1 × I .

As verified in [37, Example 5.4] (based on arguments of [2,5]), Tn : �n → �n is a uniform family of nonuniformly 
expanding maps of order p for any p.

5. Limit laws for families of nonuniformly hyperbolic transformations

In this section, we show the results from Section 4 pass over to the invertible setting. The notion of nonuniformly 
hyperbolic transformation is recalled in Subsection 5.1. In Subsection 5.2, we recall how to quotient to a nonuniformly 
expanding map. In Subsection 5.3, we prove limit laws for families of nonuniformly hyperbolic transformations.

5.1. Nonuniformly hyperbolic transformations

Let T : � → � be a diffeomorphism (possibly with singularities) defined on a Riemannian manifold (�, d�). 
We assume that T is nonuniformly hyperbolic in the sense of Young [56,57]. The precise definitions are somewhat 
technical; here we are content to focus on the parts necessary for understanding this paper, referring to [56,57] for 
further details.

As part of this setup, there is a measurable (with respect to the Riemannian measure) set Y ⊂ M , a measurable 
partition {Yj } of Y , and an inducing time τ : Y → Z

+ constant on partition elements such that T τ(y)(y) ∈ Y for all 
y ∈ Y . We refer to F = T τ : Y → Y as the induced map. The separation time s(y, y′) of points y, y′ ∈ Y is the least 
integer n ≥ 0 such that Fny, Fny′ lie in distinct partition elements of Y .

In addition, there exist integers ds, du ≥ 1 with ds + du = dimM , a measurable partition Ws of Y consisting 
of embedded ds -dimensional disks (called “stable leaves”) and an embedded du-dimensional disk Wu (called an 
“unstable leaf”) such that Wu intersects each element of Ws in a single point. If y ∈ Y , the leaf in Ws that contains y
is labelled Ws

y . Let ρ denote the measure on Wu induced by the Riemannian measure.
We assume that there are constants D0, D1 ≥ 1, γ ∈ (0, 1), p ≥ 1, such that

(A1) Each Yj is a union of elements of Ws (in particular, τ is constant on stable leaves), and F(Ws
y ) ⊂ Ws

Fy for all 
y ∈ Y .

(A2) (i) d�(T jy, T jy′) ≤ D0γ
j for all y ∈ Y , y ′ ∈ Ws

y ,

(ii) d�(T jy, T jy′) ≤ D0γ
s(y,y′)−ψj (y) for all y, y′ ∈ Wu,

for all j ≥ 0, where ψj(y) = #{k = 0, . . . , j − 1 : T ky ∈ Y } is the number of visits of y to Y by time j .
(A3)

∫
Y

τp dρ < ∞.

Let Ȳ = Y/ ∼ where y ∼ y′ if y′ ∈ Ws
y , and let π̄ : Y → Ȳ denote the natural projection. By (A1), we obtain 

well-defined functions τ : Ȳ → Z
+ and F̄ : Ȳ → Ȳ . Let ρ̄ = π̄∗ρ. Let α be the countable partition of Ȳ consisting of 

the partition elements Yj quotiented by Ws . We assume:

(A4) F̄ restricts to a bijection from a onto Ȳ for all a ∈ α and ζ0 = dρ̄

dρ̄◦F̄
satisfies | log ζ0(y) − log ζ0(y

′)| ≤ D1γ
s(y,y′)

for all y, y′ ∈ a.

There is a unique absolutely continuous F̄ -invariant probability measure μ̄Y on Ȳ and dμ̄Y /dρ̄ ∈ L∞. By for in-
stance [10, Section 6.1], there is a unique ergodic F -invariant probability measure μY on Y such that π̄∗μY = μ̄Y .

As in Section 4, we define a tower map f : 
 → 
 with semiconjugacy π
 : 
 → � from f to T , and ergodic 
f -invariant probability measure μ
 = μY × counting/ 

∫
Y

τ dμY . Then μ = (π
)∗μ
 is an ergodic T -invariant prob-
ability measure on M .

Remark 5.1. For simplicity, we restrict to the case where T contracts exponentially along stable manifolds. It is also 
possible to consider polynomial (but summable) contraction as in [3], as well as the general situation [48] where 
contraction and expansion is assumed only on returns to Y . (The arguments to treat this general situation are corre-
spondingly longer.)
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Next, we introduce the quotient tower map f̄ : 
̄ → 
̄ defined in the same way as f : 
 → 
 but starting from 
F̄ : Ȳ → Ȳ instead of F : Y → Y . The projection π̄ : Y → Ȳ extends to a projection π̄ : 
 → 
̄, π̄ (y, �) = (π̄y, �), 
and we have the ergodic f̄ -invariant probability measure μ̄
 = π̄∗μ
 = μ̄Y × counting/ 

∫
Ȳ

τ dμ̄Y .
The separation time s on Y projects to a separation time on Ȳ . For θ ∈ (0, 1) we define the symbolic metric dθ

on Ȳ , setting dθ (y, y′) = θs(y,y′). This extends to a metric on 
̄, where dθ ((y, �), (y′, �′)) =
{

dθ (y, y′) � = �′

1 � �= �′ .

Proposition 5.2. Choose θ ∈ [γ, 1). Then f̄ : 
̄ → 
̄ is a nonuniformly expanding map on the metric space (
̄, dθ )

with induced map F̄ : Ȳ → Ȳ , partition α, and constants λ > 1, η ∈ (0, 1], C0, C1 ≥ 1 given by λ = θ−1, η = C0 = 1, 
C1 = D1.

Proof. By (A4), F̄ maps partition elements bijectively onto Ȳ . By definition of dθ , if y, y′ ∈ a, a ∈ α, then 
dθ (F̄ y, F̄ y′) = θ−1dθ (y, y′) and dθ (f̄

�y, f̄ �y′) = dθ (y, y′) ≤ dθ (F̄ y, F̄ y′) for all 0 ≤ � < τ(a). Finally, by (A4), 
| log ζ0(x) − log ζ0(y)| ≤ D1γ

s(y,y′) ≤ D1dθ (F̄ y, F̄ y′). �
5.2. Quotienting step

In this subsection, we recall a standard procedure for reducing limit laws for nonuniformly hyperbolic transforma-
tions to the noninvertible (nonuniformly expanding) setting. We work throughout with Hölder observables v ∈ Cη, 
where η ∈ (0, 1] is fixed.

First, define a projection Y → Wu by setting ŷ = Ws
y ∩ Wu for y ∈ Y . This extends to a projection on 
 by setting 

p̂ = (ŷ, �) for p = (y, �) ∈ 
.
Given v : � →R

d Hölder, define ψ : 
 → R
d ,

ψ(p) = ∑∞
j=0{v ◦ π
(f jp) − v ◦ π
(f j p̂)}.

Proposition 5.3. Let θ ∈ [γ η, 1). Then |ψ |∞ ≤ D
η
0 (1 − θ)−1|v|η, for all Hölder v : � →R

d .

Proof. Let p = (y, �) ∈ 
. Then π
(f jp) = T j+�y ∈ T j+�Ws
y and π
(f j p̂) = T j+�ŷ ∈ T j+�Ws

ŷ
= T j+�Ws

y . 

In particular, d�(π
(f jp), π
(f j p̂)) ≤ D0γ
j+� ≤ D0γ

j by (A2)(i). Hence |ψ(p)| ≤ |v|η ∑∞
j=0 d�(π
(f jp),

π
(f j p̂))η ≤ D
η

0 (1 − θ)−1|v|η . �
A calculation shows that v ◦ π
 = v̂ + ψ − ψ ◦ f , where v̂ ∈ L∞(
) is given by

v̂(p) = v ◦ π
(p̂) + ∑∞
j=0{v ◦ π
(f j+1p̂) − v ◦ π
(f j f̂p)}.

Note that v̂ is constant along fibres π̄−1(y), y ∈ Ȳ . Hence we can write v̂ = v̄ ◦ π̄ where v̄ : 
̄ → R
d . The observables 

v : � → R
d and v̄ : 
̄ →R

d are related by the equation

v ◦ π
 = v̄ ◦ π̄ + ψ − ψ ◦ f. (5.1)

Let ‖v̄‖θ = |v̄|∞ + |v̄|θ where |v̄|θ denotes the dθ -Lipschitz constant of v̄.

Proposition 5.4. Let θ ∈ [γ η/2, 1). Then ‖v̄‖θ ≤ 6D
η
0θ−2(1 − θ2)−1‖v‖η, for all Hölder v : � →R

d .

Proof. By Proposition 5.3, |v̄|∞ ≤ 2D
η
0 (1 − θ)−1‖v‖η.

Next, let p = (y, �), q = (z, �) ∈ 
. Write |v̂(p) − v̂(q)| ≤ A1 + A2 + A3 + A4 where

A1 =
∞∑

j=N

|v ◦ π
(f j+1p̂) − v ◦ π
(f j f̂p)|, A2 =
∞∑

j=N

|v ◦ π
(f j+1q̂) − v ◦ π
(f j f̂ q)|,

A3 =
N∑

j=0

|v ◦ π
(f j p̂) − v ◦ π
(f j q̂)|, A4 =
N−1∑
j=0

|v ◦ π
(f j f̂p) − v ◦ π
(f j f̂ q)|.
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We take N = [ 1
2 s(y, z)] and show that Aj ≤ D

η
0θ−2(1 − θ2)−1|v|η θs(y,z) for j = 1, . . . , 4. Hence |v̂|θ ≤

4D
η
0θ−2(1 − θ2)−1|v|ηdθ (p, q) and the proof is complete.
First, we estimate A1. If � < τ(y) − 2 then f p̂ = f̂p = (ŷ, � + 1) and A1 = 0. Otherwise f p̂ = (F ŷ, 0) and 

f̂p = (F̂y, 0). In particular, π
(f p̂), π
(f̂p) ∈ Ws
Fy , so it follows from (A2)(i) that

d�(π
(f j+1p̂),π
(f j f̂p)) = d�(T j (π
(f p̂)), T j (π
(f̂p))) ≤ D0γ
j .

Hence A1 ≤ |v|ηDη
0

∑∞
j=N θ2j ≤ D

η
0 (1 − θ2)−1θ2N |v|η ≤ D

η
0θ−2(1 − θ2)−1|v|η θs(y,z). Similarly A2 ≤ D

η
0θ−2(1 −

θ2)−1|v|η θs(y,z).
Next, we estimate A3. For each j , we have π
(f j p̂) = T j+�ŷ = T LFJ ŷ where 0 ≤ J ≤ j and 0 ≤ L < τ(FJ ŷ). 

Note that Fjy and Fjz lie in the same partition element of Y for all j ≤ N , so π
(f j q̂) = T j+�ẑ = T LFJ ẑ. By 
(A2)(ii),

d�(π
(f j p̂),π
(f j q̂)) = d�(T LFJ ŷ, T LFJ ẑ) ≤ D0γ
s(y,z)−J ≤ D0γ

s(y,z)−j .

Hence A3 ≤ D
η
0 (1 − θ2)−1|v|ηθ2(s(y,z)−N) ≤ D

η
0 (1 − θ2)−1|v|ηθs(y,z). Similarly, A4 ≤ D

η
0 (1 − θ2)−1|v|ηθs(y,z). �

Corollary 5.5. Suppose that v : � → R
d is Hölder with 

∫
�

v dμ = 0. Let v̄ : 
̄ → R
d be the corresponding 

dθ -Lipschitz observable. Then

(a)
∣∣maxj≤n | ∑j−1

k=0 v ◦ T k|∣∣
Lp∗

(μ)
≤ C‖v‖η n

max{ 1
2 , 1

p
} for all n ≥ 1, where C ≥ 1 is a constant that depends contin-

uously on D0, D1, γ , and p∗ = max{p, 2(p − 1)}.
(b) Suppose that p ≥ 2. Then the limits

� = limn→∞ n−1
∫
�

Snv Snv
T dμ = limn→∞ n−1

∫

̄

Snv̄ Snv̄
T dμ̄
,

exist and coincide, where Snv = ∑n−1
j=0 v ◦ T j , Snv̄ = ∑n−1

j=0 v̄ ◦ f̄ j .

Proof. Define Sn(v ◦ π
) and Sn(v̄ ◦ π̄) similarly.
By Propositions 5.2 and 5.4, v̄ is a mean zero Lipschitz observable for the nonuniformly expanding map

f̄ : 
̄ → 
̄ on the metric space (
̄, dθ ). Moreover, ‖v̄‖θ � ‖v‖η. Hence, by Corollary 2.10, 
∣∣maxj≤n |Sj v̄|∣∣

Lp∗
(μ̄
)

�
‖v‖η n

max{ 1
2 , 1

p
}.

By (5.1) and Proposition 5.3, and using that π
 : 
 → � and π̄ : 
 → 
̄ are measure-preserving,∣∣max
j≤n

|Sjv|∣∣
Lp∗

(μ)
= ∣∣max

j≤n
|Sj (v ◦ π
)|∣∣

Lp∗
(μ
)

≤ ∣∣max
j≤n

|Sj (v̄ ◦ π̄ )|∣∣
Lp∗

(μ
)
+ 2|ψ |Lp∗

(μ
)

= ∣∣max
j≤n

|Sj v̄|∣∣
Lp∗

(μ̄
)
+ 2|ψ |Lp∗

(μ
) � ‖v‖η n
max{ 1

2 , 1
p

}
,

proving part (a).
Next, by Corollary 2.12, n−1

∫

̄

Snv̄ Snv̄
T dμ̄
 converges. Also,∣∣ ∫

�
Snv Snv

T dμ − ∫

̄

Snv̄ Snv̄
T dμ̄


∣∣
= ∣∣ ∫




(
Sn(v ◦ π
)Sn(v ◦ π
)T − Sn(v̄ ◦ π̄ ) Sn(v̄ ◦ π̄)T

)
dμ


∣∣
≤ |Sn(v ◦ π
) − Sn(v̄ ◦ π̄)|L2(μ
)

(|Sn(v ◦ π
)|L2(μ
) + |Sn(v̄ ◦ π̄)|L2(μ
)

)
≤ 2|ψ |L2(μ
)

(|Sn(v ◦ π
)|L2(μ
) + |Sn(v̄ ◦ π̄ )|L2(μ
)

) � |v|η‖v‖ηn
1/2,

by Proposition 5.3 and the estimates in the proof of part (a). Part (b) follows. �
5.3. Families of nonuniformly hyperbolic transformations

Suppose that Tn : �n → �n, n ≥ 0, is a family of nonuniformly hyperbolic transformations with induced maps 
Fn = T

τn
n : Yn → Yn. Let p ≥ 1. We say that this is a uniform family of order p if
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(i) The constants D0, D1 ≥ 1, γ ∈ (0, 1) can be chosen independent of n ≥ 0.
(ii) The family {τp

n , n ≥ 0} is uniformly integrable.

Let vn : � →R
d be a family of Hölder observables with 

∫
�n

vn dμn = 0. We suppose that supn≥0 ‖vn‖η < ∞.

Proposition 5.6. 
∣∣maxj≤n | ∑j−1

k=0 vn ◦ T k
n |∣∣

Lp∗
(μn)

≤ C‖vn‖η n
max{ 1

2 , 1
p

} for all n ≥ 0, where p∗ = max{p, 2(p − 1)}.

Proof. This is immediate from Corollary 5.5(a). �
Proceeding as in Subsection 5.1, we construct metric spaces (
̄n, dθ,n) and families ψn : 
n → R

d , v̄n : 
̄n →R
d

where |ψn|∞ � |vn|η , ‖v̄n‖θ,n � ‖vn‖η such that

vn ◦ π
n = v̄n ◦ π̄n + ψn − ψn ◦ fn.

By Corollary 5.5(b), for p ≥ 2 we can define the family of covariance matrices

�n = limk→∞ k−1
∫
�n

(∑k−1
j=0 vn ◦ T

j
n

)(∑k−1
j=0 vn ◦ T

j
n

)T
dμn,

= limk→∞ k−1
∫

̄n

(∑k−1
j=0 v̄n ◦ f̄

j
n

)(∑k−1
j=0 v̄n ◦ f̄

j
n

)T
dμ̄
n.

Let Wn(t) = n−1/2 ∑[nt]−1
j=0 vn ◦ T

j
n . Define W ⊂ D([0, ∞), Rd) to be the set of weak limits of {Wn, n ≥ 0} and 

let S ⊂R
d×d be the set of limit points of {�n, n ≥ 0}.

Theorem 5.7. Suppose that p ≥ 2. Then (i) {Wn, n ≥ 0} is tight, (ii) W ∈ W if and only if W is a Brownian motion 
with covariance matrix in S .

In particular, if limn→∞ �n = � ∈R
d×d , then Wn →w W where W is Brownian motion with covariance �.

Proof. Define the process Wn(t) = n−1/2 ∑[nt]−1
j=0 v̄n ◦ f̄

j
n on (
̄n, μ̄
n).

By Proposition 5.2, f̄n : 
̄n → 
̄n is a uniform family of nonuniformly expanding maps. By Proposition 5.4, v̄n is 
a family of mean zero Lipschitz observables satisfying ‖v̄n‖θ,n � ‖vn‖η. Hence Theorem 4.5 characterises the weak 
limits of {Wn, n ≥ 0}.

It remains to show that the weak limits of {Wn, n ≥ 0} coincide with those of {Wn, n ≥ 0}. Since π
n and π̄n are 
measure-preserving semiconjugacies, the weak limits of {Wn} coincide with those of {Wn ◦ π
n}, and the weak limits 
of {Wn} coincide with those of {Wn ◦ π̄n}. Also

sup[0,T ] |Wn ◦ π
n − Wn ◦ π̄n|∞ ≤ 2n−1/2|ψn|∞ � n−1/2|vn|η,
so Wn ◦ π
n − Wn ◦ π̄n →μ
n

0 completing the proof. �
Example 5.8. The classical solenoid construction of Smale & Williams can be used as in [6] to construct nonuniformly 
hyperbolic families from each of the nonuniformly expanding families in the examples in Section 4. It is immediate 
that our results apply to such families.

Example 5.9. Collision maps for dispersing billiards under small external forces are nonuniformly hyperbolic with 
uniform constants for all p by [18]. (See the proof of [18, Proposition 6.4] where uniformity of constants is mentioned 
explicitly.) Hence the results in this section apply to such examples.

6. An abstract homogenisation theorem

In [27], a homogenisation theorem was proved for fast–slow systems of the form

xε(n + 1) = xε(n) + ε2a(xε(n), y(n)) + εb(xε(n)) v(y(n)),

where the fast dynamics y(n + 1) = Ty(n) is generated by an ergodic transformation T : � → � and the slow 
variables x(n) lie in Rd . The main assumptions are that either d = 1 or b ≡ Id (or more generally that b is exact, 
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see below), and that v : � → R
d is mean zero and satisfies the WIP for T . The corresponding result for flows was 

obtained in [45].
In this section, we show how to generalise to the case where the single map T generating the fast dynamics is 

replaced by a family of maps. As in [27,45], the setting is completely abstract, with no hyperbolicity assumptions on 
the fast dynamics.

Let Tε : M → M , ε ∈ [0, ε0), be a family of maps defined on a topological space M , with Tε-invariant Borel 
probability measures με . Consider the family of fast–slow equations

xε(n + 1) = xε(n) + ε2aε(xε(n), yε(n)) + εbε(xε(n)) vε(yε(n)), xε(0) = ξε, (6.1)

where the fast dynamics is given by yε(n + 1) = Tε yε(n), and ξε ∈ R
d is the initial condition for the slow dynamics. 

The maps vε : M → R
d , aε : Rd × M → R

d and bε : Rd → R
d×d are defined and continuous for each ε ∈ [0, ε0). 

Moreover, 
∫
M

vε dμε = 0.

Regularity assumptions. We suppose that there is a constant L ≥ 1 such that

|vε |∞ ≤ L, |aε |∞ ≤ L, Lipaε = sup
x �=x′

sup
y

|aε(x, y) − aε(x
′, y)|

|x − x′| ≤ L,

for all ε ∈ [0, ε0). Also, we assume that

lim
ε→0

sup
x,y

|aε(x, y) − a0(x, y)| = 0, lim
ε→0

sup
y

|vε(y) − v0(y)| = 0, lim
ε→0

ξε = ξ0.

Exactness. We suppose that the multiplicative noise bε : Rd → R
d×d is exact. That is, bε(x) = [(dhε)x]−1 where 

hε :Rd → R
d is a continuous family of C3 diffeomorphisms hε : Rd → R

d (with C3 norm uniform in ε and x ∈R
d ).

Remark 6.1. (a) The exactness assumption on bε can be removed, but then additional assumptions are required on the 
fast dynamics. When the fast dynamics Tε is independent of ε, the corresponding result without exactness is proved 
for partially hyperbolic dynamics using standard pairs/martingale problems [24], and for nonuniformly hyperbolic 
dynamics using rough path theory [33,34].
(b) The global nature of the regularity assumptions in x ∈ R

d is easily relaxed, see for example [27, Section 3.1].

Define x̂ε(t) = xε([tε−2]), t ≥ 0. We are interested in weak convergence of x̂ε to a solution X of an SDE. Con-
vergence is in the space D([0, ∞), Rd) of càdlàg functions (right-continuous functions with left-hand limits, see for 
example [13, Chapter 3]) with the supremum norm.

Remark 6.2. One technical issue is that D([0, ∞), Rd) is not separable in the supremum norm. Since our limit 
processes have continuous sample paths, convergence in the supremum norm is equivalent to convergence in the 
standard Skorokhod topology which is metrizable and separable. Hence whenever we apply results where separability 
is required, we can momentarily work in this topology.

Dynamical assumptions. So far, the assumptions on the fast–slow system (6.1) have been standard subject to the 
comments in Remark 6.1. Now we introduce mild assumptions on the fast dynamics that suffice for homogenisation.

Define αx : M →R
d for x ∈ R

d ,

αx(y) = a0(x, y) − 1
2 {(db0)ub0(x)v0(y)}v0(y). (6.2)

Also, define the family of random elements Wε : (M, με) → D([0, ∞), Rd),

Wε(t) = ε

[t/ε2]−1∑
j=0

vε ◦ T j
ε .
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Uniform mean ergodicity (UME) There exists P :Rd →R
d such that

lim
ε→0

∫
M

∣∣∣ε1/2
[ε−1/2]−1∑

j=0

αx ◦ T j
ε − P(x)

∣∣∣dμε = 0 for all x ∈R
d .

Weak invariance principle (WIP) Wε →με W in D([0, ∞), Rd) as ε → 0, where W is Brownian motion with some 
covariance matrix � ∈ R

d×d .

Theorem 6.3. Assume (UME) and (WIP). Then P is Lipschitz and x̂ε →με X in D([0, ∞), Rd) as ε → 0 where X is 
the solution to the Stratonovich SDE

dX = P(X)dt + b0(X) ◦ dW, X(0) = ξ. (6.3)

Remark 6.4. Suppose that

(a) με →w μ0 as ε → 0 (statistical stability).

(b) lim
ε→0

∫
M

∣∣∣ε1/2
[ε−1/2]−1∑

j=0

αx ◦ T j
ε −

∫
M

αx dμε

∣∣∣dμε = 0 for all x ∈R
d .

Then (UME) holds, and

P(x) = ∫
M

a0(x, y) dμ0(y) − 1
2

∫
M

{(db0)xb0(x)v0(y)}v0(y) dμ0(y)

= ∫
M

a0(x, y) dμ0(y) − 1
2

∑
b

αγ

0 (x)(∂xαb
β

0 )(x)
∫
M

v
β

0 v
γ

0 dμ0.

Here, bαγ

0 denotes the (α, γ )’th entry of b0 and bβ

0 denotes the β’th column of b0, while the summation is over indices 
α, β, γ = 1, . . . , d .

Remark 6.5. (a) We focus attention on weak convergence with respect to the family of invariant measures με . If we 
assume strong statistical stability (so με is absolutely continuous with respect to a reference measure ρ for all ε and 
dμε/dρ → dμ0/dρ in L1), then it is immediate from Theorem 6.3 that xε →μ0 X. We will return to the issue of weak 
convergence with respect to a wider range of measures in subsequent work.
(b) The WIP is a necessary condition for Theorem 6.3 since it is equivalent to the case aε ≡ 0, bε ≡ Id .

The remainder of this section is concerned with the proof of Theorem 6.3. We deal first with the special case 
bε ≡ Id , and then with the general case.

The special case bε ≡ Id . We extend the arguments in [27,45] developed for the situation where Tε is independent 
of ε.

Lemma 6.6. Theorem 6.3 holds in the case bε ≡ Id .

Proof. Note that αx(y) = a0(x, y) is uniformly Lipschitz in x and hence that P is Lipschitz with constant L. Define 
ã(x, y) = a0(x, y) − P(x).

To prove weak convergence in D([0, ∞), Rd), it suffices to prove convergence in D([0, T ], Rd) for each fixed 
T ≥ 1. Let δ(ε) = supx,y |aε(x, y) − a0(x, y)| + |ξε − ξ |, so limε→0 δ(ε) = 0. Write

xε(n) = ξε + ε2
n−1∑
j=0

aε(xε(j), yε(j)) + ε

n−1∑
j=0

vε(yε(j)).

Hence
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x̂ε(t) = ξ + ε2
[tε−2]−1∑

j=0

a0(xε(j), yε(j)) + Wε(t) + Zε,1(t)

= ξ + ε2
[tε−2]−1∑

j=0

P(x̂ε(ε
2j)) + Wε(t) + Zε,1(t) + Zε,2(t),

where Wε(t) = ε
∑[tε−2]−1

j=0 vε(yε(j)) satisfies the WIP and

|Zε,1(t)| ≤ T δ(ε), Zε,2(t) = ε2
[tε−2]−1∑

j=0

ã(xε(j), yε(j)).

For t an integer multiple of ε2, the term ε2 ∑[tε−2]−1
j=0 P(x̂ε(ε

2j)) is the Riemann sum of a piecewise constant function 

and is precisely 
∫ t

0 P(x̂ε(s)) ds. For general t ,

ε2
[tε−2]−1∑

j=0

P(x̂ε(ε
2j)) =

t∫
0

P(x̂ε(s)) ds + Zε,3(t),

where |Zε,3(t)| ≤ ε2|P |∞ ≤ ε2L. Altogether,

x̂ε(t) = ξ + ∫ t

0 P(x̂ε(s)) ds + Wε(t) + Zε(t),

where Zε = Zε,1 + Zε,2 + Zε,3.
We show below that Zε,2 →με 0 in D([0, T ], Rd). It follows that Wε + Zε →με W in D([0, T ], Rd).
Now consider the continuous map G : D([0, T ], Rd) → D([0, T ], Rd) given by G(u) = z where z is the unique 

solution to the integral equation

z(t) = ξ + u(t) + ∫ t

0 P(z(s)) ds.

Define zε = G(Wε + Zε). Since continuous maps preserve weak convergence, it follows that zε →με G(W). But 
zε = xε by uniqueness of solutions, so xε →με G(W). The result follows since X = G(W) satisfies the SDE dX =
P(X) dt + dW , X(0) = ξ .

It remains to show that Zε,2 →με 0 in D([0, T ], Rd). Note that |ã|∞ ≤ 2L and Lip ã ≤ 2L. Let N = [tε−3/2] and 
write Zε,2 = Yε + I0, where

Yε(t) = ε2
∑

0≤j<Nε−1/2

ã(xε(j), yε(j)), I0(t) = ε2
∑

Nε−1/2≤j≤[tε−2]−1

ã(xε(j), yε(j)).

We have

|I0(t)| ≤ ε3/2|ã|∞ ≤ 2Lε3/2. (6.4)

We now estimate Yε as follows:

Yε(t) = ε2
N−1∑
n=0

∑
nε−1/2≤j<(n+1)ε−1/2

ã(xε(j), yε(j)) = I1 + I2

I1 = ε2
N−1∑
n=0

∑
nε−1/2≤j<(n+1)ε−1/2

(
ã(xε(j), yε(j)) − ã(xε(nε−1/2), yε(j))

)

I2 = ε2
N−1∑
n=0

∑
nε−1/2≤j<(n+1)ε−1/2

ã(xε(nε−1/2), yε(j)).

For nε−1/2 ≤ j < (n + 1)ε−1/2, we have |xε(j) − xε(nε−1/2)| ≤ (|aε |∞ + |vε |∞)ε1/2 ≤ 2Lε1/2. Hence
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|I1| ≤ Nε3/2Lip ã 2Lε1/2 ≤ 4L2T ε1/2. (6.5)

Next, I2 = ε3/2 ∑N−1
n=0 Jn, where

Jn = ε1/2
∑

nε−1/2≤j<(n+1)ε−1/2

ã(xε(nε−1/2), yε(j)).

Hence

|I2| ≤ ε3/2
[T ε−3/2]−1∑

n=0

|Jn|. (6.6)

For u ∈R
d fixed, define

J̃n(u) = ε1/2
∑

nε−1/2≤j<(n+1)ε−1/2

ã(u, yε(j)) = ε1/2
∑

nε−1/2≤j<(n+1)ε−1/2

αu ◦ T j
ε − P(u).

Note that J̃0 has [ε−1/2] terms, and J̃n(u) has at most one term more or one term less than J̃0(u). Hence∫
M

|J̃n(u)|dμε = ∫
M

|J̃0(u)|dμε + En(u), where |En(u)| ≤ ε1/2|ã|∞ ≤ 2Lε1/2.

Let Q > 0 and write I2 = KQ,1 + KQ,2 where

KQ,1 = I21Bε(Q), KQ,2 = I21Bε(Q)c , Bε(Q) = {
max
[0,T ]

|xε | ≤ Q
}
.

For any σ > 0, there exists a finite subset S ⊂ R
d such that dist(x, S) ≤ σ/(2L) for any x with |x| ≤ Q. Then 

1Bε(Q)|Jn| ≤ ∑
u∈S |J̃n(u)| + σ for all n ≥ 0, ε > 0. Hence by (6.6),

∫
M

max
[0,T ]

|KQ,1|dμε ≤ ε3/2
[T ε−3/2]−1∑

n=0

∑
u∈S

∫
M

|J̃n(u)|dμε + T σ

= ε3/2
[T ε−3/2]−1∑

n=0

∑
u∈S

(∫
M

|J̃0(u)|dμε + En(u)
)

+ T σ

≤ T
∑
u∈S

∫
M

|J̃0(u)|dμε + 2ε1/2T |S|L + T σ.

By (UME), 
∫
M

|J̃0(u)| dμε → 0 as ε → 0 for each u. Since σ > 0 is arbitrary, we obtain for each fixed Q that 
max[0,T ] |KQ,1| → 0 in L1(με), and hence in probability, as ε → 0.

Next, since xε − Wε is bounded on [0, T ], for Q sufficiently large

με

{
max
[0,T ]

|KQ,2| > 0
} ≤ με

{
max
[0,T ]

|xε | ≥ Q
} ≤ με

{
max
[0,T ]

|Wε | ≥ Q/2
}
.

Fix c > 0. Increasing Q if necessary, we can arrange that με{max[0,T ] |W | ≥ Q/2} < c/4. By the continuous mapping 
theorem, max[0,T ] |Wε | →d max[0,T ] |W |. Hence there exists ε1 > 0 such that με{max[0,T ] |Wε | ≥ Q/2} < c/2 for all 
ε ∈ (0, ε1). For such ε,

με

{
max
[0,T ]

|KQ,2| > 0
}

< c/2.

Shrinking ε1 if necessary, we also have that με{max[0,T ] |KQ,1| > c/2} < c/2. Hence με{max[0,T ] |I2| > c} < c, and 
so max[0,T ] |I2| → 0 in probability. Combining this with estimates (6.4) and (6.5), we obtain that max[0,T ] |Zε,2| → 0
in probability as required. �
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The case of exact noise. Now we consider the general case of exact multiplicative noise, following [27].

Proof of Theorem 6.3. Define zε(n) = hε(xε(n)). Using Taylor’s theorem to expand the C3 map hε , we obtain

zε(n + 1) − zε(n) = hε(x
(ε)(n + 1)) − hε(x

(ε)(n))

= (dhε)xε(n)

(
xε(n + 1) − xε(n)

)
(6.7)

+ 1
2 {(d2hε)xε(n)(xε(n + 1) − xε(n))}(xε(n + 1) − xε(n)) + o(|xε(n + 1) − xε(n)|2).

Here, we are identifying (d2h)x as an element of L(Rd, L(Rd , Rd)) for each x ∈R
d . The last term is uniformly o(ε2).

Substituting for xε(n + 1) − xε(n) using equation (6.1) and the fact that bε = [dhε]−1, equation (6.7) becomes

zε(n + 1) − zε(n) = ε2
{
(dhε)xε(n)aε(xε(n), yε(n))

+ 1
2 {(d2hε)xε(n)bε(xε(n))vε(yε(n))}bε(xε(n))vε(yε(n)) + o(1)

}
+ εvε(yε(n)).

In other words,

zε(n + 1) − zε(n) = ε2Aε(zε(n), yε(n)) + εvε(yε(n)),

where

Aε(z, y) = (dhε)h−1
ε z

{
aε(h

−1
ε z, y) − 1

2
{(dbε)h−1

ε z
bε(h

−1
ε z)vε(y)}vε(y) + o(1)

}
uniformly in z, y as ε → 0.

The regularity assumptions on vε , aε and hε ensure that Aε is bounded and globally Lipschitz in z. Similarly, it is 
easily checked that limε→0 supz,y |Aε(z, y) − A0(z, y)| = 0. Notice also that A0(z, y) = (dh0)h−1

0 z
α

h−1
0 z

(y).

Hence we are in the situation of Lemma 6.6, and it follows that z̃ε(t) = zε([tε−2]) converges weakly to solutions 
Z of the SDE

dZ = (dh0)h−1
0 z

P (h−1
0 Z)dt + dW, (6.8)

where P(Z) is the limit function in (UME).
Next

supt |h−1
ε (zε(t)) − h−1

0 (zε(t))| ≤ supz |h−1
ε (z) − h−1

0 (z)| → 0,

so by the continuous mapping theorem,

xε = h−1
ε (zε) = h−1

0 (zε) + {h−1
ε (zε) − h−1

0 (zε)} →με h−1
0 (Z).

Hence it remains to determine X = h−1
0 (Z). Clearly X(0) = ξ . Since the Stratonovich integral transforms according 

to the standard laws of calculus,

dX = [(dh0)X]−1 ◦ dZ = [(dh0)X]−1 ◦ [(dh0)h−1
0 Z

P (h−1
0 Z)dt + dW ]

= P(X)dt + b0(X) ◦ dW,

as required. �
7. Homogenisation for uniform families of fast–slow systems

In this section, we apply the abstract homogenisation theorem from Section 6 to the case where the fast dynamics 
is generated by a uniform family of nonuniformly hyperbolic transformations. We consider first the noninvertible case 
(Subsection 7.1) and then the invertible case (Subsection 7.2).
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7.1. Nonuniformly expanding fast dynamics

Let (M, dM) be a bounded metric space with finite Borel measure ρ. For each ε ∈ [0, ε0) we suppose that
Tε : M → M is a nonuniformly expanding map as in Section 2.1, with induced map Fε = T

τε
ε : Yε → Yε , and ab-

solutely continuous ergodic Tε-invariant and Fε-invariant Borel probability measures με and μYε . (The metric space 
(M, dM) and finite Borel measure ρ are fixed independent of ε. This is natural for the purposes of this current section, 
but is easily relaxed, see Remark 7.4.)

We assume that Tε is a uniform family of order p ≥ 2 (cf. Section 4), so the various constants in the definition 
of nonuniformly expanding can be chosen independent of ε ∈ [0, ε0), and {τ 2

ε , ε ∈ [0, ε0)} is uniformly integrable. 
Moreover, we suppose that μ0 is statistically stable: με →w μ0 as ε → 0.

Let vε : M → R
d , ε ∈ [0, ε0), be a family of Hölder observables with 

∫
M

vε dμε = 0. We require that vε and Tε

satisfy

supε∈[0.ε0)
‖vε‖η < ∞, limε→0 |vε − v0|∞ = 0, (7.1)

and ∫
M

v0 ◦ T
j

0 (v0 ◦ T k
0 )T (dμε − dμ0) → 0, T

j
ε →με T

j

0 , (7.2)

for all j, k ≥ 0, as ε → 0. (The last part of condition (7.2) means that με{y ∈ M : dM(T
j
ε y, T j

0 y) > a} → 0 for all 
a > 0.)

Consider the family of fast–slow equations (6.1) where yε(n + 1) = Tεyε(n). We assume that aε and bε satisfy the 
regularity conditions in Section 6 and that bε is exact. Let x̂ε = xε([tε−2]]).

Theorem 7.1. Let P(x) = ∫
M

a0(x, y) dμ0(y) − 1
2

∫
M

{(db0)xb0(x)v0(y)}v0(y) dμ0(y). Let W denote d-dimensional 
Brownian motion with covariance

� = limn→∞ 1
n

∫
M

(∑n−1
j=0 v0 ◦ T

j

0

)(∑n−1
j=0 v0 ◦ T

j

0

)T
dμ0.

Then x̂ε →με X in D([0, ∞), Rd) as ε → 0 where X is the solution to the Stratonovich SDE

dX = P(X)dt + b0(X) ◦ dW, X(0) = ξ.

Remark 7.2. In very general situations, [2,8] show that μ0 is strongly statistically stable. The first part of condi-
tion (7.2) follows immediately. Moreover, in the conclusion of Theorem 7.1 we obtain in addition that x̂ε →μ0 X by 
Remark 6.5(a).

Examples 7.3. It is straightforward to choose the examples in Section 4 to be strongly statistically stable. Theorem 7.1
and Remark 7.2 then apply.

For instance, in the case of the intermittent maps, Example 4.9, fix γ0 ∈ (0, 12 ) and choose γε → γ0. Let Tε , 
0 ≤ ε < ε0, be the corresponding family of intermittent maps. Then μ0 is strongly statistically stable by [11,36], while 
(UME) and (WIP) follow from Section 4.

Similar comments apply to Examples 4.10 and 4.11 with statistical stability following from [25] and [8] respec-
tively (see the corresponding examples in [37] for details).

Remark 7.4. Various conditions — namely independence of M and ρ on ε, limε→0 |vε − v0|∞ = 0, and condi-
tions (7.2) — are used only in the proof of continuity of certain covariance matrices �ε , see Proposition 7.6. It is 
easy to check that the results in this section go through with these assumptions removed, provided diamM is bounded 
independent of ε and the conclusion of Proposition 7.6 holds. We note that [23] gives general conditions under which 
�ε varies continuously.

In the remainder of this subsection, we prove Theorem 7.1. By Theorem 6.3, it suffices to verify (UME) and (WIP) 
and to identify P and �.

Proposition 7.5. Condition (UME) is satisfied with P(x) as stated in Theorem 7.1.
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Proof. We apply Remark 6.4. Condition (a) is automatic, so it remains to verify condition (b).
Recall from (6.2) that αx(y) = a0(x, y) − 1

2 {(db0)xb0(x)v0(y)}v0(y). Define βx,ε = αx − ∫
M

αx dμε . Then
βx,ε : M → R

d is family of Hölder observables with 
∫
M

βx,ε dμε = 0 such that ‖βx,ε‖η � ‖v0‖2
η uniformly in ε. 

(The estimate is also uniform in x, but that is not needed.) By Lemma 4.1, limε→0
∫
M

| ∑[ε−1/2]−1
j=0 βx,ε ◦ T

j
ε | dμε = 0

for all x ∈R
d as required. �

As in Section 4, we can define the family of covariance matrices

�ε = limn→∞ n−1
∫
M

Snvε Snv
T
ε dμε, Snvε = ∑n−1

j=0 vε ◦ T
j
ε , ε ∈ [0, ε0).

Proposition 7.6. limε→0 �ε = �0.

Proof. Write Iε,n = ∫
M

Snvε Snv
T
ε dμε .

Let δ > 0. By Remark 4.2, there exists N ≥ 1 such that |N−1Iε,N − �ε | < δ for all ε ∈ [0, ε0). Next

Iε,N − I0,N = ∫
M

(SNvε SNvT
ε − SNv0 SNvT

0 ) dμε + ∫
M

SNv0 SNvT
0 (dμε − dμ0).

By condition (7.2), limε→0
∫
M

SNv0 SNvT
0 (dμε − dμ0) = 0. Also,

|SNvε SNvT
ε − SNv0 SNvT

0 |L1(με)
≤ (|SNvε |L2(με)

+ |SNv0|L2(με)

)|SNvε − SNv0|L2(με)

≤ N(|vε |∞ + |v0|∞)|SNvε − SNv0|L2(με)
.

But

|SNvε − SNv0| ≤ ∑N−1
j=0 |vε − v0| ◦ T

j
ε + ∑N−1

j=0 |v0 ◦ T
j
ε − v0 ◦ T

j

0 | ≤ N |vε − v0|∞ + |v0|ηgε,N ,

where gε,N (y) = ∑N−1
j=0 dM(T

j
ε y, T j

0 y)η . By (7.1) and condition (7.2), we obtain that limε→0 |SNvε SNvT
ε −

SNv0 SNvT
0 |L1(με)

= 0. Hence limε→0 Iε,N = I0,N and so lim supε→0 |�ε − �0| < 2δ. Since δ is arbitrary, the re-
sult follows. �
Corollary 7.7. Condition (WIP) holds with � as stated in Theorem 7.1.

Proof. This follows immediately from Propositions 4.4 and 7.6. �
7.2. Nonuniformly hyperbolic fast dynamics

Now we show how to extend Theorem 7.1 to the invertible setting. We assume the same setup as in Subsection 7.1
except that Tε is now a uniform family of nonuniformly hyperbolic transformations as in Subsection 5.1

Theorem 7.8. The conclusion x̂ε →με X of Theorem 6.3 remains valid. If in addition μ0 is strongly statistically stable 
then x̂ε →μ0 X.

Remark 7.9. The comments in Remark 7.4 apply equally in the current context.

To prove Theorem 7.8, it again suffices to verify condition (UME) and (WIP) in Theorem 6.3.
The proof of (UME) is identical to that of Proposition 7.5 with Corollary 5.5(a) replacing Lemma 4.1. By Corol-

lary 5.5(b), we can define

�ε = limn→∞ 1
n

∫
M

(∑n−1
j=0 vε ◦ T

j
ε

)(∑n−1
j=0 vε ◦ T

j
ε

)T
dμε.

By Remark 4.2 and the proof of Corollary 5.5(b), the convergence is uniform in ε. Hence the argument in the proof 
of Proposition 7.6 shows that limε→0 �ε = �0. Condition (WIP) with � = �0 follows from Theorem 5.7.
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Example 7.10. By [23], statistical stability holds for the families of externally forced dispersing billiards in Exam-
ple 5.9, and hence Theorem 7.8 holds.

We note that the stronger linear response property can be established in certain situations [16], but that linear 
response is not required for the purposes of this paper.
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Appendix A. WIP for martingale difference arrays

In this appendix, we recast a classical martingale CLT/WIP of [13] into a form that is convenient for ergodic 
stationary martingale difference arrays of the type commonly encountered in the deterministic setting.

Let {(
n, Mn, μn)} be a sequence of probability spaces. Suppose that fn : 
n → 
n is a sequence of measure-
preserving transformations with transfer operators Ln and Koopman operators Un. Suppose that mn : 
n → R

d lies 
in L2(
n) and that 

∫

n

mn dμn = 0 and mn ∈ kerLn.

Define the sequence of processes Mn : 
n → D([0, ∞), Rd) by

Mn(t) = n−1/2
[nt]−1∑
j=0

mn ◦ f
j
n , t ≥ 0.

Theorem 7.11. Suppose that the family {|mn|2, n ≥ 0} is uniformly integrable. Suppose also that there exists a con-
stant matrix � ∈ R

d×d , such that n−1 ∑[nt]−1
j=0 {UnLn(mnm

T
n )} ◦ f

j
n →μn t� as n → ∞ for each t > 0.

Then Mn →μn W in D([0, ∞), Rd) where W is Brownian motion with covariance �.

Proof. First we consider the case where � is not identically zero. By Prokhorov’s Theorem, we must prove conver-
gence of finite-dimensional distributions and tightness.

Finite-dimensional distributions. Fix 0 = t0 ≤ t1 ≤ · · · ≤ tk , c1, . . . , ck ∈R
d , k ≥ 1. Define

Zn = ∑k
�=1 cT

� (Mn(t�) − Mn(t�−1)), Z = ∑k
�=1 cT

� (W(t�) − W(t�−1)).

We must show that Zn →μn Z.
Now Z = N(0, V ) where V = ∑k

�=1 cT
� �c�(t� − t�−1). Also,

Zn = n−1/2
k∑

�=1

cT
�

[nt�]−1∑
j=[nt�−1]

mn ◦ f
j
n =

[ntk]∑
j=1

Xn,j ,

where Xn,j = n−1/2dT
n,jmn ◦ f

[ntk]−j
n for appropriate choices of dn,j ∈ {c1, . . . , ck}.

Define Gn,j = f
−([ntk]−j)
n Mn for 1 ≤ j ≤ [ntk]. The same calculation as in the proof of Proposition 2.9 shows that 

{Xn,j , Gn,j ; 1 ≤ j ≤ [ntk]} is a martingale difference array. That is, Gn,j ⊂ Gn,j+1 for all 1 ≤ j ≤ [ntk] − 1, Xn,j is 
Gn,j -measurable for all 1 ≤ j ≤ [ntk], and E(Xn,j+1|Gn,j ) = 0 for all 1 ≤ j ≤ [ntk] − 1.

We now apply a CLT for martingale difference arrays [13, Theorem 18.1]. (See also [42, Theorem 2.3].) To show 
that Zn →d N(0, V ) it suffices to show that

(B1)
∑[ntk]

j=1 E(X2
n,j |Gn,j−1) →μn V as n → ∞.

(B2) limn→∞
∑[ntk]

E(X2 1{|Xn,j |≥ε}) = 0 for all ε > 0.
j=1 n,j
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Arguing as in the proof of Proposition 2.9,

E(X2
n,j |Gn,j−1) = n−1

E((dT
n,jmn)

2 ◦ f [ntk]−j |Gn,j−1) = n−1{UnLn(d
T
n,jmn)

2} ◦ f
[ntk]−j
n .

Hence

[ntk]∑
j=1

E(X2
n,j |Gn,j−1) = n−1

[ntk]∑
j=1

{UnLn(d
T
n,jmn)

2} ◦ f
[ntk]−j
n

= n−1
k∑

�=1

[nt�]−1∑
j=[nt�−1]

{UnLnc
T
� (mnm

T
n )c�} ◦ f

j
n

=
k∑

�=1

cT
�

(
n−1

[nt�]−1∑
j=0

{UnLn(mnm
T
n )} ◦ f

j
n − n−1

[nt�−1]−1∑
j=0

{UnLn(mnm
T
n )} ◦ f

j
n

)
c�

which converges in probability to V . This proves (B1).
Next, |Xn,j | ≤ Kn−1/2|mn ◦ f

[ntk]−j
n | where K = max{|c1|, . . . , |ck|}. Hence X2

n,j 1{|Xn,j |≥ε} ≤
K2n−1(|mn|21{|mn|≥ε′n1/2}) ◦ f

[ntk]−j
n where ε′ = ε/K , and

[ntk]∑
j=1

E(X2
n,j 1{|Xn,j |≥ε}) ≤ K2n−1

[ntk]∑
j=1

E(|mn|21{|mn|≥ε′n1/2})

= K2n−1[ntk]E(|mn|21{|mn|≥ε′n1/2}),

which converges to zero by uniform integrability of {|mn|2}. This proves (B2) and completes the proof that Zn →μn Z, 
showing that finite-dimensional distributions converge.

Tightness. Tightness of {Mn} in D([0, ∞), Rd) is equivalent to tightness of each coordinate of {Mn} in D([0, T ], R)

for each T > 0. Hence we fix T > 0, and assume without loss that Mn is R-valued and that 1
n

∑[nt]−1
k=0 m2

n ◦ f k
n →μn

tσ 2 for some σ 2 ≥ 0. Since � is nonzero, we can choose coordinates so that σ 2 > 0 in each coordinate. Without loss 
σ 2 = 1.

Since Mn(0) ≡ 0, proving tightness of {Mn} is equivalent [13, Theorem 7.3] to showing that

lim
δ→0

lim sup
n→∞

μn

(
sup

0≤s,t≤T
|s−t |≤δ

|Mn(t) − Mn(s)| > ε

)
= 0 for every ε > 0. (A.1)

Define M−
n (t) = ∑[nt]

j=1 ξn,j where ξn,j = n−1/2mn ◦ f
[nT ]−j
n . We claim that the hypotheses of [13, Theorem 18.2]

are satisfied and hence in particular that {M−
n } is tight. It follows that condition (A.1) is satisfied with Mn replaced by 

M−
n . But Mn(t) − Mn(s) = M−

n (un,s) − M−
n (un,t ) where un,t ∈ [0, T ] is such that [nun,t ] = [nT ] − [nt]. Hence

sup
0≤s,t≤T
|s−t |≤δ

|Mn(t) − Mn(s)| ≤ sup
0≤s,t≤T

|s−t |≤δ+ 2
n

|M−
n (t) − M−

n (s)|,

and the result follows.
It remains to verify the claim. Consider the martingale difference array {Xn,j , Gn,j ; 1 ≤ j ≤ [nT ]} where Xn,j =

n−1/2mn ◦ f
[nT ]−j
n , Gn,j = f

−([nT ]−j)
n Mn. By [13, Theorem 18.2], it suffices to show that for each t ∈ [0, T ],

(B3)
∑[nt]

j=1 E(X2
n,j |Gn,j−1) →μn t as n → ∞.

(B4) limn→∞
∑[nt]

j=1 E(X2
n,j 1{|Xn,j |≥ε}) = 0 for all ε > 0.

These are proved in exactly the same way as conditions (B1) and (B2) above.
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The completely degenerate case. When � = 0, we consider the direct product of the underlying dynamics with a 
simple symmetric random walk on the integers. The product system leads to a WIP with one nondegenerate direction 
and the result reduces to the case � �= 0.

More precisely, let �′ = {±1}N with fair (p = q = 1/2) Bernoulli measure μ′, and consider the one-sided shift
f : �′ → �′ and observable m′ : �′ → {±1} where m′(x) = x0. The process M ′

n(t) = n−1/2 ∑[nt]−1
j=0 m′ ◦ f ′ j con-

verges in D([0, ∞), R) to Brownian motion W ′ with variance 1. Define the family of product systems �′′
n = �n ×�′, 

μ′′
n = μn × μ′, f ′′

n = fn × f ′ : �′′
n → �′′

n, m′′
n = mn ⊕ m′ : �′′

n → R
d+1, M ′′

n = Mn ⊕ M ′
n ∈ D([0, ∞), Rd+1). 

Let U ′′
n and L′′

n denote the Koopman and transfer operators corresponding to f ′′
n . An easy calculation shows that 

U ′′L′′(m′′m′′ T ) = UL(mmT ) ⊕ 1 and hence {m′′
n} satisfies the hypotheses of the theorem with �′′ = 0 ⊕ 1. Conse-

quently, M ′′
n →μ′′

n
W ′′ = 0 ⊕ W ′ in D([0, ∞), Rd+1). In particular, Mn →μn 0. �

References

[1] J.F. Alves, SRB measures for non-hyperbolic systems with multidimensional expansion, Ann. Sci. Éc. Norm. Supér. 33 (2000) 1–32.
[2] J.F. Alves, Strong statistical stability of non-uniformly expanding maps, Nonlinearity 17 (2004) 1193–1215.
[3] J.F. Alves, D. Azevedo, Statistical properties of diffeomorphisms with weak invariant manifolds, Discrete Contin. Dyn. Syst. 36 (2016) 1–41.
[4] J.F. Alves, J.M. Freitas, S. Luzzatto, S. Vaienti, From rates of mixing to recurrence times via large deviations, Adv. Math. 228 (2011) 

1203–1236.
[5] J.F. Alves, S. Luzzatto, V. Pinheiro, Markov structures and decay of correlations for non-uniformly expanding dynamical systems, Ann. Inst. 

Henri Poincaré, Anal. Non Linéaire 22 (2005) 817–839.
[6] J.F. Alves, V. Pinheiro, Slow rates of mixing for dynamical systems with hyperbolic structures, J. Stat. Phys. 131 (2008) 505–534.
[7] J.F. Alves, V. Pinheiro, Gibbs–Markov structures and limit laws for partially hyperbolic attractors with mostly expanding central direction, 

Adv. Math. 223 (2010) 1706–1730.
[8] J.F. Alves, M. Viana, Statistical stability for robust classes of maps with non-uniform expansion, Ergod. Theory Dyn. Syst. 22 (2002) 1–32.
[9] M. Antoniou, I. Melbourne, Rate of convergence in the weak invariance principle for deterministic systems, in preparation.

[10] V. Araujo, M.J. Pacifico, E.R. Pujals, M. Viana, Singular-hyperbolic attractors are chaotic, Trans. Am. Math. Soc. 361 (2009) 2431–2485.
[11] V. Baladi, M. Todd, Linear response for intermittent maps, Commun. Math. Phys. 347 (2016) 857–874.
[12] M. Benedicks, L. Carleson, On iterations of 1 − ax2 on (−1, 1), Ann. Math. 122 (1985) 1–25.
[13] P. Billingsley, Convergence of Probability Measures, second ed., Wiley Series in Probability and Statistics: Probability and Statistics, John 

Wiley & Sons Inc., New York, 1999.
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