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Abstract

We study the Cauchy problem for the focusing nonlinear Schrödinger (fNLS) equation. Using the ∂ generalization of the non-
linear steepest descent method we compute the long-time asymptotic expansion of the solution ψ(x, t) in any fixed space-time 
cone C(x1, x2, v1, v2) =

{
(x, t) ∈R

2 : x = x0 + vt with x0 ∈ [x1, x2], v ∈ [v1, v2]
}

up to an (optimal) residual error of order 

O
(
t−3/4

)
. In each cone C the leading order term in this expansion is a multi-soliton whose parameters are modulated by soliton–

soliton and soliton–radiation interactions as one moves through the cone. Our results require that the initial data possess one L2(R)

moment and (weak) derivative and that it not generate any spectral singularities.
© 2017 
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1. Introduction

In this paper we study the long time asymptotic behavior of the focusing nonlinear Schrödinger (fNLS) equation 
on R ×R+:

iψt + 1

2
ψxx + |ψ |2ψ = 0, ψ(x,0) = ψ0(x). (1.1)

The long time behavior of the defocusing NLS equation—equation (1.1) with the sign of cubic nonlinearity 
reversed—has been thoroughly studied [34,9,13,11,12,14]. In the defocusing case, one finds that as t → ∞,

ψ(x, t) = t−1/2α(z0)e
ix2/(2t)−iν(z0) log(4t) + E(x, t) (1.2)
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where

ν(z) = − 1

2π
log(1 − |r(z)|2), |α(z)|2 = ν(z)2, (1.3)

and

argα(z) = 1

π

z∫
−∞

log(z − s)d(log(1 − |r(s)|2)) + π

4
+ arg�(iν(z)) − arg r(z). (1.4)

Here z0 = −x/(2t), � is the gamma function, and r is the so-called reflection coefficient for the potential ψ0(x)

described below. Estimates for the size of the error term E(x, t) depend on smoothness and decay assumptions on ψ0. 
The leading term without estimates was first obtained in [34]. Using the nonlinear steepest descent method [10], it was 
shown in [11,13] that if ψ0 had a high degree of smoothness and decay then E(x, t) = O

(
t−1 log t

)
. This was later 

improved [12] to E(x, t) = O
(
t−(1/2+κ)

)
for any 0 < κ < 1/4 under the much weaker assumption that ψ0 belonged 

to the weighted Sobolev space

H 1,1 =
{
f ∈ L2(R) : xf, f ′ ∈ L2(R)

}
. (1.5)

Recently, McLaughlin and Miller [29,30], developed a method of asymptotic analysis of Riemann–Hilbert problems 
(RHPs) based on ∂ problems, rather than the asymptotic analysis of singular integrals on contours. This was success-
fully adapted to study the defocusing NLS equation both for finite mass initial data [14] and finite density initial data 
[8]; the latter of which supports soliton solutions. The advantages of this method are two fold: 1) it avoids delicate 
estimates involving Lp estimates of Cauchy projection operators (central to the work in [12]), and 2) it improves error 
estimates without additional restrictions on the initial data. The result in [14], which can be shown to be sharp, is that 
for ψ0 ∈ H 1,1, the error E(x, t) =O

(
t−3/4

)
.

In this work we apply these ∂-techniques to the inverse scattering transform (IST) for fNLS to obtain the long-
time asymptotic behavior of solutions to (1.1). The long-time behavior of solutions of fNLS are necessarily more 
detailed than in the defocusing case due to the presence of solitons which correspond to discrete spectrum of the 
non self-adjoint ZS-AKNS (Dirac) scattering operator associated with fNLS (cf. (2.1a) below). Given initial data 
ψ0 ∈ H 1,1(R) the ZS-AKNS operator for (1.1) allows for (complex conjugate pairs of) discrete spectrum anywhere in 
C\R. In the defocusing case the ZS-AKNS operator is self-adjoint and the discrete spectrum is empty for finite mass 
initial data; a non-empty discrete spectrum is possible for the finite density type data studied in [8], but it is restricted 
to lie in a fixed interval of the real axis set by the boundary conditions. The description of the minimal scattering data 
for the forward/inverse scattering transform is necessarily more complicated in the focusing case.

Let us briefly consider the minimal scattering data for (1.1). More details are given in Section 2 and the references 
therein. Associated with any point in the simple discrete spectrum, zk ∈ C

+, is a nonzero complex number ck called 
a norming constant. The real axis is the continuous spectrum of the ZS-AKNS operator along which we define a 
reflection coefficient r : R → C. In the focusing case, the reflection coefficient r may take any value in C; it is 
also possible that r may posses singularities along the real line—such points are called spectral singularities. When 
spectral singularities exist it is possible for there to be a (countably) infinite discrete spectrum which must accumulate 
at a spectral singularity; if no spectral singularities exist, the discrete spectrum is finite. For initial data ψ0 which 
produces only simple discrete spectrum and has no spectral singularities, the minimal scattering data for fNLS is 
the collection D = {r(z), {(zk, ck)}Nk=1}. This is the classical scattering map S : ψ0 �→ D for fNLS. As described in 
[3,4] such initial data is generic. In the general, non-generic case, where spectral singularities or higher order discrete 
spectrum may exist, the classical scattering map is replaced by S : ψ0 �→ v where v is a certain matrix defined along 
a contour � consisting of the real axis and a closed circle around infinity as described in [36].

Both the focusing and defocusing NLS equations are linearized by the scattering map S ; for a potential ψ0

evolving according to (1.1) the scattering data evolution is trivial: D(t) = {r(z)e2iz2t , {(zk, cke
2iz2

k t )}Nk=1} (or v(t) =
e−iz2tσ3veiz2tσ3 in the general case). It is often remarked in the literature that the scattering map S is a kind of non-
linear Fourier transform, and indeed it preserves regularity and smoothness in the same way; as shown in [37] the 
scattering map is a bijective (in fact bi-Lipschitz) map from Hj,k(R) to Hk,j (�) for any j > 0 and k ≥ 1 (in the 
classical setting without spectral singularities this reduces to the reflection coefficient r ∈ Hk,j (R)). However, it is a 
trivial calculation that in order for the time evolving scattering data to persist in the weighted Sobolev space Hk,j one 
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must have j ≥ k. It follows that the largest space Hj,k from which the IST for (1.1) is well defined is H 1,1, and this 
is precisely the space in which we will work.

Scattering data {r ≡ 0, {(zk, ck)}Nk=1} for which the reflection coefficient vanishes identically correspond to 
N -soliton solutions of (1.1). If the spectrum consists of a single point, σd = {(ξ + iη, c)} the corresponding solu-
tion of (1.1) is the one-soliton

ψsol(x, t) = ψsol(x, t; {(ξ + iη, c)}) = 2η sech(2η(x + 2ξ t − x0))e
−2i(ξx+(ξ2−η2)t)e−iφ0,

‖ψsol(·, t)‖2
L2(R)

= 4η
(1.6)

where the phase shift x0 and constant φ0 are

x0 = 1

2η
log

∣∣∣∣ c

2η

∣∣∣∣ , φ0 = π

2
+ arg(c). (1.7)

This solution is a localized pulse with speed v = −2ξ and maximum amplitude 2η. When N > 1 the solution of (1.1)
with scattering data {r ≡ 0, σd = {(zk, ck)}Nk=1}, which we label ψsol(x, t; σd), is called an N -soliton solution (cor-
responding to the discrete scattering data σd ). The long-time behavior of the N -soliton is a straightforward exercise 
in linear algebra and goes back to [35]. Generically, the solution breaks apart into N independent one-solitons; each 
traveling at distinct speed vk = −2 Re zk . When the points of discrete spectrum do not have distinct real parts the long-
time behavior is more complicated; we give a streamlined review of this in Appendix B. Likewise, in the absence of 
solitons the steepest descent analysis is significantly simpler; the procedure in [14] goes through with only superficial 
changes of certain signs. One can use [14] as a primer for working through the more involved analysis needed here to 
deal with solitons.

1.1. Main results and remarks

Our main result describes the asymptotic behavior of the solution (1.1) as t → ∞, for generic initial data 
ψ0 ∈ H 1,1(R). In order to state our results we define the following quantities derived from given scattering data 
{r, {(zk, ck)}Nk=1}. Let Z denote the projection of the discrete scattering data σd = {(zk, ck)}Nk=1 onto its first coordi-
nate Z = {zk}Nk=1 ⊂C

+; define

κ(s) = − 1

2π
log(1 + |r(s)|2), (1.8)

and for any real number ξ let

−
ξ = {k ∈ {0,1, . . . ,N} : Re zk < ξ}

+
ξ = {k ∈ {0,1, . . . ,N} : Re zk > ξ}. (1.9)

Given any real interval I = [a, b] let

Z(I) = {zk ∈Z : Re zk ∈ I}
N(I) = |Z(I)|,

Z−(I) = {zk ∈Z : Re zk < a}
Z+(I) = {zk ∈Z : Re zk > b} (1.10)

For ξ ∈ I let

−
ξ (I) = {k ∈ {0,1, . . . ,N} : a ≤ Re zk < ξ},

+
ξ (I) = {k ∈ {0,1, . . . ,N} : ξ < Re zk ≤ b},

σ±
d (I) = {(zk, c

±
k (I)) : zk ∈Z(I)}

c±
k (I) = ck

∏
zj ∈Z∓(I)

(zk − zj

zk − z∗
j

)2
exp

⎛⎜⎝±2i

∓∞∫
ξ

κ(s)

s − zk

ds

⎞⎟⎠ .

(1.11)

Finally, given pairs of velocities v1 ≤ v2 and points x1 ≤ x2 define the cone

C(x1, x2, v1, v2) :=
{
(x, t) ∈ R

2 : x = x0 + vt with x0 ∈ [x1, x2], v ∈ [v1, v2]
}

. (1.12)
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Fig. 1.1. Given initial data ψ0 with scattering data {r, {(zk, ck)}N
k=1}, the asymptotic behavior of ψ(x, t), the solution of (1.1), as |t | → ∞ with 

(x, t) ∈ C(x1, x2, v1, v2) is described to leading order by the N(I)-soliton ψsol(x, t; ̂σ±
d

(I)) corresponding to the reflectionless scattering data 
given by Z(I) and connection coefficients ̂c±

k
(I) modified by the self-interaction between solitons and with the reflection coefficient as described 

in Theorem 1.1. In the example here, the original data has nine points of discrete spectrum, but inside the cone C the solution is asymptotically 
described by a 3-soliton with discrete spectrum Z(I) = {z3, z6, z8}.

Theorem 1.1. Let ψ(x, t) be the solution of (1.1) corresponding to initial data ψ(x, t = 0) = ψ0(x) ∈ H 1,1(R) and 
suppose that ψ0 is generic, i.e., it satisfies Assumption 2.1. Let {r, {zk, ck}Nk=1} denote the scattering data generated 
from ψ0. Fix x1, x2, v1, v2 ∈ R with x1 ≤ x2 and v1 ≤ v2. Let I = [−v2/2, −v1/2], and let ξ = −x/(2t). Then, as 
t → ±∞ with (x, t) ∈ C(x1, x2, v1, v2), with C as defined in (1.12), we have

ψ(x, t) = ψsol(x, t;σ±
d (I)) + t−1/2f ±(x, t) +O

(
t−3/4

)
.

Here, ψsol(x, t; σ±
d (I)) is the N(I) soliton corresponding to the modified discrete scattering data (see Fig. 1.1) given 

by (1.11) and

f ±(x, t) = m11(ξ ;x, t)2α(ξ,±)eix2/(2t)∓iκ(ξ) log |4t | + m12(ξ ;x, t)2α(ξ,±)∗e−ix2/(2t)±iκ(ξ) log |4t |, (1.13)

with

|α(ξ,±)|2 = |κ(ξ)|, (1.14)

and

argα(ξ,±) = ±π

4
± arg�(iκ(ξ)) − arg r(ξ)

− 4
∑

k∈∓
ξ

arg(ξ − zk) ∓ 2

ξ∫
∓∞

log |ξ − s|dsκ(s). (1.15)

The coefficients m11(ξ ; x, t) and m12(ξ ; x, t) are the entries in the first row of the solution of RHP B.2 with discrete 
scattering data σ±

d (I) and  = ∓
ξ (I) evaluated at z = ξ .

Our result is essentially optimal. For initial data in the weakest possible weighted Sobolev space Hj,k in which 
the IST can be formulated, we derive an asymptotic description up to a residual O

(
t−3/4

)
error; this is the same 

order that arises in the long-time analysis of the free Schrödinger equation.1 We avoid the consideration of spectral 
singularities only to limit the length of the paper. Even subject to spectral singularities, our results should still hold 

1 The solution of iφt + 1
2 φxx = 0 on the line is

φ(x, t) = 1√
2πit

∫
R

φ0(y)ei(x−y)2/(2t)dy = eix2/(2t)

√
2πit

⎡⎣φ̂0

( x

t

)
+
∫
R

φ0(y)e−ixy/t
(
eiy2/(2t) − 1

)
dy

⎤⎦ .

The Schwarz inequality bounds the final integral by a term proportional to t−1/4‖ 〈 · 〉ψ0‖
L2(R)

.
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for any (x, t) ∈ C(x1, x2, v1, v2), such that the spectral interval I associated with the cone C does not contain any 
spectral singularities.

Remark 1.1. Theorem 1.1 requires that ψ0 ∈ H 1,1(R) so that the IST has nice mapping properties, but our asymptotic 
results depend only on the H 1(R) norm of r . In particular, the long-time calculations presented below go through 
without change for any ψ0 ∈ L2(R, (1 + |x|)dx) satisfying Assumption 2.1.

Remark 1.2. Spectral singularities may exist for data in any weighted Sobolev space Hj,k; there are even examples 
[36, Example 3.3.16] of Schwartz class data for which spectral singularities occur. However, if the initial data decays 
exponentially, i.e., for some c > 0, 

∫
R

ec|x||ψ0(x)|dx < ∞ then it is easily shown that the discrete spectrum cannot 
accumulate on the real axis. Isolated spectral singularities may still occur.

In Theorem 1.1 we give the asymptotic description in cones in order to accommodate many situations at once. In 
particular by considering small cones instead of fixed frames of reference we are able to account for uncertainties in 
the computation (or measurement) of the scattering data and thus speed of the resulting solitons. We believe that such 
a description should also be useful to study non-integrable perturbations of fNLS where the discrete spectrum would 
no longer be stationary.

The formulae above can be simplified greatly in special cones C(x1, x2, v1, v2). If the reference cone C does not 
correspond to any of the soliton speeds, i.e., if we have |ξ − Re zk| ≥ c > 0 for all (x, t) ∈ C and k = 1, . . . , N , then 
ψsol(x, t), m11(ξ) − 1, and m12(ξ) are each identically zero so the asymptotic description reduces to

ψ(x, t) = t−1/2α(ξ,±)eix2/(2t)∓iκ(ξ) log |4t | +O
(
t−3/4

)
, t → ±∞. (1.16)

This is the analog of the defocusing result (1.2).
Next, consider a cone C = C(x1, x2, v1, v2) which contains a single soliton speed, that is, suppose that zk =

ξk + iηk ∈ Z is the only point of the discrete spectrum whose real part lies in the interval I = [−v2/2, −v1/2]
and let ck be its associated norming constant. Then as t → ±∞ with (x, t) ∈ Ck the asymptotic solution reduces to

ψ(x, t) = ψsol(x, t; (zk, ĉ
±
k )) +O

(
t−1/2

)
t → ±∞

ψsol(x, t; (zk, ĉ
±
k )) = 2ηk sech

(
2ηk(x − x±

k + 2ξkt)
)
e−2i(ξkx−(η2

k−ξ2
k )t)e−iφ±

k

(1.17a)

where the angle variables are given by

x±
k = 1

2ηk

log

∣∣∣∣ ck

2ηk

∣∣∣∣+ 1

ηk

∑
zj ∈Z

±(ξk−ξj )>0

log

∣∣∣∣∣zk − zj

zk − z∗
j

∣∣∣∣∣±
−x/(2t)∫
∓∞

κ(s)ds

(s − ξk)2 + η2
k

φ±
k = π

2
+ arg ck + 2

∑
zj ∈Z

±(ξk−ξj )>0

arg

(
zk − zj

zk − z∗
j

)
∓ 2

−x/(2t)∫
∓∞

(s − ξk)κ(s)

(s − ξk)2 + η2
k

ds

(1.17b)

The last two terms in each expression above describe the asymptotic effect of the soliton–soliton interaction and the 
interaction of the soliton with the radiative component of the solution respectively. The total shifts in position and 
phase angle acquired by any simple one-soliton as it interacts with the other solitons and radiation are given by

x+
k − x−

k = 1

ηk

∑
j �=k

sgn(ξk − ξj ) log

∣∣∣∣∣zk − zj

zk − z∗
j

∣∣∣∣∣+
∞∫

−∞

sgn(ξk − s)κ(s)

(s − ξk)2 + η2
k

ds

φ+
k − φ−

k = 2
∑
j �=k

sgn(ξk − ξj ) arg

(
zk − zj

zk − z∗
j

)
+ 2

∞∫ |s − ξk|κ(s)

(s − ξk)2 + η2
k

ds.

(1.18)
−∞
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Formulas (1.17b)–(1.18) agree with the early work of Alonso [27,28], who formally calculated identical formulae 
for the asymptotic angle variables using the Gel’fand–Levitan–Marchenko method under stronger assumptions on the 
initial data.

The above formulae establish soliton resolution for data satisfying Assumption 2.1 in the following precise sense. 
Suppose that the discrete scattering data {zk}Nk=1 have M ≤ N distinct real parts, and we reindex the discrete spectral 

data as {(zj,k, cj,k)}M,μj

j,k=1 where

M∑
j=1

μj = N, Re zj,k = ξj , k = 1, . . . ,μj . (1.19)

Then as t → ±∞ the solution ψ separates at leading order into M spatially localized quasi-periodic waves—
breathers—traveling at characteristic speeds vj = −2ξj , j = 1, . . . , M , plus a radiating correction of order t−1/2:

ψ(x, t) =
M∑

j=1

ψsol

(
x, t; {(zj,k, ĉ

±
j,k)}

μj

k=1

)
+O

(
t−1/2

)
, t → ±∞. (1.20)

If all of the discrete spectral points have distinct real parts (so that M = N ), then one recovers the typical resolution 
into a sum of N one-solitons, each given by (1.17). In the simplest non-typical situation, suppose that the scattering 
data {r, {(zk, ck)}Nk=1} has exactly one pair of spectral points having the same real part, which for simplicity we label 
z1 = ξ + iη1 and z2 = ξ + iη2. Then as |t | → ∞ with x + 2ξ t =O (1) we have

ψ(x, t) = 4
η1γ

±
1

(
1 + μ|γ ±

2 |2)+ η2γ
±
2

(
1 + μ|γ ±

1 |2)
1 + |γ ±

1 |2 + |γ ±
2 |2 + 2(1 − μ)Re

(
γ ±

1 γ ±
2

∗)+ μ2|γ ±
1 γ ±

2 |2
+O

(
|t |−1/2

)
, (1.21)

as t → ±∞ where

γ ±
k = e−2ηk(x−x±

k +2ξ t)e−2i(ξx−(η2
k−ξ2)t)e−iφ±

k , k = 1,2, (1.22)

and μ =
∣∣∣ η1−η2
η1+η2

∣∣∣2 ∈ (0, 1); x±
k and φ±

k are as given by (1.17b).

Remark 1.3. Though we say that initial data ψ0 whose spectrum has distinct real parts are generic (in the sense 
that small perturbations of any non-generic initial datum will be generic) there are important classes of non-generic 
data. The so called Klaus–Shaw ‘single lobe’ potentials, ψ0(x) = A(x)e−2ikx+iφ0 with k, φ0 ∈ R and A(x) a bounded 
piecewise smooth function which is nondecreasing to the left of some x0 and nonincreasing to the right of x0, are such 
that their discrete spectrum are confined to lie along the line Rez = k, [24]. Such potentials have been extensively 
studied in the semi-classical limit [23,32,6] where the size of the discrete spectrum becomes asymptotically large.

1.2. Organization of the rest of the paper and notation

Throughout the paper we assume that the reader is familiar with the inverse scattering transform and Riemann–
Hilbert problems. The reader who wishes to re-familiarize themselves with these topics is encouraged to see [3,5,36,4]
as well as the more recent monograph [33]. In Section 2 we describe the forward scattering transform step of the IST 
in greater detail collecting the necessary results for our later work and provide references for their proofs. The section 
ends with the characterization of the inverse scattering transform in terms of a Riemann–Hilbert problem RHP 2.1. 
Sections 3–6 describe the steepest descent analysis of RHP 2.1 for t → ∞. The analysis for t → −∞ is essentially 
the same and is summarized in Appendix C. Section 3 describes the initial conjugation of RHP 2.1 to better condition 
the problem for asymptotic analysis in a given frame of reference. Section 4 introduces the ∂ analysis to define exten-
sions of the jump matrix for the non-linear steepest descent method. In Section 5 we construct a global model solution 
which captures the leading order asymptotic behavior of the solution. Removing this component of the solution results 
in a small-norm ∂ problem which is analyzed in Section 6. The proof of Theorem 1.1 is given in Section 7.

We close this introduction with some comments on our notational conventions. With regard to complex variables, 
given a variable z or a function (scalar, vector, or matrix-valued) f (z), we denote by z∗ and f (z)∗ their respective 
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complex conjugates; for non-scalar functions f ∗ does not indicate the conjugate transpose. We use capital letters M , 
M(p), and E to denote the solutions of various RHPs. Here, the p in the superscript is used as a problem index, to 
avoid having an alphabet of solutions to various RHPs. The solutions of these problems are sectionally meromorphic 
away from given oriented contours �(p) (again p acts as a problem index) where they take continuous non-tangential 
boundary values. We use subscripts ± to refer to these boundary values: if M is the function of interest M+ (resp. M−) 
refers to the non-tangential boundary value along � from the left (resp. right) as one traverses the contour � respecting 
its orientation. Finally, the symbol ∂ denotes the derivative with respect to z∗, if z = x + iy, then ∂f = 1

2 (
∂f
∂x

+ i
∂ f
∂y

).

2. Results of scattering theory for focusing NLS

The fNLS equation can be integrated [1,35] using the ZS-AKNS operator associated with Lax pair for fNLS:

(∂x −L)� = 0, L = −izσ3 + �, (2.1a)

(i∂t −B)� = 0, B = izL+ 1

2
σ3(�

2 − �x), (2.1b)

where

� = �(x, t) =
(

0 ψ(x, t)

−ψ(x, t)∗ 0

)
,

and σ3 is the third Pauli matrix σ1 = ( 0 1
1 0

)
, σ2 = ( 0 −i

i 0

)
, σ3 = ( 1 0

0 −1

)
. The existence of a simultaneous solution of 

this overdetermined system of equations requires that the potential �(x, t) satisfy the zero-curvature equation,

iLt −Bx + [L, B ] = i�t + 1

2
σ3�xx − σ3�

2 = 0, (2.2)

which is just a restatement of (1.1).
In the forward scattering step given initial data ψ0(x) one constructs solutions �(x, z) of (2.1a) with z ∈ R; in 

particular one constructs the two Jost solutions �(±)(x, z) = m(±)(x, z)e−izxσ3 , which satisfy

∂xm = −iz[σ3,m] + �m, (2.3)

and the normalization conditions

lim
x→±∞m(±)(x, z) = I, z ∈ R. (2.4)

These solutions can be expressed as Volterra type integrals

m(±)(x, z) = I +
x∫

±∞
eiz(x−y)σ3�(y)m(±)(y, z)e−iz(x−y)σ3dy (2.5)

By iteration one shows that these equations have bounded continuous solutions in both x and z whenever ψ0 ∈ L1(R).
As the matrix L in (2.1a) is traceless, the determinant of any solution � is independent of x and it follows that 

det�(±) = detm(±) ≡ 1. Also, if m(x, z) is any solution of (2.3) then m̃(x, z) = σ2m(x, z∗)∗σ2 (complex conjugate 
but no transpose) also solves (2.3). For z ∈R, σ2m

(±)(x, z∗)∗σ2 also satisfies (2.4) and it follows that

m(±)(x, z) = σ2m
(±)(x, z)∗σ2, z ∈ R. (2.6)

For z ∈ R both m(+) and m(−) define a fundamental solution matrix for (2.3) and so there exists a continuous matrix 
function S(z), the scattering matrix, satisfying

�(−)(x; z) = �(+)(x; z)S(z), z ∈ R,

S(z) =
(

a(z) −b(z)∗
b(z) a(z)∗

)
, detS(z) = |a(z)|2 + |b(z)|2 = 1

(2.7)

the coefficients a(z) and b(z) can be expressed as
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a(z) = det
[
m

(−)
1 , m

(+)
2

]
= 1 +

∫
R

ψ(y)∗m(+)
12 (y)dy = 1 +

∫
R

ψ(y)m
(−)
21 (y)dy,

b(z) = det
[
m

(+)
1 , m

(−)
1

]
= −

∫
R

ψ(y)∗e−2izym
(+)
11 (y)dy = −

∫
R

ψ(y)∗e−2izym
(−)
11 (y)dy

(2.8)

where

m(±) =
(
m

(±)
1 , m

(±)
2

)
=
(

m
(±)
11 m

(±)
12

m
(±)
21 m

(±)
22

)
. (2.9)

The following results are standard, proofs and details can be found in the literature, see for example [3,4,12].
Let m(±)

j denote the j th column of m(±) and ej denote the j th column of the identity matrix:

• m
(−)
1 (x, z), m(+)

2 (x, z) and a(z) extend analytically to z ∈C
+ with continuous boundary values on R. As z → ∞

in C+, m(−)
1 (x, z) → e1, m(+)

2 (x, z) → e2 and a(z) → 1. Analogous statements hold for the other pair of columns 
for z ∈C

−. Generally, b(z) is defined only for z ∈ R.
• At any zk ∈ C

+ for which a(zk) = 0, the solutions �(−)
1 (x, zk) and �(+)

2 (x, zk) are linearly dependent. Specifi-
cally, a norming constant ck exists such that:

�
(−)
1 (x, zk) = ck�

(+)
2 (x, zk). (2.10)

These solutions decay exponentially as x → ∓∞ respectively; this indicates that zk is an L2 eigenvalue of (2.1a)
with eigenfunction �(−)

1 (x, zk). The symmetry (2.6) implies that

�
(−)
2 (x, z∗

k) = −c∗
k�

(+)
1 (x, z∗

k), (2.11)

which shows that eigenvalues come in complex conjugate pairs.
• The reflection coefficient r and transmission coefficient τ are defined by

r(z) = b(z)

a(z)
τ (z) = 1

a(z)
(2.12)

and it follows from (2.7) that 1 + |r(z)|2 = |τ(z)|2 for each z ∈ R.
• The properties of the scattering coefficients are similar to those of the Fourier transform. Given initial data �0 in 

the weighted Sobolev space

Hj,k(R) =
{
f ∈ L2(R) : ∂j

x f, |x|kf ∈ L2(R)
}

(2.13)

the scattering coefficients a(z) − 1 ∈ Hk,1 and b(z) ∈ Hk,j . It follows that a,b, and their first k − 1 derivatives are 
each bounded continuous functions. In the absence of spectral singularities (real zeros of a(z)), there also exist 
c ∈ (0, 1) such that c < |a(z)| < 1/c. From these facts, it follows that the map R : ψ0 �→ r is a map from Hj,k to 
Hk,j (cf. [12]).

To avoid having to deal with the many pathologies possible when considering general initial data, we introduce the 
following working assumption which we will assume in all that follows.

Assumption 2.1. The initial data ψ0 for the Cauchy problem (1.1) for fNLS generates generic scattering data in the 
sense that:

i) There are no spectral singularities, i.e., there exist a constant c > 0 such that |a(z)| ≥ c for any z ∈ R.
ii) The discrete spectrum is simple, i.e., every zero of a(z) in C+ is simple.

As discussed above, the absence of spectral singularities guarantees that the discrete spectrum is finite.
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For initial data ψ0 satisfying Assumption 2.1, the collection D = {r(z), {zk, ck}Nk=1} is called the scattering data for 
ψ0(x) and the map S : ψ0 �→ D is called the (forward) scattering map. The essential fact of integrability is that if the 
potential ψ0(x) evolves according to (1.1) then the evolution of the scattering data D is trivial

D(t) =
{
r(z, t), {zk(t), ck(t)}Nk=1

}
=
{
r(z)e2itz2

, {zk, cke
2itz2

k }Nk=1

}
. (2.14)

The inverse scattering map S−1 : D(t) �→ ψ(x, t) seeks to recover the solution of (1.1) from its scattering data. This 
is done as follows: from the (now time evolving) Jost function �(±)(x, t; z) = m(±)(x, t; z)e−izxσ3 one constructs the 
function

M(z) = M(z;x, t) :=

⎧⎪⎨⎪⎩
[

m
(−)
1 (x, t; z)

a(z)
, m

(+)
2 (x, t; z)

]
: z ∈ C

+

σ2M(z∗;x, t)∗σ2 : z ∈ C
−.

(2.15)

For data ψ0 satisfying Assumption 2.1, the matrix M defined above is the solution of the following Riemann–
Hilbert problem.

Riemann–Hilbert Problem 2.1. Find an analytic function M :C\(R ∪Z ∪Z∗) → SL2(C) with the following prop-
erties

1. M(z) = I +O
(
z−1
)

as z → ∞.
2. For each z ∈ R (with R oriented left-to-right), M takes continuous boundary values M±(z) which satisfy the jump 

relation M+(z) = M−(z)V (z) where

V (z) =
(

1 + |r(z)|2 r∗(z)e−2itθ(z)

r(z)e2itθ(z) 1

)
, (2.16)

where

θ = θ(z;x, t) = z2 − 2ξz = (z − ξ)2 − ξ2, ξ = −x/(2t). (2.17)

3. M(z) has simple poles at each zk ∈ Z and z∗
k ∈Z∗ at which

Res
zk

M = lim
z→zk

M

(
0 0

cke
2itθ 0

)
,

Res
z∗
k

M = lim
z→z∗

k

M

(
0 −c∗

ke
−2itθ

0 0

)
.

(2.18)

It’s a simple consequence of Liouville’s theorem that if a solution exists, it is unique. The existence of solutions of 
RHP 2.1 for all (x, t) ∈ R

2 follows by means of Zhou’s vanishing lemma argument [36] after replacing the poles by 
jumps along small circular contours in a standard way. Expanding this solution as z → ∞, M = I + z−1M(1)(x, t) +
o
(
z−1
)

and inserting this into (2.3) one finds that

M = I + 1

2iz

[
− ∫∞

x |ψ(s,t)|2ds ψ(x,t)

ψ(x,t)∗
∫∞
x |ψ(s,t)|2ds

]
+ o

(
z−1
)

, (2.19)

and it follows that the solution of (1.1) is given by

ψ(x, t) = lim
z→∞ 2izM12(z;x, t). (2.20)

For non-generic potentials various parts of the above characterization must be altered. There can exist points z ∈ R

for which a(z) = 0, in which case M±(z) fail to exist; these are called spectral singularities. The number of points in 
the discrete spectrum of (2.1a) may be infinite, due to the first property of the solution m, the discrete spectrum must 
accumulate at a spectral singularity along the real axis. In the absence of spectral singularities the discrete spectrum 
is finite. Smoothness and decay of the initial data does not preclude the existence of spectral singularities; in [36] an
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explicit example is given of a Schwartz-class potential which generates an infinite discrete spectrum accumulating at 
z = 0. Finally, even in the case of a finite discrete spectrum, poles may coalesce resulting in higher order singularities 
at certain points of the discrete spectrum; in this case the pole conditions (2.18) must be altered. For simplicity we 
will consider here only the generic setting. Special cases of a single spectral singularity and of an infinite number of 
solitons have been partially described in [22,21].

3. Conjugation

The function M(z; x, t) defined by (2.15) which solves RHP 2.1, is normalized such that it has identity asymptotics 
as x → +∞ with t fixed. It is not unreasonable to assume that the RHP should be well conditioned as t → ∞ along a 
characteristic x = vt where v � 1. However, along an arbitrary characteristic there is no reason to expect that M will 
remain near identity. In this section we describe a transformation M �→ M(1) which renormalizes the RHP such that 
it is well behaved as t → ∞ along an arbitrary characteristic.

Let ξ = −x/(2t). Recall the partition ±
ξ of N defined by (1.9) This partition splits the residue coefficients ck in 

(2.18) into two sets: As t → ∞ with x ≥ −2ξ t , it follows from (2.17) that Im(θ(zk)) < 0 for each k ∈ −
ξ , and thus 

the residue coefficient in (2.18) at each zk for k ∈ −
ξ grows without bound as t → ∞. Similarly, for zk with k ∈ +

ξ , 
the residue coefficients are bounded or near zero. See Fig. 3.1.

The first step in our analysis is to introduce a transformation which renormalizes the Riemann–Hilbert problem 
such that it is well conditioned for t → ∞ with ξ fixed. In order to arrive at a problem which is well normalized, we 
introduce the function

T (z) = T (z, ξ) =
∏

k∈−
ξ

(
z − z∗

k

z − zk

)
exp

⎛⎝i

ξ∫
−∞

κ(s)

s − z
ds

⎞⎠ ,

κ(s) = − 1

2π
log(1 + |r(s)|2).

(3.1)

A standard result of the forward scattering theory [15] is the following trace formula for the transmission coefficient

1

a(z)
=

N∏
k=1

(
z − z∗

k

z − zk

)
exp

⎛⎝i

∞∫
−∞

κ(s)

s − z
ds

⎞⎠ (3.2)

from which we see that our function T (z, ξ) is a partial transmission coefficient which approaches the total transmis-
sion 1/a(z) as ξ → ∞.

Fig. 3.1. The exponential factor e2itθ governs the growth and decay of the jump matrix V and residue conditions (2.16)–(2.18). Depicted above are 
the regions of growth and decay of e2itθ for large |t |. Notice that the regions are reversed when t changes sign.
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Proposition 3.1. The function T (z) defined by (3.1) has the following properties:

(a) T is meromorphic in C\(−∞, ξ ]. For each k ∈ −
ξ , T (z) has a simple pole at zk and a simple zero at z∗

k ; 
elsewhere in C\(−∞, ξ ], T is nonzero and analytic.

(b) For z ∈C\(−∞, ξ ], T (z∗)∗ = 1/T (z).
(c) For z ∈ (−∞, ξ), the boundary values T± satisfy

T+(z)/T−(z) = 1 + |r(z)|2, z ∈ (−∞, ξ). (3.3)

(d) As |z| → ∞ with | arg(z)| ≤ c < π ,

T (z) = 1 + i

z

[
2
∑

k∈−
ξ

Im zk −
ξ∫

−∞
κ(s)ds

]
+O

(
z−2
)

. (3.4)

(e) As z → ξ along any ray ξ + eiφ
R+ with |φ| ≤ c < π∣∣∣T (z, ξ) − T0(ξ)(z − ξ)iκ(ξ)
∣∣∣≤ C‖r‖H 1(R)|z − ξ |1/2 (3.5)

where T0(ξ) is the complex unit

T0(ξ) =
∏

k∈−
ξ

(
ξ − z∗

k

ξ − zk

)
eiβ(ξ,ξ) = exp

⎡⎢⎣i

⎛⎜⎝β(ξ, ξ) − 2
∑

k∈−
ξ

arg(ξ − zk)

⎞⎟⎠
⎤⎥⎦ ,

β(z, ξ) = −κ(ξ) log(z − ξ + 1) +
ξ∫

−∞

κ(s) − χ(s)κ(ξ)

s − z
ds,

and χ(s) is the characteristic function of the interval (ξ − 1, ξ) and the logarithm is principally branched along 
(−∞, ξ − 1].

Proof. Parts (a)–(c) are elementary consequences of the definition (3.1) and the Sokhotski–Plemelj formula. For part 
(d) one geometrically expands the product term and the factor (s − z)−1 for large z, and uses the fact that ‖κ‖L1(R) ≤

1
2π

‖r‖L2(R) to bound the remainder in the integral term for z bounded away from the contour of integration. For part 
(e) we write

T (z, ξ) =
∏

k∈−
ξ

(
z − z∗

k

z − zk

)
exp

⎛⎜⎝i

ξ∫
ξ−1

κ(ξ)

s − z
ds + i

ξ∫
−∞

κ(s) − χ(s)κ(ξ)

s − z
ds

⎞⎟⎠
=
∏

k∈−
ξ

(
z − z∗

k

z − zk

)
(z − ξ)iκ(ξ) exp (iβ(z, ξ)) .

(3.6)

The result then follows from the facts that∣∣∣(z − ξ)iκ(ξ)
∣∣∣≤ e−πκ(ξ) =

√
1 + |r(ξ)|2 (3.7)

and using Lemma 23.3 of [4]:

|β(z, ξ) − β(ξ, ξ)| ≤ C‖r‖H 1(R)|z − ξ |1/2. � (3.8)

We define a new unknown function M(1) using our partial transmission coefficient

M(1)(z) = M(z)T (z)−σ3 (3.9)

Proposition 3.2. The function M(1) defined by (3.9) satisfies the following Riemann–Hilbert problem.
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Riemann–Hilbert Problem 3.1. Find an analytic function M(1) : C\(R ∪ Z ∪ Z∗) → SL2(C) with the following 
properties:

1. M(1)(z) = I +O
(
z−1
)

as z → ∞.

2. For each z ∈R, the boundary values M(1)
± (z) satisfy the jump relation M(1)

+ (z) = M
(1)
− (z)V (1)(z) where

V (1)(z) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
1 r∗(z)T (z)2e−2itθ

0 1

)(
1 0

r(z)T (z)−2e2itθ 1

)
z ∈ (ξ,∞)

(
1 0

r(z)T−(z)−2

1+|r(z)|2 e2itθ 1

)(
1 r∗(z)T+(z)2

1+|r(z)|2 e−2itθ

0 1

)
z ∈ (−∞, ξ)

(3.10)

3. M(1)(z) has simple poles at each zk ∈Z and z∗
k ∈ Z∗ at which

Res
zk

M(1) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
lim

z→zk

M(1)

(
0 c−1

k (1/T )′(zk)
−2e−2itθ

0 0

)
k ∈ −

ξ

lim
z→zk

M(1)

(
0 0

ckT (zk)
−2e2itθ 0

)
k ∈ +

ξ

Res
z∗
k

M(1) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
limz→z∗

k
M(1)

(
0 0

−(c∗
k )

−1T ′(z∗
k)

−2e2itθ 0

)
k ∈ −

ξ

limz→z∗
k
M(1)

(
0 −c∗

kT (z∗
k)

2e−2itθ

0 0

)
k ∈ +

ξ

(3.11)

Proof. That M(1) is unimodular, analytic in C\(R ∪Z∪Z∗), and approaches identity as z → ∞ follows directly from 
its definition, Proposition 3.1 and the properties of M . The jump (3.10) follows directly from using the factorizations 
of V , (2.16), given by

V (1)(z) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
T (z)σ3

(
1 r(z)∗e−2itθ

0 1

)(
1 0

r(z)e2itθ 1

)
T (z)−σ3 z > ξ

T−(z)σ3

(
1 0

r(z)e2itθ

1+|r(z)|2 1

)(
T+(z)

T−(z)

)σ3
(

1 r(z)∗e−2itθ

1+|r(z)|2
0 1

)
T+(z)−σ3 z < ξ

(3.12)

to the right and left of z = ξ on the real line respectively and making use of the jump relation (3.3) satisfied by 
T (z) on (−∞, ξ). Concerning the residues, since T (z) is analytic at each zk, z∗

k with k ∈ +
ξ , the residue conditions 

at these poles are an immediate consequence of (3.1). For k ∈ −
ξ , T (z) has a zero at z∗

k and a pole at zk , so that 

M
(1)
1 = M1(z)T (z)−1 has a removable singularity at zk , but acquires a pole at z∗

k . For M(1)
2 = M2(z)T (z) the situation 

is reversed; it has a pole at zk and a removable singularity at z∗
k . At zk we have

M
(1)
1 (zk) = lim

z→zk

M1(z)T (z)−1 = Res
zk

M1(z) · (1/T )′(zk)

= cke
2itθkM2(zk)(1/T )′(zk),

Res
zk

M
(1)
2 (z) = Res

z=zk

M2(z)T (z) = M2(zk)
[
(1/T )′(zk)

]−1

= c−1
k

[
(1/T )′(zk)

]−2
e−2itθM

(1)
1 (zk),

(3.13)

from which the first formula in (3.11) clearly follows. The computation of the residue at z∗
k for k ∈ −

ξ is similar. �
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4. Introducing ∂ extensions of jump factorization

The next step in our analysis is to introduce factorizations of the jump matrix whose factors admit continuous–but 
not necessarily analytic–extensions off the real axis following the ideas in [29,30,14,8]. In particular, the construction 
in [14] is essentially the reduction of what is presented here if there were no solitons present in the initial data. 
Using these extensions we define a new unknown that deforms the oscillatory jump along the real axis onto new 
contours along which the jumps are decaying. The price we pay for this non-analytic transformation is that the new 
unknown has nonzero ∂ derivatives inside the regions in which the extensions are introduced and satisfies a hybrid 
∂ /Riemann–Hilbert problem.

Define the contours

�k = ξ + ei(2k−1)π/4
R+, k = 1,2,3,4, (4.1)

oriented with increasing real part and denote the six open sectors in C—separated by R and the collection of �k , 
k = 1, . . . , 4—by �k, k = 1, . . . , 6 starting with the sector �1 between [ξ, ∞) and �1 and numbered consecutively 
continuing counterclockwise, see Fig. 4.1. Define

�R =R∪ �1 ∪ �2 ∪ �3 ∪ �4. (4.2)

Additionally, let

ρ = 1

2
min

λ,μ∈Z∪Z∗
λ�=μ

|λ − μ|. (4.3)

Note that, as poles come in conjugate pairs and (by assumption) no pole lies on the real axis, we have ρ ≤ dist(Z, R). 
Let χZ ∈ C∞

0 (C, [0, 1]) be supported near the discrete spectrum such that

χZ (z) =
{

1 dist(z,Z ∪Z∗) < ρ/3

0 dist(z,Z ∪Z∗) > 2ρ/3
(4.4)

The steepest descent method of Deift and Zhou uses factorizations like those in (3.10) to deform the jump matrix 
onto new contours in the plane on which they decay, see (4.14)–(4.15) below. The deformation requires extensions of 
the off-diagonal entries on the right hand side of (3.10), which are a priori only defined on the jump contour, into the 
appropriate regions of the complex plane. We define extensions of the off-diagonal entries of (3.10) in the following 
lemma.

Fig. 4.1. The contours �k and regions �k k = 1, . . . , 6 defining the non-analytic change of variables M(2) = M(1)R(2) . The support of the 
∂̄-derivatives, ∂M(2) = M(2)∂R(2), is shaded in gray.
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Lemma 4.1. It is possible to define functions Rj : �j →C, j = 1, 3, 4, 6, with boundary values satisfying

R1(z) =
{

r(z)T (z)−2 z ∈ (ξ,∞)

r(ξ)T0(ξ)−2(z − ξ)−2iκ(ξ)(1 − χZ (z)) z ∈ �1
(4.5a)

R3(z) =

⎧⎪⎪⎨⎪⎪⎩
r(z)∗

1 + |r(z)|2 T+(z)2 z ∈ (−∞, ξ)

r(ξ)∗

1 + |r(ξ)|2 (ξ)2(z − ξ)2iκ(ξ)(χZ (z)) z ∈ �2

(4.5b)

R4(z) =

⎧⎪⎪⎨⎪⎪⎩
r(z)

1 + |r(z)|2 T−(z)−2 z ∈ (−∞, ξ)

r(ξ)

1 + |r(ξ)|2 T0(ξ)−2(z − ξ)−2iκ(ξ)(1 − χZ (z)) z ∈ �3

(4.5c)

R6(z) =
⎧⎨⎩r(z)∗T (z)2 z ∈ (ξ,∞)

r(ξ)∗T0(ξ)2(z − ξ)2iκ(ξ)(1 − χZ (z)) z ∈ �4

(4.5d)

such that for a fixed constant c1 = c1(ψ0), and a fixed cutoff function χZ ∈ C∞
0 (C, [0, 1]) satisfying (4.4) we have2∣∣Rj (z)

∣∣≤ c1 sin2(arg(z − ξ)) + c1 〈Re z〉−1/2 ,∣∣∂Rj (z)
∣∣≤ c1∂χZ (z) + c1

∣∣r ′ (Re z)
∣∣+ c1|z − ξ |−1/2,

∂Rj (z) = 0 if dist(z,Z ∪Z∗) ≤ ρ/3.

(4.6)

Moreover, if we set R : (C \ �R) → C by R(z)
∣∣
z∈�j

= Rj(z), (with R2(z) = R5(z) = 0), the extension can be made 

such that R(z∗)∗ = R(z).

Proof. Using the constant T0(ξ) defined in Proposition 3.1, define the functions

f1(z) = r(ξ)T (z)2T0(ξ)−2(z − ξ)−2iκ(ξ) z ∈ �1

f3(z) = r(ξ)∗

1 + |r(ξ)|2 T (z)2T0(ξ)−2(z − ξ)−2iκ(ξ)z ∈ �3.
(4.7)

Let z − ξ = seiφ . Define, for z ∈ �j , j = 1, 3, the extensions

R1(z) = [f1(z) + (r(Re z) − f1(z)) cos(2φ)
]
T (z)−2(1 − χZ (z)),

R3(z) =
[
f3(z) +

(
r(Re z)∗

1 + |r(Re z)|2 − f3(z)

)
cos(2φ)

]
T (z)2(1 − χZ (z)).

(4.8)

The extensions R4 and R6 are defined using part (b) of Proposition 3.1 and choosing χZ (z) to respect Schwarz 
symmetry; we define R4 = R3(z

∗)∗ and R6(z) = R1(z
∗)∗ which preserves the Schwarz reflection symmetry.

We give the rest of the details for R1 only. The other cases are easily inferred. Clearly, R1(z) satisfies the boundary 
conditions of the lemma as cos(2φ) vanishes on �1 and χZ (z) is zero on the real axis. First consider |R1(z)|. We 
have

|R1(z)| ≤
∣∣∣2f1(z)T (z)−2(1 − χZ (z))

∣∣∣ sin2(φ) +
∣∣∣T (z)−2(1 − χZ (z)) cos(2φ)

∣∣∣ |r(Re z)|
� sin2(φ) + 〈Re z〉−1/2 .

(4.9)

Where in the first line, we have bounded the first factor in each term of the sum on the left hand side using Proposi-
tion 3.1 and equations (3.7), (4.4), and (4.7) noting that the poles of T (z)−2 are outside the support of (1 −χZ (z)). In 
the second line we’ve used the fact that r ∈ H 1(R) implies that r is Hölder-1/2 continuous and |r(u)| � 〈u〉−1/2.

2 Here and elsewhere 〈 · 〉 :=
√

1 + (·)2.



M. Borghese et al. / Ann. I. H. Poincaré – AN 35 (2018) 887–920 901
Since ∂ = (∂x + i∂y)/2 = eiφ(∂s + iρ−1∂φ)/2, we have

∂R1(z) = − [f1(z) + (r(Re z) − f1(z)) cos 2φ
]
T (z)−2∂χZ (z)

(4.10)

+
[

1

2
r ′ (Re z) cos(2φ) − ieiφ r (Re(z)) − f1(z)

|z − ξ | sin(2φ)

]
T (z)−2(1 − χZ (z)).

We arrive at (4.6) by using the continuity and decay of r(Rez) described above and the fact that as both 1 − χZ (z)

and ∂χZ (z) are supported away from the discrete spectrum, the poles and zeros of T (z) do not affect the bound. This 
gives the first two terms in the bound. For the last term we write

|r(Re z) − f1(z)| ≤ |r(Re z) − r(ξ)| + |r(ξ) − f1(z)| (4.11)

and use Cauchy–Schwarz to bound each term as follows:

|r(Re z) − r(ξ)| ≤

∣∣∣∣∣∣∣
Re z∫
ξ

r ′(s)ds

∣∣∣∣∣∣∣≤ ‖r‖H 1(R)|z − ξ |1/2 (4.12)

and

|r(ξ) − f1(z)| ≤ |r(ξ)|(1 + |r(ξ)|2)
∣∣∣T (z, ξ)2 − T0(ξ)2(z − ξ)2iκ(ξ)

∣∣∣≤ Cξ‖r‖H 1(R)|z − ξ |1/2. (4.13)

The last estimate uses (3.5) and (3.7) to bound T (z, ξ) and (z − ξ)iκ(ξ) in a neighborhood of z = ξ . The bound (4.6)
for z ∈ �1 follows immediately. �

We use the extension in Lemma 4.1 and the factorized jump matrices in (3.10) to define a new unknown function

M(2)(z) = M(1)(z)R(2)(z) (4.14)

R(2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 0

−R1(z)e
2itθ 1

)
z ∈ �1(

1 −R3(z)e
−2itθ

0 1

)
z ∈ �3(

1 0
R4(z)e

2itθ 1

)
z ∈ �4(

1 R6(z)e
−2itθ

0 1

)
z ∈ �6(

1 0
0 1

)
z ∈ �2 ∪ �5

(4.15)

Let �(2) =⋃4
j=1 �k . It is an immediate consequence of Lemma 4.1 and RHP 3.1 that M(2) satisfies the following 

∂-Riemann–Hilbert problem.

∂-Riemann–Hilbert Problem 4.1. Find a function M(2) : C\(�(2) ∪Z ∪Z∗) → SL2(C) with the following proper-
ties.

1. M(2) is continuous with sectionally continuous first partial derivatives in C \ (�(2) ∪Z ∪Z∗).
2. M(2)(z) = I +O

(
z−1
)

as z → ∞.

3. For z ∈ �(2), the boundary values satisfy the jump relation M(2)
+ (z) = M

(2)
− (z)V (2)(z), where
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V (2)(z) = I + (1 − χZ (z))δV (2),

δV (2)(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
0 0

r(ξ)T0(ξ)−2(z − ξ)−2iκ(ξ)e2itθ 0

)
z ∈ �1(

0 r(ξ)∗T0(ξ)2

1+|r(ξ)|2 (z − ξ)2iκ(ξ)e−2itθ

0 0

)
z ∈ �2⎛⎝ 0 0

r(ξ)T −2
0 (ξ)

1+|r(ξ)|2 (z − ξ)−2iκ(ξ)e2itθ 0

⎞⎠ z ∈ �3(
0 r(ξ)∗T0(ξ)2(z − ξ)2iκ(ξ)e−2itθ

0 0

)
z ∈ �4

(4.16)

4. For C \ (�(2) ∪Z ∪Z∗) we have ∂M(2)(z) = M(2)(z)∂R(2)(z) where

∂R(2)(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
0 0

−∂R1(z)e
2itθ 0

)
z ∈ �1(

0 −∂R3(z)e
−2itθ

0 0

)
z ∈ �3(

0 0

∂R4(z)e
2itθ 0

)
z ∈ �4(

0 ∂R6(z)e
−2itθ

0 0

)
z ∈ �6

0 elsewhere

(4.17)

5. M(2)(z) has simple poles at each zk ∈Z and z∗
k ∈ Z∗ at which

Res
zk

M(2) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
lim

z→zk

M(2)

(
0 c−1

k (1/T )′(zk)
−2e−2itθ

0 0

)
k ∈ −

ξ

lim
z→zk

M(2)

(
0 0

ckT (zk)
−2e2itθ 0

)
k ∈ +

ξ

Res
z∗
k

M(2) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
lim

z→z∗
k

M(2)

(
0 0

−(c∗
k )

−1T ′(z∗
k)

−2e2itθ 0

)
k ∈ −

ξ

lim
z→z∗

k

M(2)

(
0 −c∗

kT (z∗
k)

2e−2itθ

0 0

)
k ∈ +

ξ

(4.18)

Remark 4.1. In the ∂-RHP for M(2) above, it is useful to recall how the extensions Rj(z) are defined in Lemma 4.1, 
particularly the second condition in (4.6). Though (4.17) may seem to suggest that M(2) is non-analytic near points of 
the discrete spectrum, the ∂-derivative vanishes in small neighborhoods of each point of the discrete spectrum so that 
M(2) is analytic in each neighborhood.

The ∂-Riemann–Hilbert Problem 4.1 is now ideally conditioned for large t asymptotic analysis. It has jump ma-
trices which approach identity point-wise, each residue coefficient corresponding to a soliton whose speed differs 
from ξ is exponentially small, and Lemma 4.1 controls the ∂ derivatives in a manageable way. The final two sections 
construct the solution M(2) as follows:
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1. The ∂ component of ∂-RHP 4.1 is ignored, and we prove the existence of a solution of the resulting pure Riemann–
Hilbert problem and compute its asymptotic expansion.

2. Conjugating off the solution of the first step, we arrive at a pure ∂ problem which we show has a solution and 
bound its size.

Unwinding the series of transformations that led from the M to M(2) we recover the solution RHP 2.1 and then 
from (2.20) we recover a long time asymptotic expansion of the solution q(x, t) of fNLS for our class of initial data.

5. Removing the Riemann–Hilbert component of the solution

In this section we build a solution M(2)
RHP to the Riemann–Hilbert problem that results from the ∂-RHP for M(2) by 

dropping the ∂ component. Specifically:

Let M(2)
RHP be the solution of the Riemann–Hilbert problem resulting from setting ∂R(2) ≡ 0 in 

∂-RHP 4.1.
(5.1)

In this section we will prove that the solution M(2)
RHP exists and construct its asymptotic expansion for large t . Before 

we embark upon this adventure, we first show that if M(2)
RHP exists, it reduces ∂-RHP 4.1 to a pure ∂ problem.

Proposition 5.1. Suppose that M(2)
RHP is a solution of the Riemann–Hilbert problem described in (5.1), then the ratio

M(3)(z) := M(2)(z)M
(2)
RHP(z)

−1 (5.2)

is a continuously differentiable function satisfying the following ∂-problem.

∂ Problem 5.1. Find a function M(3) : C → SL2(C) with the following properties.

1. M(3) is continuous with sectionally continuous first partial derivatives in C \ (R ∪ �(2)).
2. M(3)(z) = I +O

(
z−1
)

as z → ∞.
3. For z ∈C, we have

∂M(3)(z) = M(3)(z)W(3) (5.3)

where W(3) := M
(2)
RHP(z)∂R(2)(z)M

(2)
RHP(z)

−1 and ∂R(2) is defined by (4.17).

Proof. Both M(2) and M(2)
RHP are unimodular and approach identity as z tends to infinity. It follows from (5.2) that 

M(3) inherits these properties as well as continuous differentiability in C\�(2). Since both M(2) and M(2)
RHP satisfy the 

same jump relation (4.16), we have

M(3)−1
− M

(3)
+ = M

(2)
RHP−(z)M

(2)
− (z)−1M

(2)
+ (z)M

(2)
RHP+(z)−1

= M
(2)
RHP−(z)V (2)(z)

(
M

(2)
RHP−(z)V (2)(z)

)−1 = I,
(5.4)

from which it follows that M(3) and its first partials extend continuously to �(2).
Both M(2) and M(2)

RHP are analytic in some deleted neighborhood of each point of discrete spectrum zk and satisfy 
the residue relation (4.18). Let Nk denote the constant (in z) nilpotent matrix which appears in the left side of (4.18), 
then we have the Laurent expansions

M(2)(z) = C0

[
Nk

z − zk

+ I

]
+O (z − zk) ,

M
(2)
RHP(z)

−1 =
[ −Nk

z − zk

+ I

]
Ĉ0 +O (z − zk) ,

(5.5)

where C0 and Ĉ0 are the constant terms in the Laurent expansions of M(2)(z) and M(2)
RHP(z)

−1 respectively. This 
implies that
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M(2)(z)M
(2)
RHP(z)

−1 =O (1) , (5.6)

i.e., M(3) has only removable singularities at each zk . The last property follows immediately from the definition of 
M(3), exploiting the fact that M(2)

RHP has no ∂ component:

∂M(3)(z) = ∂M(2)(z)M
(2)
RHP(z)

−1 = M(2)∂R(2)(z)M
(2)
RHP(z)

−1 = M(3)W(3)(z). � (5.7)

5.1. Constructing the model problems

We will construct the solution M(2)
RHP by seeking a solution of the form

M
(2)
RHP(z) =

{
E(z)M(out)(z) |z − ξ | > ρ/2

E(z)M(ξ)(z) |z − ξ | < ρ/2
(5.8)

where M(out) and M(ξ) are models which we construct below, and the error E(z), the solution of a small-norm 
Riemann–Hilbert problem, we will prove exists and bound it asymptotically.

5.1.1. The outer model: an N-soliton potential
The matrix M(2)

RHP is meromorphic away from the contour �(2) on which its boundary values satisfy the jump 
relation (4.16). However, at any distance from the saddle point z = ξ , the jump is uniformly near identity. Specifically, 
let Uξ denote the open neighborhood

Uξ = {z : |z − ξ | < ρ/2}, (5.9)

on which M(2)
RHP is pole free. Using (4.16) with the spectral bound (4.3), and also recalling the definition (2.17) of θ

we have

‖V (2) − I‖L∞(�(2)) =O
(
ρ−2e−√

2t |z−ξ |2) , (5.10)

which is exponentially small in �(2)\Uξ , since |z − ξ | ≥ ρ/2 outside Uξ . This estimate justifies constructing a model 
solution outside Uξ which ignores the jumps completely.

Riemann–Hilbert Problem 5.1. Find an analytic function M(out) : (C \Z ∪Z∗) → SL2(C) such that

1. M(out)(z) = I +O
(
z−1
)

as z → ∞.
2. M(out) has simple poles at each zk ∈Z and z∗

k ∈ Z∗ satisfying the residue relations in (4.18) with M(out) replacing 
M(2).

Proposition 5.2. There exist a unique solution M(out) of RHP 5.1. Specifically,

M(out)(z) = m
−

ξ (z |σ out
d ) (5.11)

where m−
ξ is the solution of RHP B.2 with  = −

ξ and σ (out)
d := {zk, ̃ck(ξ)}Nk=1 with

c̃k(ξ) = ck exp

⎛⎝ i

π

ξ∫
−∞

log(1 + |r(s)|2) ds

s − zk

⎞⎠ . (5.12)

Moreover,

lim
z→∞ 2izM

(out)
12 (z;x, t) = ψsol(x, t;σ out

d )

where ψsol(x, t; σ (out)
d ) is the N -soliton solution of (1.1) corresponding to the discrete scattering data σ (out)

d .

Proof. Observe that the conditions defining M(out) are identical to those defining m−
ξ (z | σ out

d ) in RHP B.2 with 

 = −
ξ and σd = σ

(out)
d . Proposition B.1 establishes the existence and uniqueness of solutions to RHP B.2 and the 

large z behavior follows from (B.16). �
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5.1.2. Local model near the saddle point z = ξ

For z ∈ Uξ the bound (5.10) gives a point-wise, but not uniform estimate on the decay of the jump V (2) to identity. 
In order to arrive at a uniformly small jump Riemann–Hilbert problem for the function E, implicitly defined by (5.8)
we introduce a different local model M(ξ) which exactly matches the jumps of M(2)

RHP on �(2) ∩Uξ . In order to motivate 
the model, recall the definition (2.17) of θ , and let ζ = ζ(z) denote the rescaled local variable

ζ = ζ(z) = 2
√

t(z − ξ) ⇒ 2tθ = ζ 2/2 − 2tξ2 (5.13)

which maps Uξ to an expanding neighborhood of ζ = 0. Additionally, let

rξ := r(ξ)T0(ξ)−2e2i(κ(ξ) log(2
√

t)−tξ2). (5.14)

Then, since 1 − χZ (z) ≡ 1 for z ∈ Uξ , the jumps of M(2)
RHP in Uξ can be expressed as

V (2)(z)

∣∣∣∣∣
z∈Uξ

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 0

rξ ζ(z)−2iκ(ξ)eiζ(z)2/2 1

)
z ∈ �1⎛⎝1

r∗
ξ

1+|rξ |2 ζ(z)2iκ(ξ)e−iζ(z)2/2

0 1

⎞⎠ z ∈ �2(
1 0

rξ

1+|rξ |2 ζ(z)−2iκ(ξ)eiζ(z)2/2 1

)
z ∈ �3(

1 r∗
ξ ζ(z)2iκ(ξ)e−iζ(z)2/2

0 1

)
z ∈ �4,

(5.15)

which are exactly the jumps of the parabolic cylinder model problem (A.3) which was first introduced and solved in 
[17], and later applied to the MKdV in [10]. The solution is described in Appendix A. Using (A.4) we define the local 
model M(ξ) in (5.8) by

M(ξ)(z) = M(out)(z)M(PC)(ζ(z), rξ ), z ∈ Uξ , (5.16)

which satisfies the jump V (2) of M(2)
RHP as M(out) is an analytic and bounded function in Uξ .

5.2. The small-norm Riemann–Hilbert problem for E(z)

Using the functions M(out) and M(ξ) defined by Proposition 5.2 and (5.16) respectively, (5.8) implicitly defines an 
unknown E(z) which is analytic in C\�(E),

�(E) = ∂Uξ ∪ (�(2)\Uξ ), (5.17)

where we orient ∂Uξ clockwise. It is straightforward to show that E(z) must satisfy the following Riemann–Hilbert 
problem.

Riemann–Hilbert Problem 5.2. Find a holomorphic function E : C\�(E) → SL2(C) with the following properties

1. E(z) = I +O
(
z−1
)

as z → ∞.
2. For each z ∈ �(E) the boundary values E±(z) satisfy E+(z) = E−(z)V (E)(z) where

V (E)(z) =
{

M(out)(z)V (2)(z)M(out)(z)−1 z ∈ �(2)\Uξ

M(out)(z)M(PC)(ζ(z), rξ )M
(out)(z)−1 z ∈ ∂Uξ

(5.18)

Starting from (5.18) and using (5.10) for z ∈ C\Uξ and, using (5.13), (A.7) and the boundedness of M(out) for 
z ∈ Uξ , one finds that
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|VE(z) − I | =
{
O
(
ρ−2e−√

2t |z−ξ |2
)

z ∈ �(E)\Uξ

O
(
t−1/2

)
z ∈ ∂Uξ ,

(5.19)

and it follows that

‖ 〈 · 〉k (VE − I )‖Lp(�(E)) =O
(
t−1/2

)
p ∈ [1,∞], k ≥ 0. (5.20)

This uniformly vanishing bound on VE − I establishes RHP 5.2 as a small-norm Riemann–Hilbert problem, for 
which there is a well known existence and uniqueness theorem [13,12,36]. In fact, we may write

E(z) = I + 1

2πi

∫
�(E)

(I + η(s))(VE(s) − I )

s − z
ds (5.21)

where η ∈ L2(�(E)) is the unique solution of(
1 − CV (E)

)
η = CV (E)I. (5.22)

The singular integral operator CV (E) : L2(�(E)) → L2(�(E)) is defined by

CV (E)f = C−(f (VE − I )), (5.23)

C−f (z) lim
z→�

(E)
−

1

2πi

∫
�(E)

f (s)
ds

s − z
, (5.24)

where C− is the well known Cauchy projection operator. It’s well known that ‖C−‖L2
op(�) is bounded for a very large 

class of contours � including the class of finite unions of analytic curves with finite intersection which includes �(E). 
It then follows from (5.20) and (5.23) that

‖CV (E)‖L2
op(�

(E)) � ‖C−‖L2
op(�

(E))‖V (E) − I‖L∞(�(E)) �O
(
t−1/2

)
, (5.25)

which guarantees the existence of the resolvent operator (1 − CV (E))−1 and thus of both η and E.

The existence of the solution E(z) completes the definition of M(2)
RHP(z) given by (5.8) which in turn solves (5.1)

and thus also justifies the transformation (5.2) of Proposition 5.1 to an unknown M(3) which satisfies the pure 
∂-Problem 5.1.

In order to reconstruct the solution ψ(x, t) of (1.1) we need the large z behavior of the solution of RHP 2.1. This 
will include the large z expansion of E which we give here. Geometrically expanding (s − z)−1 for z large in (5.21), 
which is justified by the finiteness of moments in (5.20), we have

E(z) = I + z−1E1 +O
(
z−2
)

(5.26)

where

E1 = − 1

2πi

∫
�(E)

(I + η(s))(V (E)(s) − I ) ds. (5.27)

Then using (5.22)–(5.25) and the bounds on VE − I in (5.19)–(5.20) we have

E1 = − 1

2πi

∮
∂Uξ

(
V E(s) − I

)
ds +O

(
t−1
)

. (5.28)

This last integral, using (5.18), (A.7), and (5.13), can be asymptotically computed by residues yielding (recall that 
∂Uξ is clockwise oriented) to leading order

E1(x, t) = 1

2i
√

t
M(out)(ξ ;x, t)

(
0 β12(rξ )

−β21(rξ ) 0

)
M(out)(ξ ;x, t)−1 +O

(
t−1
)

, (5.29)

where, using (A.6) and (5.14), we have

β12(rξ ) = β21(rξ )
∗ = α(ξ,+)eix2/(2t)−iκ(ξ) log |4t |. (5.30)
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Here

|α(ξ,+)|2 = |κ(ξ)|, (5.31)

argα(ξ,+) = π

4
+ arg�(iκ(ξ)) − arg r(ξ) − 4

∑
k∈−

ξ

arg(ξ − zk) − 2

ξ∫
−∞

log |ξ − s|dsκ(s). (5.32)

6. Analysis of the remaining ∂-problem

∂-Problem 5.1 is equivalent to the integral equation

M(3)(z) = I − 1

π

∫∫
C

∂̄M(3)(s)

s − z
dA(s) = I − 1

π

∫∫
C

M(3)(s)W(3)(s)

s − z
dA(s), (6.1)

where dA(s) is Lebesgue measure on the plane.
Equation (6.1) can be written using operator notation as

(1 − S)[M(3)(z)] = I, (6.2)

where S is the solid Cauchy operator

S[f ](z) = − 1

π

∫∫
C

f (s)W(3)(s)

s − z
dA(s). (6.3)

The following lemma shows that for sufficiently large t the operator S is small-norm, so that the resolvent operator 
(I − S)−1 exists and can be expressed as a Neumann series.

Proposition 6.1. There exists a constant C such that for all t > 0, the operator (6.3) satisfies the inequality

‖S‖L∞→L∞ ≤ Ct−1/4. (6.4)

Proof. We detail the case for matrix functions having support in the region �1, the case for the other regions follows 
similarly. Let A ∈ L∞(�1) and s = u + iv, then from (4.17) and (5.3) it follows that

|S[A](z)| ≤
∫∫
�1

|A(s)M
(2)
RHP(s)W

(2)(s)M
(2)
RHP(s)

−1|
|s − z| dA(s)

≤ ‖A‖L∞(�1)‖M(2)
RHP‖L∞(�

�
1)

‖M(2)
RHP

−1‖
L∞(�

�
1)

∫∫
�1

|∂̄R1(s)|e−4tv(u−ξ)|
|s − z| dA(s),

(6.5)

where ��
1 := �1 ∩ supp(1 − χZ ) is bounded away from the poles zk of M(2)

RHP, so that ‖(M(2)
RHP)

±1‖
L∞(�

�
1)

are finite.

Using (4.6) the result follows using the estimates in Appendix D to bound the final integral term in (6.5):

‖S‖L∞→L∞ ≤ C (I1 + I2 + I3) ≤ Ct−1/4, (6.6)

where

I1 =
∫∫
�1

|χZ (s)|e−4tv(u−ξ)

|s − z| dA(s), I2 =
∫∫
�1

|r ′(u)|e−4tv(u−ξ)

|s − z| dA(s), (6.7)

and

I3 =
∫∫
�1

|s − ξ |−1/2e−4tv(u−ξ)

|s − z| dA(s). � (6.8)
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To recover the long-time asymptotic behavior of ψ(x, t) using (2.20) it is necessary to determine the asymptotic 
behavior of the coefficient of the z−1 term in the Laurent expansion of M(3) at infinity. An integral representation of 
this term is given by the expansion

M(3)(z) = I − 1

π

∫∫
C

M(3)(s)W(3)(s)

s − z
dA(s) = I + M1

z
+ 1

π

∫∫
C

sM(3)(s)W(3)(s)

z(s − z)
dA(s), (6.9)

where

M
(3)
1 = 1

π

∫∫
C

M(3)(s)W(3)dA(s). (6.10)

Proposition 6.2. For all t > 0 there exists a constant c such that

|M(3)
1 | ≤ ct−3/4. (6.11)

A proof of Proposition 6.2 is detailed in Appendix D.

7. Long time asymptotics for focusing NLS

We are now ready to prove Theorem 1.1. We give the details of the proof for t → +∞, for t → −∞ one simply 
replaces the formulae for the various components with their counterparts for negative times found in Appendix C.

Proof of Theorem 1.1. Inverting the sequence of transformations (3.9), (4.14), (5.2), and (5.8) the solution of RHP 2.1
is given by

M(z) = M(3)(z)E(z)M(out)(z)R(2)(z)T (z)σ3 , z ∈C \ Uξ . (7.1)

The solution of (1.1) can now be recovered using (2.20).
Taking z → ∞ vertically, eventually z ∈ �2 so that R(2) = I ; in the vertical direction (3.4) gives

T (z)σ3 = I + T1σ3

z
+O

(
z−2
)

, T1 = 2i
∑
−

Im zk −
ξ∫

−∞
κ(s)ds.

Now

M =
(

I + M
(3)
1

z
+ · · ·

)(
I + E1

z
+ · · ·

)(
I + M

(out)
1

z
+ · · ·

)(
I + T1σ3

z
+ · · ·

)
, (7.2)

and consequently the coefficient of the z−1 in the Laurent expansion of M is given by

M1 = M
(3)
1 + E1 + M

(out)
1 + T1σ3. (7.3)

Using the reconstruction formula (2.20) and Proposition 6.2 we have

ψ(x, t) = 2i(M
(out)
1 )12 + 2i(E1)12 +O

(
t−3/4

)
. (7.4)

Applying Proposition 5.2 to the first term and using (5.29)–(5.32) to evaluate the second term, we have

ψ(x, t) = ψsol(x, t;σ out
d ) + t−1/2f +(x, t) +O

(
t−3/4

)
, (7.5)

where f + is as given in (1.13) and ψsol(x, t; σ out
d ) is the N -soliton generated from scattering data σ out

d defined in 
Proposition 5.2. To complete the proof, given a cone C(x1, x2, v1, v2) as defined in Theorem 1.1, we apply Corol-
lary B.3 to replace ψsol(x, t; σ out

d ) with ψsol(x, t; σ+
d (I)) up to exponential errors which are absorbed into the 

O
(
t−3/4

)
term. �
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Appendix A. The parabolic cylinder model problem

Here we describe the solution of the parabolic cylinder model problem introduced by [17] and later by [10]. It 
appears frequently in the literature of long-time asymptotic calculations for integrable nonlinear waves [14,16,18,25,
26,20]. Let �PC =⋃4

j=1 �j , where �j denotes the complex contour

�j =
{
ζ ∈ C | arg ζ = 2j − 1

4
π

}
, j = 1, . . . ,4, (A.1)

oriented with increasing real part. Let �j , j = 1, . . .6 denote the six maximally connected open sectors in C\(�PC ∪
R), where �1 denotes the sector abutting the positive real axis from above, the rest labelled sequentially as one 
encircles the origin in a counterclockwise fashion. (See Fig. A.1.) Finally, fix r ∈C and let

κ = κ(r) := − 1

2π
log(1 + |r|2). (A.2)

Fig. A.1. The contours �j and sectors �j in the ζ -plane defining RHP A.1.

Then consider the following Riemann–Hilbert problem

Parabolic Cylinder Model Riemann–Hilbert Problem A.1. Fix r ∈ C, find an analytic function M(PC)(·, r) :
C\�(PC) → SL2(C) such that

1. M(PC)(ζ, r) = I + M(PC)(1)
(r)

ζ
+O

(
ζ−2
)

uniformly as ζ → ∞.

2. For ζ ∈ �(PC), the continuous boundary values M
(PC)
± (ζ, r) satisfy the jump relation M

(PC)
+ (ζ, r) =

M
(PC)
− (ζ, r)V (PC)(ζ, r) where
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V (PC)(ζ, r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 0

rζ−2iκeiζ 2/2 1

)
arg ζ = π/4(

1 r∗ζ 2iκ e−iζ 2/2

0 1

)
arg ζ = −π/4(

1 r∗
1+|r|2 ζ 2iκe−iζ 2/2

0 1

)
arg ζ = 3π/4(

1 0
r

1+|r|2 ζ−2iκeiζ 2/2 1

)
arg ζ = −3π/4

(A.3)

RHP A.1 has an explicit solution M(PC)(ζ, r) which is expressed in terms of Da(±z), solutions of the parabolic 

cylinder equation, 
(

∂2

∂z2 +
(

1
2 − z2

2 + a
))

Da(z) = 0 [31, Chapter 12], as follows:

M(PC)(ζ, r) = �(ζ, r)P(ζ, r)e
i
4 ζ 2σ3ζ−iκσ3 (A.4)

where

P(ζ, r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 0

−r 1

)
ζ ∈ �1(

1 −r∗
1+|r|2

0 1

)
ζ ∈ �3( 1 0

r

1+|r|2 1

)
ζ ∈ �4(

1 r∗
0 1

)
ζ ∈ �6

I ζ ∈ �2 ∪ �5

�(ζ, r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎝ e− 3πκ
4 Diκ

(
e

−3iπ
4 ζ

)
−iβ12e

π
4 (κ−i)D−iκ−1

(
e− iπ

4 ζ
)

iβ21e
−3π

4 (κ+i)Diκ−1

(
e

−3iπ
4 ζ

)
e

πκ
4 D−iκ

(
e

−iπ
4 ζ
) ⎞⎠ ζ ∈C

+

⎛⎝ e
πκ
4 Diκ

(
e

iπ
4 ζ
)

−iβ12e
−3π

4 (κ−i)D−iκ−1

(
e

3iπ
4 ζ
)

iβ21e
π
4 (κ+i)Diκ−1

(
e

iπ
4 ζ
)

e
−3πκ

4 D−iκ

(
e

3iπ
4 ζ
) ⎞⎠ ζ ∈C

−

(A.5)

and β12 and β21 are the complex constants

β12 = β12(r) =
√

2πeiπ/4e−πκ/2

r�(−iκ)
, β21 = β21(r) = −√

2πe−iπ/4e−πκ/2

r∗�(iκ)
= κ

β12
. (A.6)

A derivation of this result is given in [10], a direct verification of the solution in given in the appendix of [19]. 
The essential fact for our needs is the asymptotic behavior of the solution given in the above references, as is easily 
verified using the well known asymptotic behavior of Da(z),

M(PC)(ζ, r) = I + 1

ζ

(
0 −iβ12(r)

iβ21(r) 0

)
+O

(
ζ−2
)

. (A.7)

Appendix B. Meromorphic solutions of the focusing NLS Riemann–Hilbert problem

Here we consider the solutions of the Riemann–Hilbert problem associated with the fNLS equation, RHP 2.1, for 
which the reflection coefficient r(z) ≡ 0. In this case the unknown function is analytic across the real axis and has 
isolated poles in the plane, i.e., the solution is meromorphic. The resulting, reflectionless, solutions of fNLS, ψ(x, t), 
derived from the solution of the Riemann–Hilbert problem, are multi-solitons. Here we give a simple proof of the 
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existence and uniqueness of solutions of this problem and briefly discuss some well known results concerning the 
asymptotic behavior of these solutions as t → ∞.

Given a finite discrete spectrum and their associated normalization constants, σd = {(zk, ck)}Nk=1, denote the solu-
tion of the reflectionless Riemann–Hilbert problem, RHP B.1, associated to (1.1) by m(z; x, t | σd).

Riemann–Hilbert Problem B.1. Given discrete data σd = {(zk, ck)}Nk=1 ⊂C
+ ×C∗ let Z = {zk}Nk=1. Find an ana-

lytic function m :C \ (Z ∪Z∗) → SL2(C) with the following properties.

1. m(z; x, t | σd) = I +O
(
z−1
)

as z → ∞.
2. Each point of Z ∪Z∗ is a simple pole of m(z; x, t | σd). They satisfy the residue conditions

Res
z=zk

m(z;x, t |σd) = lim
z→zk

m(z;x, t |σd)nk

Res
z=z∗

k

m(z;x, t |σd) = lim
z→z∗

k

m(z;x, t |σd)σ2n
∗
kσ2

(B.1)

where nk is the nilpotent matrix,

nk =
(

0 0
γk(x, t) 0

)
γk(x, t) := ck exp(2i(tz2

k + xzk)). (B.2)

In what follows we will omit the dependence on x, t, and/or σd and write m(z | σd) or just m(z) for m(z; x, t | σd)

when the context is clear. It’s a direct consequence of the uniqueness of the solution (which follows from Liouville’s 
theorem) and the symmetries in RHP B.1 (or more generally in RHP 2.1) that the solution of RHP B.1 must possess 
the symmetry m(z | σd) = σ2m(z∗ | σd)∗σ2. It follows that any solution of RHP B.1 must admit a partial fraction 
expansion of the form

m(z;x, t |σd) = I +
N∑

k=1

1

z − zk

(
αk(x, t) 0
βk(x, t) 0

)
+ 1

z − z∗
k

(
0 −βk(x, t)∗
0 αk(x, t)∗

)
(B.3)

for coefficients αk(x, t), βk(x, t) to be determined.

Proposition B.1. Given data σd = {(zk, ck)}Nk=1 ⊂C
+ ×C∗ such that zj �= zk for j �= k, there exists a unique solution 

of RHP B.1 for each (x, t) ∈R
2.

Proof. Inserting the partial fraction expansion (B.3) into the residue conditions (B.1) leads to, after some renormal-
ization, the following linear system of equations for j = 1, . . . , N ,

α̂j +
N∑

k=1

γj
1/2γ ∗

k
1/2

zj − z∗
k

β̂∗
k = 0, β̂∗

j −
N∑

k=1

γ ∗
j

1/2γ
1/2
k

z∗
j − zk

α̂k,= γ ∗
j

1/2 (B.4)

where we’ve defined the renormalized parameters

α̂j = αj/γ
1/2
j , and β̂∗

j = β∗
j /γ ∗

j
1/2

, (B.5)

and for brevity we’ve suppressed the (x, t) dependence of αj , βj , and γj . Letting α̂ = (̂α1, . . . , ̂αN)ᵀ, β̂ =
(β̂1, . . . , ̂βN)ᵀ, γ 1/2 = (γ

1/2
1 , . . . , γ 1/2

N )ᵀ, and A be the N × N matrix with entries

Ajk = −iγ ∗
j

1/2γ
1/2
k

(z∗
j − zk)

, j, k = 1, . . . ,N (B.6)

the system (B.4) is equivalent to the block matrix equation[
IN −i A∗

−iA IN

][
α̂

β̂∗

]
=
[

0
γ ∗1/2

]
. (B.7)
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Note that A∗ denotes only the complex, not hermitian, conjugate of A. Equation (B.7) will have a unique solution if 
and only if

det

[
IN −i A∗

−iA IN

]
= det

(
IN + AA∗) �= 0. (B.8)

Clearly, A is hermitian. Observing also that A has the inner product structure

Ajk =
∞∫

0

γ ∗
j

1/2
γ

1/2
k e

i(zk−z∗
j )s

ds =
〈
γj

1/2eizj s , γk
1/2eizks

〉
(B.9)

where the functions fj (s) = γj
1/2eizj s are linearly independent in L2(R+) since zj �= zk by assumption. It follows 

that A is positive definite. Let A1/2 denote the unique positive definite square root of A. Now the eigenvalues of 
AA∗ = A1/2

(
A1/2A∗) are the same as those of A1/2(A∗)A1/2 which is itself positive definite. If we denote these 

eigenvalues as {λk}Nk=1 ⊂R+ then it follows that

det
(
In + AA∗)= N∏

k=1

(1 + λk) > 0. (B.10)

This proves the proposition. �
B.1. Renormalizations of the reflectionless Riemann–Hilbert problem

The Riemann–Hilbert problem RHP B.1 which encodes the N -soliton solutions of (1.1) arises from a partic-
ular choice of normalization in the forward scattering step of the IST. Specifically, recalling that �(−)

1 (x, t; z)
and �(+)

2 (x, t; z) denote the first and second columns respectively of the left and right normalized Jost functions 
�(±)(x, t; z) of the ZS-AKNS scattering problem, (2.1a), the matrix m(z | σd) in RHP B.1 is defined for z ∈ C+ as

m(z;x, t |σd) =
[

�
(−)
1 (x, t; z)

a(z)

∣∣∣�(+)
2 (x, t; z)

]
ei(tz2+xz)σ3 , a(z) =

N∏
k=1

(
z − zk

z − z∗
k

)
, (B.11)

where 1/a(z) is the transmission coefficient of the reflectionless initial data. This choice of normalization ensures that 
for any fixed t , limx→+∞ m(z; x, t) = I , but is not the only choice available to us.

Motivated by examples in the literature (e.g. [7], [2]) we introduce the following transformation which prepares 
the residue coefficients for asymptotic analysis. Let  ⊆ {1, 2, . . . , N} and ∇ = c = {1, . . . , N}\. Define

a(z) =
∏
k∈

(
z − zk

z − z∗
k

)
and a∇(z) = a(z)

a(z)
=
∏
k∈∇

(
z − zk

z − z∗
k

)
. (B.12)

The renormalization

m(z |σd) = m(z |σd)a(z)σ3 =
[

�
(−)
1 (x, t; z)
a∇(z)

∣∣∣ �
(+)
2 (x, t; z)
a(z)

]
ei(tz2+xz)σ3 , (B.13)

then splits the poles between the columns of m(z | σd) according to the choice of . It’s a simple calculation to show 
that the renormalization m satisfies a modified discrete Riemann–Hilbert problem.

Riemann–Hilbert Problem B.2. Given discrete data σd = {(zk, ck)}Nk=1 ⊂C
+ ×C∗ and  ⊆ {1, . . . , N} find an an-

alytic function m : C \ (Z ∪Z∗) → SL2(C) with the following properties.

1. m(z; x, t | σd) = I +O
(
z−1
)

as z → ∞.
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2. Each point of Z ∪Z∗ is a simple pole of m(z; x, t | σd), they satisfy the residue conditions

Res
z=zk

m(z;x, t |σd) = lim
z→zk

m(z;x, t |σd)n
k

Res
z=z∗

k

m(z;x, t |σd) = lim
z→z∗

k

m(z;x, t |σd)σ2(n

k )∗σ2

(B.14)

where nk is the nilpotent matrix,

n
k =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
0 0

γk(x, t)a(zk)
2 0

)
k ∈ ∇(

0 γk(x, t)−1a
′(zk)

−2

0 0

)
k ∈ ,

γk(x, t) := ck exp(2i(tz2
k + xzk)), (B.15)

and a is as defined in (B.12).

As m(z; x, t | σd) is an explicit transformation of m(z; x, t | σd), it follows directly from Proposition B.1 that 
RHP B.2 has a unique solution whenever the poles zk ∈Z are distinct. Moreover, if ψsol(x, t) = ψsol(x, t; σd) denotes 
the N -soliton solution of (1.1) encoded by RHP B.1, then using (2.19) and (B.13) we have

m(z |σd) = I + 1

2iz

[− ∫∞
x |ψsol(s,t)|2ds+∑

k∈

4 Im zk ψsol(x,t)

ψ∗
sol(x,t)

∫∞
x |ψsol(s,t)|2ds−∑

k∈

4 Im zk

]
+O

(
z−2
)

. (B.16)

This shows that each normalization encodes ψsol in the same way. The advantage of the nonstandard normalizations 
is, as we will see below, that by choosing  correctly, other asymptotic limits in which t → ∞ with −x/2t = ξ

bounded are under better asymptotic control. The new sums appearing on the diagonal entries above, when compared 
to (2.20), represent the squared L2 mass of the solitons corresponding to each zk , k ∈ .

B.2. Long time behavior of soliton solutions

If N = 1, then the scattering data consists of only a single point σd = {(ξ + iη, c1)}. In this case, the algebraic 
system for α1(x, t) and β1(x, t) implied by (B.1)–(B.3) is trivial. Using (2.20), the solution of (1.1), ψ(x, t; σd) =
−2iβ1(x, t)∗, is given by

ψ(x, t;σd) = 2η sech (2η(x + 2ξ t − x0)) e−2i(ξx+(ξ2−η2)t)e−iφ0,

x0 = 1

2η
log

∣∣∣∣ c1

2η

∣∣∣∣ , φ0 = π

2
+ arg(c1),

(B.17)

which is a localized traveling wave of maximum amplitude 2 Imz0 traveling at speed −2 Rez0; the normalization 
constant c determines the initial location and constant phase shift of the solution.

For N > 1 exact formulas for the solution become ungainly, and we will not present them here. However, as is well 
known, the N -soliton solutions undergo elastic collisions and asymptotically separate as t → ∞ into, generically, N
single-soliton solutions traveling at speeds −2 Rezk , one for each point in the discrete spectrum {zk}Nk=1 which defines 
RHP B.1. The exception, of course, is the non-generic case in which two (or more) points of discrete spectrum lie on 
a vertical line ξ + iR.

The following proposition and its corollary make this precise. Recall the notation (1.9)–(1.12) used in Theorem 1.1
and let

μ = μ(I) = min
zk∈Z\Z(I)

{Im(zk)dist(Re zk,I)} . (B.18)

Proposition B.2. Given discrete scattering data σd = {(zk, ck)}Nk=1 ⊂C
+ × (C \ {0}), fix x1, x2, v1, v2 ∈ R with x1 ≤

x2 and v1 ≤ v2. Let I = [−v2/2, −v1/2]. Then, as t → ±∞ with (x, t) ∈ C(x1, x2, v1, v2) we have

m
∓

ξ (z;x, t |σd) =
(
I +O

(
e−4μ|t |))m

∓
ξ (I)

(z;x, t |σ±
d (I)) (B.19)

for all z bounded away from Z ∪Z∗.
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Here σ±
d (I) is the scattering data for the N(I) ≤ N soliton given by

σ±
d (I) = {(zk, c

±
k (I)) : zk ∈ Z(I)}, c±

k (I) = ck

∏
zj ∈Z∓(I)

(
zk − zj

zk − z∗
j

)2

. (B.20)

Corollary B.3. Let ψsol(x, t; σd) denote the N -soliton solution of the fNLS equation (1.1) corresponding to discrete 
scattering data σd = {(zk, ck)}Nk=1 ⊂ C

+ × (C \ {0}). Let I , C(x1, x2, v1, v2) and σ±
d (I) be as given in Proposi-

tion B.2.
Then as t → ±∞, with (x, t) ∈ C(x1, x2, v1, v2)

ψsol(x, t;σd) = ψsol(x, t;σ±
d (I)) +O

(
e−4μt

)
(B.21)

where ψsol(x, t; σ±
d (I)) is the reduced N(I)-soliton solution of fNLS with scattering data σ±

d (I).

Proof of Proposition B.2. Observe that

|γk(x0 + vt, t)| = |ck| exp[−2x0 Im(zk)] exp[−4t Im(zk)Re(zk + v/2)]. (B.22)

The choice of normalization  = ∓
ξ in RHP B.2 ensures that as |t | → ∞ with (x, t) ∈ C(x1, x2, v1, v2) that

‖n∓
ξ

k ‖ =
{
O (1) zk ∈ Z(I)

O (exp(−4μ|t |)) zk ∈ Z \Z(I),
t → ±∞. (B.23)

This suggests that the residues with zk ∈Z \Z(I) do not meaningfully contribute to the solution m∓
ξ .

For each zk ∈ Z \ Z(I) we trade the residue for a near identity jump by introducing small disks Dk around 
each zk ∈ Z \ Z(I) whose radii are chosen sufficiently small that they are non-overlapping. We make the change of 
variables

m
∓

ξ (z |σd) =

⎧⎪⎪⎨⎪⎪⎩
m̂

∓
ξ (z)

(
I + nk

z−zk

)
z ∈ Dk

m̂
∓

ξ (z)
(
I + σ2n

∗
kσ2

z−z∗
k

)
z ∈ D∗

k

m̂
∓

ξ (z) elsewhere.

(B.24)

The new unknown m̂∓
ξ (z) has jumps across each disk boundary which, by virtue of (B.23), satisfy

m̂
∓

ξ

+ (z) = m̂
∓

ξ

− (z)̂v(z) z ∈ ∂Dk ∪ ∂D∗
k (B.25)

with

‖̂v − I‖ = O (exp(−4μ|t |)) z ∈ ∂Dk ∪ ∂D∗
k . (B.26)

Next, we observe that m∓
ξ (I)

(z | σ±
d (I)) has the same poles as m̂∓

ξ (z | σd) with exactly the same residue condi-
tions. A simple calculation then shows that the quantity

e(z) = m̂
∓

ξ (z |σd)
[
m

∓
ξ (I)

(z |σ±
d (I))

]−1
(B.27)

has no poles, and its jumps satisfy estimates identical to (B.26). Using the theory of small-norm Riemann–Hilbert 
problems, one shows that e(z) exists and that e(z) = I +O

(
e−4μ|t |) for all sufficiently large |t |. It then follows from 

(B.24) and (B.27) that m∓
ξ (z; x, t | σd) = e(z)m

∓
ξ (I)

(z; x, t | σ±
d (I)) for z outside each disk Dk and D∗

k . The result 
follows immediately. �
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Appendix C. Steepest descent analysis for large negative times

The steps in the steepest descent analysis of RHP 2.1 for t → −∞ mirror those presented in Sections 3–6 for t →
∞. The differences that appear can be traced back to the fact that the regions of growth and decay of the exponential 
factors e2itθ are reversed when one considers t → −∞, see Fig. 3.1. Here we briefly sketch those changes, leaving 
the detailed calculations to the interested reader.

The first step in the analysis, as in Section 3, is a conjugation to well-condition the problem for large-time analysis. 
Similar to (3.9) define

M(1)(z) = M(z)T (z)−σ3 (C.1)

where now

T (z) = T (z, ξ) =
∏

k∈+
ξ

(
z − z∗

k

z − zk

)
exp

⎛⎜⎝i

∞∫
ξ

κ(s)

s − z
ds

⎞⎟⎠ (C.2)

satisfies properties similar to those in Proposition 3.1 subject to the obvious changes introduced by its redefinition for 
negative t . In particular, in property (d)

T (z) = 1 + i

z

[
2
∑

k∈+
ξ

Im zk −
∞∫

ξ

κ(s)ds

]
+O

(
z−2
)

, (C.3)

and in property e.∣∣∣T (z, ξ) − T0(ξ)(ξ − z)−iκ(ξ)
∣∣∣≤ C‖r‖H 1(R)|z − ξ |1/2

T0(ξ) =
∏

k∈+
ξ

(
ξ − z∗

k

ξ − zk

)
exp

⎛⎜⎝−i

∞∫
ξ

log(s − ξ)dsκ(s)

⎞⎟⎠ (C.4)

where χ is the characteristic function of [ξ, ξ + 1]. With these changes to T , M(1) satisfies RHP 3.1 with the intervals 
(−∞, ξ) and (ξ, ∞) in (3.10) and index sets −

ξ , +
ξ in (3.11) interchanged.

Next, non-analytic extensions of the jump matrices (3.10) are introduced to deform jump matrices onto contours 
along which they decay to identity as was done in Section 4. Define contours �′

j j = 1, . . . , 4 and regions �′
j , 

j = 1, . . . , 6 as in Fig. C.1. One then proves analogously to Lemma 4.1, that there exist functions Rj : �′
j → C, 

j = 1, 3, 4, 6, satisfying3

R1(z) =
{

r(z)T (z)−2 z ∈ (−∞, ξ)

r(ξ)T0(ξ)−2(ξ − z)2iκ(ξ)(1 − χZ (z)) z ∈ �′
1

(C.5a)

R3(z) =

⎧⎪⎪⎨⎪⎪⎩
r(z)∗

1 + |r(z)|2 T+(z)2 z ∈ (ξ,∞)

r(ξ)∗

1 + |r(ξ)|2 T0(ξ)2(ξ − z)−2iκ(ξ)(1 − χZ (z)) z ∈ �′
2

(C.5b)

R4(z) =

⎧⎪⎪⎨⎪⎪⎩
r(z)

1 + |r(z)|2 T−(z)−2 z ∈ (ξ,∞)

r(ξ)

1 + |r(ξ)|2 T0(ξ)−2(ξ − z)2iκ(ξ)(1 − χZ (z)) z ∈ �′
3

(C.5c)

R6(z) =
{

r(z)∗T (z)2 z ∈ (−∞, ξ)

r(ξ)∗T0(ξ)2(ξ − z)−2iκ(ξ)(1 − χZ (z)) z ∈ �′
4

(C.5d)

3 Note that the differences in sign between (C.4) and (3.5) have been incorporated into (C.5) compared to (4.5).
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Fig. C.1. The contours �(2) =⋃4
k=1 �k and regions �k , k = 1, . . . , 6, used to define the transformation M(2) = M(1)R for t < 0. The non-analytic 

matrix R(2) is shown for each region �k . The support of the ∂-derivative W(2) = ∂R(2) is shaded in gray.

satisfying the bounds in (4.6). Once the functions in (C.5) are constructed, the transformation

M(2)(z) = M(1)(z)R(z), (C.6)

where R is defined in each sector �j in Fig. C.1, defines a new unknown M(2) which satisfies

∂-Riemann–Hilbert Problem C.1. Find a function M(2) : C\(�(2) ∪Z ∪Z∗) → SL2(C) with the following proper-
ties.

1. M(2) is continuous with sectionally continuous first partial derivatives in C \ (�(2) ∪Z ∪Z∗).
2. M(2)(z) = I +O

(
z−1
)

as z → ∞.

3. For z ∈ �(2), the boundary values satisfy the jump relation M(2)
+ (z) = M

(2)
− (z)V (2)(z), where

V (2)(z) = I + (1 − χZ (z))δV (2),

δV (2)(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
0 0

r(ξ)T0(ξ)−2(ξ − z)2iκ(ξ)e2itθ 0

)
z ∈ �1(

0 r(ξ)∗T0(ξ)2

1+|r(ξ)|2 (ξ − z)−2iκ(ξ)e−2itθ

0 0

)
z ∈ �2⎛⎝ 0 0

r(ξ)T −2
0 (ξ)

1+|r(ξ)|2 (ξ − z)2iκ(ξ)e2itθ 0

⎞⎠ z ∈ �3(
0 r(ξ)∗T0(ξ)2(ξ − z)−2iκ(ξ)e−2itθ

0 0

)
z ∈ �4

(C.7)

4. For C \ (�(2) ∪ Z ∪ Z∗) we have ∂M(2)(z) = M(2)(z)∂R(2)(z) where R(2) is defined in each �k as shown in 
Fig. C.1.

5. M(2)(z) has simple poles at each zk ∈Z and z∗ ∈ Z∗ at which
k
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Res
zk

M(2) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
lim

z→zk

M(2)

(
0 0

ckT (zk)
−2e2itθ 0

)
k ∈ −

ξ

lim
z→zk

M(2)

(
0 c−1

k (1/T )′(zk)
−2e−2itθ

0 0

)
k ∈ +

ξ

Res
z∗
k

M(2) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
lim

z→z∗
k

M(2)

(
0 −c∗

kT (z∗
k)

2e−2itθ

0 0

)
k ∈ −

ξ

lim
z→z∗

k

M(2)

(
0 0

−(c∗
k )

−1T ′(z∗
k)

−2e2itθ 0

)
k ∈ +

ξ

(C.8)

The final steps of the analysis, mimicking Sections 5–6 are to first construct a solution M(2)
RHP of the Riemann–

Hilbert components of RHP C.1, and then to use the solid Cauchy integral operator to prove that the remainder 
M(3) = M(2)(M

(2)
RHP)

−1 is uniformly near identity with estimates identical to Proposition 6.2. The model M(2)
RHP again 

takes the form (5.8). Using the results of Appendix B, as t → −∞ with4 (x, t) ∈ C(x1, x2, v1, v2) the outer model 
takes the form

M(out)(z;x, t) =
[
I +O

(
e−4ρ|t |)]m+

ξ (I)
(z;x, t |σ−

d (I)) (C.9)

with σ−
d (I) defined by (1.11).

The local model M(ξ) is constructed as in Section 5.1.2. Define

ζ = ζ(z) = 2
√−t(z − ξ) ⇒ 2tθ = −ζ 2/2 − 2tξ2 (C.10)

r̂ξ := r(ξ)∗T0(ξ)2e2i(tξ2+κ(ξ) log(2
√−t)) (C.11)

Then the local model M(ξ) is given by

M(ξ)(z) = M(out)(z)σ2M
(PC)(−ζ(z), r̂ξ )σ2, (C.12)

where M(PC)(ζ, r) is the solution of RHP A.1.
The residual error E(z) now satisfies RHP 5.2 but with (5.18) now given by

V (E)(z) =
{

M(out)(z)V (2)(z)M(out)(z)−1 z ∈ �(2)\Uξ

M(out)(z)σ2M
(PC)(−ζ(z), r̂ξ )σ2M

(out)(z)−1 z ∈ ∂Uξ .
(C.13)

small-norm theory again can be used to show that E exists and satisfies E(z) = I + z−1E1 +O
(
z−2
)

where

E1 = 1

2i
√−t

M(out)(ξ ;x, t)

(
0 −β21(̂rξ )

β12(̂rξ ) 0

)
M(out)(ξ ;x, t)−1 +O

(
t−1
)

, (C.14)

and using (A.6) and (C.11) we have

−β21(̂rξ ) = −β12(̂rξ )
∗ = α(ξ,−)eix2/(2t)+iκ(ξ) log |4t | (C.15)

where

|α(ξ,−)|2 = |κ(ξ)| (C.16)

argα(ξ,−) = −π

4
− arg�(iκ(ξ)) − arg r(ξ)

− 4
∑

k∈+
ξ

arg(ξ − zk) − 2

∞∫
ξ

log |ξ − s|dsκ(s) (C.17)

4 Here, we are reusing the notation of Theorem 1.1.
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Appendix D. Details of calculations for the ∂ problem

Proposition D.1. There exist constants c1, c2, and c3 such that for all t > 0, the integrals Ij , j = 1, 2, 3, defined by 
(6.7)–(6.8) satisfy the bounds

|Ij | ≤ cj

t1/4
, j = 1,2,3. (D.1)

Proof. Our proof follows that found in [14]. Let s = u + iv and z = α + iβ . Throughout we use the elementary fact ∥∥∥ 1
s−z

∥∥∥2

L2
u(v+ξ,∞)

=
(∫∞

v+ξ
1

(u−α)2+(v−β)2 du
)1/2 ≤ ∫

R

1
u2+(v−β)2 du = π

|v−β| , to show that

|I1| ≤
∞∫

0

∞∫
v+ξ

|χZ (s)|
|s − z| e−4tv(u−ξ)dudv ≤

∞∫
0

e−4tv2

∞∫
v+ξ

|χZ (s)|
|s − z| dudv

≤
∞∫

0

e−4tv2‖χZ (s)‖L2
u(v+ξ,∞) ·

∥∥∥∥ 1

s − z

∥∥∥∥
L2

u(v+ξ,∞)

dv

≤ c1

∞∫
0

e−4tv2

|v − β|1/2
dv ≤ c1t

−1/4
∫
R

e−4(w+√
tβ)2

|w|1/2
≤ c1t

−1/4
∫
R

e−4w2

|w|1/2
≤ c1t

−1/4.

(D.2)

The bound for I2 is similar to I1. Recalling that r ∈ H 1,1(R),

|I2| ≤
∞∫

0

e−4tv2

∞∫
v+ξ

|r ′(u)|
|s − z|dudv ≤ ‖r ′(u)‖L2(R)

∞∫
0

e−4tv2
∥∥∥∥ 1

s − z

∥∥∥∥
L2

u(v+ξ,∞)

dv ≤ c2

t1/4
. (D.3)

For I3 choose p > 2 and q Hölder conjugate to p, then

|I3| ≤
∞∫

0

e−4tv2
∥∥∥(s − ξ)−1/2

∥∥∥
L

p
u (v+ξ,∞)

∥∥∥(s − z)−1
∥∥∥

L
q
u(v+ξ,∞)

dv

≤ cp

∞∫
0

e−4tv2
v1/p−1/2|v − β|1/q−1dv

(D.4)

To bound this last integral observe that
β∫

0

e−tv2
v1/p−1/2(β − v)1/q−1dv =

1∫
0

β1/2e−tβ2w2
w1/p−1/2(1 − w)1/q−1dw (D.5)

≤ ct−1/4

1∫
0

w1/p−1(1 − w)1/q−1dw ≤ Ct−1/4, (D.6)

where we’ve used the bound e−m ≤ m−1/4 for m ≥ 0 to replace the exponential factor in the second integral. Finally
∞∫

β

e−tv2
v1/p−1/2(v − β)1/q−1dv ≤

∞∫
0

e−tw2
w−1/2dw ≤ Ct−1/4. (D.7)

The result is confirmed. �
Proposition D.2. For all t > 0 there exists a constant c such that

|M(3)
1 | ≤ ct−3/4. (D.8)
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Proof. The proof given here follows calculations that can be found in [14]. Recalling that the set ��
1 = �1 ∩ supp(1 −

χZ ) is bounded away from the poles of M(2)
RHP, we have

|M(3)
1 | ≤ 1

π

∫∫
�1

|M(3)(s)M
(2)
RHP(s)W

(2)(s)M
(2)
RHP(s)

−1|dA

≤ 1

π
‖M(3)‖L∞(�)‖M(2)

RHP‖L∞(��)‖(M(2)
RHP)

−1‖L∞(��)

∫∫
�1

|∂̄R1e
2itθ |dA

≤ C

⎛⎜⎝∫∫
�1

|χZ (s)|e−4tv(u−ξ)dA +
∫∫
�1

|r ′(u)|e−4tv(u−ξ)dA +
∫∫
�1

1

|s − ξ |1/2
e−4tv(u−ξ)dA

⎞⎟⎠
≤ C(I4 + I5 + I6).

(D.9)

We bound I4 by applying the Cauchy–Schwarz inequality:

|I4| ≤
∞∫

0

‖χZ‖L2
u(v+ξ,∞)

⎛⎝ ∞∫
v

e−8tuvdu

⎞⎠1/2

dv

≤ ct−1/2

∞∫
0

e−4tv2

√
v

dv ≤ ct−3/4

∞∫
0

e−4w2

√
w

dw ≤ ct−3/4.

(D.10)

The bound for I5 follows in the same manner as for I4. For I6 we proceed as with I3 applying Hölder’s inequality 
with 2 < p < 4

|I6| ≤ c

∞∫
0

v1/p−1/2

⎛⎝ ∞∫
v

e−4qtuvdu

⎞⎠1/q

dv

≤ ct−1/q

∞∫
0

v2/p−3/2e−4tv2
dv ≤ ct−3/4

∞∫
0

w2/p−3/2e−4w2
dw ≤ ct−3/4,

(D.11)

where we have used the substitution w = t1/2v and the fact that −1 <
2

p
− 3

2
< −1

2
. �
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