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Abstract

‘We obtain Dini type estimates for a class of concave fully nonlinear nonlocal elliptic equations of order o € (0, 2) with rough and
non-symmetric kernels. The proof is based on a novel application of Campanato’s approach and a refined C?+¥ estimate in [9].
© 2017 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
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1. Introduction and main results

The paper is a continuation of our previous work [9], where we studied Schauder estimates for concave fully
nonlinear nonlocal elliptic and parabolic equations. In particular, when the kernels are translation invariant and the
data are merely bounded and measurable, we proved the C? estimate, which is very different from the classical theory
for second-order elliptic and parabolic equations. In this paper, we consider concave fully nonlinear nonlocal elliptic
equations with Dini continuous coefficients and nonhomogeneous terms, and establish a C? estimate under these
assumptions.

The study of classical elliptic equations with Dini continuous coefficients and data has a long history. Burch [4]
first considered divergence type linear elliptic equations with Dini continuous coefficients and data, and estimated the
modulus of continuity of the derivatives of solutions. The corresponding result for concave fully nonlinear elliptic
equations was obtained by Kovats [15], which generalized a previous result by Safonov [25]. Wang [29] studied linear
non-divergence type elliptic and parabolic equations with Dini continuous coefficients and data, and gave a simple
proof to estimate the modulus of continuity of the second-order derivatives of solutions. See, also [19,28,1,12,20,18],
and the references therein.

Recently, there is extensive work on the regularity theory for nonlocal elliptic and parabolic equations. For exam-
ple, C* estimates, C1-¢ estimates, Evans—Krylov type theorem, and Schauder estimates were established in the past
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decade. See, for instance, [5,6,10,11,13,7,8,17,16,27,23], and the references therein. In particular, Mou [23] inves-
tigated a class of concave fully nonlinear nonlocal elliptic equations with smooth symmetric kernels, and obtained
the C? estimate under a slightly stronger assumption than the usual Dini continuity on the coefficients and data.
The author implemented a recursive Evans—Krylov theorem, which was first studied by Jin and Xiong [17], as well
as a perturbation type argument. In this paper, by using a novel perturbation type argument, we relax the regularity
assumption to simply Dini continuity and also remove the symmetry and smoothness assumptions on the kernels.

To be more specific, we are interested in fully nonlinear nonlocal elliptic equations in the form

inf (L =0, 1.1
,512,4( g+ fp) (L.

where A is an index set and for each 8 € A,

Lgu :/Su(x, VKpx,y)dy,

Rd
u(x+y)—ulx)—y-Du(x) for o € (1, 2),
Su(x,y) = Julx +y) —u(x) —y-Du(x)xs foro =1,
u(x +y) —u(x) foro € (0, 1),

and

Kp(x,y) =ag(x, )|yl ~*.

This type of nonlocal operators was first investigated by Komatsu [14], Mikulevicius and Pragarauskas [21,22], and
later by Dong and Kim [10,11], and Schwab and Silvestre [26], to name a few.

We assume that a(-, -) € [(2 — o)X, (2 — o) A] for some ellipticity constants 0 < A < A, and is merely measurable
with respect to the y variable. When o = 1, we additionally assume that

/yKﬁ(x,y)ds=0, (1.2)
S,

for any r > 0, where S, is the sphere of radius r centered at the origin. We say that a function f is Dini continuous if
its modulus of continuity w ¢ is a Dini function, i.e.,

1

/a)f(r)/rdr < 00.
0
The following theorem is our main result, in which for simplicity we assume u € C "+(B1), which means that

u € C7+¢(By) for some arbitrary ¢ > 0. This condition is only needed for Lgu to be well defined, and may be
replaced by other weaker conditions.

Theorem 1.1. Let o € (0,2), 0 < A < A < 00, and A be an index set. Assume for each B € A, Kpg satisfies (1.2) when
o=1, and

lag(x,y) —ap(x’, y)| < 2 —0)Awa(lx —x')),

|fp(x) — fpD <wr(x —x"]),  sup || fallLoBy) < 0,

BeA

where w, and w ¢ are Dini functions. Suppose u € C° (By) is a solution of (1.1) in B\ and is Dini continuous in R4,
Then we have the a priori estimate

o
[t 8 < CllullLa + Csupll f5 Loy + C Y (@u277) + 0y (277)) (13)
B —
j=
where C > 0 is a constant depending only on d, o, A, A, and w,, and is uniformly bounded as o — 2. Moreover,
when o # 1, we have
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sup [uls:B,(x) =0 as r—0
X0€B1)2
with a decay rate depending only ond, o, A, A, wa, @5, Wy, and supge 4 || fpllLoo(B))- When o =1, Du is uniformly
continuous in By, with a modulus of continuity controlled by the quantities before.

Remark 1.2. By a careful inspection of the proofs below, one can see that the estimates above in fact only depend
ond,o, A, A, supge A I fgll Lo (B)), the modulus continuity wy of fg in B, wa(r), wu(r) forr € (0, 1), and |lu|z, .
where the weight w = w(x) is equal to (1 4 |[x|)~¢~7. In particular, u does not need to be globally bounded in R?.

Remark 1.3. In the literature, it was also common to define Su as
Su(x,y) =u(x+y) —u(x) —y- Du(x)xs,

even for o € (1, 2). See, for instance, [2]. In this case, the corresponding operators can be written as
Z,/gu =Lgu—b-Vu,

where

bp=bs)= [ yKpGx ) dy.
RI\ B

It is easily seen that bg is Dini continuous with a modulus of continuity w; depending only on d, A, and w,. Since
o > 1, b - Vu is a lower-order term. Then the same result follows by using the interpolation and iteration arguments
as in the proof of Theorem 1.1.

Remark 1.4. By keeping track of the constants in the proofs below, in the symmetric case, if o € [0y, 2) for some
o9 € (0, 1), then the constant C in (1.3) depends on o, not o. In the non-symmetric case, if 0 <oy <o <01 < 1 (or
1 < 07 <0 < 2), then the constant C depends on o and o7 (or 03), not o. In particular, C does not blow up as o
approaches 2.

Roughly speaking, the proof can be divided into two steps: We first show that Theorem 1.1 holds when the equation
is satisfied in the whole space; Then we implement a localization argument to treat the general case. In Step one, our
proof is based on a refined C? 1% estimate in our previous paper [9] and a new perturbation type argument, as the
standard perturbation techniques do not seem to work here. The novelty of this method is that instead of estimating
C? semi-norm of the solution, we construct and bound certain semi-norms of the solution, see Lemmas 2.1 and 2.2.
When o < 1, such semi-norm is defined as a series of lower-order Holder semi-norms of u. This is in the spirit
of Campanato’s approach first developed in [3]. Heuristically, in order for the nonlocal operator to be well defined,
the solution needs to be smoother than C°. To resolve this problem, we divide the integral domain into annuli,
which allows us to use a lower-order semi-norm to estimate the integral in each annulus. The series of lower-order
semi-norms, which turns out to be slightly stronger than the C° semi-norm, further implies that

[lo:B,(xg) >0 as r—0

uniformly in xg. In particular, when o = 1 we are able to estimate the modulus of continuity of the gradient of
solutions. The proof of the case when o > 1 is more difficult than that of the case when o < 1. This is mainly due
to the fact that the series of lower-order Holder semi-norms of the solution itself is no longer sufficient to estimate
the C? norm. Therefore, we need to subtract a polynomial from the solution in the construction of the semi-norm.
Similar idea was also used in the literature to derive Cordes—Nirenberg type estimates. See [24]. In some sense, the
polynomial should be taken to minimize the series. It turns out that when o > 1, up to a constant we can choose the
polynomial to be the first-order Taylor’s expansion of the solution. The case o =1 is particularly challenging since
the polynomial needs to be selected carefully, for which an additional mollification argument is applied.

The organization of this paper is as follows. In the next section, we introduce some notation and preliminary
results that are necessary in the proof of our main theorem. Some of these results might be of independent interest. In
section 3, we first prove a global version of Theorem 1.1 and then localize the result to obtain Theorem 1.1.
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2. Preliminaries

For « € (0,2) and a domain £ C R?, we define the Lipschitz—Zygmund semi-norm by

[ulae@y = sup  |x — y|"*u(x) +u(z) — 2u(y)|.
X,y,2€Q
x#z, x+z=2y

For o > 0, denote [u],.q to be the usual a-Holder semi-norm of u in €2, and the «-Holder norm is defined by

lullg;@ = [ulew:o + lull Lo () -

We use the convention [-]q =[ - ]y.gd, etc.
We will frequently use the following identity

2/ (u(x +270) —u(x)) — (u(x +£) — u(x))
j

=Y 2 ux + 270 —u(x + 270 —u(v)), 2.1)
k=1

which holds for any £ € RY and nonnegative integer ;.
Denote P; to be the set of first-order polynomials of x.

Lemma 2.1. Let o € (0, o) be a constant.
(i) When o € (0, 1), we have

[l < Csup sup r* 7 [ulae(p, (xy)) < Csup sup r* °[ula;B, (xo)s (2.2)
>0 xoeRd r>0 xgeRd

where C > 0 is a constant depending only on d, a, and o.
(ii) When o € (1, 2), we have

(o

[l < Csup sup r* “[ulpep, (xy)) < Csup sup r* 7 inf [u — pla;B, (xo) (2.3)
>0 xoeRd r>0 xyeRd peP

where C > 0 is a constant depending only on d, o, and o.
(iii) When o = 1, we have

o0
1Dullr, <€ sup 275 PVlulpacp o +C sup  |u(x) —u(x)|

k=0 X()ER‘] x,x’eRd
x—x"|=1
o
<CY  sup 27K dnf [ — plasp, ) +C sup  ux) —ux)], (2.4)
k=0 X0€R? pePy x,x'eR4
x—x"|=1

where C > 0 is a constant depending only on d and a. Moreover, we can estimate the modulus of continuity of Du by
the remainder of the summation on the right-hand side of (2.4).

Proof. First we consider the case when o € (0, 1). Let x, x” € R¥ be two different points. Denote & = |x — x’|. Since

1 , /
— 5 (@Qx = x) = 2u() +u)),

/ 1 I
ulx) —ulx)= E(u(Zx —Xx) — u(x))
we get
=% u(x") — u(x)|
<277 2R 7 (u2x' — x) —u(x)) + 7 |u@2x" — x) = 2u(x") + u(x)|

<2771 @) 77 (w@x" = x) = u@)) + sup h* 7 ulpe (s, o).

xeR4



H. Dong, H. Zhang / Ann. I. H. Poincaré — AN 35 (2018) 971-992 975

Taking the supremum with respect to x and x’ on both sides, we get

[ule <2° '[ul, + sup h*° [u]ae (B, (x))>
xeRd

which together with the triangle inequality gives (2.2).
Foro e (1,2),let £ e R? be a unit vector and ¢ € (0, 1/16) be a small constant to be specified later. For any two
distinct points x, x’ € R?, we denote & = |x — x’|. By the triangle inequality,

h' =7 Deu(x) — Deu(x)| < It + h + I, 2.5)
where

I =h'""%|Dgu(x) — ()~ (u(x + eht) — u(x))l,

L =h""Deu(x") — (eh) " (u(x' + eht) — u(x"))|,

L=h"""h) ulx + eht) — u(x)) — (' + eht) —u(x))|.
By the mean value theorem,

I+ I, <2¢° [ Dul,. (2.6)

Now we choose and fix a ¢ sufficiently small depending only on o such that 26°~! < 1/2. Using the triangle inequality,
we have

Iy < Ch™0 (Ju(x + £ht) + u(x') — 2u(®)| + |ux’ + eht) + u(x) — 2u(x)|),
where X = (x + ghf + x’)/2. Thus,
I3 < Ch*™° [ulpe (B, (x))- 2.7

Combining (2.5), (2.6), and (2.7), we get (2.3) as before.
Finally, we treat the case when o = 1. It follows from (2.1) that

J
2uCe+2770) —u(0)| <2lux + 0 —u@)+ Y27 P ulpeip (a2t
k=1

Taking j — oo, we obtain the desired inequality. For the continuity estimate, let £ € R¢ be a unit vector. Assume that
x —x'| € [2=i=1 2=%) for some positive integer i. From (2.1), forany j >i + 1,

2/ (u(x +2770) —u(x)) — 2 (u(x +270) —u(x))
j
= Y 2Qu 42750 —ux + 270 — u(x))
k=i+1

and a similar identity holds with x” in place of x. Then we have

|Dou(x) — Deu(x)| = lim ‘2]’ (w(x +2770) —u(x)) =27 (u(x' +277¢) — u(x/))‘
J—>00

<2 (e +2770) — () = 2 (' +2770) — u(x)|

+ Z sup Z_k(a_l)[u]Aa(Brk(XO))'
k=i+170€R?

By the triangle inequality, the first term on the right-hand side is bounded by
2u(x +270) — 2u(@) + u ) + 2 u(x’ +2710) — 2u(x) + u(x)|
with ¥ = (x + 277 4 x’)/2, which is further bounded by

21+i(1701) [”]A"‘(Bz_,- ®)-
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Therefore,

|Deu(x) — Deu(y)| < CZ sup 27X D ul e p, (o))

k=i xpeR4

which converges to 0 as i — oo uniformly with respect to £. The lemma is proved. O
The following lemma will be used to estimate the error term in the freezing coefficient argument.

Lemma 2.2. Let @ € (0, 1) and o € (1,2) be constants. Then for any u € C!l, we have

k(o —a) _ k(o —a) _
Zz SUp [ = Prgttlei 1, = cZz sup inf [ = placs, i, (2.8)
k=0 onR =0 onR p 1
and
o0
22]“’ sup [lu — Pugttll Loo(B, s, )= CZZk(U ) sup [u]A=(B,- Kixg))? (2.9)
k=0  Xo€Rd -0 xoeRd 0

where Py, u is the first-order Taylor expansion of u at xo, and C > 0 is a constant depending only on d, o, and o.

Proof. Denote

k
b =2 (0—a) sup inf [u — ply. B,k (x0)+
xoeRd PEPI

Then for any xg € R and each k=0, 1, ..., there exists Pk € P1 such that

[ — prla: B,y (xg) < 2052747

By the triangle inequality, for k > 1 we have

[Pt — Prla: B, (xo) < 206274079 2027 K7D, (2.10)
It is easily seen that

[Pr—1 = Pila; B, () = IV k-1 = Vg2 07D,
which together with (2.10) implies that

IVpr—1 = Vprl < Clby + b2 0. (2.11)

Since Zg by < oo, from (2.11) we see that {V pi} is a Cauchy sequence in RY. Let q=q(xg) € R be its limit, which
clearly satisfies for each k > 0,

o
lg—Vpil =CY 2770 Dp;.
j=k

By the triangle inequality, we get

[u—gq 'x]a;Bz_k (x0) = [u— pk]a;Bz_k (xo) T [Pk —q 'x]oz;Bz_k (x0)
o0
<27 MmO "m0, < oMo, (2.12)
=k
which implies that
e — u(x0) = g+ (x = %0) | Loo (B, (xo)y < €277,

and thus ¢ = Vu(xg). It then follows (2.12) that
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o o o
D 2 sup [u — Poula:p, ) <C Y 2K Y 270Dy,
k=0 xoeR4 k=0 j=k

0o j 0o
=CY 2770 p; N "2Ke=D < Y by,
j=0 k=0 j=0

This completes the proof of (2.8).
Next we show (2.9). For any x € B,-«, it follows from (2.1) that for j > 1,
u(x) —u(0) — 27/ (u2’x) — u(0))

j—1
=Y 2/ (u@x) +u(0) = 2u27" " 'x)).

i=0

Sending j — oo, we obtain

@) = u(0) —x - VuO)] = 2" |u@7x) +u(0) — 227
i=0

00 00
<2 Z pi—(i+h)a [u]ze (By gy = n—a Z gi—k—ia [M]A“(Bz,,- y»
i=0 i=k
where we shifted the index in the last equality. Therefore, by shifting the coordinates and sum in k, we have

o0

ZZ’“’ sup flu — PryutllLoo(B,—1)(xo)
k=0 onRd

00 o
<30S0 s
k=0 i=k xoeR?

00 i
=C Y 2" sup [wlaees, oy 207"
i=0 xoeR? k=0

oo
<C Z 210~ qup [u]A*(B,; (xo))-
i=0 X0 eRd
where we switched the order of the summations in the second equality and in the last inequality we used the condition
that o > 1. The lemma is proved. O

Let¢ e C(‘)’O(Bl) be a nonnegative radial function with unit integral. For R > 0, we define the mollification of a
function u by

W00 = [ute = Ry dy.
R4
The next lemmas will be used in the estimate of M in Proposition 3.1 when o = 1.

Lemma 2.3. Let B € (0, 1], « € (0, 1 + B), and 0 < R < R| < 00. Then for any u € A%(Bzg,), we have

[Du®g. 5, < Cd, B, ) RO Plulpa(pyy, - (2.13)

Proof. We begin by estimating || Dtgu llo: B Ry for a fixed unit vector £ € R?. Because Dt?g is even with respect to x and
has zero integral, using integration by parts we have for any x € Bg,,
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|D2u® (x)| = R‘2) f u(x — Ry) D¢ (y) dy)
R4

R™2 5
= T‘/ (u(x — Ry) + u(x + Ry) — 2u(x))De§(y)dy‘
R4
< CRU_Z[M]A“(BZRI)/ Iy|“D}c(y)dy < CR“_Q[M]A“(BZR]y
Rd

Using the identity, 2D;ju = 2D§u - Dizu - Dj2.u, where £ = (¢; +¢;)/ /2, we obtain the desired inequality (2.13)
when g = 1.

Next we consider the case when g € (0, 1). We follow the proof of Lemma 2.1. Let £ € R? be a unit vector, and
¢ € (0, 1/16) be a small constant to be specified later. For any two distinct points x, x” € Bg,, leth = |[x —x'|(< 2R}).
It is easily seen that there exist two points y € Bgj(x) N Bg, and ¥’ € Bej(x") N B, such that

y+eht € Bep(x) N Bg,, Yy +¢&ht € Bep(x') N Bpg,.
By the triangle inequality,
R PIDeu™® (x) — Du® (X < I + L + I,
where
L=hPIDu™® (x) — (sh) ™' @™ (y + eht) —u® ()],
L=h"PIDu™® () = )T @ +eht) —u P ).
L=h"(eh) @ P (y +eht) —u® () — @B +eht) —u® ).
By the mean value theorem,
L+Dh< 25/3[1)14“’?)],3;,%1 ) (2.14)

Now we choose ¢ depending only on d and g such that 26 <1 /2. To estimate I3, we consider two cases. If 7 > R,
by the triangle inequality, we have

L<Ch P (1w (y 4+ eht) +u® () —2uP (3)]
+1u® G+ eht) +u® () = 2u® 3))),
where y = (y + ehf + y’)/2. Then by the Minkowski inequality,
I < Ch* ' Plu ™ pw gy ) < CRO P lulpo sy, - (2.15)
On the other hand, if & € (0, R), by the mean value theorem and (2.13) with 8 =1,
I < Ch'PIDu™Ny; g, < Ch' PR [ulpe sy, ) < CR Plulae (g, - (2.16)
Combining (2.14), (2.15), and (2.16), we obtain

. 1 e
WP 1D ™ () = D™ | < S 10U g gy + CR TPl pe (g, .

Taking the supremum of the left-hand side above with respect to unit vector £ € R? and x, x’ € B R, > We immediately
get (2.13). The lemma is proved. O

Lemma 2.4. Let @ € (0, 1), B € (0, 1), and R > 0 be constants. Let p = p(x) be the first-order Taylor expansion of
u® at the origin and it = u — p. Then for any integer j > 0, we have
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1l 2By j41 ) < C2/ TP R [u] po

Ji(x) — (x| ;
sup 7| e < C2”3[u]Aa(B
X —X
x,x’eszR
O<|x—x'|<2R

(2.17)

2j+2R)’

(2.18)

2_/+2R)’

where C > 0 is a constant depending only on d, B, and «.

Proof. Since ¢ € C;°(By) is radial and has unit integral, we have for any x € B,j+1,

u® (x) — u(x)|

1
=13 / (u(x + Ry) —u(x — Ry) = 2u(x))¢(y) dy\ < CR*[u]aB,;1,)- (2.19)
R4

By the mean value theorem and Lemma 2.3, for any x € B,j+ip,

[u®x) — px)] < CQM R g5

[(1+8)
g < CY PR Ul e, s

which together with (2.19) implies (2.17). Next we show (2.18). For any two distinct points x, x’ € B,, p satisfying
0 < |x — x| <2R, denote h = |x — x’|(< 2R). Let k be the largest nonnegative integer such that 2¥(x’ — x) +x €
B2j+1R. Clearly,
2%h e 2/71R, 272 R). (2.20)
It follows from (2.1) that
i(x) — i (x) =27F @R - x) +x) — i)
k—1

+) 27N 2aQN & = x) 4 x) — i) — a7 (= x) + ). .21)
i=0

By (2.20), (2.21), and (2.17), we obtain

R¥i(x") — ii(x)| < 27k pe 1 Lo (B, 41 ) + Clulae (s, 1 )
<C2 R PR Ul pep ), ) + Clulas,;, )
< C2P[ulpe s

2_/+2R)’

where we used & < 2R in the last inequality. The lemma is proved. O
3. Proofs
The following proposition is a further refinement of [9, Corollary 4.6].

Proposition 3.1. Let o € (0,2) and 0 < A < A. Assume that for any g € A, Kg only depends on y. There is a constant
& € (0, 1) depending on d, o, h, and A so that the following holds. Let « € (0, &). Suppose u € C°+t%(B;) N C*(RY)
is a solution of

inf (Lgu + =0 in B;.
ﬂeA( U+ fp) 1

Then,

o
[UlatoiBy, <CY _2717M;+C SupLfylecs:
j=1

where
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M, = sup [ (x) — u(x’)|

—
x,x'€B,;,0<|x—x'|<2 lx —x']

and C > 0 depends only on d, A, A, o, and o, and is uniformly bounded as o — 2.

Proof. This follows from the proof of [9, Corollary 4.6] by observing that in the estimate of [hgly.p,, the term
[t]a;B,; can be replaced by M ;. Moreover, by replacing u by u — u(0), we see that
”u”a;Bz = C[u]a;Bz‘

The lemma is proved. O

Proposition 3.2. Suppose that (1.1) is satisfied in R%. Then under the conditions of Theorem 1.1, we have

[ulo < CllullL, +CY ws@7"), (3.1)
k=1

where C > 0 is a constant depending only on d, \, A, w,, and o, and o, and is uniformly bounded as o — 2.

Proof. Case 1: o € (0, 1). For k € N, let v be the solution of

infge 4 (Lp(O)v + f5(0)) =0  in By

, 3.2
v=u in B)_, (5-2)

where Lg(0) is the operator with kernel Kg(0, y). Then by Proposition 3.1 with scaling, we have

o
[Wato:s, 1 <C Y 2577M; + C2*[lup
j=1
k .
<CY 2% DM+ Cluly + C2* [v]a:5, (3.3)
j=1

where « € (0, &) satisfying o +« < 1 and

|u(x) —u(x)|

M;= su
J P |x_x/|a

x,x'€Byj k,0<|x—x'|<27k+]
Let ko, k1 > 1 be integers to be specified. From (3.3), we get

k
[Wlai, gy < C27EH0O7 Y 202D 4 €27 0HOT ), 4 €270 0], - (3.4)
j=1

Next, w := u — v satisfies
MFTw > —Cy in By—«,

M~w < Cy in By, 3.5)
w = O in B;—k’

where

Cp = Suﬂ I f5 = f5(0) + (Lg — L)l LB, 4)-
Be

It is easily seen that
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Cr=wp@™)+ Cwa<2—">/ lu(x 4+ y) — u()|lyl~~" dy
R4

o
gwf(sz)+c%(2*’<)( sup sz(”*”[u]a;gz_,(xoﬂrIIMIILOO)-

X()EBZ_k j=0
Then by the Holder estimate [9, Lemma 2.5], we have

[wle;8,, < C27HO79¢y
o
< 2 ko= (wf(z—") + 0,27 ( sup D 27Nl ) + ||”||Loo)>-
XOEBZ—k =0
Combining (3.4) and (3.6) yields
k—+ki —
2 (k+ko) (o a)[”]OlZBz—k—kO

k

< C2*(k+k0)a Zz(k*j)o [u]DHsz—k + C27(k+k())ol [M]Ol + szkootzk(o’fol) [u]a;Bz_k

j=1
o0

+ C2kolo—a) <a)f(2_k) + a)a(Z_k)( sup sz(a—a)[u]a;grj (xo) T ||M||Lw))

onBz,k =0
Shifting the coordinates, from (3.7) we get

k+ki -
2( O)(U Ot) Sup [u]a;Bz_k_kO (,X())
xpeR4
k
< 2 ko gy Z Z(k_])a[u]a;szfk (o + €27 ],
xoeRd j=1

+ C2 ko k(o —a) sup [uly: B
xoGRd

+ €20 (w275

27k (xg)

oo
+ wa (275)( sup. D 2 Ny, + ||M||Loo)>-
xpeR j=0

We take the summation of (3.8) in k =k, k; + 1, ... to obtain

oo
Z 2 (k+ko) (0 —) sup [u]a;Bz—k—ko (x0)
k:kl onRd

[ee) k
<C Z o —(k+ko)ar sup Zz(k_j)a[u]OlZsz—k(xo)) + C2‘(k1+ko)a[u]a

k=k; xp€eRd j=1
00 00
—koa k(o—a) ko(o—a) (n—k
+C2Re Y2 up [ula: s, 4, +C2° 3 (a)/ @)
k=k, xpeR k=k)

o0
F0aCH(V sup e,y + lulz..)),
j=0 X0€

which by switching the order of summations is further bounded by

981

(3.6)

(3.7)

(3.8)
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o0
€274 Y "2/~ sup [ula;B, ;o)
j=0 xpeR4

oo
+ C27(k1+k0)0l [u]a + C2k0(070t) Z wf (27/{)

k=k|
00 o
+ Czko(a—a) Z a)a(Z_k) . (ZZ](U—(J) sup [“]a;BZ,j o) + ”””Loo)'
k=ki =0 xR

The bound above together with the obvious inequality

k1+ko—1
> 277 sup [ulas, () < C2ETOCTO ],
j:O on]Rd

implies that

00 00
Zzl (0—a) sup [u]a;Bz,j o) < C2 ko Zz] (0—a) sup [u]a;Bz,j )
j=0 xpeR4 j=0 xpeR4

o0
4 Cz(k1+k())((ffol) [u]a + C2k0(07a) Z a)f(sz)
k=ky

o0 o
£C29070 Y 0,07 - (20 sup (ks o+ Clule ).
k=k| j=0 X()E]Rd

By first choosing ko sufficiently large and then k; sufficiently large, we get

00 o
327970 sup [ulasp, ) < Cllulla +C Y w0y @75),
j=0 xoeR? k=1

which together with Lemma 2.1 (i) and the interpolation inequality gives (3.1).
Case 2: 0 € (1,2). For k € N, let vy, be the solution of

infge 4 (Lg(O)vy + fp(0)) =0 in By
UM =8M in Bj ’
where M > 2|lu — poll1.( B, 1) is a constant to be specified later,
M =max(min(u — po, M), —M),

and po is the first-order Taylor’s expansion of u at the origin.
By Proposition 3.1, instead of (3.3), we have

o
[vmlato:n, oy <C Y 2% D7M;+ C2*[vylus,

Jj=0
k .
<CY 2% D7 M; 4 C||DulL, + C2* [vpla:,, - (3.9)
j=0
where « € (0, @) and
Y Ju(x) = po(x) — u(x’) + po(x")|
i= sup .

_
x,x’Esz,k,O<\x—x’\<2*k+l lx — x|

From (3.9) and the mean value formula,
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k
st = Pill (B, 4y < C27EFHOEOFD Y "ol=o
j=0

+ Cz—(k+k0)(0+0t) ||DM ”LOc + Cz—kol—ko(o'-‘ra) [UM]()(;BZ,k ,

where p; is the first-order Taylor’s expansion of vy, at the origin. The above inequality, (3.9), and the interpolation
inequality imply

k
vm = Pila:B, sy = 2~ ktkoo 22%*/)0 M;
Jj=0

+C27 N Dl + C27M oyl - (3.10)
Next wys := gm — vy satisfies
M+wM2hM—Ck in By,

Mfu}MS/:lM—I—Ck in By,
wpm =0 in B;—k’

where

I i= M (gm — (= po)), I := M (gmr — (u = po)).-
By the dominated convergence theorem, it is easy to see that

arlooBy)» st |l LB, ) >0 as M — oo.
By the same argument as in the previous case,

e .
Ce<wr2) 4+ Caoa @) sup Y 27— Pyulas,(xy) + ||Du||Lm).
X()G]Rd j:0

Thus similar to (3.6), choosing M sufficiently large so that

Il Loo(By—t) ||;1M||LOO(Bz_k) <Cy/2,

we have

[wlec e < 275 (0,275 + 0,79 Dull,

o0
oy Sngde/'(o—a)[u — Pyitla: Br,«<xo>)~ (.11)
Xp0€ j=0

Combining (3.10) and (3.11), similar to (3.8), we obtain

k-+ko) (o — .
2( 0)(o—a) sup inf [u — p]aiBz—k—ko )

onRd pEP]
k
< 2 "R qup N 20Dy — Pl )+ C27 O D,
xoeR4 j=0
+C27R2MOD up [ — Polucn, ., + €20 (0,27
xoGRd
o
+ 0@ Csup 32— Pyrlac, iy + 1DulL)). (3.12)

xpeR4 j=0
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Using (3.12), as before we get

00
Z 7 (k+ko) (0 —a) sup inf [u — p]a;327k7k0 o)
k=k erRd pE’P]

o0
<2740 Y 27 sup [u — Pyyula:s, ;)
j=0 xpeR4

o
+ otk 4 cof@=0 37 ) (27K

k=k;
o0 °] .
+ Csz(U—a) Z wg (2—k) - sup 221 (0—a) [u— PXOM]a;327j (x0)» (3.13)
k=k xpeR4 j=0

and

o0
> 2 sup inf [u— pla:s,_;xo)
=0 erRd [76771

o0
< C2 koo Zz](trfol) sup [u — Pxo”](x;Bz_j o)

j=0 on]Rd

00
+ 2 k1+ko) (o —a) Nl + C2kolo—a) Z a)f(Z_k)
k=k

00 00
+ Czko(a—a) Z w4 (z—k) - sup 221(0—01) [u— qu“]a;Bzfj x0)-
k=k x0eR? o

By choosing kg and k; sufficiently large and applying Lemma 2.2, we obtain

o o0
Y 277 sup inf [u— pla:s,_; ) < Clluli +C Y w275, (3.14)
—0 xpeRd PEPI =1

Finally, by Lemma 2.1 (ii) and the interpolation inequality, we get (3.1).
Case 3: 0 = 1. We proceed as in the previous case, but instead take pg to be the first-order Taylor’s expansion of

. . —k .. . . . .
the mollification #® ) at the origin. We also assume that the solution v to (3.2) exists without carrying out another
approximation argument. By Proposition 3.1 and Lemma 2.4 with 8 = /2,

o
[Wlat1:8, s <C Y 2" T M+ C2Wlais
j=0

(o)
< C sz*]+]a/2[u]Aa(sz_k) + Czk[U]a;Bz_k
j=0

k
<CY 2Ry pa By 0+ C2*Puly + C2Wluss, - (3.15)
j=0

From (3.15) and the interpolation inequality, we obtain

[v— pl]a; Bz,k,k0

k
S Cz_(k+k0) sz_j—'_ja/z[u]Aa(Bz];k) + C2—(k+k0)+k0l/2[u]a + Cz_ko[v]a;Bsz
j=0
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k
< 2~ ktko) N ok=i+ie/2 nf [u — ply B
= Igo pePl[ P]a,sz_k

+_(32—{k+k0}+ka/2[u]a +‘(j2_k0[v]a;B (3.16)

2—k>

where p; is the first-order Taylor’s expansion of v at the origin. Next w :=u — po — v satisfies (3.5), where by the
cancelation property (1.2),

o
Cr <o+ Cwa(Z_k)< sup > 27079 inf [u— pla:n,_;(xp) + IIMIILOO)-
xoeRd =0 peEP
Therefore, similar to (3.6), we have
[Wlasp, o = €277 (0,075
oo .
+ 0,7 (sup D20 inf (= plucs, oy + lulz.))- (3.17)
PEP

onRd | /':0
Notice that from (2.18) and the triangle inequality,

[U]a;Bz_k =< [w]ot;Bz_k + [u — pO]a;Bz_k

= [w]a;Bz,k + C[“]A"‘(Bz,kJrz) = [w]a;Bz,k +C IEII7£ [u— p]a;Bz,kJrz-
peP

Similar to (3.8), combining (3.16), (3.17), and the inequality above, we obtain

k—+ko)(1— :
2ktko)(1 =) sup inf [”_P]a;Bz—k—ko(Xo)

xpeRd PEP
k
< CZ*(k‘l’kO)a sup 22k7]+j06/2 inf [M - p]a;B j—k (x0) + C27(k/2+k0)a [u]ot
xo€R? j=0 rePr ’
+ c2oatk=2)I=0) gy inf [u — Pla:B, iiag,, + c2to= (wf 2
xgeRd pePy 0
o0
+ a)u(z_k)( sup 22/(1_0‘) inf [M - p]a;Bzfj (x0) + ”u”Loo))’
xp€eRd j=0 PeP1

which by summing in k =k, k1 + 1, ... implies that

o0
Z 2(k+k0)(1—l¥) sup inf [M - p]a;BZ,k,ko (x0)
kmky xoeRd peP;

o0
<2700 Y2707 sup inf [u — pla:s,_; (o)

/':0 X0 eR4 pE'Pl

00 00
+ C2 Ry, 4 coko(=) 37 g (27K) 4 c2R 70 3 4, 275
k=k1 k=ki
o0

<(sup > 2707 inf [u— plaip, () + o),
xpeR4 j=0 peP

where for the first term on the right-hand side, we switched the order of summations to get
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0 k
Z o —(k+ko)er sup szﬁﬂa/z inf [u _p]a;sz_k(xo)

K=k xoeRd =0 peP;
00 k
< Z 2*(k+k0)01 Z 2]+(k*])0!/2 sup inf [I/t _ P]a;Bz__,- x0)
k=0 j:O erRd PE'Pl
00 00
— p—koat Z 2Ji(l—a/2) sup inf [u — p]a;Bzfj ) Z 9—ke/2
j=0 xoekd PP k=j

o
< 2 o Zz/’ 1= sup inf [u — pla: B, (o)

j=0 X0 cRd peP
Therefore,
oo
22](1_“) sup inf [u — pla:B o)
j=0 X()E]Rd pEP] 2

x
<2700 Y2707 sup inf [u — pla:s,_; o)
Jj=0 xoeR? PEPI

00 o0
+ 2tk =y, 4 c20=0 N7 ) 27Ky 4 c20 0= 3, 27F)
k=ki k=ki

00
. (Z 2](]*0‘) suﬂgl pien;[;l [u — P]a;BQ__/ (xo) T ||u||Loo)
j=0 o R

Finally, to get (3.1) it suffices to choose ko and k; sufficiently large and apply Lemma 2.1 (iii). O
Next we employ a localization argument as in [9].

Proof of Theorem 1.1. Since the proof of the case when o € (0, 1) is almost the same as o € (1,2) and actually
simpler, we only present the latter and sketch the proof of the case when o =1 in the end.

The case when o € (1, 2). We divide the proof into three steps.

Step 1. For k=1,2,..., denote Bk .= By_5—«. Letni € C(‘)’O(BkH) be a sequence of nonnegative smooth cutoff
functions satisfying n = 1 in B¥, || < 1 in B¥!, and |D'ny||L, < C2 for each i > 0. Set vy := un; € C°F.
A simple calculation reveals that

inf (Lgvg — hig + ik fp) =0 inRY,
BeA

where
§k(x, y)ag(x,y)
b =gt = [ RS
R4 Y

and
& (x, y) =ulx + y)(m(x +y) = me(x)) =y - D (x)u(x).
Obviously, i fg is a Dini continuous function in R? and
Ik (x) fg(x) — i (x) fp(x)]
< mcllz@ s (x = X1 + 1 fpll Lo ) I D1kl 1o 1 — X
<ws(lx —x') + C2M| f5ll LB lx — X1,
where C only depends on d.
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Step 2. We first estimate the Lo, norm of hg. By the fundamental theorem of calculus,
1

Sk(x,y)=y-/u(x+y)an(x+ty)—u(x)an(x)dt-
0
For |y| > 27573 |&(x, y)| < C2¥|y||lu|| L., . For |y| < 27¥=3, we can further write
1
f;‘k(x,y)=y-/(u(x+y)—u(x))an(x+ty)+u(x)(an(x+ty)—an(X))dt,
0

where the second term on the right-hand side is bounded by C 22K|y|2|u(x)|. To estimate the first term, we consider
two cases: when |x| > 1 — 27572 because |y| <27%73, &(x, y) = 0; when |x| < 1 —27%72, we have
1

\y : /(u(x + ) — u(x) D (x + 1y) dr\ < C2* |y Dull ., gr+sy.-
0

Hence for |y| <27%73,
16k (v, )| < Cly P (2% w0 + 251 Dul . gr3))-
Combining with the case when |y| > 27473, we see that
kgl < C27* (lull oy + 1 Dl grs3y)- (3.18)
Next we estimate the modulus of continuity of sxg. By the triangle inequality,
g (x) — hip (x")]

o [ 16 y) = &G yDag(x, v N & (X, y)(ap(x, y) —ag(x’, y))| 4
- |y|d+cr |y|d+(r y
R4
=1+1L (3.19)
Similar to (3.18), by the estimates of | (x, y)| above, we have
=< C2"k(||u||LOo + ||Du||Loo(Bk+3))a)a(|x —x']), (3.20)

where C depends on d, o, and A, and is uniformly bounded as ¢ — 2. For I, by the fundamental theorem of calculus,
1

E(x,y) — &X', y)=y- / (u(x + ) Dnp(x +ty) — u(x) Dy (x)
0

— U+ ) D1 + 1) +u @) D)) dr.
When |y| > 27%73, similar to the estimate of & (x, y), it follows that

|6 (x, y) — & (L )] < Clyl (X oulx — X)) + 2% lu Lo, |x — X')). (3.21)

The case when |y| < 27%3

|6k, ) — & (', )

1

<yl / lu(x +y) —u(x))Din(x +ty) — (u(x"+y) —ux") Dy (x’ +ty)| dt
0

is a bit more delicate. First, by the fundamental theorem of calculus,

1 1
+|y|2//|u(x)D2nk(x—I—tsy)—u(x’)Dznk(x’+tsy)|dtds =1+ 1IV.
00
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It is easily seen that
IV < Cly Q%o (lx = x') + 2% (lulloe Jx = x')).
Next we bound III by considering four cases. When x, x’ € (B¥+2)¢, we have Il = 0. When x, x’ € B¥*2,
11

<5 [ [ 1Dutr 3Dl 1) = Due +53) Duls’ + 1)1 ds de
0 0
< ClyP (2 ul s pros b = 219 + 22K Dull gy lx = x'1),

where we choose o = "T_l When x € B2 and x’ € (B¥2)¢,

1
HI=IyI/I(M(X+y)—M(X))an(x+ty)|dt
0
11

<P [ [ 1DuG+ 53Dt 1) = Dta 4yl ds
00
< ClyP2*|IDully (s lx — x'1.
The last case is similar. In conclusion, we obtain
I < Cly? (28] 1. grsslx — x'1% + 22 Dull_ ges3y Ix — x]).
Combining the estimates of III, IV, and (3.21), we obtain
1< C2XOFD (w, (Ix = x']) + [ 4 q greslx — x|
+ (I1Dull, grr3y + lullL)lx —x']). (3.22)
By combining (3.19), (3.20), and (3.22), we obtain
i (x) = hipg(X")] < wp(Jx — X)),
where
0 (r) = C27 (|l L + I Dull (i) 0a ()
+ C2YD (0, (1) + [l 4 gresr® + (1Dl piessy + lullLo)r) (3.23)

is a Dini function.
Step 3. We apply Proposition 3.2 to vy to obtain

o0
[vile = CllvkllL,, +C Z (0n Q7)) +wr@7)) + C2%sup || fll oo By
i B
j=1
< CllviliLg + C2XOFD ([l 4 prss + 1Dull iy + lull L)

o0

+C 3 (250, 277) + @y 27) + C2 sup | fo Lo,

L B
j=1

where C depends on d, A, A, o, and w,, but independent of k. Since ny =1 in Bk , it follows that

[lg.pr < C2XOD a4+ C2XOFD (U] g pros + 1DUl L (prs3))

o0
+Co Y (2MVw, @) +wp27)) + C2F SI;p I f8l Lo (By)- (3.24)
j=1

By the interpolation inequality, for any ¢ € (0, 1),
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__lta
(U] g + DUl g3y < e[l gres + Ce™ 7050 [lull . (3.25)

Recall that o = "T_l and denote

1 1
_ +o o + (> 3).
o—(1+ a)
Combining (3.24) and (3.25) with & = C0_12’3k’12N’1, we obtain
[u](er < C23k+(3k+]2N)N”u” 27121\/71 [u]o--Bk+3

+czksup ||fﬁ||Lw<Bl>+CZ 2*w,27) +wp@27)).
j=1

Then we multiply 27#¥ to both sides of the inequality above and get

2—4kN [M] gk < < C23k—kN ||Lt|| + 2—4N(k+3)—1 [M] )

4 CoHNF sup I ol sy +C27FY Z (0u ) +wr@27)).
j=1
We sum up the both sides of the inequality above and obtain

o0 o0 l o0
Zz—4kN[u]U;Bk < C ZZ3k_kN||u”Loo + 5 22—4](]\7[”]6;3,(

k=1 k=1 k=4

+cZz 4’<N+"sup||f,s||Lw<Bl>+CZ (@@ +wp@27)),
k=1 j=1

which further implies that

Zz Nl g <C||u||Loo+cSup||fﬁ||Lm<Bl>+CZ (027 +wp27)),
k=1 j=1

where C depends on d, A, A, o, and w,. In particular, when k = 4, we deduce

[uly.ps < CllullL, + CSUP”fﬂ”LOO(B]) + CZ 027 +wp27))), (3.26)
j=1
which apparently implies (1.3).
Finally, since |Jv;|| is bounded by the right-hand side (3.26), from (3.14), we see that

Zz](” @) sup inf [v] — Pla; B,_j(x0) = =C.
1_0 X()ER‘] pEPl

This and (3.13) with u replaced by vy and fg replaced by n1 fg — h1g give

o0
Z 9 (i+ko) (o —) sup inf [v] — pla:B kg (0)
j=k xoeR? PEPI ’

oo
<C27h" 4 2PN (0,27 ) + 0a 27T + w0, (277) +2779).
J=ki
Here we also used Lemma 2.2 and (3.23) with k = 1. Therefore, for any small ¢ > 0, we can find kg sufficiently large
then k; sufficiently large, depending only on C, o, o, w s, w,, @y, and wy, such that

Z 2 (j+ko) (o —a) sup inf [v] — ple:B ko G0) < &
j=ki xpeR4 peP1
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which, together with the fact that vi = u in By, and the proof of Lemma 2.1 (ii), indicates that

sup [uls:B,(x) >0 as r—0
x0€B1/2

with a decay rate depending only on d, A, A, wg, @y, wy, SUPge A Il f8llLo(B)> and o. Hence, the proof of the case
when o € (1,2) is completed.

The case when o = 1. The proof is very similar to the case when o € (1, 2) and we only provide a sketch here.
We use the same notation as in the previous case

Ek(x, y)ag(x,y)

g (x) = S

]Rd
where
Sk(x,y) =ulx + ) (x +y) —ni(x)) —u(x)y - Dne(x) x s, -

It is easy to see that when |y| > 27%73,

&k e, )| < C2Kylull ..
On the other hand, when |y| < 2_1‘_3,
1
8o ) <yl f (e + ) D x + 1) — () D (o) d
0
< C2*|ylwu Iy + C2%* |y P [u(x)].

Therefore,
1

k wy (1)
gl < C2 (||u||Loo+/ D 4r),
0

Next we estimate the modulus of continuity of /g and proceed as in the case when o € (1, 2). Indeed, it is easily seen
that

1

1= 2 (ulen + [ 242 dr) o, = .

0

To estimate I, we write

Ec(x,y) — &X' y) =ulx + y) (e (x + y) — ni(x)) — u(x)y - Dn(x) x5,
—u(x"+ ) (X" + y) — e (X)) + u(x")y - Dng(x") x, .

Obviously, when |y| > 2—k=3

1€k (x, ) = &0, 0] = C2% |yl (lull Lo lx = ¥'| + wu(1x = x'). (3.27)
When |y| < 27%=3 we have xB,(y) = 1. Thus similar to the first case,

|6k (e, ) = & (', )

1

<yl / |u(x +y) —u(x))Dne(x +ty) — (u(x"+y) —u(x") D (x’ + ty)| dt
0

1 1
+|y|2//|u(x)D2nk(x+tsy)—u(x’)Dznk(x’+tsy)|dtds =1+ 1V.
00
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Clearly,
IV < C2% |y (@4 (Jx — x]) + llull . |x — x')).

When x, x” € (B¥t2)¢, we have III = 0. When x, x’ € B2, by the triangle inequality,
1
I < |y| / lu(x +y) —ux) — @'+ y) —u@x)||Dng(x +1y)| dt
0

1
+ |yl / lu(x"+y) —u(x)|Dn(x +ty) — D (x" 4 ty)| dt
0

< C2M )" x — ¥ F Ul 4y g + C22 plon (IyDIx — X,
where C depends on d, and ¢ + y < 1. Here we used the inequality
lu(x +y) —u(x) — @ +y) —u@x)| < 2[ulypclx — x| 1y]7.
Sety =¢ = 1/4. When x € B¥*? and x’ € (BF2)°,

1
= |y / u(x + ) — () D (x + 1) d
0

1
=|y|/|(u(x+y)—u(x))(an(x+ty)—an(x/+ty))|dt
0

< C2%|ylwu (IyDlx — x'].

The case when x’ € B¥*2 and x € (B¥2)¢ is similar. Then with the estimates of III and IV above, we obtain that
when |y| < 27573,

&, ) — &G )< C2 |y (wu (Ix = x')) + llull Lo lx — x])
+C2 1 x = X' uly o, pres + C2% [ylwu (D) 1x — X,

which, combining with (3.27) for the case when |y| > 27%=3, further implies that

15c22k(wu(|x —x'D) + oy x — x|

1
wy\r
+ [y o s lx — x|+ |x—x’|f ur( )dr),
0

where C depends on d and A. Hence, we obtain the estimate of the modulus of continuity of /xg(x):

1

wp(r) = C22k<wu(") + [u]1/2;3k+3"1/4 + (HMHLOO +f
0

wy (1)
- dr) (r + wa(r))).

The rest of the proof is the same as the previous case. 0O
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