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Abstract

From minimal surfaces such as Simons’ cone and catenoids, using refined Lyapunov—Schmidt reduction method, we construct
new solutions for a free boundary problem whose free boundary has two components. In dimension 8, using variational arguments,
we also obtain solutions which are global minimizers of the corresponding energy functional. This shows that the theorem of
Valdinoci et al. [41,42] is optimal.
© 2017 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
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1. Introduction

In this paper, we are interested in the following free boundary problem:
Au=0 inQ:={-1<u<l1}, )
|[Vu|=1 onadQ.

Here the domain 2 C R” is a priori unspecified and 9<2 is the free boundary. Solutions of (1) arise formally as critical
points of the energy functional:

sy [ [19uP 4 e @), @)

In this variational formulation, the boundary condition |Vu| = 1 should be understood in some weak sense if the free
boundary 9€2 is not regular enough. Problem (1) can be regarded as a simplified version of the classical one-phase
free boundary problem:

Au=0 inQ:={u >0}, 3)
|[Viu| =1 ondQ.
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The regularity of the free boundary problems actually has been a subject of extensive studies, pioneered by the work
of Caffarelli (see [2,3,6—8] and the references therein). It is now known that in dimension n < 4, the free boundary
of a solution to (5) has no singularity, provided that it is an energy minimizer [2,9,27]. In fact, it is conjectured
that for n < 6, minimizers should have smooth free boundary. On the other hand, in higher dimensions n > 7, an
energy minimizing free boundary may have singularities. To explain this, let us mention that by blow up analysis,
the regularity of the free boundary is essentially related to the existence or nonexistence of minimizing cone. Let us
consider the cone in R” given by (see [9])

|Xn| < otny/ X7+ ... +x2, “4)

where o, is a dimensional constant chosen such that on this cone there is a solution to the one-phase free boundary
problem. It has been proved [10] that in dimension n = 7 (actually also for n =9, 11, 13, 15 and hopefully for all
n > 17), the solution to (5) corresponding to the cone (4) is a minimizer for the energy functional. For 3 <n < 6, this
solution is already known to be unstable, thanks to the work of [9]. On the other hand, if a solution to (5) is a minimizer
and if the free boundary is a priori a graph, then by the result of [11], this free boundary will be real analytic. It is
worth pointing out that all these regularity results are in many respect analogous to that of the minimal surface theory,
and these two subjects are closely related.

In R2, Traizet [39,40] proved that there is a one-to-one correspondence between solutions to (1) and (5) and certain
type of minimal surfaces in R>. Hence at least in dimension two, this problem is well understood, although even for the
minimal surfaces in R3, many questions remain unanswered up to now. We also refer to [25,26,33] for related existence
and classification results for other types of free boundary problems. Now we emphasize that in higher dimensions,
the explicit correspondence between minimal surfaces and free boundary problem is not available. However, in R?,
it is proved by Kamburov [29] using sub and super solution method that there exists a solution to (1) where the free
boundary is close to two copies of the famous Bombieri—-De Giorgi—Giusti minimal graph. His result indicates that
there should be deeper relation between minimal surface and the free boundary problem (1). Here in this paper we
would like to further explore this relation by constructing solutions to (1) based on minimal surfaces.

Notice that problem (1) can be considered as a special case of over-determined problems. In recent years the
following so-called Serrin’s overdetermined problem

{Au:f(u) in Q:={u > 0}, (5)

u=0, |Vu| = Constant on 0%2.

has also received much attention. We refer to [17—-19,13,34,33,37,43] and the references therein.
Another motivation for studying (1) is related to De Giorgi’s conjecture. In 1978 De Giorgi conjectured that the
only bounded solution to

Au+u—u’=0inR" (6)

which is monotone in x,, must be one dimensional (up to rotation and translation) at least in dimension n < 8. De
Giorgi’s conjecture is a natural, parallel statement to Bernstein theorem for minimal graphs, which in its most general
form, due to Simons [36], states that any minimal hypersurface in R”, which is also a graph of a function of n — 1
variables, must be a hyperplane if n < 8. Strikingly, Bombieri, De Giorgi and Giusti [5] proved that this fact is false
in dimension n > 9.

Great advance in De Giorgi’s conjecture has been achieved in recent years, having been fully established in dimen-
sions n = 2 by Ghoussoub and Gui [23] and for n = 3 by Ambrosio and Cabré [4]. A celebrated result by Savin [35]
established its validity for 4 < n < 8 under the following additional assumption

lim u(x’,x,) ==+1
xXp—>+00
(See Savin—Sciunzi—Valdinoci [42] and Farina—Valdinoci [20,21] for generalizations.) Del Pino, Kowalczyk and Wei
[15] constructed a counterexample in dimensions n > 9.

Replacing the monotonicity assumption by global minimality of energy, Savin proved that in dimensions n <7
all global minimizers to (6) are one-dimensional. We proved that Savin’s result is optimal by constructing global
minimizers in dimensional 8 [31]. (Stable solutions are constructed in Pacard—Wei [32].)
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In [41,42], Valdinoci et al. also extended the De Giorgi type conjecture result to problems with more general
nonlinearities including

Au= W, (u)

where W = (1 — u?)®, @ > 0. o = 0 intuitively corresponds to the problem (1). In particular they proved global
minimizers of (1) must be one-dimensional if n < 7. One of our results below shows that this is optimal.

The purpose of this paper is to establish the connection between minimal surfaces and problem (1). In particular
we shall construct new solutions to (1) by developing new gluing methods for overdetermined problems. We know
very little information about the solutions of (1) in dimensions n > 3. In dimension 2 Traizet’s characterization [39]
reduces the problem to singly periodic minimal surfaces in R3. In dimension 9, Kambrunov’s solution [29] is a
monotone solution whose two components are approximately Bombieri—-De Giorgi—Giusti graphs. For 3 <n < 8 we
know no solutions to (1). In this paper we establish a connection between minimal surfaces and solutions to (1) and
thereby provide plenty of new solutions to (1). In addition, we shall prove the existence of global minimizers in R®
and execute the Jerison—-Monneau program for problem (1).

Rather than considering the most general minimal surfaces, we shall focus on two types of classical minimal
surfaces. The first type of minimal surfaces are the area minimizing cones (minimizing hypersurfaces) in R" (n > 8).
As an example, let us consider the famous Simons’ cone:

S = {(xl, ...,Xg8) € R3: E?leiz = Z§=5x-2}.

1

This is a minimal surface with one singularity at the origin. The fact that Simons’ cone is area minimizing has been
proved in the classical work of Bombieri—De Giorgi—Giusti [5]. Using the minimizing property, Hardt—Simon [24] was
able to show that there exists a family of foliated minimal surfaces S; lying on one side of the cone and is asymptotic
to the cone at infinity. Similarly, the other side of the cone is also foliated by a family of minimal surfaces S; . Due
to scaling invariance, this family of surfaces SBi can be obtained simply as homothety of S li, that is Sgt =51s li
Actually, Hardt—Simon proved more. They showed that the Simons’ cone is strictly area minimizing which implies
that each surface S;E approaches the cone at the slowest possible rate.

As we mentioned before, there should be similarities between the minimal surfaces and free boundary problem.
A natural question is whether there are analogous solutions for the free boundary problem (1) as the Simons’ cone
and its associated foliation. We answer this affirmatively.

Theorem 1. For each & small enough, there exists domain QF close to the radius one tubular neighborhood of S} and
solution ug to the free boundary problem (1). Moreover, u. is stable in the sense that there exists a function ® > 0 in
QF, and

{ AD =0, in QF,

O, +HP=0, onafe. )

Here v is the outward normal to 9Q2° and H is the mean curvature of 0Q2°.

By this theorem, there are solutions whose nodal set is close to S for & small. 1t is well known that the family
of minimal surfaces S;r, 6 € R, are all area minimizing. Therefore, it is natural to ask that whether the solutions u,
are also minimizers of the energy functional J. We believe this is true, but here in this paper we shall only give the
following.

Theorem 2. There exists a nontrivial solution (not one dimensional) U to the free boundary problem (1) in R which
is also energy minimizing.

With additional efforts, one can actually prove that for each S;r, there exists an energy minimizer whose nodal set
is asymptotic to S;' at infinity. We will not pursue this in this paper. One can compare this result with a similar result
for the Allen—Cahn equation [31].

Using the variational method of Jerison—-Monneau [28], we can construct monotone solutions in R using this
minimizer U. This complements the result of Kamburov [29], where the existence of monotone solutions is established
by sub and super solution method.
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Theorem 3. There is a family of solutions in R to (1) which are monotone in the xq direction.

Our second type of minimal surfaces will be the catenoids, which is a family of classical minimal surfaces with
finite total curvature. They are rotationally symmetric and given explicitly by the equation

1
x12 + x% =3 cosh? (ex3).

Here ¢ > 0 is a parameter. In higher dimensions, we have analogous codimension one minimal submanifold which
we call higher dimensional catenoids. To be more precise, let (xy, ..., x,) be the coordinate in R"” (n > 3). Let w be
the solution of

o’ n=2_
]+w/2 w
w(0) =1, (0)=0.

Then the surface C; in R” given by

r ::,/)c12+...+x,2171 =w(x,)

is a minimal surface, called catenoid. We can also write it as
Xp =w(r),r € [rg, +00).
Then there are constants ¢, c;z such that

/ .3—n
Xp ~ Cp —C, T .

Actually a homothety of C; is also a minimal surface, which we denoted by C,, which is then described by

- 1_
Xp =we (r):=—wl(er).
e
We refer to [38] for more detailed properties on catenoids, including their Morse index. Here we are interested in C,
with e small. In this case, the catenoid has a large waist.

Theorem 4. For & small enough, there exists a rationally symmetric domain QF close to radius one tubular neighbor-
hood of C; and a solution u, to the free boundary problem (1).

Now let us explain the main ideas of the proof. The proofs of Theorems 1 and 4 are based on the infinite dimensional
gluing methods developed in [12,13]. In [1,12], entire solutions for the Allen—Cahn equation have been constructed.
The zero level sets of the solutions lie close to certain nondegenerate minimal surfaces. To construct these solutions,
they used the method of infinite dimensional Lyapunov—Schmidt reduction. More recently, in [13], an over-determined
problem was investigated using similar method. Here we develop new gluing methods for (1). There are two main
difficulties in performing gluing methods for (1). The first one is that the one-dimensional solution, which is given by

_17 X1 S_l;
uolx)) =4 x1, —-l<x;<l; (8)
L, xi1>1,

is only continuous and is not differentiable. This means that one can not linearize the problem around this one dimen-
sional profile. This is quite different from [1,12,13]. The second difficulty is that this is an over-determined problem
and we have to adjust two interfaces.

To solve the problem (1), we introduce a pair of unknown functions (%1, h3) on a rescaled minimal surface. Using
these two functions, we define a perturbed domain €2;, which will be very close to the radius one tubular neighborhood
N of the minimal surface. The functions /1 and s, measures the deviation of € to A]. Next, we define suitable
approximate solutions for (1) on €2;,. We analyze in detail the differences between this approximate solution and the
harmonic function in € with Dirichlet boundary condition. In the last step, we use fixed point argument to show that
one can find functions /1 and A, such that our problem is solvable and we can get a solution u. In this step, we show
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that to match the required Neumann boundary condition, we need to analyze the solvability and a priori estimate of
a system of equations for the function A1, h>. (See (22).) It turns out that one of them reduces to the analysis of the
Jacobi operator on the minimal surface

Avh+|APh=f )

but the other problem is similar to that of the fractional differential operator

(—Ay + D2h=f. (10)

We remark that the family of solutions constructed from the Simons’ cone are ordered and hence stable, while the
solutions arising from catenoids are unstable.

To prove Theorems 2 and 3, we first extend the construction of Jerison—Monneau [28] and follow the variational
approach in [31] to construct minimizers in R® and monotone solutions in R°. The main difficulty is the regularity of
the solutions. To this end, we use axial symmetry of the solutions and also make use of classical regularity result of
Weiss [44,45] as well as recent regularity results of Jerison—Savin [27].

2. Solutions from Simons’ cone
2.1. Preliminary on Simons’ cone and the associated foliation

Let us first of all recall some basic facts about the geometry of the Simons’ cone. Throughout the paper we shall
use S¥ (p) to denote the radius p sphere in R¥*+!. In the manifold S7 (1), we shall consider the codimension one
submanifold

A:=5%(p) x $?(p),
where

1

P = 5

The induced metric on A is given by g* := p?g| + p’g2, where g1, g> are the metric on the two copies S° (1). The
Simons cone is defined to be

Si={rxeR¥:re +00), X e a}.
One can verify that this is a minimal hypersurface in R®. The induced metric tensor on S is then given by
dr? +rg*.

For a codimension one submanifold M in R", with the induced metric, we shall use Jj; to denote its Jacobi operator,
which explicitly has the form

Ju=Ay+IAP%,

where |A|*> = E;’:_]l kl.2 is the squared norm of the second fundamental form of M, with k; being the principle curvatures
of M. The Jacobi operator about S is then given by

Agx +6
-

2 2 6
Js=As+|A| =8r+;3r+ p

The set R8\ S has two components. Each component is foliated by a family of smooth minimal hypersurfaces Sgi
which are asymptotic to S at infinity. We can choose S to be the surface having the form

S1\Byy = {X + 10 (X)v. X € 5},

where v is a choice of the unit normal at S, and g (X) = IXI’2 +o0 (|X|’2). Then S, =¢~15;.

Let x =, /xl2 +...+ xf, y =, /)cs2 +...+ x82. We can write the standard metric on R8 in the polar coordinate as
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dx? + x%d0* 4+ dy* + y*do?,
where d6? and d6? represents the metric tensor on the unit three-dimensional sphere $3 (1). Suppose in the (x, y)
coordinate Sj is described by y = ¢; (x) for a monotone function ¢, then the metric tensor on S is

[1 + )2 (x)] dx® + ¢ (x) d62 + x>d6>.

Let us introduce the arc length variable / by the formula

1=/,/1 + @ (t)dt.
0

Then the metric gs on Ss also read as
dI* + @3 (x)d6* + x*do>.

Note that detgs = (pg (x) x%. Let n be a function on S5 which is invariant under the action of the group O (4) x O (4).
The Laplacian operator on Ss acting on function 1 has the form

1 .
Agn=——p, <\/det iy
SsT M' Jds95 /77)

d[g3 (0)x?

_ Sl

di? gpg(x)x?’ dl
d? 3 3¢i\ dxd
n+( %)__n

(1)

“ar \x T g ) aiar

2.2. Analysis of the approximate solutions

We will construct solutions based on the minimal hypersurfaces S, where ¢ > 0 is sufficiently small. Let us choose
a unit normal v for the codimension one manifold S;. Let hy, h_; € Clzo’g (S¢), small in certain sense. For each function
n defined on S,, we set

My ={X+nX)v(X): X eS}.

Although I, depends also on &, we will not make this dependence explicit in the notation. We establish a Fermi
coordinate in a tubular neighborhood of S;. By s we denote the signed distance of a point to S,. Slightly abusing the
notation, define

Iii={X+sv(X): XeS,}.

Note that for £ small, this is well defined and I is smooth, for all |s| < 1.
Let us consider the region €2 trapped between the surfaces I'_j4j, , and I'144,. For each pair of functions & =
(h—1, h1), we shall define an approximate solution wy, in 2:

s—g ()
7l = T 5
D=1
where
hi —h_
A 5
_hi+h_
2

Note that in the current situation, the range of [ is [0, +00). With this definition, w, satisfies the boundary condition:

=1, onl'_14p_,,
Yh=11 r
s onlijtp.
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It will be convenient for us to introduce a new variable
_s—g)
1+ £
Then the domain €2j, can be parameterized by (I, ¢) witht € [—1, 1].

Let us use Hys to denote the mean curvature of a codimension one submanifold M. The formula of Laplacian
operator in the Fermi coordinate (see [14]) tells us that

Awy (s,1) = Ar,wp, + Bfwh — Hr, d;wy,

We need to understand the main order of these terms.

Lemma 5. We have
Arywp = —Ar,g —tAr,f + E1,

where

2
Ey=—tfArof + Ary (f8) — 8Ar f + Ar, [(S 87 i f] :

Remark 6. E| can be regarded as a perturbation term.

Proof. Having in mind that f, g are small, we write
s—g() < f? )
wp=——-—=(5— 1—f+
=TT RO (s—8) f T+ 7
f2

:s—g—sf+gf+(s—g)1+f.

We then compute

2
Arowh = —A[‘Og —SAF0f+ AFQ (fg) + Al_‘0 |:(S _g) 1ifi| ’

Inserting the relation s =7 (1 + f) + g into the left hand side, we get

2
Argwp =—Aryg — [t (1 + f) + gl Ary f + Ar, (f8) + Ar, |:(S —g) 1if:|

f2
:_Arog_tArof_thF0f+AFo(fg)_gAF0f+AF0 [(S—g) 1+f .
This finishes the proof. O

Letususe kj, i =1,..., 6 to denote the principle curvatures of S;.

Lemma 7. We have the following formula:

Hr 2 5
=t |A|”+ g |A|” + E,
oy |Al” + g |A] 2
where
1 2k3 Al?
By = ) STk SfelAlT
14+ f—~1-—sk; 14+ f

i=1
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Proof. By a well known formula (see [14]),

6
Recall that ) k; = Hr,, = 0. Hence
i=1

6 273
Hr |A|? 1 s2k;
s 1 t 1
v i dth +g]+1+fZ:1—ski
A2 1S 5%
114 +glap — L8141 ey
+f Tix7 1= sk

i=1

The proof is thus completed. O

We seek a solution u to the free boundary problem (1) in the form u = wy, + ¢. Here we require ¢ = 0 on 9€2j,. Let
us now analyze the boundary condition |Vu| = 1 on 9€2;,. Suppose in the (l, 6,0, s) coordinate the metric tensor g in
a tubular neighborhood of S, has matrix with entries g; ; and its inverse matrix has entries g'*/. Since we are working
in the Fermi coordinate, the entries in the last column and row are all zero, except the rightmost entry on the last row.
We omit the subscript # in wy, and write it as w.

Lemma 8. The condition |Vu| =1 on I';yy, is equivalent to
¢ — f=Es3;.

Here fori =—1,1, E3; is defined on I'; p,; to be

gl lh;

I+ f

1
=5 (1+0"87) @) + a0+ f ot (g +1f)

Proof. We compute the norm of the gradient in the (s, /) coordinate and get the following equation to be satisfied on
the boundary 0€2,:

IV +¢)* = @w+d)* + g Qw + 8¢)> = 1. (12)
Direct computation yields
1
dw = ——,
+f
and
) —-g -9 f
W = — 5
1+ f a+50

On the other hand, differentiating the identity ¢ (—1 + k1, 1) = 0 with respect to [, we obtain
¢ = —3S¢h/1 onI'_iyp ;.
On I'_14_,, the right hand side of (12) is equivalent to
(1 + gl’lh’12) 0s0)* + (zasw - 291’111’1) e+ w)? + g @)t =1. (13)

Inserting the equation

0 ¢

a“’5:1+f
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into (13), we get

gl,lh/1

1+ f

(s —g)f’)z_

(l—i-gl’]h’lz) (at¢>)2+<2—2 o) =

)at¢—2f—f2+g1’1 (g’+
This completes the proof. O
The function ¢ should also satisfy

Ap=—Aw=Jryg+ (Argf +IAR)1 = Ey+ Ex + Aryw — Ar,w, in @,

Here we recall that by Jr,, we denote the Jacobi operator of I'g. Therefore, we are lead to solve the following nonlinear
problem for the unknown functions (f, g, ¢).

Ap=Jrog + (Aryf +|A1*)t — E1 + Ex + Aryw — Aryw,  in Qp, (14)
¢=0and 0;¢p — f =E3, on 082,
Lemma 9. We have the following estimate for the Laplacian operator acting on functions depending on s and [:
3 €
Argn—din—>am=0(—— |,
I ' / m <1+8l> m
and
A Arn=0(—5 Nomso—_ ) (15)
BT A =2 a2 ) " T+ )%™

Proof. By (11), we have
d’n  3dnp 3 3¢/ \dx 37dnp
Argn—— —=— == ) — - |=—.
TR T |:<x Ly ) dl 1] di
We compute
(3+3<pg>dx 3 1 (3+3<pg> 3
X we ) dl I /1+(pé2 X Ve l
B 1 (3 3eq] (8x)> 3
14 (‘pi (8x))2 X @1 (ex) /

1—x\/ 1+ (¢ (ex)) 1
=3 +80<1 l)
Ixy/1+ (¢} (sx))2 T

€
=0 .
<l+8l>

Next we prove (15). Let us denote by g, the metric tensor of I's. Explicitly, g (l, 0, 9_) =g (l .00, s). From the
calculation in [14], we know that

6
v/ detgs =+/detgo 1_[ (1 —k;s),
i=1
where k; are the principle curvatures of I'g = S,. Hence, for a function 7 depending on s and /,

1 .
Arg = ———; (\/det iy, )
rsn \/m i gs9s° 01

6
=9 <ln (\/detgo []a- k,-s))) g dm + 9y (ggﬁla,n) :
i=1
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Consequently,

6
Argn— Argn =29 (ln (H (1 —k,-s))) gi,lam

i=1

+ a1 (n/detgo) (1! — oy ) o
+ ((g}'l — gé’l> 8177) :

Then the desired estimate follows from the fact that

dk;
dl

82

<C——.
(1+ &l)?

By the previous computations, the term —E| + E» + Aryw — Ar,w will be small and can be regarded as pertur-
bation terms.

To get a solution (f, g, ¢) for the original problem, let us introduce the functional framework to work with. Let
o € (0, 1) be a fixed constant. Note that the functions f and g are both defined on the minimal surface S,. However,
we shall work both in functional spaces defined on S, and S;. Hence we introduce the following

Definition 10. For 1 =0, 1,2, 8 > 0, § > 0, the space Bg .5 consists of those functions 7 defined on Ss such that

Il ,s = sup [(1+8DF Inllcia(syns, ey ] < +00-
L,1z|=l

Definition 11. The space Blg,z;g consists of those functions 1 defined on Ss such that

— +1
Inllp25. = sup, [+ 80P Inllcnsesynmyon + O+ 807 [ | cougsyn o

+ sup 80742 [0 cous,rm oy | < oo
512

With the above definition, we shall assume a priori f € B2 2... We also assume the rescaled function g (-) = g (g) €

Bﬁo,z;l, where Bg > 2 is a fixed constant with 8y — 2 small. On the other hand, the function ¢ is defined on €2, which
depends on f and g. This turns out to be not very convenient for our later purpose. Hence slightly abusing the notation,
we also regard ¢ as the restriction of a function 7 (¢) on E :=[—1, 1] x [0, +00), where T (¢) is a function of # and
[ defined for (¢t,1) € 2:=[—1, 1] x R, even in the variable /.

Definition 12. For 1 =0, 1,2, B > 0, the space Bg .. consists of those functions ¢ such that

16lp,e = sup [+ lDPIT @)l cra(zns oy | <+00-

leR;z€ 8, |z|=]l|

We shall assume ¢ € B ».... The following invertibility property of the Jacobi operator on S will play an important
role in our analysis.

Lemma 13. For each function & € Bg,12 0.1, there is a solution n € B_ﬂo,z;l such that

JS1 (77) ZE

Moreover, it satisfies
Il gy, 2.1, < C 1§ 1 gy+2,0:1 -

Proof. The proof of this lemma goes in a similar fashion as that of [32], we omit the details. O
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We would like to solve the nonlinear problem (14) using fixed point arguments.

Lemma 14. For each n € Bg 0.+, there exists a unique solution ¢ € Bg .., to the problem

{83¢+a%¢+%az¢=n, in Qp, 16)

¢=0 on 082,
with |¢llg 2.« < C lInllg,0. This solution will be denoted by L (n).
Remark 15. In terms of the (¢,1) coordinate, the first equation in (16) actually should be considered in the region

(t,1) € [—1, 1] x [0, 400). However, for the sake of notational simplicity, we just write it as in 2. Similarly, we use
the notation 92 in the second equation of (16).

The proof of Lemma 14 follows from standard arguments.
Next, given two functions y; and y_; defined on S,, we consider

3P+ 02¢ + 3990 = Jrog + (Ary f +1AP)t, in Qp,

¢ (£1,1) =0,
¢ — f=v-1, fort=—1, (a7
9o —f=n, fort=1.

To find the explicit form of the solution ¢ of this problem, we need to introduce some notations. For each fixed £ € R4,
let us use py.¢ (-) to denote the solution of the problem

Pl () —IEP pre =1,
Pre (=) =pie(1)=0.
We use p ¢ (-) to denote the solution of

Py () — 1§17 pre () =1,
p2e (1) =pre (1) =0.

Note that py ¢ is even, while p; ¢ is odd. For convenience, we collect properties of p; ¢ in the following

Lemma 16. Explicitly,

cosh (|&]¢) 1
PO = T onel e
sinh (|&| 1) t
P20 = el el
Moreover,
el = =0 (). as fe] - oo,
e b [£]
and
€1 ph s (1) = tar'j" 5

Proof. This follows from direct computation. [

In the following, we shall use the following Fourier type transform

0t &) :=/e_i(slzl+"'+§4z4)n (t,)dzy...dzs,
R4
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where [l =,/ z% +...+ zﬁ, & = (&1, &, &3, &4). Note that this actually corresponds to the usual Fourier transform in R4.
We denote by (-)¥ the inverse Fourier transform. Define a new function fj by

~ \4

fo=— —(|A|2)]

2_
1 = o

By the discussion in the next proposition, this definition makes sense.

Proposition 17. Suppose y1 — y—1 € Bgy+2,1:6, Y1 + V=1 € Bpy,1.¢. Then the system (17) has a solution (f, g) with
1 = follgyze < C vt + v-1ll gy, 1:e (18)
and

||§||,30,2;1,A§C5_2 71 —J/71||/30+2,1;g- (19)
This solution ( f, g) will be denoted by Ly (y—-1, y1).

Proof. We are lead to the problem

026 — P = (Jrog) + (Argf +1APR) 1, tel[—1,11,

~ ~

¢(A_lag):¢(}’é)209 (20)
0 (—1.6) = f ©) =71 ©).
W (1.5 = fE =n®.

The solution qAS of the first equation in (20) can be written in the form

§(t.6)=(Jrog) pre @+ (Aref +141) pog ).

Therefore, to get a solution for (20), it suffices for us to solve the following problem:

(Jrog) Phe D+ (Argf +1AP) pye (1) = f & =71, o
(Jrog) Ple D)+ (Aryf +1AP) pho ()= FE) =11 (&).
Due to the symmetry of pi ¢ and p; ¢, (21) is equivalent to
S n®-76)
() = 27 .
2" = 2O EO+nE)
(Arof +IAP) = =505

One can perform inverse Fourier transform for the first equation in this system and then use Lemma 13 to get a
solution g.
We proceed to estimate the norm of g (-) = g (£). Put p = y; — y_1. We would like to show

ORY
P

Once this is proved, the estimate (19) follows from the invertibility property of the Jacobi operator Jg,. Observe that
is real analytic in |&|. By Lemma 16,

<Clpligy+2,1:6 -
Bo+2,0;e

1
O]

— &l +0 (e—%‘), as |&| — +o00.

Pre (D)

Let us now estimate the inverse Fourier transform of |£] 6 (§). Using the fact that in R*, inverse Fourier transform of
|&] is equal to cg |x |73, where ¢ is a constant (see for instances, [22] Theorem 2.4.6, or [16]), we get
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p (Iz]) —p(lyl)dy.

(115 )" ) = coP.V. / 5
|z —yl
R4

For |z| large, we have

/ p(|z||) —yp|§|yl)dy <Clp 2D+ / :p(lyylis!dy
Z— Z—
ja=y1> 4 le=y1> 5
C
<Clp(zDl+ P lo(lyDldy
Z
Iz—,v|>‘%'
< Clp (i) + 1Mzt (23)
1465z
On the other hand,
f /0(|Z|)_,0(|y|)dy < C”p”ﬁ0+2,1;s / dy (24)
lz—yP° T (I+e(zhft? Iz =y
I<lz—y|<ld I<lz—y|<4
< C ||,0||ﬁ0+2,1;5
T (14e|z)fot?
Furthermore, using the fact that p € C1%, we get
ez —pdyD
PV / Wdy f C ”p”cl,a(Bl(Z)) . (25)

O<|z—y|<1

Inequalities (23), (24), (25) give us the required weighted C° estimate of (Ié | o (& ))v (z). Similarly, one can also get
corresponding estimate for the Holder norm. Hence the desired estimate (19) follows.
To find the solution f for the second equation in (22), we first consider the equation

<f,/+§f/+|A|2) O @+hE) 26)
l 2 (D

This can be written as

_(14P) P +nE
6 —snm 2(1gPphe - 1)

We may take inverse Fourier transform on both sides of (27). Let

27

fE=

\%

\
K 71 K —1
1= , K2 = .
5> — - &1 phe (1) =1

e ()

1
Pye(D
This implies that K1 and K> decay fast enough at infinity. On the other hand,

1 1 1

|s|2—,,é;m &P 1EPph (-1 [&]

In view of the explicit formula of p) £ (1), we know |& |2 — and |& 2 P £ (1) — 1 are positive and real analytic.

, as |&| — +oo0.

Observe that the inverse Fourier transform of |& |_1 is ¢ |)c|_3 (see [22]). It follows that K, has a singularity of the
order O (|x | _3) near origin. The estimate (18) for solution f of (27) then follows from routine calculation in potential
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theory. Since by Lemma 9, Ar, f is a small perturbation of f” + % f’, then we can use a perturbation argument to
show the same estimate for solution f of the second equation in (22). This finishes the proof. O

With the model linear problem understood, we proceed to solve the nonlinear problem. Let ¢ be the solution of
the problem

320 + 3o + 2d90 =1 |AI>,  in Qp,
$0=0 on 9%y,.
Lemma 18. Suppose || f — follgy2.c < C€?% 1181l gy.2:1.- < Ce, and ||¢ — doll g, 2.+ < Ce>. There holds

<C83,

” E3’1 - E3,,1 ||,30+2,1;5 =

|E3,1 + E3,— Hﬁo’l;e <Ce,

Proof. Recall that
gl,lhg
1+ f
Using the boundedness of g!!, taking into account of the fact that

|&'5.1.0 < C& M1l < C% 110 (£1,1) — i (£1, D)l g 2:0 < C7,

we find that

o107 @2

1 1 1 2
Esi=—5 (140" h7) @9+ TFa0+ 52— 58 (¢ +1f)".

< ce.
Bo+2.1:¢

+ Hgl,l (g/)2

Now we subtract E3 | with E3__1, the term f? will be canceled. Additionally, using the asymptotic expansion of g!-!,
we know

H (tzgl,lf/z) e — (tzgmf/z) 1

Furthermore, observing that || 1

1,1 7
+ot
Bo+2,1:¢ Bo+2.1:e aret

<Cé3.

Bo+2, 16

”3,1;5 < Ce?, we get

H (gl’lhllat‘i’) li=—1— (gl’lhllald)) =1 Bo+2.1;e

< Ce> + C || (f5di0) li=—1 + (fo2:90) li=1 | gy 1. 1:¢

< Ce.

Hence we get

1
3 2 2
| E3.1 = Es—1 gy 1016 = Ce +5Hat¢o(—1,l> — o (1,1) H

§C83.

Bo+2,1;e

The proof of | E31 + E3,— ||ﬁ0’1;8 < Cé3is similar. O

To proceed, let us consider the nonlinear problem

A¢p=Jryg + (Aryf +1APP)t — Ey + Ex + Aryw — Ar,w,  in Qp, 28)
=0 on 9$2.
Let us introduce the notation
_ 3
P(f,3.¢):=—Ei+ Ex+ Aryw — Ar,w + 0°¢ + 97¢ + 7a,qs — Ag. (29)

We will investigate the Lipschitz dependence of P on f and g.
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Lemma 19. For f; € By a.e, & € Bpy 2.1, with || fi — Jollgy.2:e < Ce?, l&illgy2:1~ < Ce, i =1,2, we have

1P (fi281.9) = P (2. 82 D) gye20e = O () 11 = fallgy e + O () 11 = B2llgo 1+

Proof. Let us consider the terms in (29). Recall that

2
Ei(f,8) =—tfAr,f + Ar, (fg) — 8Ar, f + Ary |:(s_g) lif]

We compute directly that

f1Ar, fi — f2Ar, f2 = filr, (fi — f2) + Ay 2 (fi — f2). (30)
Next, since

AF() (fg) _gAFof :2f/g/ + fAFOg’
we have

[Ar, (f181) — 8141, f1] — [Ar, (f282) — 8241, f2]
=2(fi — f2) 81 +2£3 (g — £2)
+ Arog1 (J1 — f2) + f2Ar, (81 — 82) - (€1))

2
Now combining (30), (31) and performing a similar computation for the term Ar, [(s ) lﬂ:—f], we obtain

1B (180 = Bt (282 pgsae = O (22) 11 = Fallgpe + 0 (27) 121 = 22l 21

For the term

3 s’k} fglAP
— 1

1 1
U= T 1y

i=1

we have

6
figi g >+ - h s’k

Ey(fi.g) — E2 (£, =—A2( :
2(f1.81) — E2(f2. 82) = — |A] T+ 1) TaT s &k

Since |[A]>= 0 (szl)z), we obtain

1E2(f1.80) = B2 (/2.8 ppsaie = O (2) 11 = fall gy + O (27) 121 = 22l 21

It remains to analyze the term Ar,w — Ar,w. To handle it, we simply note that by Lemma 9 the following
expansion holds:

82 &
AFOW—A[‘SU)I o <m) 31w+ (0] <m) 812’11)
:0< ? )(—g’(1+f)—(s—g)f’)
(1+¢l) 1+ )72

+0< € )(—g (1+f)—(;—g)f>’
1+¢l 1+ f)

which yields the desired estimate:

[(Argw = Arow) lgngn = (Argw = Ar,w) le | gy42,0e
=0 ()11 = Pollgyzie +0 () 11— Bl 21

The proof is thus completed. O
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Lemma 20. Given f, g, with | f — foll g, 2.c < Ce?, I8l gy.2:1,~ < Ce, problem (28) has a unique solution ¢ with

16 — pollgy 124 < Ce™.
If we write this solution as ® (f, g), then

1D (fi, &0 — @ (f2. @) gy 1,24 < C i = Foll gy 26 + CE> 181 — @2l gy 221+
Proof. We may recast (28) as

¢=Li[Jrg+ (Arof +IAP) 1]+ LiLP (£.2.9)).

where ¢ = ¢ + ¢*, ¢* € Bg)+1,2;%- In other words,

¢ =Li(£.8.9") ==L [Jrog + (Aro £ + AP ) 1]+ L1 [P (£.2.60 +9")] - 0.

We regard it as a fixed point problem of ¢* for the map Lj. Observe that although ¢o only belongs to B 2., the
function P (f, g, ¢o + ¢™) actually lies in Bﬁﬁ],o;*. Now we show L is a contraction map. Indeed, by Lemma 9,

A¢p =02¢ + Ar,¢ — Hr,ds¢

1
= —af¢+Aro¢+0< )

€
(14 f)? (1 +81)2)
€ 2 2
+0 <m> P+ 0 (Zki)atcb.
Using this expansion, we can verify that
IZ1(£.8.01) = L1 (£:8-93) | gy 1,000 = CE 107 = 3] gy 1 200

This implies that L is a contraction mapping provided that ¢ is small enough. It follows that (28) has a solution.
To see the Lipschitz dependence of ® on f, g, we subtract the equations satisfied by @ (f1, g1) and @ (f2, &2).
Then one can use the explicit expression for Ej, E> to get the desired estimate. O

If we write ® (f,8) =¢1+ L1 (P (f, g, P (f, g))), then our original nonlinear problem will be transformed into

{ 21+ 91 + 2001 = Jrog + (Ary f +1AP) 1+ P(f.g.¢1), iny, (32)
¢p1=0and ¢ — f = E3; — & [L1 (P (f. 8, D (f. )], on Tipp,.

With all these preparations, we are now ready to prove Theorem 1.

Proof of Theorem 1. Let us set f = fo + f~ Using Proposition 17, we find that to solve (32), it suffices to get a
solution for the following fixed point problem for ( f, g):

(728) =La2(f.8) = La(Y—1, 1) — (0, 0),

where

Yy = E3i = [L1 (P (f, 8 ® (£, D] liisi = %1
Let us define the space

B:={(£.8)1,(f. &) € Bpy2:e x Bpo2:1}

equipped with the norm
[(7. &)1 =2 71 gy e+ 1811 21

We claim that L is a contraction mapping in the set

8= ((F.8) € B:|(7.8)] = Coe’).
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where Cy is a fixed large constant. Indeed, let

N+ (f.8) =0 [L1 (P (f. 8 P(f, N li=—1 %0 [L1 (P (f, & ®(f.)]li=1.

and

fi=fo+ fi.o=fo+ fo

Using Proposition 17, we can show
In+ (f1, 81) — n+ (2. 82) Ml gy, 2.0 + IIm— (S1. 81) — n— (f2, 82) I gy 216
=0 ()i = Pollgpe + O () 131 = &2ll gy 21

It then follows from Proposition 17, Lemma 19 and Lemma 20 that

|L2(fi.81) = La (2. &) | = Ce | (fr. &1) — (2. &2) |-

This proves the claim. ~

To prove the existence of a fixed point for L, it remains to show that L (B1) C Bj. Since ( f, g) € B1, we have
H .}7”/50’2;8 < C082, ||g||ﬁ0,2;1f < Cpe. Observe that due to the presence of the term |A|2t and 13 Zkf, the function
Li(P(f, g ®(f 8))I|+1 does not have enough decay and only belongs to B5 ».. .. However, since these two terms
are odd, their contribution to the boundary derivative at t = &1 cancel and therefore

2 3
I+ gy,2:0 < €75 =l gy42,2: < Ce™.

Hence by Proposition 17,
Ly(f.5) <Cé&?,

which implies that L, (B1) C By, provided that Cy is chosen large enough.

The solution wy, + ¢ depends smoothly on e. Let us take the derivatives of wj, + ¢ with respect to ¢. Note that
the main order of wy, + ¢ is %, where s is the Fermi coordinate around the minimal hypersurface S.. Using the
fact that S, is a minimal foliation associated to the Simons’ cone, we find that W is positive and satisfy the
system (7) (see [27]). This proves that our solution of the free boundary problem is stable. This finishes the proof of

Theorem 1. O
3. Existence of an energy minimizer in R® — Proof of Theorem 2

In the previous section, we have shown that if &9 > 0 is small enough, then for each ¢ < &g, we have a solution for
the free boundary problem whose nodal set is asymptotic to S;. By symmetry, one also has solutions whose nodal
sets are asymptotic to S; . We denote these two continuous families of solutions by u/ and u; ", with u; < u/}. In this
section, we will use variational arguments to show the existence of an energy minimizer U in R, lying between u;‘;
and Ug,- The arguments in this section are very similar to that of [31], where the global minimizers of the Allen—Cahn
equation in dimension n > 8 are constructed.

We use B, to denote the open ball of radius a in R®. Choose a Lipschitz function b, which is invariant under the
natural O (4) x O (4) action on R® and

- +
Ugy <ba <ugz ondB,.
Let us consider the minimizing problem

min  J (). (33)
n—bq GH(} (Ba)

Lemma 21. The minimizing problem (33) has a solution u, which is invariant under O (4) x O (4).
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Proof. The existence of a minimizer u for (33) follows from standard arguments. The point is that we need to prove
the existence of a minimizer which is additionally invariant under O (4) x O (4).
Since u solves the free boundary problem, it is continuous. We define

wi (x) =min{u (gx):g € 0 (4) x O (4)},
wy (x) =max{u(gx):g€ 0 @) x 04)}.

Then w; and w; are invariant under O (4) x O (4). We claim that w; and wy are also minimizers. Indeed, for each
k € N and a finite set {g(, ---, gk} € O (4) x O (4), let

wr=minf{u (g;ix):gi €0 @A) x0 @A) ,i=1,...,k}.

Then wy is a minimizer. We cover O (4) x O (4) by finitely many balls with radius ¢. Denote by n, the number of
balls. In each ball, let us choose a g; € O (4) x O (4). We will define

ge (x) :=min{u (gix):i=1,...,n.}.
Then ¢, is also a minimizer. We observe that by the continuity of a minimizer,
wi (x) = lim g, (x).
e—0

On the other hand, let {e;} be a sequence converge to 0. Then standard arguments yield that g, (x) converges a.e. to
minimizer g. This ¢ must be wy. This proves that w; is also a minimizer. Similarly, wy is also a minimizer. 0O

3.1. Regularity of the free boundary
We would like to analyze the regularity property of the free boundary of the solution u,,.
Lemma 22. The free boundary of u, is smooth in B,\ {0}.

Proof. We shall use the standard arguments in the regularity theory: Blow up analysis around a free boundary point,
cf. [44,45]. Let xg € B, be a point on the free boundary of u. Suppose xo # 0 and u, (x¢) = 1. We distinguish three
cases.

Case 1. xg is not on the x axis and not on y axis.

In this case, standard arguments, based on Weiss monotonicity formula [44,45], tell us that the sequence wy :=
”“("0’;%)_1, with px — 0, has a subsequence converges in suitable sense to a minimizing cone ¢ in R8. We observe

that u, is invariant under O (4) x O (4). Hence € reduces to a minimizing cone in R2. Therefore it must be a trivial
cone. This implies that around xo, the free boundary is flat and the regularity theory implies that actually it is smooth
(analytic).

Case 2. x¢ is on the x or y axis.

In this case, the cone € reduces to a minimizing cone in R which is invariant under the O (4) action of the last
four coordinates. If this cone were not trivial, it would be unstable, due to the classification of stable cones by Jerison
and Savin in the axial symmetric case (see [27]). This contradicts with the fact that u, is a minimizer. O

With this regularity at hand, we now want to prove that these minimizers are bounded by u;; and u, , by sweeping
the family of ordered solutions uj and u_, similarly as in [31]. By our previous construction, for ¢ sufficiently small,
we have

{uagu;', in B,, (34)

ug <ul, inA:={X:|us(X)| <1}.

We show that actually (34) holds for all ¢ < gg. To see this, we continuously increase the value of &. Assume to the
contrary that there existed a § < &g, which were the first value where we have

Ug < u}' in B,, and u, (X) = u: (X) for some X € A. 35)

Maximum principle tells us that this X must be on d B,. By the results in [30], the free boundary approaches the fixed
boundary tangentially, this contradicts with the choice of 8, which is the smallest value satisfying (35). This finishes
the proof.
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Proof of Theorem 2. For each a large, we have a solution u, with u, <ug < u;’[) Sending a to infinity, we can find
a subsequence of u, which converges to a nontrivial solution U of (1). This solution U must be an energy minimizer
of J, since each u, is minimizing. O

4. From minimizers in R3 to monotone solutions in R® — Proof of Theorem 3

We have obtained a minimizer of the energy functional in dimension 8. Now we would like to construct monotone
solutions in R from U, following the arguments of Jerison—-Monneau [28]. We use (x’ , xg) to denote the coordinate
of a point in R”, where x” € R8. We will still use minimizing argument and work directly in the class of functions
which is invariant w.r.p.t O (4) x O (4) action on the first eight variables.

We denote by v; the global minimizer in R® we constructed in the last section. We also consider the solution v,
which in the (x, y) coordinate is given by

UZ(X,)’)Z—UI (yv-x)'

Since v is constructed using minimizing argument, we can assume without loss of generality that vy < v;.

Proposition 23. Either there exists a nontrivial solution u : R® — R monotone in the xg direction, or for each § €
[v1 (0), va (0)], there exists a nontrivial global minimizer v in R® with v (0) = 6.

Proof. Let p be a smooth decreasing cutoff function which satisfies

1, s<l1,

p(s):{o s> 2.

Define the function w (x”, x9) = p (x9) vy (x) + (1 — p (x9)) v2 (x"). For each cylinder Cgr; = Bg x [, 1], consider
the minimization problem which equals w on dBg/ x [—I,[] and equals v; on By x {—I}, equals v, on B x {I},
in the class of functions which are invariant under O (4) x O (4) with respect to the first eight variables. We can
find a minimizer ugs; that is monotone in the x9 direction with this boundary condition. By the gradient bound of
De Silva—Jerison [11], the free boundary is smooth in the interior of the cylinder.
Let [ - 400, we get a solution ug’ on the whole cylinder Bg/ x R, still monotone in x9 and invariant under
O (4) x O (4). We observe that
lim ugr =1vy, lim ugr =1vi, (36)
X9—> 400 X9—> —00
otherwise it will contradict with the fact that v; and v, are global minimizer. Now fix an a € (v (0), v2 (0)). By (36),
there exists &z such that

ug (x', hg) =a.

Let ig (x',x9) = ug (x',x9 — hg'). Then iig (x',0) = a. Let R" — +o00, we get a solution « monotone in xg,
invariant under O (4) x O (4), and

u0)=a,vy <u=<v.

If u is independent on xo, then u is a global minimizer in R®. This proves the proposition. 0
Finally we are ready to prove Theorem 3.

Theorem 24. There exists a solution u to our free boundary problem such that u is invariant w.r.p.t O (4) x O (4),
monotone in xg and u is not one dimensional.

Proof. Suppose the second possibility of Proposition 23 occurs. Then we can assume there is a global minimizer v
in RS, invariant under O (4) x O (4) and —1 < v (0) < 1.
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By ©® we shall denote the standard one dimensional solution to our free boundary problem:

X, xe[_lvl]a
Ox)=11, x>1,
-1, x<-1.

Note that ® is monotone, but not strictly monotone. We would like to pose suitable boundary condition on the cylinder
Cpg . Foreacht €0, 1], let

O, (x',x9) = O (tv (x') + (1 — 1) x9) .

Then O (x',x9) = © (v (x)) = v (x’). ©; is a connection between © and v. Certainly, ©; (x',x9) € [—1, 1]. We
check that ®; is continuous and monotone in the x9 direction, since ® itself is monotone. Consider those points
where

t(x)+0—-Dxo=1. 37)

For each fixed x’, there is a unique point xgy satisfying (37).
Let U; g/, be the minimizer of J in the symmetric (invariant under O (4) x O (4) action) class of functions defined
on Cp/; with boundary condition

Uilacg , = O1lacy -
After a possible translation in the x9 direction, we can assume that
Ui,r1(0)=v(0).

For each R’, letting | — 400, U, g/; converges pointwisely to a solution U, g/, defined on the infinite cylinder
CR' 4oo- U g is monotone in xg on the boundary of Cg/ ;. Then one can show that U, g/ is monotone in x9 in
CR/’J’_Oo, with

Up,r (0) =0 (0).

We claim that the map ¢ — 9, U; g’ (0) is a continuous map. We first show that it is continuous at the points where
t # 1. In this case, let 7, — ¢. Then the sequence U,, g/ converges to a monotone solution W. This W must be equal
to Uy pr. Indeed, since w and U, g’ are equal to each other on the boundary of the cylinder and the boundary value are
monotone in the xg direction, we can infer that W > U; gr and W < U, g’ by the sliding method.

The continuity at ¢t = 1 also follows from similar arguments as that of Jerison—-Monneau [28]. The proof is thus
completed. O

5. Solutions from catenoids

In this section, we shall construct solutions of the free boundary problem starting from another type of minimal
surfaces — Catenoids. Since most of the arguments are similar to the Simons’ cone case, we will only sketch the proof
and point out the difference if necessary.

We remark that it is possible to do the construction for more general minimal surfaces, but this is beyond the scope
of this paper.

5.1. The geometry of the catenoids

To begin with, let us choose an “arc-length” parametrization for the catenoid, this choice of coordinate will simplify
the computation. Let (xq, ..., x,) be the coordinate in R”. Let (r, #) be the polar coordinate in R"~! where 6 is the
coordinate on the unit sphere $”~2 in R”~!. As we mentioned before, the generalized catenoid C, in R” can be
described by

Xp =wg (r),r € [rg, +00).

Introduce
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Then locally the catenoid can also be described by the coordinate (/, ). We would like to write the Laplacian—Beltrami
operator Ac, on C; in this coordinate. In the (r, §) variable, the metric tensor on C is given by

1+, )2 ]dr? + 20

It follows that the metric g in the (/,6) coordinate is di* + r2d6>. Observe that detg = r>"~2), For rotationally
symmetric function ¢ = ¢ (1), the Laplacian—Beltrami operator is given by

det ggij ajgo)

1
Ac,¢ = ———0;
e ¢&@’<
n—2
=¢" () + T<P/ @)

&

=¢”U%¥0<TIQ>¢%D- (38)

Using s to denote the signed distance of a point P to C.. Then we can write
P=X+s5v(X),
where X = X (I, 6) designates a point on the Cg, v (+) is the unit normal of C, at X. We also put
Iy ={X+sv(X): X eC}.

Note that actually I'y depends on &, although it is not explicit in the notation. To understand the Laplacian—-Beltrami
operator Ar,, we need to analyze the metric on the surface I'y. Let vi = 0jv, v2 = dgv, and X| = 9/ X, Xo = dp X.
Define the matrix By = [X| + svi, X» + svp] and

B:=[X{+sv, X2+ s, v].

Then the matrix of the induced metric g in a tubular neighborhood of C in (I, 8, s) coordinate has the form

7o [ B{Bo 0
B B_[ o 1

For more details, we refer to [14].
5.2. Proof of Theorem 4
In this part, we sketch the proof of Theorem 4.

Let h_q,h € Clzo’? (C¢), small in certain sense. As before, define an approximate solution wy, in €2j,, which is a
region trapped between I' 1y, _, and I'14,:

s—g()
7l = T
on D=0
where
_hi—h_y  hi+h
-T2 8T T
Still set
_ s—g)
1+ f(

The solution u we are looking for will have the form u = wy, + ¢.
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We have the same formulas as in Lemma 5, Lemma 7 and Lemma 8 and will not restate them in this section again.

Lemma 25. We have the following estimate for the Laplacian operator acting on functions depending on s and [:

€
Aryn — 81277 =0 (m) o,

and

2

€ € 5
Ar,n—Argn=0——= )dm+ 0 —— ) dn.
niT A ((1+8l)2> " <1+81> o

Proof. The first equation has already been proved in (38). The proof of the second equation is same as that of
Lemma9. O

Let us introduce the functional framework to work with. Let & € (0, 1) be a fixed constant.

Definition 26. For © =0, 1,2, 8 >0, § > 0, the space 5,3, ;5 consists of those functions 1 defined on Cs such that

ls\ulpl [(1+8DP Il e synz o) ] < o0
s 121=

Same as before, we also regard ¢ as the restriction of a function T (¢p)on E :=[—1, 1] x [0, +00), where T (¢) is
a function of ¢ and / defined for (z,1) € E :=[—1, 1] x R, even in the variable /.

Definition 27. For 1 =0, 1,2, B > 0, the space £g ..« consists of those functions ¢ such that

1Blpse = b [(A+lD? IT @ lne(@om ) | < +oo

leR;ze&,|z|=l|

Let v (-) be an even smooth function such that

i s 2,
”(l)‘{o, ] < 1.

The one dimensional space spanned by this function will be denoted by D.Let g (-) =g (g) If n > 4, we shall assume
apriori g € £24-62:1 B D, f € Eap—4.¢, With ||g||52n76 21@D = Ce, | flloan—a.2:6 = Ce2. For notational simplicity,
the norm of &,_62:1 ® D will be denoted by ||-||. In the case n =3, we assume g € £22.1 ® D, f € &4.2.¢, With

1glle,,..ep <Ce, 1 fllane < Ce?, and in this case, the norm of &2.2:1 ® D will also be denoted by |-
With these choice of function spaces, we can verify that [|Aw|lo,_4, 2.4 < Ce? if n > 4; while lAWl4 2.4 < Ce? if
n=3.
Recall that the Jacobi operator on C; is given by
Jey () = Acyn + 1A 7.
Here |A|? = Zklz is the squared norm of the second fundamental form. Using the asymptotic behavior of @, we
deduce |A]>=0 (W) as I — 4-00. We need the following lemma, which states that the Jacobi operator on the

catenoid C; is invertible in suitable functional spaces.

Lemma 28. For each function & € £3,_4 2.1, there is a solution n € E,_62.1 ® D such that

Je, (n) =§,
with

Il < Cl&N2—a.0:1-
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Proof. Detailed analysis of the Jacobi operator on the higher dimensional catenoid can be found in [1]. The proof of
this Lemma follows from similar arguments there. The basic idea is using variation of parameter formula to get the
desired estimates. 0O

With this functional framework at hand, we now deal with the corresponding linear theory for our nonlinear prob-
lem. Given functions y1, y—1, consider the problem

32¢+32¢ = Jrog + (Ary f +1A17)t, in Q,

¢=0, on 9$2y,,

39
b6 — f=y1. onT_1+_,. (39)
wd—f=n. onI'iqp,.

Proposition 29. Suppose y1 £ y_1 isin Exy—a 1. forn >4 and in &4 1. for n = 3. Then the system (39) has a solution
(f, &) such that

I fll2n—42.e <Cllvi+v=illzy—a1.. +C ” |A? n=4

—

n—4,1:¢’
1£l2n-s26 = Clivi 71l e + € |IAR], =3,
and
181 <Ce™ Iyt — v=1llan_g.1:6 .1 = 4,

Igll < Ce ™ lly1 — y-1llg 1.6, n =3

Proof. By even reflection, we can regard (39) as a problem in (z,1) € [—1, 1] x R. Take the Fourier transform

(&) :=/e"'fln(r,1)d1.
R

It is worth mentioning that here £ € R, unlike the Simons’ cone case where the Fourier transform is taken in R*. We
are lead to the problem

02 —1EP b= (Je.8) + (Ac. f+IAP) 1, rel-1,1],

$(~1,6)=¢ (1,6 =0, “0)
0P (=1,6) = [ (&) =718,

3p(1,E) = FE =7 &),

The solution (]3 of the first equation in (40) can be written in the form

§(t.6)=(Je.g) pre @+ (Ac.f +1AP) p2e ).
This implies that

(Je g)Az n@—y1E)

2p1 (D)
2\ _ 2O 1 G+ )
(Ac. f +I1AF) = ===
Observe that ﬁ — & tanh£ is real analytic and of the order O (e_‘g_l) as |&| = +o00. According to the proof of
1.6

Lemma 17, one need to estimate the inverse Fourier transform of & tanh & [771 &) —y-_1(& )]. To do this, we can apply
cosh(£/2)

the fact that the Fourier transform of x tanh (7 x) is equal to — T E D)’

which has a singularity of order O (£72)
near the origin. The estimate of f is similar as before. O

Once we have established the functional framework and the linear solvability theory, we can proceed in the same
way as the Simons’ cone case.
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