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Abstract

We prove a result related to Bressan’s mixing problem. We establish an inequality for the change of Bianchini semi-norms of 
characteristic functions under the flow generated by a divergence free time dependent vector field. The approach leads to a bilinear 
singular integral operator for which we prove bounds on Hardy spaces. We include additional observations about the approach and 
a discrete toy version of Bressan’s problem.
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1. Introduction

1.1. Mixing flows

We consider subsets A of Td ≡ Rd/Zd . For 0 < r < 1/4, x ∈ Rd let Br(x) denote the ball of radius r centered 
at x, with respect to the usual geodesic distance on Td . A measurable set E ⊂ Td is mixed at scale r , with mixing 
constant κ ∈ (0, 1/2), if

κ ≤ |E ∩ Br(x)|
|Br(x)| ≤ 1 − κ, ∀x ∈ Td . (1)

Let v be a time-dependent, a priori smooth vector field, defined on Td × [0, T ] with values in the tangent bundle 
of the torus. The vector field can be considered a vector field (x, t) 	→ v(x, t) on Rd which is periodic in x, i.e.
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v(x + k, t) = v(x, t) for all (x, t) ∈Rd ×R, k ∈ Zd .

We assume that

divxv(x, t) = 0

and let � be the flow generated by v. I.e. � satisfies

∂

∂t
�(x, t) = v(�(x, t), t),

�(x,0) = x.

For every t the map x 	→ �(x, t) is a volume preserving diffeomorphism on Rd satisfying

�(x + k, t) − k = �(x, t), x ∈Rd , k ∈ Zd .

In what follows we shall also use the notation �t(x) = �(x, t). We are interested in mixing flows which transport an 
unmixed set � at time t = 0 to a set �T (�) mixed at scale ε at time t = T .

1.2. Bressan’s problem

Split Td as �L ∪ �R with �R = ��
L where

�L = {x : 0 ≤ x1 <
1

2
}, �R = {x : 1

2
≤ x1 < 1}. (2)

Let 0 < ε < 1/4. Consider a periodic flow �t generated by a smooth time dependent divergence free vector field, and 
assume that at time t = T the flow mixes �L at scale ε; i.e. the set E = �T (�L) satisfies (1) with r = ε. Bressan [5]
asks (setting κ = 1/3) whether there is a universal constant cd > 0 such that

T∫
0

∫
[0,1)d

|Dxv(x, t)|dx dt ≥ cd log(1/ε) . (3)

As noted in [5] it suffices to consider the case T = 1, by replacing v(x, t) with T v(x, t/T ). In [4], Bressan formulated 
a more general conjecture for mildly compressible flows.

Bressan’s conjecture is still open at the time of this writing. Therefore it is of interest to ask for corresponding 
lower bounds if the L1(Td) norm is replaced by a larger norm. That is, under the assumption that the flow generated 
by v mixes the set at scale ε with mixing constant γ , do we have a universal lower bound of the form

T∫
0

‖Dxv(·, t)‖Y dt ≥ cY (κ) log(1/ε) (4)

for suitable function spaces Y ⊂ L1(Td) or even Y ⊂ M(Td) with M(Td) the space of bounded Borel measures 
on Td? Crippa and De Lellis [7] showed this for Y = Lp(Td), 1 < p < ∞ and also for the space Y consisting of 
functions for which the Hardy–Littlewood maximal function MHLf belongs to L1(Td), i.e. for Y = L logL(Td). 
We shall discuss two ways to improve Y to a local Hardy space. In §7 we consider a discrete toy problem on T2 for 
which we prove an analogue of the L1 conjecture, although this toy model does not yield significant information for 
the general Bressan problem. It should be noted that the lower bound log(1/ε) is sharp and cannot even be improved 
by working with Lp spaces, see the recent results by Yao and Zlatoš [21] and by Alberti, Crippa and Mazzucato [1].

1.3. An approach to Bressan’s problem via a Bianchini semi-norm

We denote by

\
∫

f (y)dy = 1

|Br(x)|
∫

f (y)dy
Br(x) Br (x)
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the average of f over the ball Br(x). For ε < 1/8 define the truncated Bianchini semi-norm by

‖f ‖B(ε) :=
1/4∫
ε

∫
Td

∣∣f (x) − \
∫

Br(x)

f (y)dy
∣∣dx

dr

r

and let the Bianchini space consist of all L1(Td) functions for which

‖f ‖B := sup
ε<1/4

‖f ‖B(ε) < ∞.

This space was proposed by Bianchini in [2] as a measure for mixing in a one-dimensional shuffling problem. There 
it was denoted Ḃ0,1,1 in reference to Besov although this space does not actually belong to the usual scale of Besov 
spaces. The connection with mixing is given by the following
Observation: If E is mixed at scale ε > 0, with mixing constant κ , then∣∣∣1E(x) − \

∫
Br(x)

1E(y)dy

∣∣∣≥ κ a.e. ∀r > ε.

Hence integrating in r and x one gets

‖1E‖B ≥ ‖1E‖B(ε/2) � κ log(1/ε) .

Also by straightforward computation ‖1�L
‖B � 1 for �L as in (2). Our main result is an inequality for the change 

of the Bianchini norm of a characteristic function under the flow, which does not itself refer to mixing. In this result 
h1(Td) denotes the local Hardy space ([10]); note that for p > 1, we have the embeddings Lp(Td) � L logL(Td) �
h1(Td) � L1(Td).

Theorem 1.1. Let v, φ be as above. Then the inequality

‖1φT (A)‖B ≤ ‖1A‖B + Cd

T∫
0

‖Dv(·, t)‖h1(Td ) dt

holds for any measurable subset A ⊂Td , with Cd a universal constant.

Theorem 1.1 gives an alternative approach to the results by Crippa and De Lellis. By the above discussion the 
following implication on the mixing problem is immediate.

Corollary 1.2. Let 0 < ε < 1/4 and let the vector field v satisfy the assumptions in the Bressan problem stated in §1.2. 
Then inequality (4) holds with Y = h1(Td).

A weaker form of Theorem 1.1, with Dv(·, t) ∈ Lp , p > 1, was cited in [17, eq. (1.5)] with reference to the 
current project, and served as initial motivation for the harmonic analysis results of that paper. Flavien Léger [13]
independently found a related approach to mixing which leads to a limiting version of the singular integral forms 
in (9) below. Instead of the change of the Bianchini norm of characteristic functions he considers the change of the 
square of a logarithmic L2-Sobolev norm of an arbitrary passive scalar advected under a divergence free vector field. 
For more comments about this see §5.2 below.

This paper

A computation reducing the problem to an inequality for bilinear singular integral operators is given in §2.1. In 
§2.2 we recall the connection with Christ–Journé operators. In §2.3 we describe the natural decomposition of our 
singular integral form and state the two main Propositions 2.4 and 2.5 which lead to h1 → L1 boundedness. These 
propositions are proved in §3 and §4. In §5 we make additional remarks about the approach by Crippa and De Lellis 
and the results by Léger. In §6 we prove a result concerning the (non)-feasability of the singular integral estimate for 
Bressan’s L1 conjecture and formulate a related discrete problem. Finally, in §7 we include some positive results on a 
toy model for the L1 version of Bressan’s conjecture.
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2. The reduction to singular integrals

2.1. The main computation

Given A ⊂ Td we define

fA(x) = 1A(x) − 1
A�(x).

Since constants (and thus 1A + 1
A� ) have semi-norm equal to 0 in B(ε) we have ‖1A‖B = ‖1

A�‖B and thus

‖1A‖B(ε) = 1

2
‖fA‖B(ε) . (5)

For a periodic time independent vector field b and functions f , g on Td we define

Sper
ε [f,g, b] =

∫∫
(x,y)∈Td×T

d

ε≤|x−y|≤1/4

〈x − y, b(x) − b(y)〉
|x − y|d+2

g(y)f (x) dy dx. (6)

Proposition 2.1. Let v, φ be as in the introduction. Then

∥∥1�T (A)

∥∥
Bε

− ∥∥1A

∥∥
Bε

= 1

2Vd

T∫
0

Sper
ε

[
f�t (A), f�t (A), v(·, t)]dt

where Vd denotes the volume of the unit ball in Rd .

Proof. We compute using the incompressibility of the flow,

‖fA ◦ �−1
T ‖B(ε) − ‖fA‖B(ε)

=
1/4∫
ε

[∫
Td

∣∣fA(�−1
T (x)) − \

∫
Br (x)

fA(�−1
T (y))dy

∣∣dx

−
∫ ∣∣fA(x) − \

∫
Br(x)

fA(y)dy
∣∣dx
] dr

r

=
1/4∫
ε

[∫
Td

∣∣fA(z) − \
∫

�−1
T Br (�T (z))

fA(w)dw
∣∣dz

−
∫ ∣∣fA(x) − \

∫
Br(x)

fA(y)dy
∣∣dx
] dr

r
.

Now fA(x) = 1 for x ∈ A and fA(x) = −1 for x ∈ A�. Thus from the above, as we use that −|E| ≤ ∫
E

fA(y)dy ≤ |E|
for all measurable sets E, we obtain
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‖fA ◦ �−1
T ‖B(ε) − ‖fA‖B(ε) =

1/4∫
ε

{∫
A

[
fA(x) − \

∫
�−1

T Br (�T (x))

fA(y)dy
]
dx

−
∫
A

[
fA(x) − \

∫
Br(x)

fA(y)dy
]
dx

+
∫
A�

[
\
∫

�−1
T Br (�T (x))

fA(y)dy − fA(x)
]
dx

−
∫
A�

[
\
∫

Br(x)

fA(y)dy − fA(x)
]
dx
} dr

r

and this implies

‖fA ◦ �−1
T ‖B(ε) − ‖fA‖B(ε)

=
1/4∫
ε

∫
fA(x)
[

\
∫

Br (x)

fA(y)dy − \
∫

�−1
T Br (�T (x))

fA(y)dy
]
dx

dr

r

= −
∫

fA(x)

T∫
0

d

dt

[ 1/4∫
ε

\
∫

�−1
t Br (�t (x))

fA(y)dy
dr

r

]
dt dx (7)

Now let Vd denote the measure of the unit ball in Rd . Then

1/4∫
ε

\
∫

�−1
t Br (�t (x))

fA(y)dy
dr

r

= V −1
d

1/4∫
ε

r−d−1
∫

{y:|�t (x)−�t (y)|≤r}
fA(y)dy dr

=
∫

Hε(�t (x) − �t(y))fA(y)dy

where

Hε(u) =

⎧⎪⎨⎪⎩
d−1V −1

d (ε−d − (1/4)−d) if |u| ≤ ε

d−1V −1
d (|u|−d − (1/4)−d) if ε < |u| ≤ 1/4

0 if |u| > 1/4

Hε is a Lipschitz function, and has a bounded gradient given by

∇Hε(u) = −V −1
d

u

|u|d+2
1A(ε,1/4)(u)

where A(ε, 1/4)(u) = {u ∈ Rd : ε ≤ |u| ≤ 1/4}. Thus
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d

dt

[ 1/4∫
ε

\
∫

�−1
t Br (�t (x))

fA(y)dy
dr

r

]

=
∫ 〈

d
dt

(�t (x) − �t(y)),∇Hε(�t (x) − �t(y))
〉
fA(y)dy

= −
∫

ε≤|�t (x)−�t (y)|≤ 1
4

fA(y)
〈v(�t (x), t) − v(�t (y), t),�t (x) − �t(y)〉

Vd |�t(x) − �t(y)|d+2
dy.

Using this in (7) and changing variables we obtain

‖f�T (A)‖B(ε) − ‖fA‖B(ε)

=
T∫

0

∫∫
ε≤|x−y|≤ 1

4

f�t (A)(x)f�t (A)(y)
〈v(x, t) − v(y, t), x − y〉

Vd |x − y|d+2
dy dx dt

which gives the assertion. �
In order to complete the proof of Theorem 1.1 it suffices to prove, for divergence free vector fields b, the inequality∣∣Sper

ε [1A,1B, b]∣∣� ‖Db‖h1(T) (8)

for measurable subsets A, B ⊂ Td and apply Proposition 2.1. Without loss of generality (after localization) one can 
assume that the diameters of A and B are small. We can then transfer the problem to Rd and look at the analogous 
singular integral form on Rd , defined by

Sε,R[f,g, b] =
∫∫

ε≤|x−y|≤R

〈x − y, b(x) − b(y)〉
|x − y|d+2

g(y)f (x) dy dx. (9)

Now (8) follows from

Theorem 2.2. (i) For ε < R,∣∣Sε,R[f,g, b]∣∣≤ Cd‖Db‖H 1(Rd )‖g‖∞‖f ‖∞ (10)

with Cd independent of ε, R.
(ii) If in addition R < 1 the Hardy space H 1 may be replaced in (10) with the local Hardy space h1.

Remark. An examination of the proof of Theorem 2.2 also shows that for f, g ∈ L∞, Db ∈ H 1,

lim
ε→0

R→∞
Sε,R[f,g, b] = S[f,g, b] (11)

where S is a singular integral form satisfying∣∣S[f,g, b]∣∣≤ Cd‖Db‖H 1‖g‖∞‖f ‖∞. (12)

2.2. Connection with Christ–Journé operators

There is a close relation with the operators considered by Christ and Journé [6], and in more generality by three 
of the authors [17]. The result of Proposition 2.1 is cited in [17] and served as a motivation for the harmonic analysis 
results of that paper.

For β ∈ L1
loc we can define for almost every pair (x, y) ∈Rd ×Rd

mx,y[β] =
1∫
β(sx + (1 − s)y) ds, (13)
0
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the mean of β over the line segment connecting the points x and y. Given a Calderón–Zygmund convolution kernel 
K in Rd , d ≥ 2, and a ∈ L∞(Rd) (or Lq(Rd)) the so called d-commutator of first order is defined by

CK [f,β](x) =
∫
Rd

K(x − y)mx,y[β]f (y)dy. (14)

For a divergence free vector field b set

βij = ∂bi

∂xj

(15)

so that

bi(x) − bi(y) =
d∑

j=1

(xj − yj )mx,y[βij ].

By the assumption div(b) = 0 we have βdd(x) = − 
∑d−1

i=1 βii(x); hence

〈x − y, b(x) − b(y)〉
|x − y|d+2

=
d−1∑
i=1

Ki(x − y)mx,y[βii] +
∑

1≤i,j≤d
i �=j

Kij (x)mx,y[βij ] (16)

where

Ki(x) = (xi − yi)
2 − (xd − yd)2

|x − y|d+2
(17a)

and

Kij (x) = (xi − yi)(xj − yj )

|x − y|d+2
. (17b)

Consequently,

S[f,g, b] =
d−1∑
i=1

∫
CKi

[g,βii](x)f (x) dx +
∑
i �=j

∫
CKij

[g,βij ](x)f (x) dx . (18)

This identity turns our problem into a problem on d-commutators. Note that Ki(x) and Kij (x) above are of the form 
�(x/|x|)|x|−d where � ∈ C∞(Sd−1) is even with 

∫
Sd−1 �(θ)dθ = 0. From (18) and the results in [17] one obtains

|S[f,g, b]| ≤ C(p1,p2,p3)‖f ‖p1‖g‖p2‖Db‖p3 (19)

for p−1
1 + p−1

2 + p−1
3 = 1, with 1 < pi ≤ ∞. S. Hofmann suggested in personal communication that this result might 

also follow from (the isotropic version) of his off-diagonal T (1) theorem in [11]. These results do not seem to give 
enough information in the case p3 = 1 which is relevant for the focus of this paper. The weak type (1, 1) result in [16]
can be modified to see that for g ∈ L∞ and β ∈ L1 we have CK [g, β] ∈ L1,∞ and this can be used to prove a bound for 
compactly supported b with Db ∈ L logL; however there does not seem to be an H 1 → L1 result for d-commutators 
which can be used to establish Theorem 2.2. Our approach will be more direct; we rely on some regularizations for the 
kernels, and use the original T (1) theorem by David and Journé for one of the terms and Littlewood–Paley estimates 
for the others. The atomic decomposition will be used for the Hardy space estimates.

2.3. Further reductions

We now begin with the proof of Theorem 2.2 and first make an easy observation about single scale contributions. 
Using

b(x) − b(y) =
1∫
Db(sx + (1 − s)y)ds (x − y)
0
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we observe, using a straightforward application of Hölder’s inequality, that for each R > 0∫∫
R≤|x−y|≤2R

∣∣〈x − y, b(x) − b(y)〉|
|x − y|d+2

|g(y)||h(x)|dy dx � ‖Db‖p1‖g‖p2‖h‖p3, (20)

for p−1
1 + p−1

2 + p−1
3 = 1, 1 ≤ p1, p2, p3 ≤ ∞.

Let χ be a radial C∞ function supported in {x : 1/2 < |x| < 2} such that 
∑

k∈Z χ(2kx) = 1 for x �= 0. Define

χk(x) = χ(2kx)

and set

Sk[g, b](x) =
∫

χk(x − y)
〈x − y, b(x) − b(y)〉

|x − y|d+2
g(y)dy . (21)

Using (20) it is easy to see that Theorem 2.2 follows from

Theorem 2.3.∣∣∣∑
k∈Z

∫
h(x)Sk[g, b](x)dx

∣∣∣≤ C‖Db‖H 1‖g‖∞‖h‖∞ (22)

where the summation over k is over a finite set Z of integers and the constant C does not depend on the cardinality of 
this set.

We need further decompositions. Let φ be a C∞ function with support in {x : |x| ≤ 1/2} such that∫
φ(x)dx = 1 (23a)

and ∫
φ(x)xidx = 0, i = 1, . . . , d. (23b)

Define

φk(x) = 2kdφ(2kx)

ψl(x) = φl(x) − φl−1(x)

For every k we have, in the sense of distributions,

φk +
∞∑

n=1

ψk+n = δ; (24)

here δ is the Dirac measure. Note that 
∫

ψl(x)π(x)dx = 0 for all affine linear functions π .
Theorem 2.3 follows immediately from the second parts of the following two propositions. All constants will be 

independent of the cardinality of Z .

Proposition 2.4. (i) For 1 < p < ∞,∥∥∥∑
k∈Z

Sk[g,φk ∗ b]
∥∥∥

p
≤ C(p1,p2)‖g‖∞‖Db‖p .

(ii) ∥∥∥∑
k∈Z

Sk[g,φk ∗ b]
∥∥∥

1
≤ C‖g‖∞‖Db‖H 1 .
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Proposition 2.5. (i) Let 1 < p1, p2, q < ∞ and 1/p1 + 1/p2 = 1/q . Then for n = 1, 2, 3, . . .∥∥∥∑
k∈Z

Sk[g,ψk+n ∗ b]
∥∥∥

q
≤ C(p1,p2)2

−n‖g‖p2‖Db‖p1 .

(ii) ∥∥∥∑
k∈Z

Sk[g,ψk+n ∗ b]
∥∥∥

1
≤ Cn2−n‖g‖∞‖Db‖H 1 .

The proofs of the two propositions will be given in §3 and §4.

Remark 2.6. Our proofs will show that if the index set Z is a subset of Z+ then the Hardy space H 1 in Propositions 2.4
and 2.5 can be replaced by the local Hardy space h1 (cf. Remarks 2.8 below).

Remark 2.7. The condition div(b) = 0 is crucial for Proposition 2.4 but not needed for Proposition 2.5. There are also 
Lp1 ×Lp2 → Lq estimates for other exponents with p−1

1 +p−1
2 = q−1 in Proposition 2.4 but they will not be relevant 

for Theorem 1.1.

Remarks 2.8. On Hardy spaces and atomic decompositions. The proof of the Hardy space inequalities will rely on 
the atomic decomposition (see e.g. [19] for an exposition and historical references). Let 1 < r ≤ ∞. We say that a is 
an r-atom associated with a cube Q if a is supported in Q, if ‖a‖Lr(Q) ≤ |Q|−1+1/r and if 

∫
a(x)dx = 0. Note that 

‖a‖1 ≤ 1 for atoms. The atomic characterization of H 1 states that any f ∈ H 1 can be decomposed as f =∑Q λQaQ

with convergence in L1, where aQ are r-atoms and 
∑

Q |λQ| < ∞. The norm ‖f ‖H 1 is equivalent to inf
∑

Q |λQ|
where the infimum is taken over all such decompositions of f . We shall assume r < ∞. An operator T maps H 1(Rd)

to L1(Rd) if and only we have ‖T a‖1 � C for all r-atoms; the infimum over such C is equivalent to the H 1 → L1

operator norm of T . We refer to [3], [15] for the reason why it is preferable to work with r-atoms for r < ∞.
For compact manifolds the appropriate Hardy space is the local Hardy space h1, introduced by Goldberg [10], 

which can be identified with the Triebel–Lizorkin space F 0
p,q for p = 1 and q = 2, [20]. Functions in h1 can be 

localized, i.e. if f ∈ h1 and if χ ∈ C∞
0 then χf ∈ h1. More generally, classical pseudo-differential operators of order 

0 are bounded on h1 (see [10]). Finally an operator T maps h1 to L1 if we have ‖T a‖1 � C for all r-atoms associated 
to cubes with diameter ≤ c0 and if in addition ‖T b‖1 � 1 for all Lr functions b with ‖b‖r ≤ 1, which are supported 
on sets of bounded diameter.

3. Proof of Proposition 2.4

We shall use the T 1 theorem of David and Journé [8]. For each term Sk[g, φk ∗ b] we use the identity (16) with 
φk ∗ b in place of b, and with φk ∗ βij in place of βij . This reduces matters to the estimate of a singular integral 
operator T ≡ T[g] which acts on functions h, and is, for fixed g ∈ L∞, defined by

T h(x) =
∑
k∈Z

∫
χk(x − y)κ(x − y)g(y)

1∫
0

φk ∗ h(sx + (1 − s)y)ds dy. (25)

Here κ is smooth away from the origin, homogeneous of degree −d , with mean value 0 over Sd−1; in particular it can 
be any of the kernels in (17a), (17b). Proposition 2.4 follows from the inequalities

‖T h‖p � ‖g‖∞‖h‖p, (26)

‖T h‖1 � ‖g‖∞‖h‖H 1 . (27)

We now have to verify the hypothesis of the David–Journé theorem [8]. Let K be the Schwartz kernel of T , i.e. we 
have

T h(x) =
∫

K(x, z)h(z)dz
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for h ∈ L1 +L∞; by our assumption on the index set Z we see K(x, ·) is bounded and compactly supported (although 
Z and these assumptions are not supposed to quantitatively enter in our estimates). We need to check that K and its 
derivatives satisfy standard bounds for singular kernels, which are controlled by the L∞ norm of g; i.e.

|K(x, z)| � ‖g‖∞|x − z|−d (28)

and

|∇xK(x, z)| + |∇zK(x, z)| � ‖g‖∞|x − z|−d−1 . (29)

Secondly, T needs to satisfy the weak boundedness property. Let N be the class of C1 functions supported in 
{x : |x| ≤ 1} such that ‖u‖∞ + ‖∇u‖∞ ≤ 1. For u ∈N define the translated and dilated versions uw

R , R > 0, w ∈ Rd , 
by uw

R(x) = u(R−1(x − w)). Then we need to verify for all u, ũ ∈N

sup
w∈Rd

sup
R>0

R−d
∣∣〈T uw

R, ũw
R

〉∣∣� ‖g‖∞ . (30)

Finally, we need the crucial BMO-conditions

‖T 1‖BMO + ‖T ∗1‖BMO � ‖g‖∞. (31)

We begin by checking (28) and (29). We have K(x, z) =∑k Kk(x, z) where

Kk(x, z) =
∫

χk(x − y)κ(x − y)g(y)

1∫
0

φk(sx + (1 − s)y − z)ds dy.

Observe that

Kk(x, z) = 0 for |x − z| ≥ C2−k .

It is immediate from the definition that

|Kk(x, z)| � 2kd‖g‖∞
and

|∇xKk(x, z)| + |∇zKk(x, z)| � 2k(d+1)‖g‖∞.

Fix x, z and sum over k with 2k � |x − z|−1, and (28) and (29) follow.
Next, we check the weak boundedness property (30). Let Tk denote the operator with Schwartz kernel Kk . We 

estimate 
〈
Tku

w
R, ũw

R

〉
and distinguish the cases 2kR ≤ 1 and 2kR ≥ 1.

Write〈
Tku

w
R, ũw

R

〉= ∫∫ Kk(x, z)uw
R(z)ũw

R(x) dz dx

=
∫∫ ∫

χk(x − y)κ(x − y)g(y)

1∫
0

φk(sx + (1 − s)y − z)ds dy

× uw
R(z) ũw

R(x) dx dz

and since we have the conditions |x − w| � R, |z − w| � R, |y − x| � 2−k for the domains of integration, a straight-
forward estimation yields∣∣〈Tku

w
R, ũw

R

〉∣∣� 2kdR2d‖g‖∞ if R ≤ 2−k.

For R ≥ 2−k we use that the integrals of κ over spheres centered at the origin are zero. Since χk is radial we also 
have ∫

χk(x)κ(x) dx = 0, (32)

for all k ∈ Z. We may write (after performing a change of variable)
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∫∫
Kk(x, z)uw

R(z)ũw
R(x) dx dz

=
∫

g(y)

1∫
0

∫
φk((1 − s)y − z)

[ · · · ]dzds dy (33)

where[ · · · ]= ∫ uw
R(z + sx)ũw

R(x)χk(x − y)κ(x − y)dx

=
∫ (

uw
R(z + sx)ũw

R(x) − uw
R(z + sy)ũw

R(y)
)
χk(x − y)κ(x − y)dx

= O(2−kR−1).

Here we have of course used the cancellation property (32). Using the last estimate in (33) we see that

∣∣〈Tku
w
R, ũw

R

〉∣∣� (2kR)−1‖g‖∞
∫

|y−w|≤CR

1∫
0

∫
|φk((1 − s)y − z)|dzds dy

� (2kR)−1Rd‖g‖∞ if R ≥ 2−k .

Summing in k over 2−k ≤ R yields (30).
Finally we need to verify the BMO bounds for T 1 and T ∗1. First,

Tk1(x) =
∫

Kk(x, z)dz

=
∫

χk(x − y)κ(x − y)g(y)

1∫
0

∫
φk(sx + (1 − s)y − z)dz ds dy

= (χkκ) ∗ g(x).

In view of the assumptions on κ the operator g 	→∑k(χkκ) ∗g = κ ∗g is a standard Calderón–Zygmund convolution 
operator and thus bounded from L∞ to BMO . Thus we get

‖T 1‖BMO � ‖g‖∞.

Next,

T ∗
k 1(z) =

∫
Kk(x, z)dx

=
∫ 1∫

0

∫
χk(x − y)κ(x − y)g(y)φk(sx + (1 − s)y − z)dx ds dy

=
∫

g(y)

∫ ∫
s−dχk(s

−1(w − y))κ(s−1(w − y))φk(w − z) dw ds dy

where for fixed y, s we changed variables w = sx + (1 − s)y.
Hence setting κk,s(x) = χk(s

−1x)s−dκ(s−1x), we have

T ∗1 =
∑
k∈Z

φk ∗
1∫

0

κk,sds ∗ g .

For fixed s we use the cancellation of χkκ to get an estimate for the Fourier transform of κk,s ,

|κ̂k,s(ξ)| ≤ CNs2−k|ξ |(1 + s2−k|ξ |)−N .
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It follows that supξ,s

∑
k |κ̂k,s(ξ)| ≤ C and since φ̂k = O(1) we see that the Fourier transform of 

∑
k φk ∗ κk,s is 

bounded, independently of s. Integrating over s ∈ [0, 1] we see that

∥∥∥∑
k∈Z

φk ∗
1∫

0

κk,sds ∗ f

∥∥∥
2
� ‖f ‖2.

It is also clear that the convolution kernel satisfies standard size and differentiability estimates in Calderón–Zygmund 
theory and consequently we get L∞ → BMO boundedness. It follows that

‖T ∗1‖BMO � ‖g‖∞
and (31) is proved. This completes the proof of the Lp estimates (26).

The Hardy space estimate (27) follows from the corresponding estimates on atoms which are standard [19]. For 
completeness we include the argument. Let a be a 2-atom associated with a cube Q centered at yQ and let Q∗ be the 
triple cube. Then∫

Q∗
|T a(x)|dx ≤ |Q∗|1/2‖T a‖2 � |Q∗|1/2‖g‖∞‖a‖2 � ‖g‖∞.

Since 
∫

a(y)dy = 0 we get∫
Rd\Q∗

|T a(x)|dx =
∫

Rd\Q∗

∫
(K(x, y) − K(x,yQ))a(y) dy dx � ‖g‖∞

given the size and derivative assumptions in (28) and (29) and ‖a‖1 ≤ 1. This finishes the proof of Proposition 2.4. �
4. Proof of Proposition 2.5

This will be straightforward from standard estimates for singular convolution operators. Let

Ki,k(x) = χk(x)
2−kxi

|x|d+2
.

We observe the commutator relation

Sk[g,h](x) = 2k
d∑

i=1

(
Ki,k ∗ g(x)hi(x) −Ki,k ∗ [ghi](x)

)
(34)

which we use with the choice hi = ψk+n ∗ bi . Notice that Ki,k is an odd kernel and therefore∫
Ki,k∗g(x)hi(x)f (x) dx = −

∫
Ki,k∗[f hi](x)g(x) dx (35)

Hence, in order to prove part (i) of Proposition 2.5 it suffices to show∣∣∣∑
k∈Z

2k

∫
Ki,k∗g(x)ψk+n∗bi(x)f (x)dx

∣∣∣� 2−n‖f ‖p1‖g‖p2‖∇bi‖p3,

with p−1
1 + p−1

2 + p−1
3 = 1 and 1 < p1,p2,p3 < ∞ . (36)

Moreover, to prove part (ii) it suffices to show∣∣∣∑
k∈Z

2k

∫
Ki,k∗g(x)ψk+n∗bi(x)f (x)dx

∣∣∣� n2−n‖f ‖∞‖g‖∞‖∇bi‖H 1 . (37)

We first simplify by rewriting the left hand sides as an expression which acts on ∇bi . Let φ be as in (23a), (23b)
and define for j = 1, . . . d
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�[j ](x) =
xj∫

−∞
2jφ(2x1, . . . ,2xj−1,2s, xj+1, . . . , xd) ds

−
xj∫

−∞
2j−1φ(2x1, . . . ,2xj−1, s, xj+1, . . . , xd) ds

Since φ is supported in [−1/2, 1/2] it is then easy to check using (23a) that �[j ] is also supported in [−1/2, 1/2]; 
moreover from (23b) and integration by parts we get∫

�[j ](x)dx = 0.

Now let �[j ]
l (x) = 2ld�[j ](2lx), and we verify that

ψl = 2−l

d∑
j=1

∂�
[j ]
l

∂xj

.

Thus by integration by parts

ψk+n ∗ bi = 2−k−n
d∑

j=1

�
[j ]
k+n ∗ ∂bi

∂xj

.

Let � be any smooth function supported in [−1/2, 1/2]d such that 
∫

�(x)dx = 0, and �l = 2ld�(2l ·). The above 
considerations imply that in order to establish (36), (37) it suffices to prove∣∣∣∑

k∈Z

∫
Ki,k∗g(x)�k+n∗h(x)f (x)dx

∣∣∣� ‖f ‖p1‖g‖p2‖h‖p3, (38)

with 1
p1

+ 1
p2

+ 1
p3

= 1, and 1 < p1, p2, p3 < ∞, and∣∣∣∑
k∈Z

∫
Ki,k∗g(x)�k+n∗h(x)f (x)dx

∣∣∣� n‖f ‖∞‖g‖∞‖h‖H 1 . (39)

Proof of (38). We apply Hölder’s inequality several times and dominate the left hand side of (38) by

‖f ‖p1

∥∥∥∑
k∈Z

(Ki,k ∗ g)(�k+n ∗ h)

∥∥∥
p′

1

≤ ‖f ‖p1

∥∥∥(∑
k

|Ki,k ∗ g|2
)1/2(∑

k

|�k+n ∗ h|2
)1/2∥∥∥

p′
1

≤ ‖f ‖p1

∥∥∥(∑
k

|Ki,k ∗ g|2
)1/2∥∥∥

p2

∥∥∥(∑
k

|�k+n ∗ h|2
)1/2∥∥∥

p3
(40)

where we have used 1/p′
1 = 1/p2 + 1/p3.

For any bounded sequence γ = {γk} with ‖γ ‖∞ ≤ 1, 
∑

k γkKi,k defines a standard Calderón–Zygmund convolu-
tion kernel in Rd with bounds uniformly in γ . In particular we may randomly choose γ = ±1 and by the standard 
averaging argument using Khinchine’s inequality for Rademacher functions (see e.g. [18, ch. II.5]) (or alternatively, 
arguments for vector-valued Calderón–Zygmund operators, cf. [18, Appendix D]) we get the inequality∥∥∥(∑

k

|Ki,k ∗ g|2
)1/2∥∥∥

p2
≤ C(p2)‖g‖p2, (41)

for 1 < p2 < ∞. Similarly, we also have the Littlewood–Paley inequality (cf. [18, ch. II.5.])
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∥∥∥(∑
l∈Z

∣∣�l ∗ h
∣∣2)1/2∥∥∥

p3
≤ C̃(p3)‖h‖p3, (42)

for 1 < p3 < ∞. Now (38) follows by using (41) and (42) in (40). �
Proof of (39). Let r ∈ (1, ∞). It suffices to prove (39) for h = a with a an r-atom associated to a cube Q. Let yQ be 
the center of Q and Q∗ be the double cube with same center. Let Q∗∗ be the expanded cube with tenfold sidelength. 
Let L be such that the side length of Q is between 2−L and 2−L+1. We need to prove that∥∥∥∑

k∈Z
(Ki,k ∗ g) (�k+n ∗ a)

∥∥∥
1
� n‖g‖∞. (43)

We split the sum in k in three parts, according to whether k ≥ L, L − n ≤ k ≤ L or k ≤ L − n.
First let k > L. The support properties of a, �k+n and Kk,i show that �k+n ∗ a is supported in Q∗ and that 

Kk,i∗[g1Rd\Q∗∗ ](x) = 0 for x ∈ Q∗. Hence

�k+n∗a(x)Kk,i∗g(x) = �k+n∗a(x)Kk,i∗[g1Q∗∗ ](x)

in this case. We choose p2, p3 ∈ (1, ∞) such that 1/p2 + 1/p3 + 1/r = 1, and p3 ≤ r ; for example p2 = p3 = r = 3. 
Now use the already proven estimate (38) together with Hölder’s inequality to get∥∥∥ ∑

k∈Z
k>L

(Ki,k∗g) (�k+n∗a)

∥∥∥
1
� |Q∗|1/r

∥∥∥ ∑
k∈Z
k≥L

(Ki,k∗[g1Q∗∗ ]) (�k+n∗a)

∥∥∥
r ′

� |Q∗|1/r‖g1Q∗∗‖p2 ‖a‖p3 � |Q∗|1/r‖g‖∞|Q∗∗|1/p2 |Q|1/p3−1/r‖a‖r � ‖g‖∞
since ‖a‖r ≤ |Q|−1+1/r .

Next for the case L − n ≤ k ≤ L we use the straightforward bound

‖(Ki,k∗g) (�k+n∗a)‖1 ≤ ‖Ki,k∗g‖∞‖�k+n ∗ a‖1 � ‖g‖∞‖a‖1 � ‖g‖∞
and then obtain∥∥∥ ∑

k∈Z
L−n≤k≤L

(Ki,k∗g) (�k+n∗a)

∥∥∥
1
� n‖g‖∞.

Finally, if k < L − n we use 
∫

a(x)dx = 0 to get

�k+n ∗ a =
∫ (

�k+n(x − y) − �k+n(x − yQ)
)
a(y)dy

and thus ‖�k+n ∗ a‖1 � 2k+n−L‖a‖1. Hence∥∥∥ ∑
k∈Z

k<L−n

(Ki,k∗g) (�k+n∗a)

∥∥∥
1
≤
∑

k<L−n

‖Ki,k∗g‖∞‖�k+n∗a‖1

� ‖g‖∞
∑

k≤L−n

2k+n−L‖a‖1 � ‖g‖∞.

We combine the three cases and obtain (43). This completes the proof of Proposition 2.5. �
5. Additional remarks

5.1. On the result by Crippa and de Lellis

Corollary 1.2 can also be proved by a modification of the approach by Crippa and de Lellis. The elegant argument 
outlined in [9, §8] reduces matters to an estimate for vector fields x 	→ b(x), namely

|b(x) − b(y)| ≤ Mb(x) +Mb(y) (44)
|x − y|
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where M is a maximal operator to be determined, with

‖Mb‖L1 � ‖∇b‖h1 . (45)

Assume that |x − y| ≤ 10−2. Now let φ ∈ C∞
c supported on {y : |y| ≤ 1/4} such that 

∫
φ(y) dy = 1, and ∫

yiφ(y)dy = 0 for i = 1, . . . , d . Let φk(x) = 2kdφ(2kx), and ψk = φk − φk−1 so that for any � > 0,

b = φ� ∗ b +
∞∑

k=�+1

ψk ∗ b.

Now assume 2−�−1 ≤ |x − y| ≤ 2−�.

|φ� ∗ b(x) − φ� ∗ b(y)|
|x − y| =

∣∣∣〈 x − y

|x − y| ,
1∫

0

φ� ∗ ∇b((1 − s)x + sy)
〉
ds

∣∣∣
≤ M0(∇b)(x) +M0(∇b)(y)

where

M0g(x) = sup
�>4

sup
|h|≤2−�

|φ� ∗ g(x + h)|.

By standard Hardy space theory,

‖M0g‖L1 � ‖g‖h1

(which will be applied here to g = ∂bi/∂xj ).
Secondly, for k ≥ �,

|ψk ∗ b(x) − ψk ∗ b(y)|
|x − y| ≤ 2�+2 sup

k

(|ψk ∗ b(x)| + |ψk ∗ b(y)|)
≤ M1b(x) + M1b(y)

with

M1b(x) = sup
k>0

2k|ψk ∗ b(x)| .

Now, by the cancellation property of ψ , 
∫

ψ(y)l(y)dy = 0 for all affine linear functions l, we have

‖M1b‖1 ≤
∥∥∥( ∞∑

k=1

22k|ψk ∗ b|2
)1/2∥∥∥

1
� ‖∇b‖h1;

in fact by definition of M1 we have the better estimate in terms of the Triebel–Lizorkin F 0
1,∞-norm of ∇b (cf. [20]). 

We have now proved (44) with Mb =M0(∇b) + M1(b) and M satisfies (45).

5.2. On Léger’s result for transport equations

In a recent preprint Léger [13] considers solutions θ(t, x) of the initial value problem

∂t θ + div(vθ) = 0

θ(0, ·) = θ0

on Rd ; here v is a given divergence-free time-dependent vector field v on [0, ∞) ×Rd . See also [14], [12] for related 
versions of the mixing problem. Léger introduces the functional

V(f ) =
∫

|f̂ (ξ)|2 log |ξ |dξ

which in physical space is computed to
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c1(d)
(1

2

∫∫
|x−y|≤1

|f (x) − f (y)|2
|x − y|d dx dy −

∫∫
|x−y|≥1

f (x)f (y)

|x − y|d
)

+ c2(d)‖f ‖2
L2

for suitable constants ci(d). He then shows that

∂tV(θ(t, ·)) = cd S[θ(t, ·), θ(t, ·), v(t, ·)] (46)

with S as in (9), (11). This is closely related to the computation in Proposition 2.1. Note that Léger’s reduction to 
an estimate for S works for arbitrary initial data θ0 while Proposition 2.1 is limited to indicator functions of sets. 
Léger uses the results in [17] (cf. §2.2 above) to dominate, for θ(t, ·) ∈ L∞ ∩ Lp′

, the right hand side of (46) by 
‖θ(t, ·)‖∞‖θ(t ·)‖p′‖Dv(t, ·)‖p . Our estimate (12) yields the endpoint bound

|∂tV(θ(t, ·))| ≤ Cd‖θ(t, ·)‖2∞‖Dv(t, ·)‖H 1 . (47)

This inequality can be used to extend other results in [13]. For example one obtains the inequality

V(θ(t, ·)) − V(θ0) � ‖θ0‖2∞

t∫
0

‖Dv(s, ·)‖H 1ds .

6. Failure of a singular integral estimate

Deviating slightly from our previous notation in (2) we now let �L = (−1, 0) × (−1, 1), �R = (0, 1) × (−1, 1). 
For a resolution of Bressan’s problem on T2 it would be relevant if the inequality∣∣∣ ∫∫ 〈x − y, b(x) − b(y)〉

|x − y|4 χA(x)χB(y)dx dy

∣∣∣≤ C(A,B)‖Db‖1 (48)

held for subsets A ⊂ �L, B ⊂ �R and divergence free vector fields b, with a constant independent of A and B . In 
particular we could consider regularized versions of

b(x) =
{

(0,1) for x1 < 0 ,

(0,−1) for x1 > 0 .

Notice that

Db(x) =
(

0 0
−2δ(x1) 0

)
where δ is the Dirac measure in one dimension, and thus div(b) = 0. For this choice of b the expression (48) becomes 
|I(A, B)| with

I(A,B) =
∫∫

(x,y)∈A×B

K|x1−y1|(x2 − y2)dx dy (49a)

where

Kr(s) = s

(r2 + s2)2
= −1

2

d

ds

1

r2 + s2
. (49b)

We show that I(A, B) is not bounded independently of A ⊂ �L, B ⊂ �R . One gets a precise upper and lower bound 
in terms of some separation condition on A and B .

Proposition 6.1. Let

U(ε) = sup
{|I(A,B)| : dist(A,B) ≥ ε, A ⊂ �L, B ⊂ �R

}
.

Then for 0 < ε < 1/2 we have

U(ε) ≈ log(1/ε).
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6.1. Upper bounds

Suppose g satisfies

sup
s

(1 + |s|)δ+1|g(s)| < ∞, (50)

for some δ > 0. Note that Kr(s) = r−2r−1g(s/r) if we take g(s) = s(1 + s2)−2, and thus the following estimate gives 
the upper bound in the proposition.

Lemma 6.2. Suppose A ⊂ �L, B ⊂ �R and dist(A, B) > ε. Then, with g as in (50),∫∫
�L×�R

|x1 − y1|−3|g(
x2−y2|x1−y1| )|χB(y)χA(x)dx dy � log(1/ε).

Proof. Observe that for x ∈ �L, y ∈ �R we have |x1 − y1| = |x1| + |y1|.
We consider separately the regions with (i) |x2 − y2| ≤ |x1 − y1| (which for x ∈ A, y ∈ B implies |x1 − y1| ≥ ε/2) 

and (ii) 2m−1|x1 −y1| ≤ |x2 −y2| < 2m|x1 −y1| for some m ≥ 1 (which for x ∈ A, y ∈ B implies |x1 −y1| ≥ 2−m−2ε).
First, ∫∫

(x,y)∈�L×�R|x2−y2|≤|x1−y1|

|x1 − y1|−3|g(
x2−y2|x1−y1| )|χB(y)χA(x)dx dy

�
∫∫

(x1,y1)∈[−1,0]×[0,1]
|x1−y1|≥ε/2

|x1 − y1|−2
∫∫

[−1,1]2

1
|x1−y1| |g(

x2−y2|x1−y1| )|dx2dy2 dx1dy1

� ‖g‖L1(R)

∫∫
ε/2<|x1|+|y1|≤2

1

(|x1| + |y1|)2
dx1dy1 � log(1/ε)

Next, when |x2 − y2| ≈ 2m|x1 − y1| we have |g(
x2−y2|x1−y1| )| � 2−m(1+δ) and thus∫∫

(x,y)∈�L×�R|x2−y2|≈2m|x1−y1|

|x1 − y1|−3|g(
x2−y2|x1−y1| )|χB(y)χA(x)dx dy

� 2−mδ

∫∫
(x1,y1)∈[−1,0]×[0,1]

|x1−y1|≥2−m−2ε

|x1 − y1|−2dx1dy1

� 2−mδ

∫∫
2−m−2ε≤|x1|+y1|≤2

1

(|x1| + |y1|)2
dx1dy1 � 2−mδ log(2m/ε).

Now sum in m to finish the proof. �
6.2. Lower bounds

We now take g(s) = s

(1+s2)2 and construct a specific pair A, B for which dist (A, B) ≥ ε and |I(A, B)| � log(1/ε). 

It suffices to take ε = 2−LM for some integer L (and M be a sufficiently large fixed integer, M > 10).
Define

IL
k = [−2−kM,−2−kM−1] ,

IR
k = [2−kM−1,2−kM ] ,
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JL
k,n = [(Mn + 2)2−kM, (Mn + 3)2−kM ] ,

JR
k,n = [Mn2−kM, (Mn + 1)2−kM ]

and

A =
⋃

1≤k≤L−1

⋃
0≤n≤ 2kM

M+1

IL
k × JL

k,n ,

B =
⋃

1≤k≤L−1

⋃
0≤n≤ 2kM

M+1

IR
k × JR

k,n .

Observe that B is a vertical translation of the horizontal reflection of A and that both sets consist of columns of squares 
at L − 1 many different scales. Clearly A ∈ �L, B ∈ �R and dist(A, B) ≥ 2−LM .

Let

I(kL, kR,nL,nR) =
∫

x∈IL
kL

×JL
kL,nL

∫
y∈IR

kR
×JL

kR,nR

K|x1−y1|(x2 − y2) dy dx

and split I(A, B) = E1 + E2 + E3 where

E1 =
∑

1≤k≤L−1

∑
0≤n≤ 2kM

M+1

I(k, k, n,n)

E2 =
∑

1≤k≤L−1

∑
0≤nL,nR≤ 2kM

M+1
nL �=nR

I(k, k, nL,nR)

E3 =
∑

1≤kL,kR≤L−1
kL �=kR

∑
0≤nL,nR≤ 2kM

M+1

I(kL, kR,nL,nR) .

We prove a lower bound for E1 and upper bounds for E2, E3.
For the lower bound observe

2−kM ≤ x2 − y2 ≤ 22−kM for x2 ∈ JL
k,n, y2 ∈ JL

k,n.

Thus ∫
IL
k ×JL

k,n

∫
IR
k ×JL

k,n

K|x1−y1|(x2 − y2)dx dy

=
∫∫∫∫

(x1,y1)∈[2−kM−1,2−kM ]
(Mn+2)2−kM≤x2≤(Mn+3)2−kM

Mn2−kM≤y2≤(Mn+1)2−kM

x2 − y2

((x1 + y1)2 + (x2 − y2)2)2
dy2 dx2 dy1 dx1

≥ 2−kM

1000
and thus

E1 ≥ 10−3
L−1∑
k=1

∑
0≤nL≤ 2kM

M+1

2−kM ≥ L − 1

103(M + 1)
.

If nL �= nR we have∫
IL
k ×JL

k,n

∫
IR
k ×JL

k,n

|K|x1−y1|(x2 − y2)|dx dy � 2−kM

M3|nL − nR|3

L R
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and thus

|E2| ≤
∑

1≤k<L

∑
0≤nL≤ 2kM

M+1

∑
nR �=nL

2−kM

M3|nL − nR|3 ≤ C
L

M4
.

Next, set g(s) = |s|(1 + s2)−2, and

G(x1, y1) =
∫∫

−1≤x2,y2≤1

1
|x1−y1| |g(

|x2−y2||x1−y1| )|dy2dx2

so that G(x1, y1) is nonnegative and uniformly bounded. We have |E3| ≤ E3,1 + E3,2 where

E3,1 =
∑

1≤kL<kR≤L−1

∫∫
IL
kL

×IR
k,R

|x1 − y1|−2G(x1, y1) dy1dx1

and E3,2 is the corresponding term with the (kL, kR) summation extended over 1 ≤ kR < kL ≤ L − 1. The two terms 
are symmetric and it suffices to estimate E3,1.

Now |x1 − y1| ≈ 2−kLM if x1 ∈ IL
kL

, y1 ∈ IL
kR

, and kL < kR . Therefore

E3,1 �
∑

1≤kL<kR≤L−1

22kLM |IL
kL

| |IR
k,R|�

∑
1≤kL<kR≤L−1

2(kL−kR)M � L2−M

and similarly we also get E3,2 � L2−M . Combining the estimates we get

U(2−LM) ≥ E1 − |E2| − |E3| ≥ 10−3 L − 1

M + 1
− C1LM−3 − C2L2−M

and the assertion follows by choosing M sufficiently large. �
6.3. A discrete problem

The counterexample suggests that to make progress towards the resolution of the L1-conjecture, we need to first 
understand the effects of shear flows such as the vector field b above. To highlight this particular difficulty, we propose 
a simple discrete problem reminiscent of the Rubik’s cube.

We mix the discrete torus �n = Z2/2nZ2 by applying a sequence of sliding moves. The goal is to transform the 
initial set

A0 = [1, n] × [1,2n] + 2nZ2

into the final set

A1 = {(x, y) ∈ Z2 : (−1)x+y = 1}.
For integers 0 < b − a < 2n, consider the periodic strips S ⊆ Z2 given by

S = Z× ([a, b] + 2nZ)

and the permutation P : Z2 → Z2 given by

P(x, y) = (x, y) + (1,0)1S(x, y).

Such permutations, when composed with an arbitrary number of 90◦ rotations, are the allowed sliding moves.
For this simplified problem, a positive answer to the Bressan’s mixing conjecture would imply that it takes at least 

cn logn sliding moves to transform A0 into A1. It is clear from looking at the Cayley graph of the group generated 
by the finite set of sliding moves, that the diameter of the set of reachable configurations is much larger than n logn. 
However, Bressan’s conjecture in this context is a statement about the minimal distance between two particular con-
figurations A0 and A1.
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7. A toy problem on TTT2

Consider the problem of mixing T2 by a finite sequence of 90◦ rotations of squares. Given x ∈ T2 and r ∈ (0, 1/4), 
let Rx,r : T2 → T2 be the map which rotates the square (x1 − r, x1 + r) × (x2 − r, x2 + r) by 90◦ counter-clockwise:

Rx,r (y) :=
{

(x1 + x2 − y2, x2 − x1 + y1) if y − x ∈ (−r, r)2,

y otherwise.

We assign the cost r2 to the rotation Rx,r . To motivate this definition observe that we can write R0,r(x) = Xr(1, x)

where Xr : [0, 1] ×T2 → T2 is the incompressible flow that satisfies

DtXr(t, x) =

⎧⎪⎨⎪⎩
(0,2x1) if |x2| < |x1| < r ,

(−2x2,0) if |x1| < |x2| < r ,

(0,0) otherwise,

in the coordinates (−1/2, 1/2)2 for the torus T2. The vector field DtXr(t, ·) is the weakly divergence free square 
vortex:

Let M(Td) be the space of Borel measures on T2. Since

1∫
0

‖DxDtXr(t, x)‖M(T2)dt = Cr2

our choice for the cost is natural. The following result can therefore be considered to solve a discrete toy version of 
Bressan’s conjecture.

Theorem 7.1. If Rx1,r1 ◦ · · · ◦ Rxn,rn(0, 1/2)2 is mixed to scale ε ∈ (0, 1/2), then

n∑
i=1

r2
i ≥ C−1 log ε−1, (51)

with a universal constant C > 0.

To see the sharpness of the result consider the composition

R3
( 1

4 , 1
2 ), 1

4
◦ R

( 1
2 , 1

4 ), 1
4
◦ R2

( 1
2 , 1

2 ), 1
4

which divides (0, 1/2)2 into four smaller squares, at cost 6r2:

Applying this idea recursively, we see that we can mix to scale 2−n at cost Cnr2.
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Proof of Theorem 7.1. We use the Bianchini semi-norm defined in §1.3.

Lemma 7.2. If u : Td → Td is measure preserving, A ⊆ Td , and ‖1A‖B is finite, then

‖1u(A)‖B − ‖1A‖B ≤
1/4∫
0

1

r|Br(0)|
∫
Td

|u(Br(x))�Br(u(x))| dx dr. (52)

Proof. We compute ‖1u(A)‖B − ‖1A‖B as

1/4∫
0

1

r

∫
Td

∣∣∣∣∣∣∣χu(A)(x) − \
∫

Br (x)

χu(A)(y) dy

∣∣∣∣∣∣∣ dx dr

−
1/4∫
0

1

r

∫
Td

∣∣∣∣∣∣∣χA(x) − \
∫

Br (x)

χA(y) dy

∣∣∣∣∣∣∣ dx dr

=
1/4∫
0

1

r

∫
Td

∣∣∣∣∣∣∣χA(x) − \
∫

u−1(Br (u(x)))

χA(y) dy

∣∣∣∣∣∣∣ dx dr

−
1/4∫
0

1

r

∫
Td

∣∣∣∣∣∣∣χA(x) − \
∫

Br (x)

χA(y) dy

∣∣∣∣∣∣∣ dx dr

≤
1/4∫
0

1

r

∫
Td

∣∣∣∣∣∣∣ \
∫

u−1(Br (u(x)))

χA(y) dy − \
∫

Br(x)

χA(y) dy

∣∣∣∣∣∣∣ dx dr

≤
1/4∫
0

1

r|Br(0)|
∫
Td

|u(Br(x))�Br(u(x))| dx dr,

using the fact that u is measure preserving to change variables. �
Lemma 7.3. There is a constant C > 0 such that

1/4∫
0

1

r|Br(0)|
∫
T2

∣∣Rx,s(Br(y))�Br(Rx,s(y))
∣∣ dy dr ≤ Cs2, (53)

for all x ∈ T2 and s ∈ (0, 1/4).

Proof. By scaling, observe that

s∫
0

1

r|Br(0)|
∫
T2

∣∣Rx,s(Br(y))�Br(Rx,s(y))
∣∣ dy dr

≤ s2

1/4∫
0

1

r|Br(0)|
∫
T2

∣∣Rx,1/4(Br(y))�Br(Rx,1/4(y))
∣∣ dy dr = Cs2.

Next, observe that if r ≥ s and



942 M. Hadžić et al. / Ann. I. H. Poincaré – AN 35 (2018) 921–943
∣∣Rx,s(Br(y))�Br(Rx,s(y))
∣∣> 0,

then either∣∣Rx,s(Br(y))�Br(Rx,s(y))
∣∣≤ Cs2 and r − √

2s ≤ |y − x| ≤ r + √
2s,

or ∣∣Rx,s(Br(y))�Br(Rx,s(y))
∣∣≤ Csr and |y − x| < √

2s.

In particular, we may estimate

1/4∫
s

1

r|Br(0)|
∫
T2

∣∣Rx,s(Br(y))�Br(Rx,s(y))
∣∣ dy dr

≤
1/4∫
s

1

r|Br(0)|Cs3r dr ≤ Cs2

Putting these two estimates together gives (53). �
Proof of Theorem 7.1, conclusion. If A is mixed to scale ε ∈ (0, κ), with mixing constant κ then the average of 1A

over Br(x) lies between κ|A| and (1 − κ)|A| when r ≥ ε. Thus

‖1A‖B ≥ κ

κ∫
ε

1

r
min{|A|, (1 − |A|)} ≥ 1

C
min{|A|,1 − |A|} log ε−1.

Combine this with (52), and (53) to conclude the proof. �
Remark. This L1-type Bressan result for the toy problem is possible since the natural scale s for the rotation Ry,s is 
linked in the proof with the scale r in the Bianchini semi-norm, with maximal contributions for r ≈ s.
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