
Available online at www.sciencedirect.com
ScienceDirect

Ann. I. H. Poincaré – AN 35 (2018) 993–1017
www.elsevier.com/locate/anihpc

On a free boundary problem and minimal surfaces

Yong Liu a, Kelei Wang b, Juncheng Wei c,∗

a School of Mathematics and Physics, North China Electric Power University, Beijing, China
b School of Mathematics and Statistics, Wuhan University, China

c Department of Mathematics, University of British Columbia, Vancouver, B.C., V6T 1Z2, Canada

Received 2 August 2017; accepted 15 September 2017
Available online 2 October 2017

Abstract

From minimal surfaces such as Simons’ cone and catenoids, using refined Lyapunov–Schmidt reduction method, we construct 
new solutions for a free boundary problem whose free boundary has two components. In dimension 8, using variational arguments, 
we also obtain solutions which are global minimizers of the corresponding energy functional. This shows that the theorem of 
Valdinoci et al. [41,42] is optimal.
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1. Introduction

In this paper, we are interested in the following free boundary problem:{
�u = 0 in � := {−1 < u < 1} ,

|∇u| = 1 on ∂�.
(1)

Here the domain � ⊂R
n is a priori unspecified and ∂� is the free boundary. Solutions of (1) arise formally as critical 

points of the energy functional:

J (u) :=
∫ [

|∇u|2 + χ(−1,1) (u)
]
. (2)

In this variational formulation, the boundary condition |∇u| = 1 should be understood in some weak sense if the free 
boundary ∂� is not regular enough. Problem (1) can be regarded as a simplified version of the classical one-phase 
free boundary problem:{

�u = 0 in � := {u > 0} ,

|∇u| = 1 on ∂�.
(3)
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The regularity of the free boundary problems actually has been a subject of extensive studies, pioneered by the work 
of Caffarelli (see [2,3,6–8] and the references therein). It is now known that in dimension n ≤ 4, the free boundary 
of a solution to (5) has no singularity, provided that it is an energy minimizer [2,9,27]. In fact, it is conjectured 
that for n ≤ 6, minimizers should have smooth free boundary. On the other hand, in higher dimensions n ≥ 7, an 
energy minimizing free boundary may have singularities. To explain this, let us mention that by blow up analysis, 
the regularity of the free boundary is essentially related to the existence or nonexistence of minimizing cone. Let us 
consider the cone in Rn given by (see [9])

|xn| < αn

√
x2

1 + . . . + x2
n, (4)

where αn is a dimensional constant chosen such that on this cone there is a solution to the one-phase free boundary 
problem. It has been proved [10] that in dimension n = 7 (actually also for n = 9, 11, 13, 15 and hopefully for all 
n ≥ 7), the solution to (5) corresponding to the cone (4) is a minimizer for the energy functional. For 3 ≤ n ≤ 6, this 
solution is already known to be unstable, thanks to the work of [9]. On the other hand, if a solution to (5) is a minimizer 
and if the free boundary is a priori a graph, then by the result of [11], this free boundary will be real analytic. It is 
worth pointing out that all these regularity results are in many respect analogous to that of the minimal surface theory, 
and these two subjects are closely related.

In R2, Traizet [39,40] proved that there is a one-to-one correspondence between solutions to (1) and (5) and certain 
type of minimal surfaces in R3. Hence at least in dimension two, this problem is well understood, although even for the 
minimal surfaces in R3, many questions remain unanswered up to now. We also refer to [25,26,33] for related existence 
and classification results for other types of free boundary problems. Now we emphasize that in higher dimensions, 
the explicit correspondence between minimal surfaces and free boundary problem is not available. However, in R9, 
it is proved by Kamburov [29] using sub and super solution method that there exists a solution to (1) where the free 
boundary is close to two copies of the famous Bombieri–De Giorgi–Giusti minimal graph. His result indicates that 
there should be deeper relation between minimal surface and the free boundary problem (1). Here in this paper we 
would like to further explore this relation by constructing solutions to (1) based on minimal surfaces.

Notice that problem (1) can be considered as a special case of over-determined problems. In recent years the 
following so-called Serrin’s overdetermined problem{

�u = f (u) in � := {u > 0} ,

u = 0, |∇u| = Constant on ∂�.
(5)

has also received much attention. We refer to [17–19,13,34,33,37,43] and the references therein.
Another motivation for studying (1) is related to De Giorgi’s conjecture. In 1978 De Giorgi conjectured that the 

only bounded solution to

�u + u − u3 = 0 in R
n (6)

which is monotone in xn must be one dimensional (up to rotation and translation) at least in dimension n ≤ 8. De 
Giorgi’s conjecture is a natural, parallel statement to Bernstein theorem for minimal graphs, which in its most general 
form, due to Simons [36], states that any minimal hypersurface in Rn, which is also a graph of a function of n − 1
variables, must be a hyperplane if n ≤ 8. Strikingly, Bombieri, De Giorgi and Giusti [5] proved that this fact is false 
in dimension n ≥ 9.

Great advance in De Giorgi’s conjecture has been achieved in recent years, having been fully established in dimen-
sions n = 2 by Ghoussoub and Gui [23] and for n = 3 by Ambrosio and Cabré [4]. A celebrated result by Savin [35]
established its validity for 4 ≤ n ≤ 8 under the following additional assumption

lim
xn→±∞u(x′, xn) = ±1

(See Savin–Sciunzi–Valdinoci [42] and Farina–Valdinoci [20,21] for generalizations.) Del Pino, Kowalczyk and Wei 
[15] constructed a counterexample in dimensions n ≥ 9.

Replacing the monotonicity assumption by global minimality of energy, Savin proved that in dimensions n ≤ 7
all global minimizers to (6) are one-dimensional. We proved that Savin’s result is optimal by constructing global 
minimizers in dimensional 8 [31]. (Stable solutions are constructed in Pacard–Wei [32].)
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In [41,42], Valdinoci et al. also extended the De Giorgi type conjecture result to problems with more general 
nonlinearities including

�u = Wu(u)

where W = (1 − u2)α , α ≥ 0. α = 0 intuitively corresponds to the problem (1). In particular they proved global 
minimizers of (1) must be one-dimensional if n ≤ 7. One of our results below shows that this is optimal.

The purpose of this paper is to establish the connection between minimal surfaces and problem (1). In particular 
we shall construct new solutions to (1) by developing new gluing methods for overdetermined problems. We know 
very little information about the solutions of (1) in dimensions n ≥ 3. In dimension 2 Traizet’s characterization [39]
reduces the problem to singly periodic minimal surfaces in R3. In dimension 9, Kambrunov’s solution [29] is a 
monotone solution whose two components are approximately Bombieri–De Giorgi–Giusti graphs. For 3 ≤ n ≤ 8 we 
know no solutions to (1). In this paper we establish a connection between minimal surfaces and solutions to (1) and 
thereby provide plenty of new solutions to (1). In addition, we shall prove the existence of global minimizers in R8

and execute the Jerison–Monneau program for problem (1).
Rather than considering the most general minimal surfaces, we shall focus on two types of classical minimal 

surfaces. The first type of minimal surfaces are the area minimizing cones (minimizing hypersurfaces) in Rn (n ≥ 8). 
As an example, let us consider the famous Simons’ cone:

S :=
{
(x1, . . . , x8) ∈R

8 : �4
i=1x

2
i = �8

i=5x
2
i

}
.

This is a minimal surface with one singularity at the origin. The fact that Simons’ cone is area minimizing has been 
proved in the classical work of Bombieri–De Giorgi–Giusti [5]. Using the minimizing property, Hardt–Simon [24] was 
able to show that there exists a family of foliated minimal surfaces S+

δ lying on one side of the cone and is asymptotic 
to the cone at infinity. Similarly, the other side of the cone is also foliated by a family of minimal surfaces S−

δ . Due 
to scaling invariance, this family of surfaces S±

δ can be obtained simply as homothety of S±
1 , that is S±

δ = δ−1S±
1 . 

Actually, Hardt–Simon proved more. They showed that the Simons’ cone is strictly area minimizing which implies 
that each surface S±

δ approaches the cone at the slowest possible rate.
As we mentioned before, there should be similarities between the minimal surfaces and free boundary problem. 

A natural question is whether there are analogous solutions for the free boundary problem (1) as the Simons’ cone 
and its associated foliation. We answer this affirmatively.

Theorem 1. For each ε small enough, there exists domain �ε close to the radius one tubular neighborhood of S+
ε and 

solution uε to the free boundary problem (1). Moreover, uε is stable in the sense that there exists a function 
 > 0 in 
�ε , and{

�
 = 0, in �ε,


ν + H
 = 0, on ∂�ε.
(7)

Here ν is the outward normal to ∂�ε and H is the mean curvature of ∂�ε.

By this theorem, there are solutions whose nodal set is close to S+
ε for ε small. It is well known that the family 

of minimal surfaces S+
δ , δ ∈ R, are all area minimizing. Therefore, it is natural to ask that whether the solutions uε

are also minimizers of the energy functional J . We believe this is true, but here in this paper we shall only give the 
following.

Theorem 2. There exists a nontrivial solution (not one dimensional) U to the free boundary problem (1) in R8 which 
is also energy minimizing.

With additional efforts, one can actually prove that for each S+
δ , there exists an energy minimizer whose nodal set 

is asymptotic to S+
δ at infinity. We will not pursue this in this paper. One can compare this result with a similar result 

for the Allen–Cahn equation [31].
Using the variational method of Jerison–Monneau [28], we can construct monotone solutions in R9 using this 

minimizer U . This complements the result of Kamburov [29], where the existence of monotone solutions is established 
by sub and super solution method.
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Theorem 3. There is a family of solutions in R9 to (1) which are monotone in the x9 direction.

Our second type of minimal surfaces will be the catenoids, which is a family of classical minimal surfaces with 
finite total curvature. They are rotationally symmetric and given explicitly by the equation

x2
1 + x2

2 = 1

ε2 cosh2 (εx3) .

Here ε > 0 is a parameter. In higher dimensions, we have analogous codimension one minimal submanifold which 
we call higher dimensional catenoids. To be more precise, let (x1, . . . , xn) be the coordinate in Rn (n > 3). Let ω be 
the solution of{

ω′′
1+ω′2 − n−2

ω
= 0,

ω (0) = 1,ω′ (0) = 0.

Then the surface C1 in Rn given by

r :=
√

x2
1 + . . . + x2

n−1 = ω (xn)

is a minimal surface, called catenoid. We can also write it as

xn = ω̄ (r) , r ∈ [r0,+∞).

Then there are constants cn, c′
n such that

xn ∼ cn − c′
nr

3−n.

Actually a homothety of C1 is also a minimal surface, which we denoted by Cε, which is then described by

xn = ω̄ε (r) := 1

ε
ω̄ (εr) .

We refer to [38] for more detailed properties on catenoids, including their Morse index. Here we are interested in Cε

with ε small. In this case, the catenoid has a large waist.

Theorem 4. For ε small enough, there exists a rationally symmetric domain �ε close to radius one tubular neighbor-
hood of Cε and a solution uε to the free boundary problem (1).

Now let us explain the main ideas of the proof. The proofs of Theorems 1 and 4 are based on the infinite dimensional 
gluing methods developed in [12,13]. In [1,12], entire solutions for the Allen–Cahn equation have been constructed. 
The zero level sets of the solutions lie close to certain nondegenerate minimal surfaces. To construct these solutions, 
they used the method of infinite dimensional Lyapunov–Schmidt reduction. More recently, in [13], an over-determined 
problem was investigated using similar method. Here we develop new gluing methods for (1). There are two main 
difficulties in performing gluing methods for (1). The first one is that the one-dimensional solution, which is given by

u0(x1) =
⎧⎨⎩

−1, x1 ≤ −1;
x1, −1 < x1 < 1;
1, x1 ≥ 1,

(8)

is only continuous and is not differentiable. This means that one can not linearize the problem around this one dimen-
sional profile. This is quite different from [1,12,13]. The second difficulty is that this is an over-determined problem 
and we have to adjust two interfaces.

To solve the problem (1), we introduce a pair of unknown functions (h1, h2) on a rescaled minimal surface. Using 
these two functions, we define a perturbed domain �h which will be very close to the radius one tubular neighborhood 
N1 of the minimal surface. The functions h1 and h2 measures the deviation of �h to N1. Next, we define suitable 
approximate solutions for (1) on �h. We analyze in detail the differences between this approximate solution and the 
harmonic function in � with Dirichlet boundary condition. In the last step, we use fixed point argument to show that 
one can find functions h1 and h2 such that our problem is solvable and we can get a solution u. In this step, we show 
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that to match the required Neumann boundary condition, we need to analyze the solvability and a priori estimate of 
a system of equations for the function h1, h2. (See (22).) It turns out that one of them reduces to the analysis of the 
Jacobi operator on the minimal surface

�Mh + |A|2h = f (9)

but the other problem is similar to that of the fractional differential operator

(−�M + 1)
1
2 h = f. (10)

We remark that the family of solutions constructed from the Simons’ cone are ordered and hence stable, while the 
solutions arising from catenoids are unstable.

To prove Theorems 2 and 3, we first extend the construction of Jerison–Monneau [28] and follow the variational 
approach in [31] to construct minimizers in R8 and monotone solutions in R9. The main difficulty is the regularity of 
the solutions. To this end, we use axial symmetry of the solutions and also make use of classical regularity result of 
Weiss [44,45] as well as recent regularity results of Jerison–Savin [27].

2. Solutions from Simons’ cone

2.1. Preliminary on Simons’ cone and the associated foliation

Let us first of all recall some basic facts about the geometry of the Simons’ cone. Throughout the paper we shall 
use Sk (ρ) to denote the radius ρ sphere in Rk+1. In the manifold S7 (1), we shall consider the codimension one 
submanifold

� := S3 (ρ) × S3 (ρ) ,

where

ρ =
√

1

2
.

The induced metric on � is given by g∗ := ρ2g1 + ρ2g2, where g1, g2 are the metric on the two copies S3 (1). The 
Simons cone is defined to be

S :=
{
rX ∈R

8 : r ∈ (0,+∞) ,X ∈ �
}

.

One can verify that this is a minimal hypersurface in R8. The induced metric tensor on S is then given by

dr2 + r2g∗.

For a codimension one submanifold M in Rn, with the induced metric, we shall use JM to denote its Jacobi operator, 
which explicitly has the form

JM = �M + |A|2 ,

where |A|2 = �n−1
i=1 k2

i is the squared norm of the second fundamental form of M , with ki being the principle curvatures 
of M . The Jacobi operator about S is then given by

JS = �S + |A|2 = ∂2
r + 6

r
∂r + �g∗ + 6

r2 .

The set R8\S has two components. Each component is foliated by a family of smooth minimal hypersurfaces S±
ε

which are asymptotic to S at infinity. We can choose S1 to be the surface having the form

S1\Br0 = {X + η0 (X)ν,X ∈ S} ,

where ν is a choice of the unit normal at S, and η0 (X) = |X|−2 + o
(|X|−2). Then Sε = ε−1S1.

Let x =
√

x2 + . . . + x2, y =
√

x2 + . . . + x2. We can write the standard metric on R8 in the polar coordinate as
1 4 5 8
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dx2 + x2dθ2 + dy2 + y2dθ̄2,

where dθ2 and dθ̄2 represents the metric tensor on the unit three-dimensional sphere S3 (1). Suppose in the (x, y)

coordinate Sδ is described by y = ϕδ (x) for a monotone function ϕδ , then the metric tensor on Sδ is[
1 + ϕ′

δ
2 (x)

]
dx2 + ϕ2

δ (x) dθ̄2 + x2dθ2.

Let us introduce the arc length variable l by the formula

l =
x∫

0

√
1 + ϕ′2

δ (t)dt.

Then the metric gδ on Sδ also read as

dl2 + ϕ2
δ (x) dθ2 + x2dθ̄2.

Note that detgδ = ϕ6
δ (x) x6. Let η be a function on Sδ which is invariant under the action of the group O (4) × O (4). 

The Laplacian operator on Sδ acting on function η has the form

�Sδη = 1√
detgδ

∂i

(√
detgδg

i,j
δ ∂j η

)
= d2η

dl2 +
d
[
ϕ3

δ (x)x3]
dl

ϕ3
δ (x) x3

dη

dl

= d2η

dl2 +
(

3

x
+ 3ϕ′

δ

ϕδ

)
dx

dl

dη

dl
. (11)

2.2. Analysis of the approximate solutions

We will construct solutions based on the minimal hypersurfaces Sε where ε > 0 is sufficiently small. Let us choose 
a unit normal ν for the codimension one manifold Sε. Let h1, h−1 ∈ C

2,α
loc (Sε), small in certain sense. For each function 

η defined on Sε , we set

�η := {X + η (X)ν (X) : X ∈ Sε} .

Although �η depends also on ε, we will not make this dependence explicit in the notation. We establish a Fermi 
coordinate in a tubular neighborhood of Sε. By s we denote the signed distance of a point to Sε. Slightly abusing the 
notation, define

�s := {X + sν (X) : X ∈ Sε} .

Note that for ε small, this is well defined and �s is smooth, for all |s| < 1.
Let us consider the region � trapped between the surfaces �−1+h−1 and �1+h1 . For each pair of functions h =

(h−1, h1), we shall define an approximate solution wh in �:

wh (s, l) = s − g (l)

1 + f (l)
,

where

f = h1 − h−1

2
,

g = h1 + h−1

2
.

Note that in the current situation, the range of l is [0, +∞). With this definition, wh satisfies the boundary condition:

wh =
{−1, on �−1+h−1 ,

1, on � .
1+h1
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It will be convenient for us to introduce a new variable

t = s − g (l)

1 + f (l)
.

Then the domain �h can be parameterized by (l, t) with t ∈ [−1,1].
Let us use HM to denote the mean curvature of a codimension one submanifold M . The formula of Laplacian 

operator in the Fermi coordinate (see [14]) tells us that

�wh (s, l) = ��s wh + ∂2
s wh − H�s ∂swh

= ��s wh − H�s

1 + f
.

We need to understand the main order of these terms.

Lemma 5. We have

��0wh = −��0g − t��0f + E1,

where

E1 = −tf ��0f + ��0 (fg) − g��0f + ��0

[
(s − g)

f 2

1 + f

]
.

Remark 6. E1 can be regarded as a perturbation term.

Proof. Having in mind that f , g are small, we write

wh = s − g (l)

1 + f (l)
= (s − g)

(
1 − f + f 2

1 + f

)
= s − g − sf + gf + (s − g)

f 2

1 + f
.

We then compute

��0wh = −��0g − s��0f + ��0 (fg) + ��0

[
(s − g)

f 2

1 + f

]
.

Inserting the relation s = t (1 + f ) + g into the left hand side, we get

��0wh = −��0g − [t (1 + f ) + g]��0f + ��0 (fg) + ��0

[
(s − g)

f 2

1 + f

]
= −��0g − t��0f − tf ��0f + ��0 (fg) − g��0f + ��0

[
(s − g)

f 2

1 + f

]
.

This finishes the proof. �
Let us use ki , i = 1, . . . , 6 to denote the principle curvatures of Sε.

Lemma 7. We have the following formula:

H�s

1 + f
= t |A|2 + g |A|2 + E2,

where

E2 = 1

1 + f

6∑
i=1

s2k3
i

1 − ski

− fg |A|2
1 + f

.
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Proof. By a well known formula (see [14]),

H�s =
6∑

i=1

ki

1 − ski

=
6∑

i=1

ki +
6∑

i=1

sk2
i +

6∑
i=1

s2k3
i

1 − ski

.

Recall that 
6∑

i=1
ki = H�0 = 0. Hence

H�s

1 + f
= |A|2

1 + f
[(1 + f ) t + g] + 1

1 + f

6∑
i=1

s2k3
i

1 − ski

= t |A|2 + g |A|2 − fg |A|2
1 + f

+ 1

1 + f

6∑
i=1

s2k3
i

1 − ski

.

The proof is thus completed. �
We seek a solution u to the free boundary problem (1) in the form u = wh +φ. Here we require φ = 0 on ∂�h. Let 

us now analyze the boundary condition |∇u| = 1 on ∂�h. Suppose in the 
(
l, θ, θ̄ , s

)
coordinate the metric tensor g in 

a tubular neighborhood of Sε has matrix with entries gi,j and its inverse matrix has entries gi,j . Since we are working 
in the Fermi coordinate, the entries in the last column and row are all zero, except the rightmost entry on the last row. 
We omit the subscript h in wh and write it as w.

Lemma 8. The condition |∇u| = 1 on �i+hi
is equivalent to

∂tφ − f = E3,i .

Here for i = −1, 1, E3,i is defined on �i+hi
to be

−1

2

(
1 + g1,1h′2

i

)
(∂tφ)2 + g1,1h′

i

1 + f
∂tφ + 1

2
f 2 − 1

2
g1,1 (g′ + tf ′)2 .

Proof. We compute the norm of the gradient in the (s, l) coordinate and get the following equation to be satisfied on 
the boundary ∂�h:

|∇ (w + φ)|2 = (∂sw + ∂sφ)2 + g1,1 (∂lw + ∂lφ)2 = 1. (12)

Direct computation yields

∂sw = 1

1 + f
,

and

∂lw = −g′

1 + f
− (s − g)f ′

(1 + f )2 .

On the other hand, differentiating the identity φ (−1 + h1, l) = 0 with respect to l, we obtain

∂lφ = −∂sφh′
1 on �−1+h−1 .

On �−1+h−1 , the right hand side of (12) is equivalent to(
1 + g1,1h′2

1

)
(∂sφ)2 +

(
2∂sw − 2g1,1h′

1

)
∂sφ + (∂sw)2 + g1,1 (∂lw)2 = 1. (13)

Inserting the equation

∂sφ = ∂tφ
1 + f
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into (13), we get(
1 + g1,1h′2

1

)
(∂tφ)2 +

(
2 − 2

g1,1h′
1

1 + f

)
∂tφ − 2f − f 2 + g1,1

(
g′ + (s − g)f ′

1 + f

)2

= 0.

This completes the proof. �
The function φ should also satisfy

�φ = −�w = J�0g +
(
��0f + |A|2

)
t − E1 + E2 + ��0w − ��s w, in �h.

Here we recall that by J�0 we denote the Jacobi operator of �0. Therefore, we are lead to solve the following nonlinear 
problem for the unknown functions (f, g,φ).{

�φ = J�0g + (��0f + |A|2) t − E1 + E2 + ��0w − ��s w, in �h,

φ = 0 and ∂tφ − f = E3,i , on ∂�h.
(14)

Lemma 9. We have the following estimate for the Laplacian operator acting on functions depending on s and l:

��0η − ∂2
l η − 3

l
∂lη = O

(
ε

1 + εl

)
∂lη,

and

��s η − ��0η = O

(
ε2

(1 + εl)2

)
∂lη + O

(
ε

1 + εl

)
∂2
l η. (15)

Proof. By (11), we have

��0η − d2η

dl2 − 3

l

dη

dl
=
[(

3

x
+ 3ϕ′

ε

ϕε

)
dx

dl
− 3

l

]
dη

dl
.

We compute(
3

x
+ 3ϕ′

ε

ϕε

)
dx

dl
− 3

l
= 1√

1 + ϕ′2
ε

(
3

x
+ 3ϕ′

ε

ϕε

)
− 3

l

= 1√
1 + (ϕ′

1 (εx)
)2
(

3

x
+ 3εϕ′

1 (εx)

ϕ1 (εx)

)
− 3

l

= 3
l − x

√
1 + (ϕ′

1 (εx)
)2

lx

√
1 + (ϕ′

1 (εx)
)2 + εO

(
1

1 + εl

)

= O

(
ε

1 + εl

)
.

Next we prove (15). Let us denote by gs the metric tensor of �s . Explicitly, gs

(
l, θ, θ̄

) = g 
(
l, θ, θ̄ , s

)
. From the 

calculation in [14], we know that√
detgs =√detg0

6∏
i=1

(1 − kis) ,

where ki are the principle curvatures of �0 = Sε . Hence, for a function η depending on s and l,

��s η = 1√
detgs

∂i

(√
detgsg

i,j
s ∂j η

)
= ∂l

(
ln

(√
detg0

6∏
i=1

(1 − kis)

))
g1,1
s ∂lη + ∂l

(
g1,1
s ∂lη

)
.
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Consequently,

��s η − ��0η = ∂l

(
ln

(
6∏

i=1

(1 − kis)

))
g1,1
s ∂lη

+ ∂l

(
ln
√

detg0

)(
g1,1
s − g

1,1
0

)
∂lη

+ ∂l

((
g1,1
s − g

1,1
0

)
∂lη
)

.

Then the desired estimate follows from the fact that∣∣∣∣dki

dl

∣∣∣∣≤ C
ε2

(1 + εl)2 . �
By the previous computations, the term −E1 + E2 + ��0w − ��s w will be small and can be regarded as pertur-

bation terms.
To get a solution (f, g,φ) for the original problem, let us introduce the functional framework to work with. Let 

α ∈ (0,1) be a fixed constant. Note that the functions f and g are both defined on the minimal surface Sε . However, 
we shall work both in functional spaces defined on Sε and S1. Hence we introduce the following

Definition 10. For μ = 0, 1, 2, β ≥ 0, δ > 0, the space Bβ,μ;δ consists of those functions η defined on Sδ such that

‖η‖β,μ;δ := sup
l,|z|=l

[
(1 + δl)β ‖η‖Cμ,α(Sδ∩B1(z))

]
< +∞.

Definition 11. The space B̄β,2;δ consists of those functions η defined on Sδ such that

‖η‖β,2;δ,ˆ := sup
l,|z|=l

[
(1 + δl)β ‖η‖C0,α(Sδ∩B1(z))

+ (1 + δl)β+1
∥∥η′∥∥

C0,α(Sδ∩B1(z))

]
+ sup

l,|z|=l

[
(1 + δl)β+2

∥∥η′′∥∥
C0,α(Sδ∩B1(z))

]
< +∞.

With the above definition, we shall assume a priori f ∈ B2,2;ε . We also assume the rescaled function ḡ (·) = g
( ·

ε

) ∈
B̄β0,2;1, where β0 > 2 is a fixed constant with β0 − 2 small. On the other hand, the function φ is defined on �h, which 
depends on f and g. This turns out to be not very convenient for our later purpose. Hence slightly abusing the notation, 
we also regard φ as the restriction of a function T (φ) on � := [−1,1] × [0, +∞), where T (φ) is a function of t and 
l defined for (t, l) ∈ �̄ := [−1,1] ×R, even in the variable l.

Definition 12. For μ = 0, 1, 2, β ≥ 0, the space Bβ,μ;∗ consists of those functions φ such that

‖φ‖β,μ;∗ := sup
l∈R;z∈�̄,|z|=|l|

[
(1 + ε |l|)β ‖T (φ)‖Cμ,α

(
�̄∩B1(z)

)]< +∞.

We shall assume φ ∈ B2,2;∗. The following invertibility property of the Jacobi operator on S1 will play an important 
role in our analysis.

Lemma 13. For each function ξ ∈ Bβ0+2,0;1, there is a solution η ∈ B̄β0,2;1 such that

JS1(η) = ξ .

Moreover, it satisfies

‖η‖β0,2;1,ˆ ≤ C ‖ξ‖β0+2,0;1 .

Proof. The proof of this lemma goes in a similar fashion as that of [32], we omit the details. �
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We would like to solve the nonlinear problem (14) using fixed point arguments.

Lemma 14. For each η ∈ Bβ,0;∗, there exists a unique solution φ ∈ Bβ,2;∗, to the problem{
∂2
t φ + ∂2

l φ + 3
l
∂lφ = η, in �h,

φ = 0 on ∂�h,
(16)

with ‖φ‖β,2;∗ ≤ C ‖η‖β,0;∗. This solution will be denoted by L1 (η).

Remark 15. In terms of the (t, l) coordinate, the first equation in (16) actually should be considered in the region 
(t, l) ∈ [−1,1] × [0, +∞). However, for the sake of notational simplicity, we just write it as in �h. Similarly, we use 
the notation ∂�h in the second equation of (16).

The proof of Lemma 14 follows from standard arguments.
Next, given two functions γ1 and γ−1 defined on Sε , we consider⎧⎪⎪⎨⎪⎪⎩

∂2
t φ + ∂2

l φ + 3
l
∂lφ = J�0g + (��0f + |A|2) t, in �h,

φ (±1, l) = 0,

∂tφ − f = γ−1, for t = −1,

∂tφ − f = γ1, for t = 1.

(17)

To find the explicit form of the solution φ of this problem, we need to introduce some notations. For each fixed ξ ∈ R
4, 

let us use p1,ξ (·) to denote the solution of the problem{
p′′

1,ξ (t) − |ξ |2 p1,ξ (t) = 1,

p1,ξ (−1) = p1,ξ (1) = 0.

We use p2,ξ (·) to denote the solution of{
p′′

2,ξ (t) − |ξ |2 p2,ξ (t) = t,

p2,ξ (−1) = p2,ξ (1) = 0.

Note that p1,ξ is even, while p2,ξ is odd. For convenience, we collect properties of pi,ξ in the following

Lemma 16. Explicitly,

p1,ξ (t) = cosh (|ξ | t)
|ξ |2 cosh |ξ | − 1

|ξ |2 ,

p2,ξ (t) = sinh (|ξ | t)
|ξ |2 sinh |ξ | − t

|ξ |2 .

Moreover,

1

p′
1,ξ (1)

− |ξ | = |ξ |
tanh |ξ | − |ξ | = O

(
e− |ξ |

2

)
, as |ξ | → +∞,

and

|ξ |2 p′
2,ξ (1) = |ξ |

tanh |ξ | − 1.

Proof. This follows from direct computation. �
In the following, we shall use the following Fourier type transform

η̂ (t, ξ) :=
∫

4

e−i(ξ1z1+...+ξ4z4)η (t, l) dz1 . . . dz4,
R
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where l =
√

z2
1 + . . . + z2

4, ξ = (ξ1, ξ2, ξ3, ξ4). Note that this actually corresponds to the usual Fourier transform in R
4. 

We denote by (·)∨ the inverse Fourier transform. Define a new function f0 by

f0 = −
⎛⎝ (|A|2)ˆ

|ξ |2 − 1
p′

2,ξ (1)

⎞⎠∨
.

By the discussion in the next proposition, this definition makes sense.

Proposition 17. Suppose γ1 − γ−1 ∈ Bβ0+2,1;ε , γ1 + γ−1 ∈ Bβ0,1;ε . Then the system (17) has a solution (f, ḡ) with

‖f − f0‖β0,2;ε ≤ C ‖γ1 + γ−1‖β0,1;ε , (18)

and

‖ḡ‖β0,2;1,ˆ ≤ Cε−2 ‖γ1 − γ−1‖β0+2,1;ε . (19)

This solution (f, ḡ) will be denoted by L2 (γ−1, γ1).

Proof. We are lead to the problem⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂2
t φ̂ − |ξ |2 φ̂ = (J�0g

)ˆ + (��0f + |A|2)ˆ t, t ∈ [−1,1] ,
φ̂ (−1, ξ) = φ̂ (1, ξ) = 0,

∂t φ̂ (−1, ξ) − f̂ (ξ) = γ̂−1 (ξ) ,

∂t φ̂ (1, ξ) − f̂ (ξ) = γ̂1 (ξ) .

(20)

The solution φ̂ of the first equation in (20) can be written in the form

φ̂ (t, ξ) = (J�0g
)ˆ

p1,ξ (t) +
(
��0f + |A|2

)ˆ
p2,ξ (t) .

Therefore, to get a solution for (20), it suffices for us to solve the following problem:{ (
J�0g

)ˆ
p′

1,ξ (−1) + (��0f + |A|2)ˆ p′
2,ξ (−1) − f̂ (ξ) = γ̂−1 (ξ) ,(

J�0g
)ˆ

p′
1,ξ (1) + (��0f + |A|2)ˆ p′

2,ξ (1) − f̂ (ξ) = γ̂1 (ξ) .
(21)

Due to the symmetry of p1,ξ and p2,ξ , (21) is equivalent to⎧⎨⎩
(
J�0g

)ˆ = γ̂1(ξ)−γ̂−1(ξ)

2p′
1,ξ (1)

,(
��0f + |A|2)ˆ = 2f̂ (ξ)+γ̂−1(ξ)+γ̂1(ξ)

2p′
2,ξ (1)

.
(22)

One can perform inverse Fourier transform for the first equation in this system and then use Lemma 13 to get a 
solution g.

We proceed to estimate the norm of ḡ (·) = g
( ·

ε

)
. Put ρ = γ1 − γ−1. We would like to show∥∥∥∥∥

(
ρ̂ (ξ)

p′
1,ξ (1)

)∨∥∥∥∥∥
β0+2,0;ε

≤ C ‖ρ‖β0+2,1;ε .

Once this is proved, the estimate (19) follows from the invertibility property of the Jacobi operator JS1 . Observe that 
1

p′
1,ξ (1)

is real analytic in |ξ |. By Lemma 16,

1

p′
1,ξ (1)

= |ξ | + O
(
e− |ξ |

2

)
, as |ξ | → +∞.

Let us now estimate the inverse Fourier transform of |ξ | ρ̂ (ξ). Using the fact that in R4, inverse Fourier transform of 
|ξ | is equal to c0 |x|−5, where c0 is a constant (see for instances, [22] Theorem 2.4.6, or [16]), we get
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(|ξ | ρ̂ (ξ)
)∨

(z) = c0 P.V.
∫
R4

ρ (|z|) − ρ (|y|)
|z − y|5 dy.

For |z| large, we have∣∣∣∣∣∣∣∣
∫

|z−y|> |z|
2

ρ (|z|) − ρ (|y|)
|z − y|5 dy

∣∣∣∣∣∣∣∣≤ C |ρ (|z|)| +
∫

|z−y|> |z|
2

|ρ (|y|)|
|z − y|5 dy

≤ C |ρ (|z|)| + C

|z|5
∫

|z−y|> |z|
2

|ρ (|y|)|dy

≤ C |ρ (|z|)| + C
‖ρ‖β0+2,1;ε
1 + ε5 |z|5 . (23)

On the other hand,∣∣∣∣∣∣∣∣
∫

1<|z−y|< |z|
2

ρ (|z|) − ρ (|y|)
|z − y|5 dy

∣∣∣∣∣∣∣∣≤
C ‖ρ‖β0+2,1;ε
(1 + ε |z|)β0+2

∫
1<|z−y|< |z|

2

dy

|z − y|5 (24)

≤ C ‖ρ‖β0+2,1;ε
(1 + ε |z|)β0+2 .

Furthermore, using the fact that ρ ∈ C1,α , we get∣∣∣∣∣∣∣P.V.
∫

0<|z−y|<1

ρ (|z|) − ρ (|y|)
|z − y|5 dy

∣∣∣∣∣∣∣≤ C ‖ρ‖C1,α(B1(z))
. (25)

Inequalities (23), (24), (25) give us the required weighted C0 estimate of 
(|ξ | ρ̂ (ξ)

)∨
(z). Similarly, one can also get 

corresponding estimate for the Holder norm. Hence the desired estimate (19) follows.
To find the solution f for the second equation in (22), we first consider the equation(

f ′′ + 3

l
f ′ + |A|2

)ˆ

= 2f̂ (ξ) + γ̂−1 (ξ) + γ̂1 (ξ)

2p′
2,ξ (1)

. (26)

This can be written as

f̂ (ξ) = −
(|A|2)ˆ

|ξ |2 − 1
p′

2,ξ (1)

+ γ̂−1 (ξ) + γ̂1 (ξ)

2
(
|ξ |2 p′

2,ξ (1) − 1
) . (27)

We may take inverse Fourier transform on both sides of (27). Let

K1 =
⎛⎝ 1

|ξ |2 − 1
p′

2,ξ (1)

⎞⎠∨
, K2 =

(
1

|ξ |2 p′
2,ξ (1) − 1

)∨
.

In view of the explicit formula of p′
2,ξ (1), we know |ξ |2 − 1

p′
2,ξ (1)

and |ξ |2 p′
2,ξ (1) − 1 are positive and real analytic. 

This implies that K1 and K2 decay fast enough at infinity. On the other hand,

1

|ξ |2 − 1
p′

2,ξ (1)

∼ 1

|ξ |2 ,
1

|ξ |2 p′
2,ξ (1) − 1

∼ 1

|ξ | , as |ξ | → +∞.

Observe that the inverse Fourier transform of |ξ |−1 is c1 |x|−3 (see [22]). It follows that K2 has a singularity of the 
order O

(|x|−3) near origin. The estimate (18) for solution f of (27) then follows from routine calculation in potential 
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theory. Since by Lemma 9, ��0f is a small perturbation of f ′′ + 3
l
f ′, then we can use a perturbation argument to 

show the same estimate for solution f of the second equation in (22). This finishes the proof. �
With the model linear problem understood, we proceed to solve the nonlinear problem. Let φ0 be the solution of 

the problem{
∂2
t φ0 + ∂2

l φ0 + 3
l
∂lφ0 = t |A|2 , in �h,

φ0 = 0 on ∂�h.

Lemma 18. Suppose ‖f − f0‖β0,2;ε ≤ Cε2, ‖ḡ‖β0,2;1,ˆ ≤ Cε, and ‖φ − φ0‖β0,2;∗ ≤ Cε2. There holds∥∥E3,1 − E3,−1
∥∥

β0+2,1;ε ≤ Cε3,∥∥E3,1 + E3,−1
∥∥

β0,1;ε ≤ Cε3.

Proof. Recall that

E3,i = −1

2

(
1 + g1,1h′2

i

)
(∂tφ)2 + g1,1h′

i

1 + f
∂tφ + 1

2
f 2 − 1

2
g1,1 (g′ + tf ′)2 .

Using the boundedness of g1,1, taking into account of the fact that∥∥g′∥∥
3,1;ε ≤ Cε2,‖f ‖2,2;ε ≤ Cε2,‖∂tφ (±1, l) − ∂tφ0 (±1, l)‖β0,2;ε ≤ Cε2,

we find that∥∥∥g1,1h′2
i (∂tφ)2

∥∥∥
β0+2,1;ε +

∥∥∥g1,1 (g′)2∥∥∥
β0+2,1;ε +

∥∥∥g1,1g′f
∥∥∥

β0+2,1;ε ≤ Cε3.

Now we subtract E3,1 with E3,−1, the term f 2 will be canceled. Additionally, using the asymptotic expansion of g1,1, 
we know∥∥∥(t2g1,1f ′2) |t=−1 −

(
t2g1,1f ′2) |t=1

∥∥∥
β0+2,1;ε ≤ Cε3.

Furthermore, observing that 
∥∥f ′

0

∥∥
3,1;ε ≤ Cε2, we get∥∥∥(g1,1h′−1∂tφ

)
|t=−1 −

(
g1,1h′

1∂tφ
)

|t=1

∥∥∥
β0+2,1;ε

≤ Cε3 + C
∥∥(f ′

0∂tφ0
) |t=−1 + (f ′

0∂tφ0
) |t=1

∥∥
β0+2,1;ε

≤ Cε3.

Hence we get∥∥E3,1 − E3,−1
∥∥

β0+2,1;ε ≤ Cε3 + 1

2

∥∥∥∂tφ0 (−1, l)2 − ∂tφ0 (1, l)2
∥∥∥

β0+2,1;ε
≤ Cε3.

The proof of 
∥∥E3,1 + E3,−1

∥∥
β0,1;ε ≤ Cε3 is similar. �

To proceed, let us consider the nonlinear problem{
�φ = J�0g + (��0f + |A|2) t − E1 + E2 + ��0w − ��s w, in �h,

φ = 0 on ∂�h.
(28)

Let us introduce the notation

P (f, ḡ, φ) := −E1 + E2 + ��0w − ��s w + ∂2
t φ + ∂2

l φ + 3

l
∂lφ − �φ. (29)

We will investigate the Lipschitz dependence of P on f and ḡ.
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Lemma 19. For fi ∈ B2,2;ε , ḡi ∈ B̄β0,2;1, with ‖fi − f0‖β0,2;ε ≤ Cε2, ‖ḡi‖β0,2;1,ˆ ≤ Cε, i = 1, 2, we have

‖P (f1, ḡ1, φ) − P (f2, ḡ2, φ)‖β0+2,0;ε = O
(
ε2
)

‖f1 − f2‖β0,2;ε + O
(
ε3
)

‖ḡ1 − ḡ2‖β0,2;1,ˆ .

Proof. Let us consider the terms in (29). Recall that

E1 (f, ḡ) = −tf ��0f + ��0 (fg) − g��0f + ��0

[
(s − g)

f 2

1 + f

]
.

We compute directly that

f1��0f1 − f2��0f2 = f1��0 (f1 − f2) + ��0f2 (f1 − f2) . (30)

Next, since

��0 (fg) − g��0f = 2f ′g′ + f ��0g,

we have[
��0 (f1g1) − g1��0f1

]− [��0 (f2g2) − g2��0f2
]

= 2
(
f ′

1 − f ′
2

)
g′

1 + 2f ′
2

(
g′

1 − g′
2

)
+ ��0g1 (f1 − f2) + f2��0 (g1 − g2) . (31)

Now combining (30), (31) and performing a similar computation for the term ��0

[
(s − g)

f 2

1+f

]
, we obtain

‖E1 (f1, ḡ1) − E1 (f2, ḡ2)‖β0+2,0;ε = O
(
ε2
)

‖f1 − f2‖β0,2;ε + O
(
ε3
)

‖ḡ1 − ḡ2‖β0,2;1 .

For the term

E2 (f, g) = 1

1 + f

6∑
i=1

s2k3
i

1 − ski

− fg |A|2
1 + f

,

we have

E2 (f1, g1) − E2 (f2, g2) = −|A|2
(

f1g1

1 + f1
− f2g2

1 + f2

)
+ f2 − f1

(1 + f1)(1 + f2)

6∑
i=1

s2k3
i

1 − ski

.

Since |A|2 = O
(

ε2

(1+εl)2

)
, we obtain

‖E2 (f1, ḡ1) − E2 (f2, ḡ2)‖β0+2,0;ε = O
(
ε2
)

‖f1 − f2‖β0,2;ε + O
(
ε3
)

‖ḡ1 − ḡ2‖β0,2;1 .

It remains to analyze the term ��0w − ��s w. To handle it, we simply note that by Lemma 9 the following 
expansion holds:

��0w − ��s w = O

(
ε2

(1 + εl)2

)
∂lw + O

(
ε

1 + εl

)
∂2
l w

= O

(
ε2

(1 + εl)2

)(−g′ (1 + f ) − (s − g)f ′

(1 + f )2

)
+ O

(
ε

1 + εl

)(−g′ (1 + f ) − (s − g)f ′

(1 + f )2

)′
,

which yields the desired estimate:∥∥(��0w − ��s w
) |(f1,g1) − (��0w − ��s w

) |(f2,g2)

∥∥
β0+2,0;ε

= O
(
ε2
)

‖f1 − f2‖β0,2;ε + O
(
ε3
)

‖ḡ1 − ḡ2‖β0,2;1 .

The proof is thus completed. �
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Lemma 20. Given f , ḡ, with ‖f − f0‖β0,2;ε ≤ Cε2, ‖ḡ‖β0,2;1,ˆ ≤ Cε, problem (28) has a unique solution φ with

‖φ − φ0‖β0+1,2;∗ ≤ Cε2.

If we write this solution as 
 (f, ḡ), then

‖
(f1, ḡ1) − 
(f2, ḡ2)‖β0+1,2;∗ ≤ C ‖f1 − f2‖β0,2;ε + Cε2 ‖ḡ1 − ḡ2‖β0,2;1,ˆ .

Proof. We may recast (28) as

φ = L1

[
J�0g +

(
��0f + |A|2

)
t
]
+ L1 [P (f, ḡ, φ)] ,

where φ = φ0 + φ∗, φ∗ ∈ Bβ0+1,2;∗. In other words,

φ∗ = L̄1
(
f, ḡ, φ∗) := L1

[
J�0g +

(
��0f + |A|2

)
t
]
+ L1

[
P
(
f, ḡ, φ0 + φ∗)]− φ0.

We regard it as a fixed point problem of φ∗ for the map L̄1. Observe that although φ0 only belongs to B2,2;∗, the 
function P (f, ḡ, φ0 + φ∗) actually lies in Bβ0+1,0;∗. Now we show L̄1 is a contraction map. Indeed, by Lemma 9,

�φ = ∂2
s φ + ��s φ − H�s ∂sφ

= 1

(1 + f )2 ∂2
t φ + ��0φ + O

(
ε

(1 + εl)2

)
∂lφ

+ O

(
ε

1 + εl

)
∂2
l φ + O

(∑
k2
i

)
∂tφ.

Using this expansion, we can verify that∥∥L̄1
(
f, ḡ, φ∗

1

)− L̄1
(
f, ḡ, φ∗

2

)∥∥
β0+1,2;∗ ≤ Cε

∥∥φ∗
1 − φ∗

2

∥∥
β0+1,2;∗ .

This implies that L̄1 is a contraction mapping provided that ε is small enough. It follows that (28) has a solution.
To see the Lipschitz dependence of 
 on f , ḡ, we subtract the equations satisfied by 
 (f1, ḡ1) and 
 (f2, ḡ2). 

Then one can use the explicit expression for E1, E2 to get the desired estimate. �
If we write 
 (f, ḡ) = φ1 + L1 (P (f, ḡ,
(f, ḡ))), then our original nonlinear problem will be transformed into{

∂2
t φ1 + ∂2

l φ1 + 3
l
∂lφ1 = J�0g + (��0f + |A|2) t + P(f, ḡ, φ1), in �h,

φ1 = 0 and ∂tφ1 − f = E3,i − ∂t [L1 (P (f, ḡ,
(f, ḡ)))] , on �i+hi
.

(32)

With all these preparations, we are now ready to prove Theorem 1.

Proof of Theorem 1. Let us set f = f0 + f̃ . Using Proposition 17, we find that to solve (32), it suffices to get a 
solution for the following fixed point problem for 

(
f̃ , g

)
:(

f̃ , ḡ
)= L̄2

(
f̃ , ḡ

) := L2 (ϒ−1,ϒ1) − (f0,0) ,

where

ϒi = E3,i − ∂t [L1 (P (f, ḡ,
(f, ḡ)))] |t=i , i = ±1.

Let us define the space

B : ={(f̃ , ḡ
) |, (f̃ , ḡ

) ∈ Bβ0,2;ε ×Bβ0,2;1,ˆ
}
,

equipped with the norm∥∥(f̃ , ḡ
)∥∥ := ε

∥∥f̃ ∥∥
β0,2;ε + ε2 ‖ḡ‖β0,2;1,ˆ .

We claim that L̄2 is a contraction mapping in the set

B1 :=
{(

f̃ , ḡ
) ∈ B : ∥∥(f̃ , ḡ

)∥∥≤ C0ε
3
}

,
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where C0 is a fixed large constant. Indeed, let

η± (f, ḡ) := ∂t [L1 (P (f, ḡ,
(f, ḡ)))] |t=−1 ± ∂t [L1 (P (f, ḡ,
(f, ḡ)))] |t=1,

and

f1 = f0 + f̃1, f2 = f0 + f̃2.

Using Proposition 17, we can show

‖η+ (f1, ḡ1) − η+ (f2, ḡ2)‖β0,2;ε + ‖η− (f1, ḡ1) − η− (f2, ḡ2)‖β0,2;ε

= O
(
ε2
)

‖f1 − f2‖β0,2;ε + O
(
ε3
)

‖ḡ1 − ḡ2‖β0,2;1,ˆ .

It then follows from Proposition 17, Lemma 19 and Lemma 20 that∥∥L̄2
(
f̃1, ḡ1

)− L̄2
(
f̃2, ḡ2

)∥∥≤ Cε
∥∥(f̃1, ḡ1

)− (f̃2, ḡ2
)∥∥ .

This proves the claim.
To prove the existence of a fixed point for L̄2, it remains to show that L̄2 (B1) ⊂ B1. Since 

(
f̃ , ḡ

) ∈ B1, we have ∥∥f̃ ∥∥
β0,2;ε ≤ C0ε

2, ‖ḡ‖β0,2;1,ˆ ≤ C0ε. Observe that due to the presence of the term |A|2 t and t3∑k3
i , the function 

L1 (P (f, ḡ,
(f, ḡ))) |±1 does not have enough decay and only belongs to B2,2;ε,∗. However, since these two terms 
are odd, their contribution to the boundary derivative at t = ±1 cancel and therefore

‖η+‖β0,2;ε ≤ Cε2,‖η−‖β0+2,2;ε ≤ Cε3.

Hence by Proposition 17,

L̄2
(
f̃ , ḡ

)≤ Cε3,

which implies that L̄2 (B1) ⊂ B1, provided that C0 is chosen large enough.
The solution wh + φ depends smoothly on ε. Let us take the derivatives of wh + φ with respect to ε. Note that 

the main order of wh + φ is s−g
1+f

, where s is the Fermi coordinate around the minimal hypersurface Sε. Using the 

fact that Sε is a minimal foliation associated to the Simons’ cone, we find that d(wh+φ)
dε

is positive and satisfy the 
system (7) (see [27]). This proves that our solution of the free boundary problem is stable. This finishes the proof of 
Theorem 1. �
3. Existence of an energy minimizer in RRR8 — Proof of Theorem 2

In the previous section, we have shown that if ε0 > 0 is small enough, then for each ε < ε0, we have a solution for 
the free boundary problem whose nodal set is asymptotic to S+

ε . By symmetry, one also has solutions whose nodal 
sets are asymptotic to S−

ε . We denote these two continuous families of solutions by u+
ε and u−

ε , with u−
ε < u+

ε . In this 
section, we will use variational arguments to show the existence of an energy minimizer U in R8, lying between u+

ε0

and u−
ε0

. The arguments in this section are very similar to that of [31], where the global minimizers of the Allen–Cahn 
equation in dimension n ≥ 8 are constructed.

We use Ba to denote the open ball of radius a in R8. Choose a Lipschitz function ba which is invariant under the 
natural O (4) × O (4) action on R8 and

u−
ε0

< ba < u+
ε0

on ∂Ba.

Let us consider the minimizing problem

min
η−ba∈H 1

0 (Ba)

J (η) . (33)

Lemma 21. The minimizing problem (33) has a solution ua which is invariant under O (4) × O (4).
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Proof. The existence of a minimizer u for (33) follows from standard arguments. The point is that we need to prove 
the existence of a minimizer which is additionally invariant under O (4) × O (4).

Since u solves the free boundary problem, it is continuous. We define

w1 (x) = min {u (gx) : g ∈ O (4) × O (4)} ,

w2 (x) = max {u (gx) : g ∈ O (4) × O (4)} .

Then w1 and w2 are invariant under O (4) × O (4). We claim that w1 and w2 are also minimizers. Indeed, for each 
k ∈N and a finite set {g1, · · · , gk} ∈ O (4) × O (4), let

w̄k = min {u (gix) : gi ∈ O (4) × O (4) , i = 1, . . . , k} .

Then w̄k is a minimizer. We cover O (4) × O (4) by finitely many balls with radius ε. Denote by nε the number of 
balls. In each ball, let us choose a gi ∈ O (4) × O (4). We will define

qε (x) := min {u (gix) : i = 1, . . . , nε} .

Then qε is also a minimizer. We observe that by the continuity of a minimizer,

w1 (x) = lim
ε→0

qε (x) .

On the other hand, let {εk} be a sequence converge to 0. Then standard arguments yield that qεk (x) converges a.e. to 
minimizer q . This q must be w1. This proves that w1 is also a minimizer. Similarly, w2 is also a minimizer. �
3.1. Regularity of the free boundary

We would like to analyze the regularity property of the free boundary of the solution ua.

Lemma 22. The free boundary of ua is smooth in Ba\ {0}.

Proof. We shall use the standard arguments in the regularity theory: Blow up analysis around a free boundary point, 
cf. [44,45]. Let x0 ∈ Ba be a point on the free boundary of u. Suppose x0 �= 0 and ua (x0) = 1. We distinguish three 
cases.

Case 1. x0 is not on the x axis and not on y axis.
In this case, standard arguments, based on Weiss monotonicity formula [44,45], tell us that the sequence wk :=

ua(x0+ρk ·)−1
ρk

, with ρk → 0, has a subsequence converges in suitable sense to a minimizing cone C in R8. We observe 

that ua is invariant under O (4) × O (4). Hence C reduces to a minimizing cone in R2. Therefore it must be a trivial 
cone. This implies that around x0, the free boundary is flat and the regularity theory implies that actually it is smooth 
(analytic).

Case 2. x0 is on the x or y axis.
In this case, the cone C reduces to a minimizing cone in R5 which is invariant under the O (4) action of the last 

four coordinates. If this cone were not trivial, it would be unstable, due to the classification of stable cones by Jerison 
and Savin in the axial symmetric case (see [27]). This contradicts with the fact that ua is a minimizer. �

With this regularity at hand, we now want to prove that these minimizers are bounded by u+
ε0

and u−
ε0

, by sweeping 
the family of ordered solutions u+

ε and u−
ε , similarly as in [31]. By our previous construction, for ε sufficiently small, 

we have{
ua ≤ u+

ε , in Ba,

ua < u+
ε , in � := {X : |ua (X)| < 1} .

(34)

We show that actually (34) holds for all ε ≤ ε0. To see this, we continuously increase the value of ε. Assume to the 
contrary that there existed a δ < ε0, which were the first value where we have

ua ≤ u+
δ in Ba, and ua (X) = u+

ε (X) for some X ∈ �̄. (35)

Maximum principle tells us that this X must be on ∂Ba . By the results in [30], the free boundary approaches the fixed 
boundary tangentially, this contradicts with the choice of δ, which is the smallest value satisfying (35). This finishes 
the proof.
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Proof of Theorem 2. For each a large, we have a solution ua with u−
ε0

< ua < u+
ε0

. Sending a to infinity, we can find 
a subsequence of ua which converges to a nontrivial solution U of (1). This solution U must be an energy minimizer 
of J , since each ua is minimizing. �
4. From minimizers in R8 to monotone solutions in RRR9 — Proof of Theorem 3

We have obtained a minimizer of the energy functional in dimension 8. Now we would like to construct monotone 
solutions in R9 from U , following the arguments of Jerison–Monneau [28]. We use 

(
x ′, x9

)
to denote the coordinate 

of a point in R9, where x′ ∈ R
8. We will still use minimizing argument and work directly in the class of functions 

which is invariant w.r.p.t O (4) × O (4) action on the first eight variables.
We denote by v1 the global minimizer in R8 we constructed in the last section. We also consider the solution v2

which in the (x, y) coordinate is given by

v2 (x, y) = −v1 (y, x) .

Since v1 is constructed using minimizing argument, we can assume without loss of generality that v1 ≤ v2.

Proposition 23. Either there exists a nontrivial solution u : R9 → R monotone in the x9 direction, or for each δ ∈
[v1 (0) , v2 (0)], there exists a nontrivial global minimizer v in R8 with v (0) = δ.

Proof. Let ρ be a smooth decreasing cutoff function which satisfies

ρ (s) =
{

1, s < 1,

0, s > 2.

Define the function w
(
x′, x9

)= ρ (x9) v1
(
x′)+ (1 − ρ (x9)) v2

(
x′). For each cylinder CR′,l = BR′ × [−l, l], consider 

the minimization problem which equals w on ∂BR′ × [−l, l] and equals v1 on BR′ × {−l}, equals v2 on BR′ × {l}, 
in the class of functions which are invariant under O (4) × O (4) with respect to the first eight variables. We can 
find a minimizer uR′,l that is monotone in the x9 direction with this boundary condition. By the gradient bound of 
De Silva–Jerison [11], the free boundary is smooth in the interior of the cylinder.

Let l → +∞, we get a solution uR′ on the whole cylinder BR′ × R, still monotone in x9 and invariant under 
O (4) × O (4). We observe that

lim
x9→+∞uR′ = v2, lim

x9→−∞uR′ = v1, (36)

otherwise it will contradict with the fact that v1 and v2 are global minimizer. Now fix an a ∈ (v1 (0) , v2 (0)). By (36), 
there exists hR′ such that

uR′
(
x′, hR′

)= a.

Let ūR′
(
x′, x9

) = uR′
(
x′, x9 − hR′

)
. Then ūR′

(
x′,0

) = a. Let R′ → +∞, we get a solution u monotone in x9, 
invariant under O (4) × O (4), and

u (0) = a, v1 ≤ u ≤ v2.

If u is independent on x9, then u is a global minimizer in R8. This proves the proposition. �
Finally we are ready to prove Theorem 3.

Theorem 24. There exists a solution u to our free boundary problem such that u is invariant w.r.p.t O (4) × O (4), 
monotone in x9 and u is not one dimensional.

Proof. Suppose the second possibility of Proposition 23 occurs. Then we can assume there is a global minimizer v
in R

8, invariant under O (4) × O (4) and −1 < v (0) < 1.
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By � we shall denote the standard one dimensional solution to our free boundary problem:

�(x) =
⎧⎨⎩

x, x ∈ [−1,1] ,
1, x > 1,

−1, x < −1.

Note that � is monotone, but not strictly monotone. We would like to pose suitable boundary condition on the cylinder 
CR′,l . For each t ∈ [0,1], let

�t

(
x′, x9

)= �
(
tv
(
x′)+ (1 − t) x9

)
.

Then �1
(
x′, x9

) = � 
(
v
(
x′)) = v

(
x′). �t is a connection between � and v. Certainly, �t

(
x′, x9

) ∈ [−1,1]. We 
check that �t is continuous and monotone in the x9 direction, since � itself is monotone. Consider those points 
where

tv
(
x′)+ (1 − t) x9 = 1. (37)

For each fixed x′, there is a unique point x9 satisfying (37).
Let Ut,R′,l be the minimizer of J in the symmetric (invariant under O (4)×O (4) action) class of functions defined 

on CR′,l with boundary condition

Ut |∂CR′,l = �t |∂CR′,l .

After a possible translation in the x9 direction, we can assume that

Ut,R′,l (0) = v (0) .

For each R′, letting l → +∞, Ut,R′,l converges pointwisely to a solution Ut,R′ , defined on the infinite cylinder 
CR′,+∞. Ut,R′ is monotone in x9 on the boundary of CR′,+∞. Then one can show that Ut,R′ is monotone in x9 in 
CR′,+∞, with

Ut,R′ (0) = v (0) .

We claim that the map t → ∂x9Ut,R′ (0) is a continuous map. We first show that it is continuous at the points where 
t �= 1. In this case, let tn → t . Then the sequence Utn,R′ converges to a monotone solution W . This W must be equal 
to Ut,R′ . Indeed, since w and Ut,R′ are equal to each other on the boundary of the cylinder and the boundary value are 
monotone in the x9 direction, we can infer that W ≥ Ut,R′ and W ≤ Ut,R′ by the sliding method.

The continuity at t = 1 also follows from similar arguments as that of Jerison–Monneau [28]. The proof is thus 
completed. �
5. Solutions from catenoids

In this section, we shall construct solutions of the free boundary problem starting from another type of minimal 
surfaces — Catenoids. Since most of the arguments are similar to the Simons’ cone case, we will only sketch the proof 
and point out the difference if necessary.

We remark that it is possible to do the construction for more general minimal surfaces, but this is beyond the scope 
of this paper.

5.1. The geometry of the catenoids

To begin with, let us choose an “arc-length” parametrization for the catenoid, this choice of coordinate will simplify 
the computation. Let (x1, . . . , xn) be the coordinate in Rn. Let (r, θ) be the polar coordinate in Rn−1, where θ is the 
coordinate on the unit sphere Sn−2 in Rn−1. As we mentioned before, the generalized catenoid Cε in Rn can be 
described by

xn = ω̄ε (r) , r ∈ [r0,+∞).

Introduce
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l = l (r) :=
r∫

r0

√
1 + ω̄′

ε (s)2ds.

Then locally the catenoid can also be described by the coordinate (l, θ). We would like to write the Laplacian–Beltrami 
operator �Cε

on Cε in this coordinate. In the (r, θ) variable, the metric tensor on C is given by[
1 + ω̄′

ε (r)2
]
dr2 + r2dθ2.

It follows that the metric g in the (l, θ) coordinate is dl2 + r2dθ2. Observe that detg = r2(n−2). For rotationally 
symmetric function ϕ = ϕ (l), the Laplacian–Beltrami operator is given by

�Cε
ϕ = 1√

detg
∂i

(√
detggij ∂jϕ

)
= ϕ′′ (l) + n − 2

r
ϕ′ (l)

= ϕ′′ (l) + O

(
ε

1 + εl

)
ϕ′ (l) . (38)

Using s to denote the signed distance of a point P to Cε . Then we can write

P = X + sν (X) ,

where X = X (l, θ) designates a point on the Cε, ν (·) is the unit normal of Cε at X. We also put

�s := {X + sν (X) : X ∈ Cε} .

Note that actually �s depends on ε, although it is not explicit in the notation. To understand the Laplacian–Beltrami 
operator ��s , we need to analyze the metric on the surface �s . Let ν1 = ∂lν, ν2 = ∂θν, and X1 = ∂lX, X2 = ∂θX. 
Define the matrix B0 = [X1 + sν1,X2 + sν2] and

B := [X1 + sν1,X2 + sν2, v] .

Then the matrix of the induced metric g in a tubular neighborhood of C in (l, θ, s) coordinate has the form

BT B =
[

BT
0 B0 0
0 1

]
.

For more details, we refer to [14].

5.2. Proof of Theorem 4

In this part, we sketch the proof of Theorem 4.
Let h−1, h1 ∈ C

2,α
loc (Cε), small in certain sense. As before, define an approximate solution wh in �h, which is a 

region trapped between �−1+h−1 and �1+h1 :

wh (s, l) = s − g (l)

1 + f (l)
,

where

f = h1 − h−1

2
, g = h1 + h−1

2
.

Still set

t = s − g (l)

1 + f (l)
.

The solution u we are looking for will have the form u = wh + φ.
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We have the same formulas as in Lemma 5, Lemma 7 and Lemma 8 and will not restate them in this section again.

Lemma 25. We have the following estimate for the Laplacian operator acting on functions depending on s and l:

��0η − ∂2
l η = O

(
ε

1 + εl

)
∂lη,

and

��s η − ��0η = O

(
ε2

(1 + εl)2

)
∂lη + O

(
ε

1 + εl

)
∂2
l η.

Proof. The first equation has already been proved in (38). The proof of the second equation is same as that of 
Lemma 9. �

Let us introduce the functional framework to work with. Let α ∈ (0,1) be a fixed constant.

Definition 26. For μ = 0, 1, 2, β ≥ 0, δ > 0, the space Eβ,μ;δ consists of those functions η defined on Cδ such that

sup
l,|z|=l

[
(1 + δl)β ‖η‖Cμ,α(Sδ∩B1(z))

]
< +∞.

Same as before, we also regard φ as the restriction of a function T (φ) on � := [−1,1] × [0, +∞), where T (φ) is 
a function of t and l defined for (t, l) ∈ �̄ := [−1,1] ×R, even in the variable l.

Definition 27. For μ = 0, 1, 2, β ≥ 0, the space Eβ,μ;∗ consists of those functions φ such that

‖φ‖β,μ;∗ := sup
l∈R;z∈�̄,|z|=|l|

[
(1 + ε |l|)β ‖T (φ)‖Cμ,α

(
�̄∩B1(z)

)]< +∞.

Let v (·) be an even smooth function such that

v (l) =
{ |l|3−n , |l| > 2,

0, |l| < 1.

The one dimensional space spanned by this function will be denoted by D. Let ḡ (·) = g
( ·

ε

)
. If n ≥ 4, we shall assume 

a priori ḡ ∈ E2n−6,2;1 ⊕ D, f ∈ E2n−4,2;ε , with ‖ḡ‖E2n−6,2;1⊕D ≤ Cε, ‖f ‖2n−4,2;ε ≤ Cε2. For notational simplicity, 
the norm of E2n−6,2;1 ⊕ D will be denoted by ‖·‖. In the case n = 3, we assume ḡ ∈ E2,2;1 ⊕ D, f ∈ E4,2;ε , with 
‖ḡ‖E2,2;1⊕D ≤ Cε, ‖f ‖4,2;ε ≤ Cε2, and in this case, the norm of E2,2;1 ⊕D will also be denoted by ‖·‖.

With these choice of function spaces, we can verify that ‖�w‖2n−4,2;∗ ≤ Cε2 if n ≥ 4; while ‖�w‖4,2;∗ ≤ Cε2 if 
n = 3.

Recall that the Jacobi operator on Cδ is given by

JCδ
(η) = �Cδ

η + |A|2 η.

Here |A|2 =∑k2
i is the squared norm of the second fundamental form. Using the asymptotic behavior of ω̄, we 

deduce |A|2 = O
(

1
(1+l)2n−2

)
as l → +∞. We need the following lemma, which states that the Jacobi operator on the 

catenoid C1 is invertible in suitable functional spaces.

Lemma 28. For each function ξ ∈ E2n−4,2;1, there is a solution η ∈ E2n−6,2;1 ⊕D such that

JC1 (η) = ξ,

with

‖η‖ ≤ C ‖ξ‖2n−4,0;1 .
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Proof. Detailed analysis of the Jacobi operator on the higher dimensional catenoid can be found in [1]. The proof of 
this Lemma follows from similar arguments there. The basic idea is using variation of parameter formula to get the 
desired estimates. �

With this functional framework at hand, we now deal with the corresponding linear theory for our nonlinear prob-
lem. Given functions γ1, γ−1, consider the problem⎧⎪⎪⎨⎪⎪⎩

∂2
t φ + ∂2

l φ = J�0g + (��0f + |A|2) t, in �h,

φ = 0, on ∂�h,

∂tφ − f = γ−1, on �−1+h−1 ,

∂tφ − f = γ1, on �1+h1 .

(39)

Proposition 29. Suppose γ1 ±γ−1 is in E2n−4,1;ε for n ≥ 4 and in E4,1;ε for n = 3. Then the system (39) has a solution 
(f, ḡ) such that

‖f ‖2n−4,2;ε ≤ C ‖γ1 + γ−1‖2n−4,1;ε + C

∥∥∥|A|2
∥∥∥

2n−4,1;ε , n ≥ 4,

‖f ‖2n−4,2;ε ≤ C ‖γ1 + γ−1‖4,1;ε + C

∥∥∥|A|2
∥∥∥

4,1;ε , n = 3,

and

‖ḡ‖ ≤ Cε−2 ‖γ1 − γ−1‖2n−4,1;ε , n ≥ 4,

‖ḡ‖ ≤ Cε−2 ‖γ1 − γ−1‖4,1;ε , n = 3.

Proof. By even reflection, we can regard (39) as a problem in (t, l) ∈ [−1,1] ×R. Take the Fourier transform

η̂ (t, ξ) :=
∫
R

e−iξ lη (t, l) dl.

It is worth mentioning that here ξ ∈ R, unlike the Simons’ cone case where the Fourier transform is taken in R4. We 
are lead to the problem⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂2
t φ̂ − |ξ |2 φ̂ = (JCε

g
)ˆ + (�Cε

f + |A|2)ˆ t, t ∈ [−1,1] ,
φ̂ (−1, ξ) = φ̂ (1, ξ) = 0,

∂t φ̂ (−1, ξ) − f̂ (ξ) = γ̂−1 (ξ) ,

∂t φ̂ (1, ξ) − f̂ (ξ) = γ̂1 (ξ) .

(40)

The solution φ̂ of the first equation in (40) can be written in the form

φ̂ (t, ξ) = (JCε
g
)ˆ

p1,ξ (t) +
(
�Cε

f + |A|2
)ˆ

p2,ξ (t) .

This implies that⎧⎨⎩
(
JCε

g
)ˆ = γ̂1(ξ)−γ̂−1(ξ)

2p′
1,ξ (1)

,(
�Cε

f + |A|2)ˆ = 2f̂ (ξ)+γ̂−1(ξ)+γ̂1(ξ)

2p′
2,ξ (1)

.

Observe that 1
p′

1,ξ (1)
− ξ tanh ξ is real analytic and of the order O

(
e− |ξ |

2

)
as |ξ | → +∞. According to the proof of 

Lemma 17, one need to estimate the inverse Fourier transform of ξ tanh ξ
[
γ̂1 (ξ) − γ̂−1 (ξ)

]
. To do this, we can apply 

the fact that the Fourier transform of x tanh (πx) is equal to − cosh(ξ/2)

2 sinh2(ξ/2)
, which has a singularity of order O

(
ξ−2
)

near the origin. The estimate of f is similar as before. �
Once we have established the functional framework and the linear solvability theory, we can proceed in the same 

way as the Simons’ cone case.
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