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Abstract

We consider the nonlinear Dirac equation, also known as the Soler model:

i∂tψ = −iα · ∇ψ + mβψ − (
ψ∗βψ

)k
βψ, m > 0, ψ(x, t) ∈C

N, x ∈R
n, k ∈N.

We study the point spectrum of linearizations at small amplitude solitary waves in the limit ω → m, proving that if k > 2/n, then one
positive and one negative eigenvalue are present in the spectrum of the linearizations at these solitary waves with ω sufficiently close
to m, so that these solitary waves are linearly unstable. The approach is based on applying the Rayleigh–Schrödinger perturbation
theory to the nonrelativistic limit of the equation. The results are in formal agreement with the Vakhitov–Kolokolov stability
criterion.
© 2013 Elsevier Masson SAS. All rights reserved.

Résumé

Nous considérons l’équation de Dirac non linéaire, aussi connue comme modèle de Soler. Nous étudions le spectre ponctuel des
linéarisations autour d’ondes solitaires de petite amplitude dans la limite ω → m, et montrons que si k > 2/n une valeur propre
positive et une négative sont présentes dans le spectre des linéarisations autour de ces ondes solitaires lorsque ω est suffisamment
proche de m, ce qui entraîne que ces ondes solitaires sont linéairement instables. L’approche est basée sur l’application de la
théorie des perturbations de Rayleigh–Schrödinger à la limite non relativiste de l’équation. Les résultats sont en accord formel avec
le critère de stabilité de Vakhitov–Kolokolov.
© 2013 Elsevier Masson SAS. All rights reserved.

1. Introduction

A natural simplification of the Dirac–Maxwell system [23] is the nonlinear Dirac equation, such as the massive
Thirring model [41] with vector–vector self-interaction and the Soler model [36] with scalar–scalar self-interaction
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(known in dimension n = 1 as the massive Gross–Neveu model [21,27]). These models with self-interaction of local
type have been receiving a lot of attention in particle physics (see e.g. [34]), as well as in the theory of Bose–Einstein
condensates [26,29].

There is an enormous body of research devoted to the nonlinear Dirac equation, which we cannot cover compre-
hensively here. The existence of standing waves in the nonlinear Dirac equation was studied in [36,17,28,20]. The
question of stability of solitary waves is of utmost importance: perturbations ensure that we only ever encounter stable
configurations. Recent attempts at asymptotic stability of solitary waves in the nonlinear Dirac equation [8,9,32,5,16]
rely on the fundamental question of spectral stability:

Consider the Ansatz ψ(x, t) = (φω(x) + ρ(x, t))e−iωt , with φω(x)e−iωt a solitary wave solution. Let ∂tρ = Aωρ

be the linearized equation for ρ. Does Aω have eigenvalues in the right half-plane?

Definition 1.1. If σ(Aω) ⊂ iR, we say that the solitary wave φωe−iωt is spectrally stable. Otherwise, we say that the
solitary wave is linearly unstable.

Remark 1.2. Let us note that the “spectral stability” σ(Aω) ⊂ iR does not guarantee stability. One of the possibilities
which may still lead to instability is the presence of eigenvalues of higher algebraic multiplicity. This occurs e.g. at
λ = 0 in the case dQ(ω)/dω = 0 (where Q(ω) is the charge of φω – see below) at a particular value of ω, leading to
instability of the corresponding solitary wave; see [13]. In [15], to reflect this situation in the context of the nonlinear
Schrödinger equation, linear instability is defined as either the presence of eigenvalues with positive real part or the
presence of particular eigenvalues with higher algebraic multiplicity.

There is a very clear picture of the spectral stability for nonlinear Schrödinger and Klein–Gordon equations [43,35,
44,37] and general results for abstract Hamiltonian systems with U(1) symmetry [24], which stimulated many attempts
at spectral stability in the nonlinear Dirac context. We mention the numerical simulations [1] and the analysis of the
energy minimization under charge-preserving dilations and similar transformations [7,2,39,11]. In spite of this, the
question of spectral stability of solitary waves of nonlinear Dirac equation is still completely open. Numerical results
[3] show that in the 1D Soler model (cubic nonlinearity) all solitary waves are spectrally stable. We also mention the
related numerical results in [14,10].

According to [43], if φω(x)e−iωt is a family of solitary wave solutions to the nonlinear Schrödinger equation

iu̇ = − 1

2m

u − f

(|u|2)u, u(x, t) ∈C, x ∈R
n, n� 1,

where f is smooth and real-valued, and if φω have no nodes (such solitary waves are called ground states), then the
linearization at the solitary wave corresponding to a particular value of ω has a positive eigenvalue if and only if at this
value of ω one has dQ(ω)/dω > 0, where Q(ω) = ‖φω‖2

L2 is the charge (or mass) of the solitary wave. The opposite
condition,

d

dω
Q(ω) < 0, (1.1)

is called the Vakhitov–Kolokolov stability criterion; it ensures the absence of eigenvalues with positive real part. In
the case of the nonlinear Dirac equation, the condition (1.1) gives a less definite answer about the spectral stability. All
we know is that at the value of ω where ∂ωQ(ω) vanishes, with Q(ω) being the charge of the solitary wave φωe−iωt ,
two eigenvalues of the linearized equation collide at λ = 0, but we do not know where these eigenvalues are located
when ∂ωQ(ω) �= 0 (see e.g. [12]).

Yet, it is natural to expect that the condition (1.1) remains meaningful in the nonrelativistic limit, as it was suggested
in [11]. While it is a common practice to obtain solitary wave solutions for relativistic equations as bifurcations from
the solitary waves to the equation corresponding to the nonrelativistic limit (see e.g. the review [19]), we show that the
spectrum of the linearization at a solitary wave could also be learned from the nonrelativistic limit. More precisely,
we develop the idea that the family of real eigenvalues of the linearization at a solitary wave of the nonlinear Dirac
equation bifurcating from λ = 0 is a deformed family of eigenvalues of the linearization of the corresponding nonlinear
Schrödinger equation. As a result, we prove that if the Vakhitov–Kolokolov stability criterion [43] guarantees linear
instability for the NLS, then the same conclusion also holds for solitary waves with ω � m in the nonlinear Dirac
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equation. Let us mention that our results only apply to the solitary wave solutions which we obtain from the solitary
waves of the nonlinear Schrödinger equation in the nonrelativistic limit of the nonlinear Dirac.

The model and the main results are described in Section 2. The necessary constructions in the context of the
nonlinear Schrödinger equation are presented in Section 3. The existence and asymptotics of solitary waves of the
nonlinear Dirac equation is covered in Section 4. The main result (Theorem 2.3) follows from Lemma 4.2 (existence
of solitary wave solutions and their asymptotics) and Proposition 5.2 (presence of a positive eigenvalue in the spectrum
of the linearized operator), which we prove using the Rayleigh–Schrödinger perturbation theory.

2. Main result

We consider the nonlinear Dirac equation

i∂tψ = −iα · ∇ψ + mβψ − f
(
ψ∗βψ

)
βψ, ψ(x, t) ∈C

N, x ∈R
n, (2.1)

with m > 0 and ψ∗ being the Hermitian conjugate of ψ . We assume that the nonlinearity f (s) is smooth and real-
valued, and that

f (0) = 0. (2.2)

Above, α · ∇ = ∑n
j=1 αj

∂
∂xj

, and the Hermitian matrices αj and β are chosen so that

(−iα · ∇ + βm)2 = (−
 + m2)IN ,

where IN is the N × N unit matrix. That is, αj and β are to satisfy

αjαk + αkαj = 2δjkIN , β2 = IN ; αjβ + βαj = 0. (2.3)

The generalized massive Gross–Neveu model (the scalar–scalar case with k > 0 in the terminology of [11]) corre-
sponds to the nonlinearity f (s) = |s|k .

According to the Dirac–Pauli theorem (cf. [18,42,30] and [40, Lemma 2.25]), the particular choice of the matrices
αj and β does not matter:

Lemma 2.1 (Dirac–Pauli theorem). Let n ∈ N. For any sets of Dirac matrices αj , β and α̃j , β̃ of the same dimen-
sion N , with 1 � j � n, there is a unitary matrix S such that

α̃j = S−1αjS, 1 � j � n, β̃ = S−1βS (2.4)

if n is odd, and such that

α̃j = σS−1α̃j S, 1 � j � n, β̃ = σS−1βS, σ = ±1, (2.5)

if n is even.

For more details, see [4].
Lemma 2.1 allows one, by a simple change of variable, to transform the nonlinear Dirac equation, changing the set

of Dirac matrices. Thus, when studying the spectral stability, we can choose the Dirac matrices at our convenience.
We use the standard Pauli matrices,

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0
0 −1

)
, (2.6)

to make the following choice:

n = 1: N = 2, α = −σ2; (2.7)

n = 2: N = 2, αj = σj , 1 � j � 2; (2.8)

n = 3: N = 4, αj =
(

0 σj

σ 0

)
, 1 � j � 3; (2.9)
j
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and in all these cases we choose

β =
(

IN/2 0
0 −IN/2

)
. (2.10)

Remark 2.2. If n is even, Lemma 2.1 may only allow us to transform Eq. (2.1) with a particular set of the Dirac
matrices to the set of the Dirac matrices as in (2.7), (2.8), (2.9), and (2.10), but with the opposite signs (this corresponds
to σ = −1 in (2.5)). In this case, the signs of αj are flipped by taking the spatial reflections, while β being opposite
to (2.10) corresponds to considering the nonrelativistic limit ω → −m, with appropriate changes to Theorem 2.3.

For a large class of nonlinearities f (s), there are solitary wave solutions of the form

ψ(x, t) = φω(x)e−iωt , φω ∈ H 1(
R,CN

)
, |ω| < m. (2.11)

In dimension n = 1, one can take

φω(x) =
[

v(x,ω)

u(x,ω)

]
, (2.12)

with v(x,ω) positive and even and u(x,ω) real-valued and odd; under these conditions, the solitary wave φω(x) is
unique (see Section 4.1 for details).

For n = 2 and n = 3, respectively,

φω(x) =
[

v(r,ω)

ieiφu(r,ω)

]
, φω(x) =

⎡
⎢⎢⎣

v(r,ω)

(
1
0

)

iu(r,ω)

(
cos θ

eiφ sin θ

)
⎤
⎥⎥⎦ , (2.13)

where v(r,ω) and u(r,ω) are real-valued, radially symmetric functions; (r,φ) are standard polar coordinates in R
2,

and (r, θ,φ) are standard spherical coordinates in R
3. The existence of solitary waves of this form is proved, for

example, in [17]. The particular solutions we consider here, however, are those constructed for ω close to m, as
outlined in Section 4.2, from the nonrelativistic limit ω → m.

Due to the U(1)-invariance, for solutions to (2.1) the value of the charge functional

Q(ψ) =
∫
Rn

∣∣ψ(x, t)
∣∣2 dx

is formally conserved. For brevity, we also denote by Q(ω) the charge of the solitary wave φω(x)e−iωt :

Q(ω) =
∫
Rn

∣∣φω(x)
∣∣2 dx. (2.14)

We are interested in the spectrum of linearization of the nonlinear Dirac equation (2.1) at a solitary wave solu-
tion (2.11).

Theorem 2.3. Let n � 3. Assume that f (s) = sk , where k ∈ N satisfies k > 2/n (and k < 2 for n = 3). Then there is
ω1 < m such that the solitary wave solutions φωe−iωt to (2.1) described above, are linearly unstable for ω ∈ (ω1,m).
More precisely, let Aω be the linearization of the nonlinear Dirac equation at a solitary wave φω(x)e−iωt . Then for
ω ∈ (ω1,m) there are eigenvalues

±λω ∈ σp(Aω), λω > 0, λω = O(m − ω).

See Fig. 1.

Remark 2.4. The existence of an eigenvalue with positive real part in the linearization at a particular solitary wave
generally implies the dynamic, or nonlinear, instability of this wave. We expect that this could be proved following
the argument of [22] given in the context of the nonlinear Schrödinger equation.



A. Comech et al. / Ann. I. H. Poincaré – AN 31 (2014) 639–654 643
Fig. 1. Main result: The point spectrum of the linearization of the nonlinear Dirac equation in R
n, n� 3, with f (s) = sk , k > 2

n , at a solitary wave
with ω � m contains two nonzero real eigenvalues, ±λω , with λω = O(m − ω). See Theorem 2.3. Also plotted on this picture is the essential
spectrum, with the edges at λ = ±i(m − ω) and with the embedded threshold points (branch points of the dispersion relation) at λ = ±i(m + ω).

Remark 2.5. Theorem 2.3 extends easily to nonlinearities f ∈ C2(R) of the form

f (s) = ask + O
(
sk+1), a > 0.

Remark 2.6. In Theorem 2.3, the value ω1 < m could be taken to be the smallest point such that there is a C1 family
of solitary waves ω �→ φω for ω ∈ (ω1,m) and moreover ∂ωQ(ω) does not vanish on (ω1,m). Indeed, by [12], the
positive and negative eigenvalues remain trapped on the real axis, not being able to collide at λ = 0 for ω ∈ (ω1,m) as
long as ∂ωQ(ω) does not vanish on this interval. These eigenvalues cannot leave into the complex plane, either, since
they are simple, while the spectrum of the operator is symmetric with respect to the real and imaginary axes.

Remark 2.7. If the family of solitary waves ω �→ φω is defined for ω ∈ (ω0,m) with ω0 < ω1 and ∂ωQ(ω) vanishes
at ω1, we do not know what happens for ω � ω1. If ∂ωQ(ω) changes the sign at ω1, then, generically, either the pair
of real eigenvalues, having collided at λ = 0 when ω = ω1, turn into a pair of purely imaginary eigenvalues (linear
instability disappears), or instead two purely imaginary eigenvalues, having met at λ = 0, turn into the second pair of
real eigenvalues (linear instability persists). If ∂ωQ(ω) vanishes at ω1 but does not change the sign, then generically
the eigenvalues touch and separate again, remaining on R+ and R−. More details are in [12].

Remark 2.8. Theorem 2.3 is in formal agreement with the Vakhitov–Kolokolov stability criterion [43], since for
ω � m one has Q′(ω) > 0 for k > 2

n
. Let us mention that the sign of the stability criterion, Q′(ω) < 0, differs from

[43] because of their writing the solitary waves in the form ϕ(x)e+iωt .

Remark 2.9. It has been shown that in the 1D case with k = 1, the small amplitude solitary waves are spectrally
stable [4].

Remark 2.10. We expect that in the 1D case with k = 2 (“quintic nonlinearity”) the small solitary wave solutions
of the nonlinear Dirac equation in 1D are spectrally stable. For the corresponding nonlinear Schrödinger equation
(quintic nonlinearity in 1D), the charge is constant, thus the zero eigenvalue of a linearized operator is always of
higher algebraic multiplicity. For the Dirac equation, this degeneracy is “resolved”: using the expression for the charge
Q(ω) from [11, Section 2A], one can see that the charge is now a decaying function for ω � m (with nonzero limit as
ω → m), suggesting that there are two purely imaginary eigenvalues ±λω in the spectrum of Aω , with λω = o(m−ω),
but no eigenvalues with nonzero real part.

Remark 2.11. Let us notice that in the 3D case for the cubic nonlinearity f (s) = s (this is the original Soler model
from [36]), based on the numerical evidence from [36,1], the charge Q(ω) has a local minimum at ω1 ≈ 0.936m,
suggesting that the solitary waves with ω1 < ω < 1 are linearly unstable, but then at ω = ω1 the real eigenvalues



644 A. Comech et al. / Ann. I. H. Poincaré – AN 31 (2014) 639–654
collide at λ = 0, and there are no nonzero real eigenvalues in the spectrum for ω � ω1. Incidentally, this agrees with
the “dilation-stability” results of [39] (one studies whether the energy is minimized or not under the charge-preserving
dilation transformations).

Remark 2.12. We cannot rule out the possibility that the eigenvalues with nonzero real part could bifurcate directly
from the imaginary axis into the complex plane. Such a mechanism is absent for the nonlinear Schrödinger equation
linearized at a ground state, for which the point eigenvalues always remain on the real or imaginary axes. At present,
though, we do not have examples of such bifurcations in the context of nonlinear Dirac equation.

Remark 2.13. For n = 3, we only consider the case k = 1, and we do not consider dimensions n > 3. This is because of
the fact that the equation −
u+u = |u|2ku in R

n has nontrivial solutions in H 1(Rn) if and only if 0 < k < 2/(n−2),
as follows from the virial identities; see [31] and [6, Example 1]. This is why our method does not allow us to construct
solitary wave solutions to the nonlinear Dirac equation (2.1) in R

n, n� 3, with k � 2/(n − 2).

Remark 2.14. We consider here only integer powers k (and only dimensions n = 1, 2, and 3), being physically
the most important cases. Mathematically, this merely avoids some minor technical complications associated with
a non-smooth nonlinearity, and the instability argument can be extended to handle the corresponding equation with
f (s) = |s|k , in any dimension n � 1, under the condition k > 2/n. (The restriction k < 2/(n − 2) is needed so that
there are nontrivial solitary waves for the NLS; see the previous remark.)

3. Nonlinear Schrödinger and its solitary waves

We are going to use the fact that the nonrelativistic limit of the nonlinear Dirac equation yields the nonlinear
Schrödinger equation,

i∂tψ = − 1

2m

ψ − |ψ |2kψ, ψ(x, t) ∈C, x ∈R

n, k > 0, n ∈N. (3.1)

3.1. Solitary waves

The properties of solitary wave solutions

ψ(x, t) = φω(x)e−iωt , φω ∈ H 1(
R

n
)
,

with the amplitude φω(x) satisfying the stationary equation

− 1

2m

φ(x) − |φ|2kφ = ωφ, x ∈R

n, (3.2)

are well-known [38,6]. For any k > 0 when n� 2 and for 0 < k < 2/(n− 2) when n� 3, for each ω ∈ (−∞,0), there
is a unique positive, radially symmetric solution

φω(x) = φω

(|x|) > 0,

which decays exponentially. This family of solitary waves, known as the ground states, is generated by rescaling a
single amplitude function:

φω(x) = |ω| 1
2k F

(√
2m|ω|x), ω < 0, (3.3)

where F(x) = F(|x|) > 0 solves

−
F − F 2k+1 = −F, x ∈ R
n. (3.4)

In one space dimension (n = 1), for k > 0, F(x) is given by the explicit formula

F(x) =
(

k + 1

cosh2 kx

) 1
2k

.
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3.2. Linearization at a solitary wave

To derive the linearization of the nonlinear Schrödinger equation (3.1) at a solitary wave ψ(x, t) = φω(x)e−iωt ,
we use the Ansatz

ψ(x, t) = (
φω(x) + ρ(x, t)

)
e−iωt , ρ(x, t) ∈ C, x ∈ R

n,

and arrive at the linearized equation

∂tρ = jl(ω)ρ, ρ(x, t) =
[

Reρ(x, t)

Imρ(x, t)

]
, (3.5)

where

j=
[

0 1
−1 0

]
, l=

[
l− 0
0 l+

]
, (3.6)

with l± self-adjoint Schrödinger operators

l−(ω) = − 1

2m

 − |φω|2k − ω, l+(ω) = l−(ω) − 2k|φω|2k. (3.7)

Since the solitary wave amplitudes φω(x) = φω(|x|) we take here are radially symmetric, we may consider the opera-
tors

lrad, l±,rad := l, l± restricted to radially symmetric functions. (3.8)

The linear stability theory of NLS ground states is well understood, and can be summarized, in terms of their
charge (2.14), as follows:

Lemma 3.1 (Vakhitov–Kolokolov stability criterion). (See [43].) For the linearization (3.5) at a ground state solitary
wave φω(x)e−iωt , there are real nonzero eigenvalues ±λ ∈ σd(jl), λ > 0, if and only if d

dω
Q(ω) > 0 at this value of

ω. If so, then ±λ ∈ σd(jlrad) are simple eigenvalues, and moreover ker l+,rad = {0}.

Using (3.3), we compute:

Q(ω) =
∫
Rn

∣∣φω(x)
∣∣2 dx = |ω| 1

k

∫
Rn

F 2(√2m|ω|x)dx = C|ω| 1
k
− n

2 , ω < 0, (3.9)

where C = ∫
Rn F 2(

√
2my)dy > 0. We see from (3.9) that for ω < 0 one has Q′(ω) < 0 for k < 2/n, Q′(ω) = 0 for

k = 2/n, and Q′(ω) > 0 for k > 2/n. Thus:

Lemma 3.2. Let n ∈ N. If k > n/2 (and k < 2/(n − 2) if n � 3) then σp(jlrad) 
 {±λ}, for some λ > 0, and in
particular the NLS ground states are linearly unstable.

4. Nonlinear Dirac and its solitary waves

Solitary waves are solutions to (2.1) of the form

ψ(x, t) = φω(x)e−iωt ; φω ∈ H 1(
R,CN

)
, ω ∈R

and as such the amplitude φω(x) must satisfy

ωφω = −iα · ∇ψ + mβψ − f
(
ψ∗βψ

)
βψ, x ∈R

n. (4.1)
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4.1. Solitary waves in one dimension

We first give a simple demonstration of the existence and uniqueness of solitary waves in one dimension, following
the article [3], and allowing for more general nonlinearities f (s).

Lemma 4.1. Let f (0) = 0. Denote g(s) = m − f (s), and let G(s) be the antiderivative of g(s) such that G(0) = 0.
Assume that there is ω0 < m such that for given ω ∈ (ω0,m) there exists Γω > 0 such that

ωΓω = G(Γω), ω �= g(Γω), and ωs < G(s) for s ∈ (0,Γω). (4.2)

Then there is a solitary wave solution ψ(x, t) = φω(x)e−iωt to (2.1), where

φω(x) =
[

v(x,ω)

u(x,ω)

]
, (4.3)

with both v and u real-valued, belonging to H 1(R) as functions of x, v being even and u odd.
More precisely, for x ∈ R and ω ∈ (ω0,m), let us define X (x,ω) and Y (x,ω) by

X = v2 − u2, Y = vu. (4.4)

Then X (x,ω) is the unique positive symmetric solution to

∂2
xX = −∂X

(−2G(X )2 + 2ω2X 2), lim
x→±∞X (x,ω) = 0, (4.5)

and Y (x,ω) = − 1
4ω

∂xX (x,ω). This solution satisfies X (0,ω) = Γω .

Proof. Substituting φω(x)e−iωt , with φω from (4.3), into (4.1), we obtain:{
ωv = ∂xu + g

(|v|2 − |u|2)v,

ωu = −∂xv − g
(|v|2 − |u|2)u.

(4.6)

Since we assume that both v and u are real-valued, we may rewrite (4.6) as the following Hamiltonian system:{
∂xu = ωv − g

(
v2 − u2)v = ∂vh(v,u),

−∂xv = ωu + g
(
v2 − u2)u = ∂uh(v,u),

(4.7)

where the Hamiltonian h(v,u) is given by

h(v,u) = ω

2

(
v2 + u2)− 1

2
G
(
v2 − u2). (4.8)

The solitary wave with a particular ω ∈ (ω0,m) corresponds to a trajectory of this Hamiltonian system such that

lim
x→±∞v(x,ω) = lim

x→±∞u(x,ω) = 0,

hence limx→±∞ X = 0. Since G(s) satisfies G(0) = 0, we conclude that h(v(x), u(x)) ≡ 0, which leads to

ω
(
v2 + u2) = G

(
v2 − u2). (4.9)

We conclude from (4.9) that solitary waves may only correspond to |ω| < m, ω �= 0.
The functions X (x,ω) and Y (x,ω) introduced in (4.4) are to solve⎧⎨

⎩
∂xX = −4ωY ,

∂xY = −(
v2 + u2)g(X ) + ωX = − 1

ω
G(X )g(X ) + ωX ,

(4.10)

and to have the asymptotic behavior lim|x|→∞ X (x) = 0, lim|x|→∞ Y (x) = 0. In the second equation in (4.10), we
used the relation (4.9). The system (4.10) can be written as the following equation on X :

∂2
xX = −∂X

(−2G(X )2 + 2ω2X 2) = 4
(
G(X )g(X ) − ω2X

)
. (4.11)
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This equation describes a particle in the potential −2G(s)2 + 2ω2s2. The condition (4.2) is needed so that s = Γω is
the turning point for the zero energy trajectory in this potential. The existence of a positive solution X (x,ω) follows.
This solution is unique up to a translation, and it will be made symmetric in x by requiring X (0,ω) = Γω . �
4.2. Solitary waves in the nonrelativistic limit

In dimensions n = 1, 2 and 3, we consider solitary wave amplitudes φω(x) of the forms given in (2.12) and (2.13).
Substituting these into the nonlinear Dirac equation (2.1), a straightforward calculation results in the system⎧⎨

⎩ ωv = ∂ru + n − 1

r
u + mv − f

(
v2 − u2)v,

ωu = −∂rv − mu + f
(
v2 − u2)u (4.12)

for the pair of real-valued functions v = v(r,ω), u = u(r,ω). Notice that Eq. (4.12) includes the 1-dimensional
case (4.6) if we interpret r = x.

Recalling that f (s) = sk , we arrive at

(ω − m)v = ∂ru + n − 1

r
u − f v, (ω + m)u = −∂rv + f u,

with

f := (
v2 − u2)k.

To consider the nonrelativistic limit, we set

m2 − ω2 = ε2, 0 < ε � m,

and rescale v(r,ω) and u(r,ω) as follows:

v(r,ω) = ε
1
k V (εr, ε), u(r,ω) = ε1+ 1

k U(εr, ε).

Then V , U should satisfy⎧⎪⎨
⎪⎩

(ω − m)ε
1
k V = ε2+ 1

k

(
∂RU + n − 1

R
U

)
− ε1/kf V,

(ω + m)ε1+ 1
k U = −ε1+ 1

k ∂RV + ε1+ 1
k f U,

where R = εr denotes the “rescaled variable”. Using ω = m − 1
2m

ε2 + O(ε4), and taking into account that

f = (
ε

2
k V 2 − ε2+ 2

k U2)k = ε2V 2k + ε4O
(
U2k + V 2k

)
,

we rewrite the system as⎧⎨
⎩

(
− 1

2m
+ O

(
ε2))V = ∂RU + n − 1

R
U − V 2k+1 + ε2O

((
U2k + V 2k

)|V |),(
2m + O

(
ε2))U = −∂RV + ε2V 2kU + ε4O

((
U2k + V 2k

)|U |). (4.13)

The rescaled system (4.13) has an obvious limit as ε → 0. Formally (for now) setting

V̂ (r) = lim
ε→0

V (r, ε), Û (r) = lim
ε→0

U(r, ε),

we arrive at

− 1

2m
V̂ = ∂RÛ + n − 1

R
Û − V̂ 2k+1, 2mÛ = −∂RV̂ . (4.14)

Substituting the second equation into the first one yields

− 1
(

∂2
R + n − 1

∂R

)
V̂ − V̂ 2k+1 = − 1

V̂ , Û = − 1
∂RV̂ .
2m R 2m 2m
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This equation for V̂ (r) is precisely Eq. (3.2) for NLS solitary wave amplitudes φω with ω = − 1
2m

. Thus we let V̂ (r)

be the (unique) NLS ground state:

V̂ (r) := (2m)−
1

2k F (r), Û (r) := −(2m)−
1

2k
−1F ′(r), (4.15)

with F(r) the unique positive spherically symmetric solution to (3.4). We can use this nonrelativistic limit to construct
nonlinear Dirac solitary waves for ε2 = m2 − ω2 � m2:

Lemma 4.2. There is ω0 < m such that for ω = √
m2 − ε2 ∈ (ω0,m), there are solutions of (4.12) of the form

v(r,ω) = ε
1
k
[
V̂ (εr) + Ṽ (εr)

]
, u(r,ω) = ε1+ 1

k
[
Û (εr) + Ũ(εr)

]
,

‖Ṽ ‖H 2 + ‖Ũ‖H 2 = O
(
ε2).

Remark 4.3. In the one-dimensional case, since the solitary waves are unique (up to symmetries), it follows that these
asymptotics describe every solitary wave for ω close to m, or equivalently every small amplitude solitary wave.

Proof. The argument parallels that of [25], where the (more general) nonlinearity f (s) = |s|θ , 0 < θ < 2 is considered
for n = 3. Writing

V (R, ε) = V̂ (R) + Ṽ (R, ε), U(R, ε) = Û (R) + Ũ (R, ε),

and subtracting equations (4.13) and (4.14), we arrive at

− 1

2m
Ṽ + O

(
ε2)V =

(
∂R + n − 1

R

)
Ũ − (2k + 1)V̂ 2kṼ

+ O
(|V̂ |2k+1Ṽ 2 + |Ṽ |2k+1)+ ε2O

((
U2k + V 2k

)|V |),
2mŨ + O

(
ε2)U = −∂RṼ + ε2V 2kU + ε4O

((
U2k + V 2k

)|U |),
which, setting

Ξ(R, ε) :=
[

Ṽ (R, ε)

Ũ(R, ε)

]
,

we may rewrite as

HΞ = OH 1

(
ε2)+ O

(
ε2|Ξ | + |Ξ |2 + |Ξ |2k+1),

where

H :=
[

− 1
2m

+ (2k + 1)V̂ 2k −(∂R + n−1
R

)

∂R 2m

]
. (4.16)

Since[
ξ

η

]
∈ kerH ⇐⇒ ξ ∈ ker l+, η = − 1

2m
∂Rξ,

and ker l+,rad = {0} (cf. definitions (3.7), (3.8)), we see that kerH = {0}. It then follows from the fact that l−1
+,rad is

bounded from L2
r (R

n,C) to H 2(Rn,C), that H−1 is bounded from H 1
r (Rn,C2) to H 2(Rn,C2) (here L2

r , H 1
r are the

corresponding subspaces of spherically symmetric functions). Hence

Ξ =H−1{OH 1

(
ε2)+ O

(
ε2|Ξ | + |Ξ |2 + |Ξ |2k+1)}, (4.17)

and since ‖Ξ‖L∞ � C‖Ξ‖H 2 (recall that n� 3), we arrive easily at∥∥R.H.S. (4.17)
∥∥

H 2 � C
∥∥OH 1

(
ε2)+ O

(
ε2|Ξ | + |Ξ |2 + |Ξ |2k+1)∥∥

H 1

� C
{
ε2 + ε‖Ξ‖H 2 + ‖Ξ‖2

2 + ‖Ξ‖2k+1
2

}
,

H H
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and so we see that for small enough ε, the map on the r.h.s. of (4.17) maps the ball of radius ε in H 2 into itself.
A similar estimate shows that this map is a contraction, and hence has a unique fixed point Ξ in this ball. Finally, we
see from (4.17) that ‖Ξ‖H 2 = O(ε2). �
5. Linear instability of small amplitude solitary waves

Our first observation here is that on spinor fields of the form

ψ(x, t) =
[

Ψ1(x, t)

Ψ2(x, t)

]
, ψ(x, t) =

[
Ψ1(r, t)

ieiφΨ2(r, t)

]
,

ψ(x, t) =
⎡
⎢⎣ Ψ1(r, t)

(
1
0

)

iΨ2(r, t)

(
cos θ

eiφ sin θ

)
⎤
⎥⎦

in dimensions n = 1, n = 2, and n = 3 respectively, the nonlinear Dirac equation (2.1) reduces to the system⎧⎨
⎩ i∂tΨ1 =

(
∂r + n − 1

r

)
Ψ2 + mΨ1 − f

(|Ψ1|2 − |Ψ2|2
)
Ψ1,

i∂tΨ2 = −∂rΨ1 − mΨ2 + f
(|Ψ1|2 − |Ψ2|2

)
Ψ2

(5.1)

(with the convention r = x for n = 1). The solitary waves considered in (2.12) and (2.13) lie in this class of fields,
corresponding to

Ψ1(r, t) = v(r,ω)e−iωt , Ψ2(r, t) = u(r,ω)e−iωt . (5.2)

To prove the instability of these solitary waves, it suffices to show that they are unstable as solutions of (5.1).

5.1. Linearization at a solitary wave

To derive the linearization of system (5.1) at a solitary wave (5.2) we consider solutions in the form of the Ansatz[
Ψ1(r, t)

Ψ2(r, t)

]
=

([
v(r,ω)

u(r,ω)

]
+

[
ρ1(r, t)

ρ2(r, t)

])
e−iωt , (5.3)

where

ρ(r, t) :=
[

ρ1(r, t)

ρ2(r, t)

]
∈ C

2.

Inserting this Ansatz into system (5.1) with f (s) = sk and recalling that u(r,ω) and v(r,ω) are real-valued, we find
that the linearized system for ρ is

i∂tρ =
[

m − ω − (v2 − u2)k ∂r + n−1
r

−∂r −m − ω + (v2 − u2)k

]
ρ

− 2k
(
v2 − u2)k−1

[
v2 −uv

−uv u2

]
Reρ. (5.4)

We note that the above equation is R-linear but not C-linear, due to the presence of the term with Reρ =
[

Re ρ1
Re ρ2

]
.

We rewrite Eq. (5.4) in terms of Reρ ∈ R
2 and Imρ ∈R

2:

∂t

[
Reρ

Imρ

]
= JL(ω)

[
Reρ

Imρ

]
(5.5)

where J corresponds to 1/i:

J =
[

0 I2
−I 0

]
,

2
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and the 4 × 4 matrix operator L(ω) is defined by

L(ω) =
[
L+(ω) 0

0 L−(ω)

]
,

where, writing

f := f
(
φ∗

ωβφω

) = (
v2(r,ω) − u2(r,ω)

)k
, f ′ := f ′(φ∗

ωβφω

)
,

we have

L−(ω) =
[

m − ω − f ∂r + n−1
r

−∂r −m − ω + f

]
(5.6)

and

L+(ω) = L−(ω) − 2f ′
[

v2 −uv

−uv u2

]
. (5.7)

Let us remind the reader that v = v(r,ω) and u = u(r,ω) in (5.6)–(5.7) both depend on ω.
Then Eq. (5.5) which describes the linearization of the reduced system (5.1) at the solitary wave φωe−iωt , takes the

form

∂t

[
Reρ

Imρ

]
= JL(ω)

[
Reρ

Imρ

]
=

[
0 L−(ω)

−L+(ω) 0

][
Reρ

Imρ

]
.

For the sake of completeness we record here the essential spectrum of the linearized operator:

Lemma 5.1. σess(JL(ω)) = iR\i(|ω| − m,m − |ω|).

Proof. The proof follows from noticing that, due to the exponential spatial decay of v(r,ω), u(r,ω) and the Weyl
theorem on the essential spectrum [33, Theorem XIII.14, Corollary 2], which leads to

σess
(
JL(ω)

) = σess
(
J(Dm − ω)

)
,

where

Dm =
[

Dm 0
0 Dm

]
, Dm = iσ2∂r + σ3m.

At the same time, since D2
m = −
 + m2, σess(Dm) =R\(−m,m), while J commutes with Dm and σ(J) = {±i}, one

concludes that

σess
(
J(Dm − ω)

) = σess
(
i(Dm − ω)

)∪ σess
(−i(Dm − ω)

) = iR\i(|ω| − m,m − |ω|). �
5.2. Unstable eigenvalue of JL for ω � m

Proposition 5.2. Let k ∈ N satisfy k > 2/n. There is ω1 < m (which depends on n and k) such that for ω ∈ (ω1,m)

there are two families of eigenvalues

±λω ∈ σp

(
JL(ω)

)
, with λω > 0, λω = O(m − ω).

Proof. The relation
[

0 L−
−L+ 0

] [ ϕ

ϑ

] = λ
[ ϕ

ϑ

]
, with ϕ,ϑ ∈ C

2, can be written explicitly as follows:

⎡
⎢⎢⎢⎣

−λ 0 m − ω − f ∂r + n−1
r

0 −λ −∂r f − m − ω

ω − m + f + 2f ′v2 −∂r − 2f ′vu −λ 0
′ ′ 2

⎤
⎥⎥⎥⎦
⎡
⎢⎣

ϕ1
ϕ2
ϑ1
ϑ2

⎤
⎥⎦ = 0. (5.8)
∂r − 2f vu m + ω − f + 2f u 0 −λ
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We divide the first and the third rows by ε2 = m2 − ω2, the second and the fourth rows by ε, and substitute R = εr ,
ϕ2 = εΦ2, ϑ2 = εΘ2, to get⎡

⎢⎢⎢⎣
− λ

ε2 0 m−ω−f

ε2 ∂R + n−1
R

0 −λ −∂R −m − ω

ω−m+f +2f ′v2

ε2 −(∂R + n−1
R

) − 2f ′vu
ε

− λ

ε2 0

∂R − 1
ε
2f ′vu m + ω − f + 2f ′u2 0 −λ

⎤
⎥⎥⎥⎦
⎡
⎢⎣

ϕ1
Φ2
ϑ1
Θ2

⎤
⎥⎦ = 0. (5.9)

Anticipating the ε → 0 limit, formally set Λ = limε→0
λ

ε2 , and introduce the matrices

AΛ =

⎡
⎢⎢⎢⎣

−Λ 0 1
2m

− V̂ 2k(R) ∂R + n−1
R

0 0 −∂R −2m

− 1
2m

+ (2k + 1)V̂ 2k(R) −(∂R + n−1
R

) −Λ 0

∂R 2m 0 0

⎤
⎥⎥⎥⎦ , (5.10)

K1 = diag[1,0,1,0], K2 = diag[0,1,0,1], (5.11)

where V̂ (R), the NLS ground state, was introduced in (4.15). We write (5.9) in the form

AΛη =
(

λ

ε2
− Λ

)
K1η + λK2η + Wη, η =

⎡
⎢⎣

ϕ1
Φ2
ϑ1
Θ2

⎤
⎥⎦ ∈ C

4, (5.12)

where W(R,ε) is a zero order differential operator with L∞ coefficients.

Lemma 5.3. ‖W(·, ε)‖L∞(R+,C4→C4) � O(ε2).

Proof. By Lemma 4.2 (and the Sobolev inequality), one has

v(r,ω) = ε
1
k V (εr) = ε

1
k
(
V̂ (εr) + Ṽ (εr, ε)

)
,

u(r,ω) = ε1+ 1
k U(εr) = ε1+ 1

k
(
Û (εr) + Ũ(εr, ε)

)
,

‖Ṽ ‖L∞ + ‖Ũ‖L∞ = O
(
ε2).

Then

f
(
v2 − u2) = ε2(V 2 − U2)k,

f ′(v2 − u2) = kε2− 2
k
(
V 2 − ε2U2)k−1

,

− 1

2m
+ m − ω − f − 2f ′v2

ε2
= O

(
ε2)− (

V 2 − ε2U2)k − 2kV 2(V 2 − ε2U2)k−1

= −(1 + 2k)V̂ 2k + OL∞
(
ε2),

f ′vu

ε
= kε2UV

(
V 2 − εU2)k−1 = OL∞

(
ε2),

m − ω + f = O
(
ε2)+ ε2(V 2 − ε2U2)k = OL∞

(
ε2),

f ′u2 = kε4U2(V 2 − εU2)k−1 = OL∞
(
ε4),

and

1

2m
+ ω − m + f

ε2
= +O

(
ε2)+ (

V 2 − ε2U2)k = V̂ 2k + OL∞
(
ε2),

and the lemma follows directly from this list of estimates. �
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Lemma 5.4. dim kerAΛ = dim ker(jlrad − Λ), where

jlrad =
[

0 l+,rad

−l−,rad 0

]
,

and where, we recall,

l−,rad = − 1

2m

(
∂R + n − 1

R

)
∂R + 1

2m
− V̂ (R)2k,

l+,rad = − 1

2m

(
∂R + n − 1

R

)
∂R + 1

2m
− (2k + 1)V̂ (R)2k.

Moreover, if k > n/2 (k = 1 if n = 3), there is Λ > 0 such that ±Λ ∈ σd(jH) are simple eigenvalues. Here H is the
operator defined in (4.16).

Proof. An easy computation shows that Φ =
[

Φ1
Φ2
Φ3
Φ4

]
∈ kerAΛ if and only if

2mΦ2 = −∂RΦ1, 2mΦ4 = −∂RΦ3, (jlrad − Λ)

[
Φ3

−Φ1

]
= 0,

and the first statement of the lemma follows from this observation. The second statement then follows from
Lemma 3.2. �

So we may assume that there is Λ > 0 such that ±Λ ∈ σd(AΛ), with eigenfunctions

kerA±Λ 
 Φ±Λ =

⎡
⎢⎢⎢⎣

±Φ1

∓ 1
2m

∂RΦ1

Φ3

− 1
2m

∂RΦ3

⎤
⎥⎥⎥⎦ , l+,radΦ1 = −ΛΦ3, l−,radΦ3 = ΛΦ1.

We will use the Rayleigh–Schrödinger perturbation theory to show that there are eigenvalues ±λ ∈ σd(JL) with
λ = ε2Λ + o(ε2).

Writing

AΛ = JL0 − ΛK1, L0 =
[
L0,+ 0

0 L0,−

]
,

with

L0,+ =
[ 1

2m
− (2k + 1)V̂ 2k ∂R + n−1

R−∂R −2m

]
, L0,− =

[ 1
2m

− V̂ 2k ∂R + n−1
R−∂R −2m

]
self-adjoint, we see that

A∗
Λ = −L0J− ΛK1 = FAΛF, F :=

[
0 I2
I2 0

]
.

Hence kerA∗
Λ is spanned by Φ∗

Λ := FΦΛ. Let PΛ denote the orthogonal projection onto Φ∗
Λ.

Seeking η and λ in the form

η = ΦΛ + ζ, ζ ⊥ ΦΛ, λ = ε2(Λ + μ),

then (5.12) becomes

AΛζ = μK1(ΦΛ + ζ ) + ε2(Λ + μ)K2(ΦΛ + ζ ) + W(ΦΛ + ζ ). (5.13)

Applying PΛ and 1 −PΛ to (5.13), one has:

0 = μ
〈
Φ∗

Λ,K1(ΦΛ + ζ )
〉+ ε2(Λ + μ)

〈
Φ∗

Λ,K2(ΦΛ + ζ )
〉+ 〈

Φ∗
Λ,W(Φ + ζ )η

〉
, (5.14)

AΛζ = (1 −PΛ)
(
μK1 + ε2(Λ + μ)K2 + W

)
(ΦΛ + ζ ). (5.15)
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Lemma 5.5.〈
Φ∗

Λ,K1ΦΛ

〉 �= 0.

Proof. Note that〈
Φ∗

Λ,K1ΦΛ

〉 = 〈FΦΛ,K1ΦΛ〉 = 2 Re〈Φ3,Φ1〉.
Now the fact that ΦΛ ∈ kerAΛ means in particular that L−Φ3 = ΛΦ1. Hence, since L− is self-adjoint,

R 
 〈Φ3,L−Φ3〉 = Λ〈Φ3,Φ1〉,
and so Re〈Φ3,Φ1〉 = 0 only if 〈Φ3,L−Φ3〉 = 0. As is well known, since L−V̂ = 0 and V̂ (r) > 0, we have L− � 0.
Thus Re〈Φ3,Φ1〉 = 0 only if L−Φ3 = 0. This, in turn, would imply that either Λ = 0 or ΦΛ = 0, both of which are
false. This finishes the proof. �

Denote by L2
r (R

n,C4) ⊂ L2(Rn,C4) the subspace of spherically symmetric functions. Now using Lemma 5.5 and
the existence of the bounded inverse A−1

Λ : Range(1 −PΛ) → Φ⊥
Λ , Eqs. (5.14), (5.15) can be written as

μ = M(μ,ζ ), ζ = Z(μ, ζ ),

with functions M :R× L2
r → R, Z :R× L2

r → L2
r given by

M(μ,ζ ) = − 1

〈Φ∗
Λ,K1ΦΛ〉

[
μ
〈
Φ∗

Λ,K1ζ
〉+ 〈

Φ∗
Λ, ε2(Λ + μ)K2(ΦΛ + ζ ) + W

〉]
, (5.16)

Z(μ, ζ ) =A−1
Λ (1 −PΛ)

(
μK1 + ε2(Λ + μ)K2 + W

)
(ΦΛ + ζ ). (5.17)

Pick Γ � 1 such that

Γ � 2
∥∥A−1

Λ (1 −PΛ)K1ΦΛ

∥∥
L2 . (5.18)

Lemma 5.6. Consider R× L2
r endowed with the metric∥∥(μ, ζ )

∥∥
Γ

= Γ |μ| + ‖ζ‖L2 .

There is ω1 ∈ (ω0,m) such that for ω ∈ (ω1,m) the map

M × Z :R× L2
r →R× L2

r , (μ, ζ ) �→ (
M(μ,ζ ),Z(μ, ζ )

)
, (5.19)

restricted onto the set

Bε = {
(μ, ζ ) ∈R× L2(

R,C4); ∥∥(μ, ζ )
∥∥

Γ
� ε

} ⊂R× L2
r

is an endomorphism and a contraction with respect to ‖ · ‖Γ .

Proof. Assuming Γ |μ| + ‖ζ‖L2 � ε < 1, and using Lemma 5.3, we have the estimates∣∣M(μ,ζ )
∣∣� C

(|μ|‖ζ‖L2 + ε2(1 + |μ|)(1 + ‖ζ‖L2

)+ ‖W‖L∞
)
� Cε2,∥∥Z(μ, ζ )

∥∥
L2 �

1

2
Γ |μ| + C

(|μ|‖ζ‖L2 + ε2(1 + |μ|)(1 + ‖ζ‖L2

)+ ‖W‖L∞
(
1 + ‖ζ‖L2

))
� 1

2
ε + Cε2,

which show that for all sufficiently small ε, M × Z maps Bε into itself. Similar estimates show that (M × Z)|Bε
is a

contraction in the metric ‖ · ‖Γ . �
According to Lemma 5.6, by the contraction mapping theorem, the map (5.19) has a unique fixed point

(μ0(ω), ζ0(ω)) ∈ Bε ⊂ R× L2
r (as long as ω ∈ (ω1,m)). Thus, we have ±ε2(Λ + μ0(ω)) ∈ σp(JL(ω)), ω ∈ (ω1,m),

with Γ |μ0(ω)| � ε, finishing the proof of the proposition. �
By Remark 2.6, Proposition 5.2 finishes the proof of Theorem 2.3.
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