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Abstract

We obtain Dini type estimates for a class of concave fully nonlinear nonlocal elliptic equations of order σ ∈ (0, 2) with rough and 
non-symmetric kernels. The proof is based on a novel application of Campanato’s approach and a refined Cσ+α estimate in [9].
© 2017 
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1. Introduction and main results

The paper is a continuation of our previous work [9], where we studied Schauder estimates for concave fully 
nonlinear nonlocal elliptic and parabolic equations. In particular, when the kernels are translation invariant and the 
data are merely bounded and measurable, we proved the Cσ estimate, which is very different from the classical theory 
for second-order elliptic and parabolic equations. In this paper, we consider concave fully nonlinear nonlocal elliptic 
equations with Dini continuous coefficients and nonhomogeneous terms, and establish a Cσ estimate under these 
assumptions.

The study of classical elliptic equations with Dini continuous coefficients and data has a long history. Burch [4]
first considered divergence type linear elliptic equations with Dini continuous coefficients and data, and estimated the 
modulus of continuity of the derivatives of solutions. The corresponding result for concave fully nonlinear elliptic 
equations was obtained by Kovats [15], which generalized a previous result by Safonov [25]. Wang [29] studied linear 
non-divergence type elliptic and parabolic equations with Dini continuous coefficients and data, and gave a simple 
proof to estimate the modulus of continuity of the second-order derivatives of solutions. See, also [19,28,1,12,20,18], 
and the references therein.

Recently, there is extensive work on the regularity theory for nonlocal elliptic and parabolic equations. For exam-
ple, Cα estimates, C1,α estimates, Evans–Krylov type theorem, and Schauder estimates were established in the past 
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decade. See, for instance, [5,6,10,11,13,7,8,17,16,27,23], and the references therein. In particular, Mou [23] inves-
tigated a class of concave fully nonlinear nonlocal elliptic equations with smooth symmetric kernels, and obtained 
the Cσ estimate under a slightly stronger assumption than the usual Dini continuity on the coefficients and data. 
The author implemented a recursive Evans–Krylov theorem, which was first studied by Jin and Xiong [17], as well 
as a perturbation type argument. In this paper, by using a novel perturbation type argument, we relax the regularity 
assumption to simply Dini continuity and also remove the symmetry and smoothness assumptions on the kernels.

To be more specific, we are interested in fully nonlinear nonlocal elliptic equations in the form

inf
β∈A

(Lβu + fβ) = 0, (1.1)

where A is an index set and for each β ∈ A,

Lβu =
∫
Rd

δu(x, y)Kβ(x, y) dy,

δu(x, y) =

⎧⎪⎨
⎪⎩

u(x + y) − u(x) − y · Du(x) for σ ∈ (1,2),

u(x + y) − u(x) − y · Du(x)χB1 for σ = 1,

u(x + y) − u(x) for σ ∈ (0,1),

and

Kβ(x, y) = aβ(x, y)|y|−d−σ .

This type of nonlocal operators was first investigated by Komatsu [14], Mikulevičius and Pragarauskas [21,22], and 
later by Dong and Kim [10,11], and Schwab and Silvestre [26], to name a few.

We assume that a(·, ·) ∈ [(2 − σ)λ, (2 − σ)�] for some ellipticity constants 0 < λ ≤ �, and is merely measurable 
with respect to the y variable. When σ = 1, we additionally assume that∫

Sr

yKβ(x, y) ds = 0, (1.2)

for any r > 0, where Sr is the sphere of radius r centered at the origin. We say that a function f is Dini continuous if 
its modulus of continuity ωf is a Dini function, i.e.,

1∫
0

ωf (r)/r dr < ∞.

The following theorem is our main result, in which for simplicity we assume u ∈ Cσ+
(B1), which means that 

u ∈ Cσ+ε(B1) for some arbitrary ε > 0. This condition is only needed for Lβu to be well defined, and may be 
replaced by other weaker conditions.

Theorem 1.1. Let σ ∈ (0, 2), 0 < λ ≤ � < ∞, and A be an index set. Assume for each β ∈ A, Kβ satisfies (1.2) when 
σ = 1, and∣∣aβ(x, y) − aβ(x′, y)

∣∣ ≤ (2 − σ)�ωa(|x − x′|),
|fβ(x) − fβ(x′)| ≤ ωf (|x − x′|), sup

β∈A
‖fβ‖L∞(B1) < ∞,

where ωa and ωf are Dini functions. Suppose u ∈ Cσ+
(B1) is a solution of (1.1) in B1 and is Dini continuous in Rd . 

Then we have the a priori estimate

[u]σ ;B1/2 ≤ C‖u‖L∞ + C sup
β

‖fβ‖L∞(B1) + C

∞∑
j=1

(
ωu(2

−j ) + ωf (2−j )
)

(1.3)

where C > 0 is a constant depending only on d , σ , λ, �, and ωa , and is uniformly bounded as σ → 2. Moreover, 
when σ 	= 1, we have
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sup
x0∈B1/2

[u]σ ;Br(x0) → 0 as r → 0

with a decay rate depending only on d , σ , λ, �, ωa , ωf , ωu, and supβ∈A ‖fβ‖L∞(B1). When σ = 1, Du is uniformly 
continuous in B1/2 with a modulus of continuity controlled by the quantities before.

Remark 1.2. By a careful inspection of the proofs below, one can see that the estimates above in fact only depend 
on d , σ , λ, �, supβ∈A ‖fβ‖L∞(B1), the modulus continuity ωf of fβ in B1, ωa(r), ωu(r) for r ∈ (0, 1), and ‖u‖L1,w

, 
where the weight w = w(x) is equal to (1 + |x|)−d−σ . In particular, u does not need to be globally bounded in Rd .

Remark 1.3. In the literature, it was also common to define δu as

δu(x, y) = u(x + y) − u(x) − y · Du(x)χB1

even for σ ∈ (1, 2). See, for instance, [2]. In this case, the corresponding operators can be written as

L̃βu = Lβu − b · ∇u,

where

bβ = bβ(x) =
∫

Rd\B1

yKβ(x, y) dy.

It is easily seen that bβ is Dini continuous with a modulus of continuity ωb depending only on d , �, and ωa . Since 
σ > 1, b · ∇u is a lower-order term. Then the same result follows by using the interpolation and iteration arguments 
as in the proof of Theorem 1.1.

Remark 1.4. By keeping track of the constants in the proofs below, in the symmetric case, if σ ∈ [σ0, 2) for some 
σ0 ∈ (0, 1), then the constant C in (1.3) depends on σ0, not σ . In the non-symmetric case, if 0 < σ0 ≤ σ ≤ σ1 < 1 (or 
1 < σ2 ≤ σ < 2), then the constant C depends on σ0 and σ1 (or σ2), not σ . In particular, C does not blow up as σ
approaches 2.

Roughly speaking, the proof can be divided into two steps: We first show that Theorem 1.1 holds when the equation 
is satisfied in the whole space; Then we implement a localization argument to treat the general case. In Step one, our 
proof is based on a refined Cσ+α estimate in our previous paper [9] and a new perturbation type argument, as the 
standard perturbation techniques do not seem to work here. The novelty of this method is that instead of estimating 
Cσ semi-norm of the solution, we construct and bound certain semi-norms of the solution, see Lemmas 2.1 and 2.2. 
When σ < 1, such semi-norm is defined as a series of lower-order Hölder semi-norms of u. This is in the spirit 
of Campanato’s approach first developed in [3]. Heuristically, in order for the nonlocal operator to be well defined, 
the solution needs to be smoother than Cσ . To resolve this problem, we divide the integral domain into annuli, 
which allows us to use a lower-order semi-norm to estimate the integral in each annulus. The series of lower-order 
semi-norms, which turns out to be slightly stronger than the Cσ semi-norm, further implies that

[u]σ ;Br (x0) → 0 as r → 0

uniformly in x0. In particular, when σ = 1 we are able to estimate the modulus of continuity of the gradient of 
solutions. The proof of the case when σ ≥ 1 is more difficult than that of the case when σ < 1. This is mainly due 
to the fact that the series of lower-order Hölder semi-norms of the solution itself is no longer sufficient to estimate 
the Cσ norm. Therefore, we need to subtract a polynomial from the solution in the construction of the semi-norm. 
Similar idea was also used in the literature to derive Cordes–Nirenberg type estimates. See [24]. In some sense, the 
polynomial should be taken to minimize the series. It turns out that when σ > 1, up to a constant we can choose the 
polynomial to be the first-order Taylor’s expansion of the solution. The case σ = 1 is particularly challenging since 
the polynomial needs to be selected carefully, for which an additional mollification argument is applied.

The organization of this paper is as follows. In the next section, we introduce some notation and preliminary 
results that are necessary in the proof of our main theorem. Some of these results might be of independent interest. In 
section 3, we first prove a global version of Theorem 1.1 and then localize the result to obtain Theorem 1.1.
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2. Preliminaries

For α ∈ (0, 2) and a domain � ⊂R
d , we define the Lipschitz–Zygmund semi-norm by

[u]�α(�) = sup
x,y,z∈�

x 	=z, x+z=2y

|x − y|−α|u(x) + u(z) − 2u(y)|.

For α > 0, denote [u]α;� to be the usual α-Hölder semi-norm of u in �, and the α-Hölder norm is defined by

‖u‖α;� := [u]α;� + ‖u‖L∞(�).

We use the convention [ · ]α = [ · ]α;Rd , etc.
We will frequently use the following identity

2j
(
u(x + 2−j �) − u(x)

) − (
u(x + �) − u(x)

)
=

j∑
k=1

2k−1(2u(x + 2−k�) − u(x + 2−k+1�) − u(x)
)
, (2.1)

which holds for any � ∈R
d and nonnegative integer j .

Denote P1 to be the set of first-order polynomials of x.

Lemma 2.1. Let α ∈ (0, σ) be a constant.
(i) When σ ∈ (0, 1), we have

[u]σ ≤ C sup
r>0

sup
x0∈Rd

rα−σ [u]�α(Br (x0)) ≤ C sup
r>0

sup
x0∈Rd

rα−σ [u]α;Br (x0), (2.2)

where C > 0 is a constant depending only on d , α, and σ .
(ii) When σ ∈ (1, 2), we have

[u]σ ≤ C sup
r>0

sup
x0∈Rd

rα−σ [u]�α(Br (x0)) ≤ C sup
r>0

sup
x0∈Rd

rα−σ inf
p∈P1

[u − p]α;Br (x0), (2.3)

where C > 0 is a constant depending only on d , α, and σ .
(iii) When σ = 1, we have

‖Du‖L∞ ≤ C

∞∑
k=0

sup
x0∈Rd

2−k(α−1)[u]�α(B2−k (x0)) + C sup
x,x′∈Rd

|x−x′|=1

|u(x) − u(x′)|

≤ C

∞∑
k=0

sup
x0∈Rd

2−k(α−1) inf
p∈P1

[u − p]α;B2−k (x0) + C sup
x,x′∈Rd

|x−x′|=1

|u(x) − u(x′)|, (2.4)

where C > 0 is a constant depending only on d and α. Moreover, we can estimate the modulus of continuity of Du by 
the remainder of the summation on the right-hand side of (2.4).

Proof. First we consider the case when σ ∈ (0, 1). Let x, x ′ ∈R
d be two different points. Denote h = |x − x′|. Since

u(x′) − u(x) = 1

2

(
u(2x′ − x) − u(x)

) − 1

2

(
u(2x′ − x) − 2u(x′) + u(x)

)
,

we get

h−σ |u(x′) − u(x)|
≤ 2σ−1(2h)−σ

(
u(2x′ − x) − u(x)

) + h−σ |u(2x′ − x) − 2u(x′) + u(x)|
≤ 2σ−1(2h)−σ

(
u(2x′ − x) − u(x)

) + sup
x∈Rd

hα−σ [u]�α(Bh(x)).
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Taking the supremum with respect to x and x′ on both sides, we get

[u]σ ≤ 2σ−1[u]σ + sup
x∈Rd

hα−σ [u]�α(Bh(x)),

which together with the triangle inequality gives (2.2).
For σ ∈ (1, 2), let � ∈ R

d be a unit vector and ε ∈ (0, 1/16) be a small constant to be specified later. For any two 
distinct points x, x′ ∈R

d , we denote h = |x − x′|. By the triangle inequality,

h1−σ |D�u(x) − D�u(x′)| ≤ I1 + I2 + I3, (2.5)

where

I1 = h1−σ |D�u(x) − (εh)−1(u(x + εh�) − u(x))|,
I2 = h1−σ |D�u(x′) − (εh)−1(u(x′ + εh�) − u(x′))|,
I3 = h1−σ (εh)−1|(u(x + εh�) − u(x)) − (u(x′ + εh�) − u(x′))|.

By the mean value theorem,

I1 + I2 ≤ 2εσ−1[Du]σ . (2.6)

Now we choose and fix a ε sufficiently small depending only on σ such that 2εσ−1 ≤ 1/2. Using the triangle inequality, 
we have

I3 ≤ Ch−σ
(|u(x + εh�) + u(x′) − 2u(x̄)| + |u(x′ + εh�) + u(x) − 2u(x̄)|),

where x̄ = (x + εh� + x′)/2. Thus,

I3 ≤ Chα−σ [u]�α(Bh(x̄)). (2.7)

Combining (2.5), (2.6), and (2.7), we get (2.3) as before.
Finally, we treat the case when σ = 1. It follows from (2.1) that

2j
∣∣u(x + 2−j �) − u(x)

∣∣ ≤ 2|u(x + �) − u(x)| +
j∑

k=1

2−k(α−1)[u]�α(B2−k (x+2−k�)).

Taking j → ∞, we obtain the desired inequality. For the continuity estimate, let � ∈R
d be a unit vector. Assume that 

|x − x′| ∈ [2−i−1, 2−i ) for some positive integer i. From (2.1), for any j ≥ i + 1,

2j
(
u(x + 2−j �) − u(x)

) − 2i
(
u(x + 2−i�) − u(x)

)
=

j∑
k=i+1

2k−1(2u(x + 2−k�) − u(x + 2−k+1�) − u(x)
)

and a similar identity holds with x′ in place of x. Then we have

|D�u(x) − D�u(x′)| = lim
j→∞

∣∣∣2j
(
u(x + 2−j �) − u(x)

) − 2j
(
u(x′ + 2−j �) − u(x′)

)∣∣∣
≤

∣∣∣2i
(
u(x + 2−i�) − u(x)

) − 2i
(
u(x′ + 2−i�) − u(x′)

)∣∣∣
+

∞∑
k=i+1

sup
x0∈Rd

2−k(α−1)[u]�α(B2−k (x0)).

By the triangle inequality, the first term on the right-hand side is bounded by

2i |u(x + 2−i�) − 2u(x̄) + u(x′)| + 2i |u(x′ + 2−i�) − 2u(x̄) + u(x)|
with x̄ = (x + 2−i + x′)/2, which is further bounded by

21+i(1−α)[u]�α(B −i (x̄)).
2
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Therefore,

|D�u(x) − D�u(y)| ≤ C

∞∑
k=i

sup
x0∈Rd

2−k(α−1)[u]�α(B2−k (x0)),

which converges to 0 as i → ∞ uniformly with respect to �. The lemma is proved. �
The following lemma will be used to estimate the error term in the freezing coefficient argument.

Lemma 2.2. Let α ∈ (0, 1) and σ ∈ (1, 2) be constants. Then for any u ∈ C1, we have

∞∑
k=0

2k(σ−α) sup
x0∈Rd

[u − Px0u]α;B2−k (x0)
≤ C

∞∑
k=0

2k(σ−α) sup
x0∈Rd

inf
p∈P1

[u − p]α;B2−k(x0)
(2.8)

and
∞∑

k=0

2kσ sup
x0∈Rd

‖u − Px0u‖L∞(B2−k(x0)
) ≤ C

∞∑
k=0

2k(σ−α) sup
x0∈Rd

[u]�α(B2−k (x0)
), (2.9)

where Px0u is the first-order Taylor expansion of u at x0, and C > 0 is a constant depending only on d , α, and σ .

Proof. Denote

bk := 2k(σ−α) sup
x0∈Rd

inf
p∈P1

[u − p]α;B2−k (x0).

Then for any x0 ∈R
d and each k = 0, 1, . . . , there exists pk ∈P1 such that

[u − pk]α;B2−k (x0) ≤ 2bk2−k(σ−α).

By the triangle inequality, for k ≥ 1 we have

[pk−1 − pk]α;B2−k (x0) ≤ 2bk2−k(σ−α) + 2bk−12−(k−1)(σ−α). (2.10)

It is easily seen that

[pk−1 − pk]α;B2−k (x0) = |∇pk−1 − ∇pk|2−(k−1)(1−α),

which together with (2.10) implies that

|∇pk−1 − ∇pk| ≤ C(bk + bk−1)2
−k(σ−1). (2.11)

Since 
∑k

0 bk < ∞, from (2.11) we see that {∇pk} is a Cauchy sequence in Rd . Let q = q(x0) ∈ R
d be its limit, which 

clearly satisfies for each k ≥ 0,

|q − ∇pk| ≤ C

∞∑
j=k

2−j (σ−1)bj .

By the triangle inequality, we get

[u − q · x]α;B2−k (x0) ≤ [u − pk]α;B2−k (x0) + [pk − q · x]α;B2−k (x0)

≤ C2−k(1−α)

∞∑
j=k

2−j (σ−1)bj ≤ C2−k(σ−α), (2.12)

which implies that

‖u − u(x0) − q · (x − x0)‖L∞(B2−k (x0)) ≤ C2−kσ ,

and thus q = ∇u(x0). It then follows (2.12) that
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∞∑
k=0

2k(σ−α) sup
x0∈Rd

[u − Px0u]α;B2−k (x0) ≤ C

∞∑
k=0

2k(σ−1)
∞∑

j=k

2−j (σ−1)bj

= C

∞∑
j=0

2−j (σ−1)bj

j∑
k=0

2k(σ−1) ≤ C

∞∑
j=0

bj .

This completes the proof of (2.8).
Next we show (2.9). For any x ∈ B2−k , it follows from (2.1) that for j ≥ 1,

u(x) − u(0) − 2j
(
u(2−j x) − u(0)

)
=

j−1∑
i=0

2i
(
u(2−ix) + u(0) − 2u(2−i−1x)

)
.

Sending j → ∞, we obtain

∣∣u(x) − u(0) − x · ∇u(0)
∣∣ ≤

∞∑
i=0

2i
∣∣u(2−ix) + u(0) − 2u(2−i−1x)

∣∣

≤ 2−α
∞∑
i=0

2i−(i+k)α[u]�α(B2−(k+i) ) = 2−α
∞∑
i=k

2i−k−iα[u]�α(B2−i ),

where we shifted the index in the last equality. Therefore, by shifting the coordinates and sum in k, we have

∞∑
k=0

2kσ sup
x0∈Rd

‖u − Px0u‖L∞(B2−k )(x0)

≤ C

∞∑
k=0

2k(σ−1)

∞∑
i=k

2i(1−α) sup
x0∈Rd

[u]�α(B2−i (x0))

= C

∞∑
i=0

2i(1−α) sup
x0∈Rd

[u]�α(B2−i (x0))

i∑
k=0

2k(σ−1)

≤ C

∞∑
i=0

2i(σ−α) sup
x0∈Rd

[u]�α(B2−i (x0)),

where we switched the order of the summations in the second equality and in the last inequality we used the condition 
that σ > 1. The lemma is proved. �

Let ζ ∈ C∞
0 (B1) be a nonnegative radial function with unit integral. For R > 0, we define the mollification of a 

function u by

u(R)(x) =
∫
Rd

u(x − Ry)ζ(y) dy.

The next lemmas will be used in the estimate of Mj in Proposition 3.1 when σ = 1.

Lemma 2.3. Let β ∈ (0, 1], α ∈ (0, 1 + β), and 0 < R ≤ R1 < ∞. Then for any u ∈ �α(B2R1), we have

[Du(R)]β;BR1
≤ C(d,β,α)Rα−1−β [u]�α(B2R1 ). (2.13)

Proof. We begin by estimating ‖D2
�u‖0;BR1

for a fixed unit vector � ∈R
d . Because D2

�ζ is even with respect to x and 
has zero integral, using integration by parts we have for any x ∈ BR1 ,
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|D2
�u

(R)(x)| = R−2
∣∣∣ ∫
Rd

u(x − Ry)D2
�ζ(y) dy

∣∣∣

= R−2

2

∣∣∣ ∫
Rd

(
u(x − Ry) + u(x + Ry) − 2u(x)

)
D2

�ζ(y) dy

∣∣∣
≤ CRα−2[u]�α(B2R1 )

∫
Rd

|y|αD2
�ζ(y) dy ≤ CRα−2[u]�α(B2R1 ).

Using the identity, 2Diju = 2D2
�u − D2

i u − D2
j u, where � = (ei + ej )/

√
2, we obtain the desired inequality (2.13)

when β = 1.
Next we consider the case when β ∈ (0, 1). We follow the proof of Lemma 2.1. Let � ∈ R

d be a unit vector, and 
ε ∈ (0, 1/16) be a small constant to be specified later. For any two distinct points x, x′ ∈ BR1 , let h = |x −x′|(< 2R1). 
It is easily seen that there exist two points y ∈ Bεh(x) ∩ BR1 and y′ ∈ Bεh(x

′) ∩ BR1 such that

y + εh� ∈ Bεh(x) ∩ BR1, y′ + εh� ∈ Bεh(x
′) ∩ BR1 .

By the triangle inequality,

h−β |D�u
(R)(x) − D�u

(R)(x′)| ≤ I1 + I2 + I3,

where

I1 = h−β |D�u
(R)(x) − (εh)−1(u(R)(y + εh�) − u(R)(y))|,

I2 = h−β |D�u
(R)(x′) − (εh)−1(u(R)(y′ + εh�) − u(R)(y′))|,

I3 = h−β(εh)−1|(u(R)(y + εh�) − u(R)(y)) − (u(R)(y′ + εh�) − u(R)(y′))|.
By the mean value theorem,

I1 + I2 ≤ 2εβ [Du(R)]β;BR1
. (2.14)

Now we choose ε depending only on d and β such that 2εβ ≤ 1/2. To estimate I3, we consider two cases. If h > R, 
by the triangle inequality, we have

I3 ≤ Ch−1−β
(|u(R)(y + εh�) + u(R)(y′) − 2u(R)(ȳ)|

+ |u(R)(y′ + εh�) + u(R)(y) − 2u(R)(ȳ)|),
where ȳ = (y + εh� + y′)/2. Then by the Minkowski inequality,

I3 ≤ Chα−1−β [u(R)]�α(BR1 ) ≤ CRα−1−β [u]�α(B2R1 ). (2.15)

On the other hand, if h ∈ (0, R), by the mean value theorem and (2.13) with β = 1,

I3 ≤ Ch1−β [Du(R)]1;BR1
≤ Ch1−βRα−2[u]�α(B2R1 ) ≤ CRα−1−β [u]�α(B2R1 ). (2.16)

Combining (2.14), (2.15), and (2.16), we obtain

h−β |D�u
(R)(x) − D�u

(R)(x′)| ≤ 1

2
[Du(R)]β;BR1

+ CRα−1−β [u]�α(B2R1 ).

Taking the supremum of the left-hand side above with respect to unit vector � ∈R
d and x, x′ ∈ BR1 , we immediately 

get (2.13). The lemma is proved. �
Lemma 2.4. Let α ∈ (0, 1), β ∈ (0, 1), and R > 0 be constants. Let p = p(x) be the first-order Taylor expansion of 
u(R) at the origin and ũ = u − p. Then for any integer j ≥ 0, we have
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‖ũ‖L∞(B2j+1R
) ≤ C2j (1+β)Rα[u]�α(B2j+2R

), (2.17)

sup
x,x′∈B2j R

0<|x−x′|<2R

|ũ(x) − ũ(x′)|
|x − x′|α ≤ C2jβ [u]�α(B2j+2R

), (2.18)

where C > 0 is a constant depending only on d , β , and α.

Proof. Since ζ ∈ C∞
0 (B1) is radial and has unit integral, we have for any x ∈ B2j+1R ,∣∣u(R)(x) − u(x)

∣∣
= ∣∣1

2

∫
Rd

(
u(x + Ry) − u(x − Ry) − 2u(x)

)
ζ(y) dy

∣∣∣ ≤ CRα[u]�α(B2j+2R
). (2.19)

By the mean value theorem and Lemma 2.3, for any x ∈ B2j+1R ,∣∣u(R)(x) − p(x)
∣∣ ≤ C(2j+1R)1+β [u(R)]1+β;B2j+1R

≤ C2j (1+β)Rα[u]�α(B2j+2R
),

which together with (2.19) implies (2.17). Next we show (2.18). For any two distinct points x, x′ ∈ B2j R satisfying 
0 < |x − x′| < 2R, denote h = |x − x ′|(< 2R). Let k be the largest nonnegative integer such that 2k(x′ − x) + x ∈
B2j+1R . Clearly,

2kh ∈ (2j−1R,2j+2R). (2.20)

It follows from (2.1) that

ũ(x′) − ũ(x) = 2−k
(
ũ(2k(x′ − x) + x) − ũ(x)

)
+

k−1∑
i=0

2−i−1(2ũ(2i (x′ − x) + x) − ũ(x) − ũ(2i+1(x′ − x) + x)
)
. (2.21)

By (2.20), (2.21), and (2.17), we obtain

h−α|ũ(x′) − ũ(x)| ≤ 2−k+1h−α‖ũ‖L∞(B2j+1R
) + C[u]�α(B2j+1R

)

≤ C2−jR−1h1−α · 2j (1+β)Rα[u]�α(B2j+2R
) + C[u]�α(B2j+1R

)

≤ C2jβ [u]�α(B2j+2R
),

where we used h < 2R in the last inequality. The lemma is proved. �
3. Proofs

The following proposition is a further refinement of [9, Corollary 4.6].

Proposition 3.1. Let σ ∈ (0, 2) and 0 < λ ≤ �. Assume that for any β ∈ A, Kβ only depends on y. There is a constant 
α̂ ∈ (0, 1) depending on d, σ, λ, and � so that the following holds. Let α ∈ (0, α̂). Suppose u ∈ Cσ+α(B1) ∩ Cα(Rd)

is a solution of

inf
β∈A

(Lβu + fβ) = 0 in B1.

Then,

[u]α+σ ;B1/2 ≤ C

∞∑
j=1

2−jσ Mj + C sup
β

[fβ ]α;B1,

where
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Mj = sup
x,x′∈B2j ,0<|x−x′|<2

|u(x) − u(x′)|
|x − x′|α

and C > 0 depends only on d , λ, �, α, and σ , and is uniformly bounded as σ → 2.

Proof. This follows from the proof of [9, Corollary 4.6] by observing that in the estimate of [hβ]α;B1 , the term 
[u]α;B2j

can be replaced by Mj . Moreover, by replacing u by u − u(0), we see that

‖u‖α;B2 ≤ C[u]α;B2 .

The lemma is proved. �
Proposition 3.2. Suppose that (1.1) is satisfied in Rd . Then under the conditions of Theorem 1.1, we have

[u]σ ≤ C‖u‖L∞ + C

∞∑
k=1

ωf (2−k), (3.1)

where C > 0 is a constant depending only on d , λ, �, ωa , and σ , and σ , and is uniformly bounded as σ → 2.

Proof. Case 1: σ ∈ (0, 1). For k ∈ N, let v be the solution of{
infβ∈A

(
Lβ(0)v + fβ(0)

) = 0 in B2−k

v = u in Bc
2−k

, (3.2)

where Lβ(0) is the operator with kernel Kβ(0, y). Then by Proposition 3.1 with scaling, we have

[v]α+σ ;B2−k−1 ≤ C

∞∑
j=1

2(k−j)σ Mj + C2kσ [v]α;B2−k

≤ C

k∑
j=1

2(k−j)σ Mj + C[u]α + C2kσ [v]α;B2−k
, (3.3)

where α ∈ (0, α̂) satisfying σ + α < 1 and

Mj = sup
x,x′∈B2j−k ,0<|x−x′|<2−k+1

|u(x) − u(x′)|
|x − x′|α .

Let k0, k1 ≥ 1 be integers to be specified. From (3.3), we get

[v]α;B
2−k−k0

≤ C2−(k+k0)σ

k∑
j=1

2(k−j)σ Mj + C2−(k+k0)σ [u]α + C2−k0σ [v]α;B2−k
. (3.4)

Next, w := u − v satisfies⎧⎪⎨
⎪⎩
M+w ≥ −Ck in B2−k ,

M−w ≤ Ck in B2−k ,

w = 0 in Bc
2−k ,

(3.5)

where

Ck = sup
β∈A

‖fβ − fβ(0) + (Lβ − Lβ(0))u‖L∞(B2−k ).

It is easily seen that
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Ck ≤ ωf (2−k) + Cωa(2
−k)

∫
Rd

|u(x + y) − u(x)||y|−d−σ dy

≤ ωf (2−k) + Cωa(2
−k)

(
sup

x0∈B2−k

∞∑
j=0

2j (σ−α)[u]α;B2−j (x0) + ‖u‖L∞
)
.

Then by the Hölder estimate [9, Lemma 2.5], we have

[w]α;B2−k
≤ C2−k(σ−α)Ck

≤ C2−k(σ−α)
(
ωf (2−k) + ωa(2

−k)
(

sup
x0∈B2−k

∞∑
j=0

2j (σ−α)[u]α;B2−j (x0) + ‖u‖L∞
))

. (3.6)

Combining (3.4) and (3.6) yields

2(k+k0)(σ−α)[u]α;B
2−k−k0

≤ C2−(k+k0)α

k∑
j=1

2(k−j)σ [u]α;B2j−k
+ C2−(k+k0)α[u]α + C2−k0α2k(σ−α)[u]α;B2−k

+ C2k0(σ−α)
(
ωf (2−k) + ωa(2

−k)
(

sup
x0∈B2−k

∞∑
j=0

2j (σ−α)[u]α;B2−j (x0) + ‖u‖L∞
))

. (3.7)

Shifting the coordinates, from (3.7) we get

2(k+k0)(σ−α) sup
x0∈Rd

[u]α;B
2−k−k0 (x0)

≤ C2−(k+k0)α sup
x0∈Rd

k∑
j=1

2(k−j)σ [u]α;B2j−k (x0) + C2−(k+k0)α[u]α

+ C2−k0α2k(σ−α) sup
x0∈Rd

[u]α;B2−k (x0)
+ C2k0(σ−α)

(
ωf (2−k)

+ ωa(2
−k)( sup

x0∈Rd

∞∑
j=0

2j (σ−α)[u]α;B2−j (x0) + ‖u‖L∞)
)
. (3.8)

We take the summation of (3.8) in k = k1, k1 + 1, . . . to obtain

∞∑
k=k1

2(k+k0)(σ−α) sup
x0∈Rd

[u]α;B
2−k−k0 (x0)

≤ C

∞∑
k=k1

2−(k+k0)α
(

sup
x0∈Rd

k∑
j=1

2(k−j)σ [u]α;B2j−k (x0)

)
+ C2−(k1+k0)α[u]α

+ C2−k0α
∞∑

k=k1

2k(σ−α) sup
x0∈Rd

[u]α;B2−k (x0)
+ C2k0(σ−α)

∞∑
k=k1

(
ωf (2−k)

+ ωa(2
−k)

( ∞∑
j=0

2j (σ−α) sup
x0∈Rd

[u]α;B2−j (x0) + ‖u‖L∞
))

,

which by switching the order of summations is further bounded by
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C2−k0α
∞∑

j=0

2j (σ−α) sup
x0∈Rd

[u]α;B2−j (x0)

+ C2−(k1+k0)α[u]α + C2k0(σ−α)

∞∑
k=k1

ωf (2−k)

+ C2k0(σ−α)
∞∑

k=k1

ωa(2
−k) ·

( ∞∑
j=0

2j (σ−α) sup
x0∈Rd

[u]α;B2−j (x0) + ‖u‖L∞
)
.

The bound above together with the obvious inequality

k1+k0−1∑
j=0

2j (σ−α) sup
x0∈Rd

[u]α;B2−j (x0) ≤ C2(k1+k0)(σ−α)[u]α,

implies that
∞∑

j=0

2j (σ−α) sup
x0∈Rd

[u]α;B2−j (x0) ≤ C2−k0α
∞∑

j=0

2j (σ−α) sup
x0∈Rd

[u]α;B2−j (x0)

+ C2(k1+k0)(σ−α)[u]α + C2k0(σ−α)

∞∑
k=k1

ωf (2−k)

+ C2k0(σ−α)
∞∑

k=k1

ωa(2
−k) ·

( ∞∑
j=0

2j (σ−α) sup
x0∈Rd

[u]α;B2−j (x0) + C‖u‖L∞
)
.

By first choosing k0 sufficiently large and then k1 sufficiently large, we get

∞∑
j=0

2j (σ−α) sup
x0∈Rd

[u]α;B2−j (x0) ≤ C‖u‖α + C

∞∑
k=1

ωf (2−k),

which together with Lemma 2.1 (i) and the interpolation inequality gives (3.1).
Case 2: σ ∈ (1, 2). For k ∈ N, let vM be the solution of{

infβ∈A
(
Lβ(0)vM + fβ(0)

) = 0 in B2−k

vM = gM in Bc
2−k

,

where M ≥ 2‖u − p0‖L∞(B2−k ) is a constant to be specified later,

gM = max
(

min(u − p0,M),−M
)
,

and p0 is the first-order Taylor’s expansion of u at the origin.
By Proposition 3.1, instead of (3.3), we have

[vM ]α+σ ;B2−k−1 ≤ C

∞∑
j=0

2(k−j)σ Mj + C2kσ [vM ]α;B2−k

≤ C

k∑
j=0

2(k−j)σ Mj + C‖Du‖L∞ + C2kσ [vM ]α;B2−k
, (3.9)

where α ∈ (0, α̂) and

Mj = sup
x,x′∈B2j−k ,0<|x−x′|<2−k+1

|u(x) − p0(x) − u(x′) + p0(x
′)|

|x − x′|α .

From (3.9) and the mean value formula,
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‖vM − p1‖L∞(B
2−k−k0 ) ≤ C2−(k+k0)(σ+α)

k∑
j=0

2(k−j)σ Mj

+ C2−(k+k0)(σ+α)‖Du‖L∞ + C2−kα−k0(σ+α)[vM ]α;B2−k
,

where p1 is the first-order Taylor’s expansion of vM at the origin. The above inequality, (3.9), and the interpolation 
inequality imply

[vM − p1]α;B
2−k−k0

≤ C2−(k+k0)σ

k∑
j=0

2(k−j)σ Mj

+ C2−(k+k0)σ ‖Du‖L∞ + C2−k0σ [vM ]α;B2−k
. (3.10)

Next wM := gM − vM satisfies⎧⎪⎨
⎪⎩
M+wM ≥ hM − Ck in B2−k ,

M−wM ≤ ĥM + Ck in B2−k ,

wM = 0 in Bc
2−k ,

where

hM := M−(gM − (u − p0)), ĥM := M+(gM − (u − p0)).

By the dominated convergence theorem, it is easy to see that

‖hM‖L∞(B2−k ), ‖ĥM‖L∞(B2−k ) → 0 as M → ∞.

By the same argument as in the previous case,

Ck ≤ ωf (2−k) + Cωa(2
−k)

(
sup

x0∈Rd

∞∑
j=0

2j (σ−α)[u − Px0u]α;B2−j (x0) + ‖Du‖L∞
)
.

Thus similar to (3.6), choosing M sufficiently large so that

‖hM‖L∞(B2−k ), ‖ĥM‖L∞(B2−k ) ≤ Ck/2,

we have

[wM ]α;B2−k
≤ C2−k(σ−α)

(
ωf (2−k) + ωa(2

−k)‖Du‖L∞

+ ωa(2
−k) sup

x0∈Rd

∞∑
j=0

2j (σ−α)[u − Px0u]α;B2−j (x0)

)
. (3.11)

Combining (3.10) and (3.11), similar to (3.8), we obtain

2(k+k0)(σ−α) sup
x0∈Rd

inf
p∈P1

[u − p]α;B
2−k−k0 (x0)

≤ C2−(k+k0)α sup
x0∈Rd

k∑
j=0

2(k−j)σ [u − Px0u]α;B2j−k (x0) + C2−(k+k0)α‖Du‖L∞

+ C2−k0α2k(σ−α) sup
x0∈Rd

[u − Px0 ]α;B2−k (x0)
+ C2k0(σ−α)

(
ωf (2−k)

+ ωa(2
−k)( sup

x0∈Rd

∞∑
2j (σ−α)[u − Px0u]α;B2−j (x0) + ‖Du‖L∞)

)
. (3.12)
j=0



984 H. Dong, H. Zhang / Ann. I. H. Poincaré – AN 35 (2018) 971–992
Using (3.12), as before we get
∞∑

k=k1

2(k+k0)(σ−α) sup
x0∈Rd

inf
p∈P1

[u − p]α;B
2−k−k0 (x0)

≤ C2−k0α
∞∑

j=0

2j (σ−α) sup
x0∈Rd

[u − Px0u]α;B2−j (x0)

+ C2−(k1+k0)α‖u‖1 + C2k0(σ−α)
∞∑

k=k1

ωf (2−k)

+ C2k0(σ−α)

∞∑
k=k1

ωa(2
−k) · sup

x0∈Rd

∞∑
j=0

2j (σ−α)[u − Px0u]α;B2−j (x0), (3.13)

and
∞∑

j=0

2j (σ−α) sup
x0∈Rd

inf
p∈P1

[u − p]α;B2−j (x0)

≤ C2−k0α

∞∑
j=0

2j (σ−α) sup
x0∈Rd

[u − Px0u]α;B2−j (x0)

+ C2(k1+k0)(σ−α)‖u‖1 + C2k0(σ−α)

∞∑
k=k1

ωf (2−k)

+ C2k0(σ−α)
∞∑

k=k1

ωa(2
−k) · sup

x0∈Rd

∞∑
j=0

2j (σ−α)[u − Px0u]α;B2−j (x0).

By choosing k0 and k1 sufficiently large and applying Lemma 2.2, we obtain

∞∑
j=0

2j (σ−α) sup
x0∈Rd

inf
p∈P1

[u − p]α;B2−j (x0) ≤ C‖u‖1 + C

∞∑
k=1

ωf (2−k). (3.14)

Finally, by Lemma 2.1 (ii) and the interpolation inequality, we get (3.1).
Case 3: σ = 1. We proceed as in the previous case, but instead take p0 to be the first-order Taylor’s expansion of 

the mollification u(2−k) at the origin. We also assume that the solution v to (3.2) exists without carrying out another 
approximation argument. By Proposition 3.1 and Lemma 2.4 with β = α/2,

[v]α+1;B2−k−1 ≤ C

∞∑
j=0

2k−jMj + C2k[v]α;B2−k

≤ C

∞∑
j=0

2k−j+jα/2[u]�α(B2j−k ) + C2k[v]α;B2−k

≤ C

k∑
j=0

2k−j+jα/2[u]�α(B2j−k ) + C2kα/2[u]α + C2k[v]α;B2−k
. (3.15)

From (3.15) and the interpolation inequality, we obtain

[v − p1]α;B
2−k−k0

≤ C2−(k+k0)
k∑

2k−j+jα/2[u]�α(B2j−k ) + C2−(k+k0)+kα/2[u]α + C2−k0 [v]α;B2−k
j=0
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≤ C2−(k+k0)

k∑
j=0

2k−j+jα/2 inf
p∈P1

[u − p]α;B2j−k

+ C2−(k+k0)+kα/2[u]α + C2−k0[v]α;B2−k
, (3.16)

where p1 is the first-order Taylor’s expansion of v at the origin. Next w := u − p0 − v satisfies (3.5), where by the 
cancelation property (1.2),

Ck ≤ ωf (2−k) + Cωa(2
−k)

(
sup

x0∈Rd

∞∑
j=0

2j (1−α) inf
p∈P1

[u − p]α;B2−j (x0) + ‖u‖L∞
)
.

Therefore, similar to (3.6), we have

[w]α;B2−k
≤ C2−k(1−α)

(
ωf (2−k)

+ ωa(2
−k)

(
sup

x0∈Rd

∞∑
j=0

2j (1−α) inf
p∈P1

[u − p]α;B2−j (x0) + ‖u‖L∞
))

. (3.17)

Notice that from (2.18) and the triangle inequality,

[v]α;B2−k
≤ [w]α;B2−k

+ [u − p0]α;B2−k

≤ [w]α;B2−k
+ C[u]�α(B2−k+2 ) ≤ [w]α;B2−k

+ C inf
p∈P1

[u − p]α;B2−k+2 .

Similar to (3.8), combining (3.16), (3.17), and the inequality above, we obtain

2(k+k0)(1−α) sup
x0∈Rd

inf
p∈P1

[u − p]α;B
2−k−k0 (x0)

≤ C2−(k+k0)α sup
x0∈Rd

k∑
j=0

2k−j+jα/2 inf
p∈P1

[u − p]α;B2j−k (x0) + C2−(k/2+k0)α[u]α

+ C2−k0α+(k−2)(1−α) sup
x0∈Rd

inf
p∈P1

[u − p]α;B2−k+2(x0)
+ C2k0(1−α)

(
ωf (2−k)

+ ωa(2
−k)

(
sup

x0∈Rd

∞∑
j=0

2j (1−α) inf
p∈P1

[u − p]α;B2−j (x0) + ‖u‖L∞
))

,

which by summing in k = k1, k1 + 1, . . . implies that

∞∑
k=k1

2(k+k0)(1−α) sup
x0∈Rd

inf
p∈P1

[u − p]α;B
2−k−k0 (x0)

≤ C2−k0α

∞∑
j=0

2j (1−α) sup
x0∈Rd

inf
p∈P1

[u − p]α;B2−j (x0)

+ C2−(k/2+k0)α[u]α + C2k0(1−α)
∞∑

k=k1

ωf (2−k) + C2k0(1−α)
∞∑

k=k1

ωa(2
−k)

· ( sup
x0∈Rd

∞∑
j=0

2j (1−α) inf
p∈P1

[u − p]α;B2−j (x0) + ‖u‖L∞),

where for the first term on the right-hand side, we switched the order of summations to get
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∞∑
k=k1

2−(k+k0)α sup
x0∈Rd

k∑
j=0

2k−j+jα/2 inf
p∈P1

[u − p]α;B2j−k (x0)

≤
∞∑

k=0

2−(k+k0)α
k∑

j=0

2j+(k−j)α/2 sup
x0∈Rd

inf
p∈P1

[u − p]α;B2−j (x0)

= 2−k0α
∞∑

j=0

2j (1−α/2) sup
x0∈Rd

inf
p∈P1

[u − p]α;B2−j (x0)

∞∑
k=j

2−kα/2

≤ C2−k0α

∞∑
j=0

2j (1−α) sup
x0∈Rd

inf
p∈P1

[u − p]α;B2−j (x0).

Therefore,
∞∑

j=0

2j (1−α) sup
x0∈Rd

inf
p∈P1

[u − p]α;B2−j (x0)

≤ C2−k0α
∞∑

j=0

2j (1−α) sup
x0∈Rd

inf
p∈P1

[u − p]α;B2−j (x0)

+ C2(k1+k0)(1−α)[u]α + C2k0(1−α)
∞∑

k=k1

ωf (2−k) + C2k0(1−α)
∞∑

k=k1

ωa(2
−k)

· (
∞∑

j=0

2j (1−α) sup
x0∈Rd

inf
p∈P1

[u − p]α;B2−j (x0) + ‖u‖L∞).

Finally, to get (3.1) it suffices to choose k0 and k1 sufficiently large and apply Lemma 2.1 (iii). �
Next we employ a localization argument as in [9].

Proof of Theorem 1.1. Since the proof of the case when σ ∈ (0, 1) is almost the same as σ ∈ (1, 2) and actually 
simpler, we only present the latter and sketch the proof of the case when σ = 1 in the end.

The case when σ ∈ (1, 2). We divide the proof into three steps.
Step 1. For k = 1, 2, . . . , denote Bk := B1−2−k . Let ηk ∈ C∞

0 (Bk+1) be a sequence of nonnegative smooth cutoff 
functions satisfying η ≡ 1 in Bk , |η| ≤ 1 in Bk+1, and ‖Diηk‖L∞ ≤ C2ki for each i ≥ 0. Set vk := uηk ∈ Cσ+. 
A simple calculation reveals that

inf
β∈A

(Lβvk − hkβ + ηkfβ) = 0 in R
d,

where

hkβ = hkβ(x) =
∫
Rd

ξk(x, y)aβ(x, y)

|y|d+σ
dy

and

ξk(x, y) = u(x + y)(ηk(x + y) − ηk(x)) − y · Dηk(x)u(x).

Obviously, ηkfβ is a Dini continuous function in Rd and

|ηk(x)fβ(x) − ηk(x
′)fβ(x′)|

≤ ‖ηk‖L∞ωf (|x − x′|) + ‖fβ‖L∞(B1)‖Dηk‖L∞|x − x′|
≤ ωf (|x − x′|) + C2k‖fβ‖L∞(B1)|x − x′|,

where C only depends on d .
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Step 2. We first estimate the L∞ norm of hkβ . By the fundamental theorem of calculus,

ξk(x, y) = y ·
1∫

0

u(x + y)Dηk(x + ty) − u(x)Dηk(x) dt.

For |y| ≥ 2−k−3, |ξk(x, y)| ≤ C2k|y|‖u‖L∞ . For |y| < 2−k−3, we can further write

ξk(x, y) = y ·
1∫

0

(u(x + y) − u(x))Dηk(x + ty) + u(x)(Dηk(x + ty) − Dηk(x)) dt,

where the second term on the right-hand side is bounded by C22k|y|2|u(x)|. To estimate the first term, we consider 
two cases: when |x| ≥ 1 − 2−k−2, because |y| < 2−k−3, ξk(x, y) ≡ 0; when |x| < 1 − 2−k−2, we have

∣∣∣y ·
1∫

0

(u(x + y) − u(x))Dηk(x + ty) dt

∣∣∣ ≤ C2k|y|2‖Du‖L∞(Bk+3).

Hence for |y| < 2−k−3,

|ξk(x, y)| ≤ C|y|2(22k|u(x)| + 2k‖Du‖L∞(Bk+3)

)
.

Combining with the case when |y| > 2−k−3, we see that

‖hkβ‖L∞ ≤ C2σk
(‖u‖L∞ + ‖Du‖L∞(Bk+3)

)
. (3.18)

Next we estimate the modulus of continuity of hkβ . By the triangle inequality,

|hkβ(x) − hkβ(x′)|
≤

∫
Rd

|(ξk(x, y) − ξk(x
′, y))aβ(x, y)|

|y|d+σ
+ |ξk(x

′, y)(aβ(x, y) − aβ(x′, y))|
|y|d+σ

dy

:= I + II. (3.19)

Similar to (3.18), by the estimates of |ξk(x, y)| above, we have

II ≤ C2σk
(‖u‖L∞ + ‖Du‖L∞(Bk+3)

)
ωa(|x − x′|), (3.20)

where C depends on d , σ , and �, and is uniformly bounded as σ → 2. For I , by the fundamental theorem of calculus,

ξk(x, y) − ξk(x
′, y) = y ·

1∫
0

(
u(x + y)Dηk(x + ty) − u(x)Dηk(x)

− u(x′ + y)Dηk(x
′ + ty) + u(x′)Dηk(x

′)
)

dt.

When |y| ≥ 2−k−3, similar to the estimate of ξk(x, y), it follows that

|ξk(x, y) − ξk(x
′, y)| ≤ C|y|(2kωu(|x − x′|) + 22k‖u‖L∞|x − x′|). (3.21)

The case when |y| < 2−k−3 is a bit more delicate. First, by the fundamental theorem of calculus,

|ξk(x, y) − ξk(x
′, y)|

≤ |y|
1∫

0

|(u(x + y) − u(x))Dkη(x + ty) − (u(x′ + y) − u(x′))Dηk(x
′ + ty)|dt

+ |y|2
1∫

0

1∫
0

|u(x)D2ηk(x + tsy) − u(x′)D2ηk(x
′ + tsy)|dt ds := III + IV.
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It is easily seen that

IV ≤ C|y|2(22kωu(|x − x′|) + 23k‖u‖L∞|x − x′|).
Next we bound III by considering four cases. When x, x′ ∈ (Bk+2)c , we have III ≡ 0. When x, x′ ∈ Bk+2,

III ≤ |y|2
1∫

0

1∫
0

|Du(x + sy)Dηk(x + ty) − Du(x′ + sy)Dηk(x
′ + ty)|ds dt

≤ C|y|2(2k[u]1+α;Bk+3 |x − x′|α + 22k‖Du‖L∞(Bk+3)|x − x′|),
where we choose α = σ−1

2 . When x ∈ Bk+2 and x′ ∈ (Bk+2)c ,

III = |y|
1∫

0

|(u(x + y) − u(x))Dηk(x + ty)|dt

≤ |y|2
1∫

0

1∫
0

|Du(x + sy)(Dηk(x + ty) − Dηk(x
′ + ty))|ds dt

≤ C|y|222k‖Du‖L∞(Bk+3)|x − x′|.
The last case is similar. In conclusion, we obtain

III ≤ C|y|2(2k[u]1+α;Bk+3 |x − x′|α + 22k‖Du‖L∞(Bk+3)|x − x′|).
Combining the estimates of III, IV, and (3.21), we obtain

I ≤ C2k(σ+1)
(
ωu(|x − x′|) + [u]1+α;Bk+3 |x − x′|α

+ (‖Du‖L∞(Bk+3) + ‖u‖L∞)|x − x′|). (3.22)

By combining (3.19), (3.20), and (3.22), we obtain

|hkβ(x) − hkβ(x′)| ≤ ωh(|x − x′|),
where

ωh(r) := C2σk
(‖u‖L∞ + ‖Du‖L∞(Bk+3)

)
ωa(r)

+ C2k(σ+1)
(
ωu(r) + [u]1+α;Bk+3r

α + (‖Du‖L∞(Bk+3) + ‖u‖L∞)r
)

(3.23)

is a Dini function.
Step 3. We apply Proposition 3.2 to vk to obtain

[vk]σ ≤ C‖vk‖L∞ + C

∞∑
j=1

(
ωh(2

−j ) + ωf (2−j )
) + C2k sup

β

‖fβ‖L∞(B1)

≤ C‖vk‖L∞ + C2k(σ+1)
([u]1+α;Bk+3 + ‖Du‖L∞(Bk+3) + ‖u‖L∞

)
+ C

∞∑
j=1

(
2k(σ+1)ωu(2

−j ) + ωf (2−j )
) + C2k sup

β

‖fβ‖L∞(B1),

where C depends on d , λ, �, σ , and ωa , but independent of k. Since ηk ≡ 1 in Bk , it follows that

[u]σ ;Bk ≤ C2k(σ+1)‖u‖L∞ + C2k(σ+1)
([u]1+α;Bk+3 + ‖Du‖L∞(Bk+3)

)
+ C0

∞∑
j=1

(
2k(σ+1)ωu(2

−j ) + ωf (2−j )
) + C2k sup

β

‖fβ‖L∞(B1). (3.24)

By the interpolation inequality, for any ε ∈ (0, 1),
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[u]1+α;Bk+3 + ‖Du‖L∞(Bk+3) ≤ ε[u]σ ;Bk+3 + Cε
− 1+α

σ−(1+α) ‖u‖L∞ . (3.25)

Recall that α = σ−1
2 and denote

N := 1 + α

σ − (1 + α)
= σ + 1

σ − 1
(> 3).

Combining (3.24) and (3.25) with ε = C−1
0 2−3k−12N−1, we obtain

[u]σ ;Bk ≤ C23k+(3k+12N)N‖u‖L∞ + 2−12N−1[u]σ ;Bk+3

+ C2k sup
β

‖fβ‖L∞(B1) + C

∞∑
j=1

(
23kωu(2

−j ) + ωf (2−j )
)
.

Then we multiply 2−4kN to both sides of the inequality above and get

2−4kN [u]σ ;Bk ≤ C23k−kN‖u‖L∞ + 2−4N(k+3)−1[u]σ ;Bk+3

+ C2−4kN+k sup
β

‖fβ‖L∞(B1) + C2−kN
∞∑

j=1

(
ωu(2

−j ) + ωf (2−j )
)
.

We sum up the both sides of the inequality above and obtain
∞∑

k=1

2−4kN [u]σ ;Bk ≤ C

∞∑
k=1

23k−kN‖u‖L∞ + 1

2

∞∑
k=4

2−4kN [u]σ ;Bk

+ C

∞∑
k=1

2−4kN+k sup
β

‖fβ‖L∞(B1) + C

∞∑
j=1

(
ωu(2

−j ) + ωf (2−j )
)
,

which further implies that
∞∑

k=1

2−4kN [u]σ ;Bk ≤ C‖u‖L∞ + C sup
β

‖fβ‖L∞(B1) + C

∞∑
j=1

(
ωu(2

−j ) + ωf (2−j )
)
,

where C depends on d , λ, �, σ , and ωa . In particular, when k = 4, we deduce

[u]σ ;B4 ≤ C‖u‖L∞ + C sup
β

‖fβ‖L∞(B1) + C

∞∑
j=1

(
ωu(2

−j ) + ωf (2−j )
)
, (3.26)

which apparently implies (1.3).
Finally, since ‖v1‖1 is bounded by the right-hand side (3.26), from (3.14), we see that

∞∑
j=0

2j (σ−α) sup
x0∈Rd

inf
p∈P1

[v1 − p]α;B2−j (x0) ≤ C.

This and (3.13) with u replaced by v1 and fβ replaced by η1fβ − h1β give
∞∑

j=k1

2(j+k0)(σ−α) sup
x0∈Rd

inf
p∈P1

[v1 − p]α;B
2−j−k0 (x0)

≤ C2−k0α + C2k0(σ−α)

∞∑
j=k1

(
ωf (2−j ) + ωa(2

−j ) + ωu(2
−j ) + 2−jα

)
.

Here we also used Lemma 2.2 and (3.23) with k = 1. Therefore, for any small ε > 0, we can find k0 sufficiently large 
then k1 sufficiently large, depending only on C, σ , α, ωf , ωa , ωf , and ωu, such that

∞∑
2(j+k0)(σ−α) sup

x0∈Rd

inf
p∈P1

[v1 − p]α;B
2−j−k0 (x0) < ε,
j=k1
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which, together with the fact that v1 = u in B1/2 and the proof of Lemma 2.1 (ii), indicates that

sup
x0∈B1/2

[u]σ ;Br (x0) → 0 as r → 0

with a decay rate depending only on d , λ, �, ωa , ωf , ωu, supβ∈A ‖fβ‖L∞(B1), and σ . Hence, the proof of the case 
when σ ∈ (1, 2) is completed.

The case when σ = 1. The proof is very similar to the case when σ ∈ (1, 2) and we only provide a sketch here. 
We use the same notation as in the previous case

hkβ(x) =
∫
Rd

ξk(x, y)aβ(x, y)

|y|d+1 dy,

where

ξk(x, y) := u(x + y)(ηk(x + y) − ηk(x)) − u(x)y · Dηk(x)χB1 .

It is easy to see that when |y| ≥ 2−k−3,

|ξk(x, y)| ≤ C2k|y|‖u‖L∞ .

On the other hand, when |y| < 2−k−3,

|ξk(x, y)| ≤ |y|
1∫

0

|u(x + y)Dηk(x + ty) − u(x)Dηk(x)|dt

≤ C2k|y|wu(|y|) + C22k|y|2|u(x)|.
Therefore,

‖hkβ‖L∞ ≤ C2k
(
‖u‖L∞ +

1∫
0

wu(r)

r
dr

)
.

Next we estimate the modulus of continuity of hkβ and proceed as in the case when σ ∈ (1, 2). Indeed, it is easily seen 
that

II ≤ C2k
(
‖u‖L∞ +

1∫
0

ωu(r)

r
dr

)
ωa(|x − x′|).

To estimate I, we write

ξk(x, y) − ξk(x
′, y) = u(x + y)(ηk(x + y) − ηk(x)) − u(x)y · Dηk(x)χB1

−u(x′ + y)(ηk(x
′ + y) − ηk(x

′)) + u(x′)y · Dηk(x
′)χB1 .

Obviously, when |y| ≥ 2−k−3

|ξk(x, y) − ξk(x
′, y)| ≤ C22k|y|(‖u‖L∞|x − x′| + ωu(|x − x′|)). (3.27)

When |y| < 2−k−3, we have χB1(y) = 1. Thus similar to the first case,

|ξk(x, y) − ξk(x
′, y)|

≤ |y|
1∫

0

|(u(x + y) − u(x))Dηk(x + ty) − (u(x′ + y) − u(x′))Dηk(x
′ + ty)|dt

+ |y|2
1∫

0

1∫
0

|u(x)D2ηk(x + tsy) − u(x′)D2ηk(x
′ + tsy)|dt ds := III + IV.
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Clearly,

IV ≤ C23k|y|2(ωu(|x − x′|) + ‖u‖L∞|x − x′|).
When x, x′ ∈ (Bk+2)c , we have III ≡ 0. When x, x′ ∈ Bk+2, by the triangle inequality,

III ≤ |y|
1∫

0

|u(x + y) − u(x) − (u(x′ + y) − u(x′))||Dηk(x + ty)|dt

+ |y|
1∫

0

|u(x′ + y) − u(x′)||Dηk(x + ty) − Dηk(x
′ + ty)|dt

≤ C2k|y|1+γ |x − x′|ζ [u]ζ+γ ;Bk+3 + C22k|y|ωu(|y|)|x − x ′|,
where C depends on d , and ζ + γ < 1. Here we used the inequality

|u(x + y) − u(x) − (u(x′ + y) − u(x′))| ≤ 2[u]γ+ζ |x − x′|ζ |y|γ .

Set γ = ζ = 1/4. When x ∈ Bk+2 and x′ ∈ (Bk+2)c ,

III = |y|
1∫

0

|(u(x + y) − u(x))Dηk(x + ty)|dt

= |y|
1∫

0

|(u(x + y) − u(x))(Dηk(x + ty) − Dηk(x
′ + ty))|dt

≤ C22k|y|ωu(|y|)|x − x ′|.
The case when x′ ∈ Bk+2 and x ∈ (Bk+2)c is similar. Then with the estimates of III and IV above, we obtain that 
when |y| < 2−k−3,

|ξk(x, y) − ξk(x
′, y)| ≤ C23k|y|2(ωu(|x − x′|) + ‖u‖L∞|x − x′|)

+C2k|y|5/4|x − x′|1/4[u]1/2;Bk+3 + C22k|y|ωu(|y|)|x − x ′|,
which, combining with (3.27) for the case when |y| ≥ 2−k−3, further implies that

I ≤C22k
(
ωu(|x − x′|) + ‖u‖L∞|x − x′|

+ [u]1/2;Bk+3 |x − x′|1/4 + |x − x′|
1∫

0

wu(r)

r
dr

)
,

where C depends on d and �. Hence, we obtain the estimate of the modulus of continuity of hkβ(x):

ωh(r) = C22k
(
ωu(r) + [u]1/2;Bk+3r

1/4 + (‖u‖L∞ +
1∫

0

ωu(r)

r
dr

)(
r + ωa(r)

))
.

The rest of the proof is the same as the previous case. �
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