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Abstract

We prove the existence of a forward discretely self-similar solutions to the Navier—Stokes equations in R3 x (0, +00) for a

discretely self-similar initial velocity belonging to leoc (R3).
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1. Introduction

In this paper we study the existence of forward discretely self-similar (DSS) solutions to the Navier—Stokes equa-
tions in Q =R3 x (0, +00)

V-u=0, (1.1)
du+ (u-Vu— Au=—Vm, (1.2)

with the initial condition
u=uo on R>x{0}. (1.3)

Here u(x,t) = (u1(x, t),u2(x, t), u3(x, t)) denotes the velocity of the fluid, and up(x) = (uo,1(x), uo,2(x), uo,3(x)),
while 7 stands for the pressure. In case ug € L?(R?) with V - ug = 0 in the sense of distributions the global in time
existence of weak solutions to (1.1)—(1.3), which satisfy the global energy inequality for almost all ¢ € (0, +00)

t
1 1
)13 + / IVu()I3ds < 3 o 3 (1.4)
0
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has been proved by Leray [9]. On the other hand, the important questions of regularity and uniqueness of solutions
to (1.1)—(1.3) are still open. The first significant results in this direction have been established by Scheffer [10] and
later by Caffarelli, Kohn, Nirenberg [2] for solutions (u, ) that also satisfy the following local energy inequality for
almost all ¢ € (0, +o00) and for all nonnegative ¢ € C°(Q)

/|u(t)| b (x, t)dx—l—//qul pdxds

0 R3

/f|u| ~|—A d)dxds—l— //(|u| +2m)u - Vopdxds. (1.5)

0 R3 0 R3

On the other hand, the space L?(R?) excludes homogeneous spaces of degree —1 belonging to the scaling invariant
class. In fact we observe that u; (x, 1) = Au(rx, A2t) solves the Navier—Stokes equations with initial velocity ug ; (x) =
Aug(rx), for any A > 0. This suggests to study of the Navier—Stokes system for initial velocities in a homogeneous
space X of degree —1, which means that ||v||x = |lvs|lx for all v € X. Koch and Tataru proved in [7] that X =
BM O~ ! is the largest possible space with scaling invariant norm which guarantees well-posedness under smallness
condition. On the contrary, for self-similar (SS) initial data fulﬁlling uo,» = u for all A > 0 a natural space seems to be
X = L3%°(R3). This space is embedded into the space L> Sloc (R3), which contains uniformly local square integrable
functions. Obviously, possible solutions to the Navier—Stokes equations with ug € LM loc (R3) do not satisfy the global
energy equality, rather the local energy inequality in the sense of Caffarelli-Kohn—Nirenberg. Such solutions are called
local Leray solutions. The existence of global in time local Leray solutions has been proved by Lemari¢-Rieusset
in [8] (see also in [6] for more details). This concept has been used by Bradshaw and Tsai [1] for the construction of
a discretely self-similar (A-DSS, A > 1) local Leray solution for a A-DSS initial velocity ug € L>°°(R?). This result
generalizes the previous results of Jia and Sverdk [5] concerning the existence of SS local Leray solution, and the
result by Tsai in [11], which proves the existence of a A-DSS Leray solution for A near 1. However, for the A-DSS
initial data it would be more natural to assume uq € leoc(R3) instead L3-° (R3). In general, such initial value does not
belong to Lu loc (R?) and therefore it does not belong to the Morrey class M>!, rather to the weighted space L,%(R3)
ofallve L2 (R3) such that (1+l T € L*(R3) for all § <k < +oc.

Since the authors in [ 1] work on the existence of periodic solutions to the time dependent Leray equation a certain
spatial decay is necessary which can be ensured for initial data in L3°°(R?). On the other hand, applying the local L?
theory it would be more natural to assume uq € L2(BA \ Bp) only. As explained in [1] their method even breaks down
for initial data in the Morrey class M>!(R3), which is a much smaller subspace of LIZO . (R3). By using an entirely
different method we are able to construct a global weak solutions for such DSS initial data.

In the present paper we introduce a new notion of a local Leray solution satisfying a local energy inequality with
projected pressure. To the end, we provide the notations of function spaces which will be used in the sequel. By
L%(G),1 < s < oo, we denote the usual Lebesgue spaces. The usual Sobolev spaces are denoted by W’”(G) and
Wy *(G),1 <5 < 400,k € N. The dual of W, *(G) will be denoted by W55'(G), where s’ = 7,1 <5 < +00.
For a general space of vector fields X the subspace of solenoidal fields will be denoted by X . In particular, the space
of solenoidal smooth fields with compact support is denoted by CZ% (R3) In addition we define the energy space

V(G x (0,T)) =L>®0,T; L*(G)) NL*(0, T: W"2(G)), 0<T <+o0.

We now recall the definition of the local pressure projection E; : W=L5(G) - W=15(G) for a given bounded
C2-domain G C R3, introduced in [13] based on the unique solvability of the steady Stokes system (cf. [4]). More
precisely, forany F € W~ %(G) there exists a unique pair (v, p) € Wl 2(G)x L} 0(G) which solves weakly the steady
Stokes system

V-v=0 in G, —Av+Vp=F in G,
v=0on 0G.

(1.6)
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Here W()l” ; (G) stands for closure of C, g‘(’, (R3) with respect to the norm in WLs(G), while L{(G) denotes the subspace

of L*(G) with vanishing average. Then we set E(F) := V p, where V p denotes the gradient function in w-Ls(G)
defined as

(Vp,<p>=—fpv~¢dx, goeW(}"‘ (G).
G

Remark 1.1. From the existence and uniqueness of weak solutions (v, p) to (1.6) for given F € W~1%(G) it follows
that
IVvlls,c + liplls,c <cllFll-1,5,6, (1.7)

where ¢ = const depending on s and the geometric properties of G, and depending only on s if G equals a ball or an
annulus, which holds due to the scaling properties of the Stokes equation. In case F is given by V - f for f € L*(R3)?
then (1.7) gives

Iplls,c =cll flls,G- (1.8)

According to the estimate ||[Vpl|l-156 < l|pls.G, and using (1.8), we see that the operator E{; is bounded in
W—L5(G). Furthermore, as E5(Vp)=Vpforall pe Ly(G) we see that E; defines a projection.
2.In case F € L*(G), using the canonical embedding L*(G) < W~1%(G), by the aid of elliptic regularity we get
Ez‘;(F) = Vp € L*(G) together with the estimate
IVplls,c <cllFlls,G» (1.9)

where the constant in (1.9) depends only on s and G. In case G equals a ball or an annulus this constant depends
only on s (cf. [4] for more details). Accordingly the restriction of EF; to the Lebesgue space L*(G) appears to be a
projection in L*(G). This projection will be denoted still by E;.

Definition 1.2 (Local Leray solution with projected pressure). Let ug € leuc (R3). A vector function u € leoc’a (R3 x

[0, +00)) is called a local Leray solution to (1.1)—(1.3) with projected pressure, if for any bounded C? domain G C R3
and 0 < T < 400

1. u e V(G x (0, T)) N Cy([0, T]; L*(G)).
2. u is a distributional solution to (1.2), i.e. for every ¢ € C°(Q) with V- ¢ =0

3
/f—u.a—‘f—u@u:V<p+w:V<pdxdz=0. (1.10)
0

3. u(t) > ug in L%(G) ast — 0+,
4. The following local energy inequality with projected pressure holds for every nonnegative ¢ € C°(G x (0, +00)),
and for almost every ¢ € (0, +00)

t
1
5/Ivc(t)|2¢dx+/f|VUG|2¢dxds
G 0 G

t

1 2 0 2
55//|vg| (A—l—g)d)—i-lvcl u-Veo)dxds

0 G

t t
+ / /(u R vg) : Vzph,Gq&dxdt + / / P1.6VG - Vodxds
0 G 0 G

t
+//P2,GUG-V¢dxds, (1.11)
0 G
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where vg =u 4+ Vp g, and

Vpnc=—E;u),
Vpi,c =—EE((u-Vu), Vprc=E (Au).

Remark 1.3. 1. Note that due to V - u = 0 the pressure pj, ¢ is harmonic, and thus smooth in x. Furthermore, as it has
been proved in [13] the pressure gradient V pj, ¢ is continuous in G x [0, 4-00).

2. The notion of local suitable weak solution to the Navier—Stokes equations satisfying the local energy inequality
(1.11) has been introduced in [12]. One can show without difficulty that any suitable weak solution in the sense of [2]
is a local suitable weak solution in the above sense, satisfying in particular the inequality (1.11) (see Appendix of [3]
for a complete proof). As it has been shown there such solutions enjoy the same partial regularity properties as the
usual suitable weak solutions in the Caffarelli-Kohn—Nirenberg theorem.

Our main result is the following

Theorem 1.4. For any A-DSS initial data ugy € leo o (R3) there exists at least one local Leray solution with projected
pressure u € leoc,a (R3 x [0, +00)) to the NavierStokes equations (1.1)—(1.3) in the sense of Definition 1.2, which is

discretely self-similar.

We close this section by describing the structure of the paper. In Section 2 we consider a linearized problem of the
Navier—Stokes equations, where the convection term of (1.2) is replaced by (b - V)u with a given A-DSS function b.
For a A-DSS solution of such linearized equations we derive various a priori estimates, which will be used later for
construction of the desired solution of the original problem. In Section 3 based on the a priori estimates of Section 2,
combined with the Schauder fixed point theorem, we complete the proof of Theorem 1.4. In Appendix we prove
several important properties of the A-DSS solutions.

. . . ogl. s sge g s 2
2. Solutions of the linearized problem with initial velocity in L} _ ;¢

Let 1 <A < 400 be fixed. For f : R? — R3 we denote f3(x) := Af(Ax), x € R3. For a time dependent function
f:0— R3wedenote fo(x,1):=Arf(Ax,2%1), (x,t) € R x (0, +00). We now define for 1 <s < 400

L3 _pss®) i={u € L, (R)

ue L (B \ By),up=u a.c. inR3},

LS pes(Q) = {u eLl (0 ‘ we L (05 \ Q1) us =u a.e.in Q}.

Here B, stands for the usual ball in R3 with center 0 and radius r > 0, while 0, =B, x (0, r2).
In the present section we consider the following linearized problem in O

V.-u=0, (2.1)
u+ b -V)u— Au=—-Vn (2.2)

with the initial condition
u=uo on R3x{0}, (2.3)

where uq belongs to L%_DSS(R3) with V-ug=0,and b € LLDSS(Q), 3 <s <5, with V- b =0 both in the sense
of distributions. We give the following notion of a local solution with projected pressure for the linear system (2.1),
(2.2).

Definition 2.1 (Local solution with projected pressure to the linearized problem). Let ug € L? ~_(R3) and let b €

loc,o
L?Oc,a (R? x [0, +00)). A vector function u € L% . _(R3 x [0, +00)) is called a local solution to (2.1)—~(2.3) with

loc,o
projected pressure, if for any bounded C? domain G € R3 and 0 < T' < +o0 the following conditions are satisfied

1. ue V(G x (0, T)) N Cy([0, T1; LE(G)).
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2. u is a distributional solution to (2.2), i.e. for every ¢ € C°(Q) with V- ¢ =0

d
//—u-a—(f—b®u:V(p+Vu:V<pdxdt:0. 2.4)
0

3. u(t) — ugin L2(G) as t — 0+,
4. The following local energy inequality with projected pressure holds for every nonnegative ¢ € C°(G x (0, +00)),
and for almost every ¢ € (0, +00)
t

%/|vG(f)|2¢dx+f/Ich;Izqﬁdxds
G 0 G

t

1 2 0 2
<3 [ [weP(a+ 5 )6+ 1valb- Voraras
G

0

t t
+//(b®v(;):v2ph,G¢dxdz+ffp1,GvG-v¢dxds
0 G 0 G

t
+//p2,GUG~V¢dde (2.5)
0 G

where vg =u + Vpp G, and

Vpne=—E;u),
Vpi,c=—EE((b-Vu), Vprc=E;(Au).

Theorem 2.2. Let b e L, ((Q) N LS (0, T; L3(By)), 0 < T < 400, with V - b =0 in the sense of distributions.
Suppose that b € L3 (0, 00; L®(R3)). For every ug € L%_DSS(H@) with V - ug = 0 in the sense of distributions,

loc

there exists a unique local solution with projected pressure u € L[20 . 0(R3 X [0, 400)) fo (2.1)—(2.3) according to
Definition 2.1 such that for any 0 < p < 400 and 0 < T < +o0 it holds

uel pes(0), (2.6)

ueC(0,T1; L*(By)), 2.7)

1 13 1
lull oo, 7: 228 )y + IVUll28 5 x0.1) = CoKo<p2 + |||bI||3max{T18,T2}>, (2.8)
ﬂz ,0g
13 1

0,230y = CoKo(1-+ I max(T' R, 77}), 2.9)

where Ko := |luoll 2¢p,y and [[DI = 15| 1s while Co > 0 denotes a constant depending on X\ only.

LS (0,T;L3(By))

Before turning to the proof of Theorem 2.1, we show the existence and uniqueness of weak solutions to the linear
system (2.1)—(2.3) for Lg initial data.

Lemma 2.3. Let b € LifDSS(Q) N LI’TS (0,T; L3(B1)), 0 < T < 400 with V - b =0 in the sense of distributions.
Suppose that b € L3 (0, 00; L*®(By)). For every ug € L(Z7 (R3) there exists a unique weak solution u € Vaz(Q) N
C ([0, +00); LZ(R3)) 10 (2.1)—(2.3), which satisfies the global energy equality for all t € [0, +00)

loc

t

1 2 2 1 2
@z + [Vul“dxds = 2 uollz. (2.10)
0 R3
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Proof. [. Existence: By using standard linear theory of parabolic systems we easily get the existence of a weak
solution u € VZ(Q) N Cy ([0, +00); L2(R3)) to (2.1)—(2.3) which satisfies the global energy inequality for almost all
t € (0, +00)

t

1 2 2 1 2

@iz + [Vul“dxds < Zluollz- (2.11)
0 R3

It is well known that such solutions have the property
u@t) —>ug in L*RY as t—0t. (2.12)
On the other hand, from the assumption of the Lemma it follows that for all 79 € (0, T")

bl 123 x (10.7)) < 10 2G40, 7: Lo &3 10 ]2

Accordingly, u € C((0, T]; L*>(R%)), and for all #y € (0, T] and ¢ € [fo, T] the following energy equality holds true

t
S+ [ [ 1vuPdxds = Stk @.13)
Hh R3

Now letting o — 0 in (2.13), and observing (2.12), we are led to (2.10).

By a similar argument, making use of (2.12) we easily prove the local energy inequality (2.5).

2. Uniqueness: Let v € V2(Q) be a second solution to (2.1)—(2.3) satisfying the global energy equality. As we have
seen above this solution belongs to C ([0, +00); L2(R3)). Setting w = u — v, by our assumption on b it follows that
b®w e L*(R? x (ty, T]) for any to € (0, T']. Accordingly, as above we get the following energy equality

t

1 2 2 1 2
lw®lz + IVw[*dxds = 3 |wto)[l2- (2.14)
h R3

Verifying that w(tg) — 0 in LZ2(R3) as fo — 01 from (2.14) letting 7o — 0T it follows that ||w(z)[2 = O for all
t € [0, T]. This completes the proof of the uniqueness. O

Proof of Theorem 2.2. Since ug is A-DSS we have Aug(Ax) = ug(x) for all x € R3. We define the extended annulus
Ay = B, \ Byx-3, k € N. Clearly, B; U (U,filAk) =R3. There exists a partition of unity {y} such that supp ¥ C Ak
for k € N and supp o C By, and 0 < ¥ < 1, V2| + |VYi|? < cA™2k, k e NU {0}. We set ugr = P(uo¥),
k € NU {0}, where [P denotes the Leray—Helmbholtz projection. Clearly,

oo

o=y uox. (2.15)

k=0

where the limit in (2.15) is taken in the sense of L% (R3).

loc

Let £k € NU {0} be fixed. Thanks to Lemma 2.3 we get a unique weak solution uy € Vaz(Q) to the problem

V.ug=0 in O, (2.16)
dur + (b-Vug — Aug = -V in O, (2.17)
up =uor on R x {0}, (2.18)

satisfying the following global energy equality for all ¢ € [0, 4-00)

t

1 2 2 1 2
7 ez + [Vur|"dxds = Slluo kll2- (2.19)
0 R3
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By using the transformation formula, we get

ol < f oy Pdx < / uol2dx = 1% / o) Pdx
R3 A A

=k f MK uo(Wfx) Pdx = Ak / luo(x)|2dx < cK3Ak. (2.20)
Al Al
Combining (2.19) and (2.20), we are led to

k17 oo 0 712y + IVHEIT 20 7.2y < CKGAE. 2.21)

3 3
Next, let A5k <r<p=< A5EFD pe arbitrarily chosen, but fixed. By introducing the local pressure we have

8vk 0
ot
where vi , = ug + Vpp i, p, and

+ b - Vup — Avgp ==V pikp — VP2k,ps

Vphikp=—Ep, (ur),
Vpikpe=—Ep ((b-VIup), Vprrp=Ep (Aug).

The following local energy equality holds true for all ¢ € C°(B,,) and for all # € [0, T,

/|vkp(t)| ¢>6dx+//|wkp| ¢Sdxds

0 B,

//|ukp| APldxds + - //|vkp| b-V¢ldxds

0 B, 0 B,

t t
+//(b®vk’p):Vzph,k’p¢6dxds—}-//pl,k,pvk,p-V¢6dxds

0 B, 0 B,
f/kapvkp V¢ldxds + /|U0k| ¢%dx
0 B,
=I+I1I+I1II+1V+V+VI (2.22)

Let ¢ € Cé’o(R3) denote a cut off function such that 0 <¢ < 1inR3, ¢ =1o0n B,, ¢ =0in R3\ B,, and V2| +
Vo> <c(p—r)~2inR3.
Let m € N be chosen so that A"~ ! < o < A™. Then we estimate

T}»—Zm
”b”L3(B x(0.7) = ksm/ /|b(k_mx,k_2’”l)|3dxdt
0

TA—2m
—xz'"f / |b(x, t)Pdxdt
Scﬁ'"—%mrénbn s <cliblPpiTs,

LS (0,T;L3(B1))
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where and hereafter the constants appearing in the estimates may depend on A. The above estimate together with
p3 <Ak yields
le L
151 138, x 0.1y < clIBIASFTTS. (2.23)
In what follows we extensively make use of the estimate for almost all ¢ € (0, T')
IV ik p D228, S Nuk @125, (2.24)
which is an immediate consequence of (1.9). In addition, we easily verify the inequality
V2 P p Dl 1208,y S IVur®ll 25, (2.25)
Indeed, observing that
V2 Phkoo () = V(V phicp(t) —u(t)g,) = —VEy (u(t) — ur(t)p,)
by means of elliptic regularity along with the Poincaré inequality we get
2 2 -2 2 2
IV it p O3 25, < 020 = (@8, 172 ) + €V,
2
<
= C”Vuk(t)”LZ(Bp)-

Whence, (2.25).
(1) With the help of (2.21) we easily deduce that

t

I <c(p —r)fz/‘/ |uk|2dxds Sch(,o —r)2AkT.
0 B,

(i) Next, using Holder’s inequality and Young’s inequality together with (2.21), (2.23), (2.24) and (2.25), we
estimate
t

11s<p—r>—1//|b||vk,p|2¢5dxds

0 B,
<c(p =1 TE1B1 s, 0.0 108 e 0,722 1080 D% 120,719
<c(p =12 T3 b0 138, w0, 108 @ L oo 07212 1tk | e 07212
+e(p =1 TS 1B 130, 20,7 10 ®° N 0. 7:12) 1V 0k p 21 120,712

< cllbll Kot — ) AT B v o6 | e,

+llbll (o = AT 9 0 72 I V0008 g gy 1V ||§2(O,T;L2(Bp))
< cllbllKo(p — 1) 225 T K g &> I e o.7:12)

T llBIIKS (0 =1~ 2T g 9 i 71 190808 g 7o
< clIbIP K3 (o — )3 TS

+cllbICKZ(p — =023 TS + %||vk,p¢3||iOO(o,T;L2) + %nwk,pwniz(oj;y)
< cK2(p—r) Ak max{T ¥, T} + clIblI K3 (p — r) =A% max{T 5 , T}

T I ST LSNP I A
8 s L>®(0,T;L%) 4 s L+(0,T;L?)
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(iii) In what follows we make use the following estimates using the fact that py x , is harmonic. By using the

identity

/ |Vh|?¢p*dx = % /h2A¢2dx

R3 R3
for any harmonic function 4 on B,,, and cut off function ¢ € C°(B,,), we get

192 ik p 9 N12 < cp = )TV i p 97112 < (0 = 1) IV Pikp (D 2,5, - (2.26)
By the aid of Sobolev’s inequality, together with (2.26), we get for almost every ¢ € (0, T)

192 pikp 9> lls < (o = 1)~V ik p 92 N12,8, + €IV Pk, ()97 12

<c(p =) IV Phsp (97 I12,5,

21V phkp 12,8,

<clp—r)*lux®)ll2.5,-

<c(p—r)"

Integrating both sides of the above estimate, and estimating the right-hand side of the resultant inequality by (2.21),
we arrive at

J, S X 1
IV Pkl 20.7:16) < c(p — ) T2 Korzk. (2.27)
Arguing as above, and using (2.27), we find
1
ITT <cT5 bl L30,723B,) ||Uk¢3||Loc(o,T;L2) ||V2Ph,k,p¢3||L2(o,T;L6)
2.1
<cKo(p—r) 2T3)sz||b||L3(O,TL3(Bp) ||Uk¢3||L00(0,T;L2)
-2 b B2 3
< cllbllKo(o — N 2AA T T ol oo .12
. o1
<cllbIPKg (o —r) " *AFT 9 + §||vk¢3||im(O,T;Lz).
(iv) We now going to estimate / V. Using (1.8), and arguing similar as before, we estimate

IV <c(p—r)~! ) 3 .
<c(p—r) ||P1,k,p||Lg(0’T;L2(Bp))|| k,o® L6 (0,1:1.2)

1pd 3
<c(p—r) 'Ts|bu v 00( T-
<cp=n7Telbul g o W8 o

_ 1
<c(p—r)"'Ts 161 23 0.7:23B, ) 14kl 220,75 (B,)) vk, p®° Il Lo 0.7 L2)
1.1 2
<cllblito =)~ 235 T urll p20,7:1608, ) 105,09 N e 0.7:12)
1 —1.1 13
<cllbliKoGo =)~ o I T lugll oo 0,72 12) Ve 0@ Lo 0,7:12)
1.1 2 1 2
+cllbllGo =)~ AT vk 067 o 0,712 V1K 20 7120, IV 20 71208,
1. L 13
<cllbliKo(p — )~ AT T [vg 83 oo 0.7 12)
3 —1, b2 3 3
+ C”'b'”K() (P - r) A2T9 ”vk,p¢ ”LC’O(O,T;LZ) ”Vuk”LZ(O,T;LZ(Bp))
_n. L 13 _ 4
<cllblI*KG(o — ) 2ATE TS +cl|blI®KG(p — r) 02 T3
+ e + v
g WWko® lipooo, ;02 T 4 WV HKIL20,7:12(B,))

17 13
<1+ bIKE (o —r) A5  max(T 5, T}

+ Lo, + v
) k,p L®@O.T:L) " 4 klr20,1:L2(B,))"
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(v) Recalling the definition of py x ,, using (1.8), (2.21) and Young’s inequality, we get

—1
V<clpo—r) ||p2,k,,o||L2(0,T;L2(Bp))”Uk,p¢3||L2(O,T;L2)
T

1
<c(p—r)IT? VugPdxdt ) 3
<c(p—r) [Vug|~dxdt | |lvk,p@” lLoo0.7:12)

0 B,
_ 1
< cK3(p =T + llvep® I o110,
6. 7 1
<cKj(p—r) AT + 3 10k, 8 17 o 0.7 12

(vi) It only remains to evaluate VI. Let k > 9. Then %(k + 1) <k — 3. Thus, supp(y/x) N B, = @. In particular,
Yrup =0 in B,,. This shows that, almost everywhere in B, it holds

uo,k = P(Yruo) — Yruo

which is a gradient field. Accordingly, almost everywhere in B,
vok =uok — Ep (uo.x) =uok — ok =0.

Hence
VI=0.

For k < 8 we find

8
VI < uolfag, <c Y lluovulys < clluollys gy ) < cKj
= s LZ(BP)_ 0Vkllf2 = 0 LZ(B)LS)_ 0-
k=0

We now insert the above estimates of 7, ..., VI into the right-hand side of (2.22). This gives

T
ess sup / ok ()12 ¢%dx + f / Vg |2 ¢Cdxdr
te(0,T)

» 0 By

< cKZmax{8 — k, 0} + (1 + [|BI®) K2 max{T 5, T}(p — r) 62 5*
T
+ % / f |Vu|*dxdt. (2.28)
0 B,
On the other hand, employing (2.26) and (2.21)

/ |V2ph,k,p|2¢6dxdt < ch(p _ ,)—2AkT7
B,

we estimate

T
//|Vuk|2dxdt

0 B,
T T
ng/|wk,p|2¢6dxdt+2//|v2ph,k,p|2¢6dxdt
0 B, 0 B,
T
<2 / / Ve, p|2¢Cdxdt + cKG(p —r) 2AFT. (2.29)

0 B,
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Combining (2.28) and (2.29), we are led to
T

/f |Vug|*dxdt

0 B,

2 _ 6y 12 B =64 Tk
<cKymax{8 —k,0} +c(1 + [IbI|")Kgmax{T 9, T}(p —r) A

T
1 2
+5 |Vug|2dxdt.

0 B,

By virtue of a routine iteration argument from (2.30) we get for all p € [A%k, 253k ]

esssup/ |vkp(t)|2dx+/ / |Vuy|?dxdt

te(0, T)
By 0 By

2 _ 6y g2 B —64 Lk
<cKymax{8 —k,0} +c(1 + [16[I°) Ky max{T'9,T}p "L
< cK2max{8 — k, 0} + c(1 + [Ib]|®) KZ max{T ¥, T}A~ 5%,

1029

(2.30)

2.31)

In addition, by using the mean value property of harmonic functions along with (2.21), we estimate for almost all

te0,7)

||Vph,k,p(r)||iz(3 = POl

2 2
<cA™ 20 ||Vphkp(t)”L2(B)
<o ||”’<”L°°(0TL2(B ) = ST

Combining this estimate with (2.31), we obtain

esssupf g ()] dx—i—/ f |Vuy|*dxdt
ze(O,T)

0 B 3
k )LSk

< K3 (1 + BN max(T 5, 7))57 k.

A4

Next, let / € N be fixed. Then (2.32) implies for all k > [

Nkl pooo,7:02(B 1) + | Vukli 25 3, x0.7)
A

A

= ||Mk||L00(0,T;L2(B 1k)) + ||Vuk||Lz(B 3k><(0’T))
14 A5
3 13 1 iy
§cK0<1+|||b||| max{TlS,T2}>k w0k

Thus, by means of triangular inequality we find foreach N e N, N > [

N N

u Vu

H Z kHLOC(o,T;LZ(B 1) + H Z k
k=0 2al k=0

-1 -1
= Z Nkl oo o, 1: 2R3y + Z IVurllL2@®3x 0, 1)
k=0 k=0
N N

+Z”“k”L°"(OT L2(B 1) +Z|lvuk”L2(B 3 <(O.7)
k=1 k=0

L%(B 3,x(0,1))
A5

(2.32)

(2.33)
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< cKO)L%l + cKo(l + 115111 maX{T%, T%})
1 3 13 1
< cKo(23! + 1BIIP max(T , 73}).

Therefore, u?V = Z,]CV:O Up — u in VRZ)C(R3 x [0,T]) as N — oo. It is readily seen that u is a weak solution to
(1.1)=(1.3), and by virtue of the above estimate we see that for every 1 < p < 0o

1 Bl
o r22s |+ 1VHlli2s 5 <oy < cKo(p? + IBIP max(T1H, 72}). (2.34)
4 5

p pS

In particular, in (2.34) taking p = 1, and using Sobolev’s embedding theorem, we get

Bl
il s0.7:23800) + 1012, xc0.77) < CoKo(1+ IBIIF max (T, 73}) (2.35)

with a constant Cp > 0 depending only on A. Furthermore, by means of the assumption on b we see that u satisfies
(2.5) with the equality(=) replaced by the inequality(<) and this belongs to C ([0, T']; LZ(BR)) forall0 < R < +o00,
and therefore it is unique. It remains to show that u) = u. Let N e N, N > 4. We set wN =ulV — uiv . Recalling that
b = b,, it follows that w™ solves the system

V-w¥=0 in 0,7, (2.36)
dw™ + b -Vw" —AwY =—va" in Q7. (2.37)
w¥ =w) on R x{0}, (2.38)
where
N N
wy =Y uox — (wo)r =Y _ Pluoyn) — Pluoyu)x
k=0 k=0
N N N N
=uo ) Y — (MOZI/fk) +VN %o VY ¥) — (VN*(M0~VZI/II<))
k=0 k=0 * k=0 k=0 »
N N N N
=uo( Y vn— (X)) + VN w0 VY i) = (VA # (o VY w0
k=0 k=0 k=0 k=0

where N = #IX\ stands for the Newton potential. For obtaining the third line in the above equalities we used the fact

that (ug); = uo. Owing to YN_ ¥ = 1 in Byv—s we have

(il/fk - <ilﬂk>(k')> =0 in Bn-4. (2.39)
k=0 k=0

Let A%N <r<p< )\%(N +D pe arbitrarily chosen, but fixed. Let ¢ € CZ° (R3 ) denote a cut off function such that
0<¢p<1inR} ¢p=1onB,,dp=0inR3\ B,, and IV2¢| + |Vp|? < c(p — r)~% in R3. Without loss of generality

we may assume that ASNHD < AN=4 Thus, in view of (2.39) we infer that w(l)v is a gradient field in B,, and therefore

w) — Egﬂ(w{;’ )=0 ae.inB,. (2.40)
By a similar reasoning we have used to prove (2.30) we get the estimate
AT
0" B sosr sy + [ [ 190" Paas
0 B,
| 72T
<cKg(l+ IBNI%) max{Ts , T}(p — 1)1 3N + 3 f / \Vw™ |?dxdr. (2.41)
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Once more applying an iteration argument, together with the latter estimate, we deduce from (2.41)

2 6 L Y
lw cKy(L+ 16117y max{T 9, T}A™5". (2.42)

N2
“LZ(O,A’ZT;LG(B §N)) S
x5
Accordingly, for all 0 < p < oo,

wV =0 in L*0,A72T;L%B,)) as N — +oo.

On the other hand, observing that wV =u? — M), > u—u, in L2, A72T; L(’(Bp)) as N — oo, we conclude
that u = u, . This completes the proof of the theorem. O

3. Proof of Theorem 1.4

18
We divide the proof in three steps. Firstly, given a A-DSS function b € L, .([0, 00); L

Toc (R3)) we get the existence
of a unique A-DSS local solution with projected pressure u to the linearized system (2.1)—(2.3), replacing b by R.b
therein (cf. appendix for the notion of the mollification R,). Secondly, based on the first step we may construct a
mapping 7 : M — M, which is continuous and compact. Application of Schauder’s fixed point theorem gives a local
suitable solution with projected pressure to the approximated Navier—Stokes equation. Thirdly, letting € — O™ in the
weak formulation and in the local energy inequality (2.5), we obtain the existence of the desired local Leray solution
with projected pressure to (1.1)—(1.3).

We set

1 1 3
6 16 m’( 616 m) } G.D
64C Kgr3s “64C KGAS

T :=min [
Furthermore, set X = LifDSS(Q) NL ¥ o, T, L?oc’g (]R3)) equipped with the norm

vl = llvll s s vVEX.
L'S (0.T:L3(B1))

Then we define,
M ={bex |I1bll =2C0Ko].
Wenow fix 0 <e <A — 1. For b e M we set
be ;= R.D,
where R, stands for the mollification operator defined in the appendix below. According to Theorem 2.2 there exists
a unique A-DSS solution u € X to (2.1)—(2.3) with b, in place of b. Observing (2.35), it follows that

13 1
lels0,ri29080) + Ntllvags, oy = CoKo( 1+ lbell max(T 1, 73}). (3.2)

In view of (A.2) having [||be||I> < )»% 151112, (3.2) together with (3.1) implies that
llleelll < 2Co Ko,

and thus u € M. By setting 7. (b) := u defines a mapping T, : M — M.

Te is closed. In fact, let {b;} be a sequence in M such that by — b in X as k — o0, and let uy := T:(by), k € N,
such that uy — u in X as k — oo. From (3.2) it follows that {u} is bounded in Vaz(Bl x (0, T)), and thus, eventually
passing to a subsequence, we find that u; — u weakly in ng(Bl x (0, T)) as k — oo. Since uy, solves (2.1)—(2.3) with
bk.e = R¢by in place of b, from the above convergence properties we deduce that u € M N V02(B1 x (0, T)) solves
(2.1)—(2.3). Accordingly, u = T (b).

Te (M) is relatively compact in X . To see this, let {uy = T (br)} C Te (M) be any sequence. Then uy € leoc,a (R3 x
[0, 00)) is a A-DSS local suitable weak solution with projected pressure to
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Voug=0 in O, (3.3)
g + (bre - VIug — Aup=—Vm in Q, 3.4
up=uo on R3x{0}. (3.5)

Introducing the local pressure, we have
0 vk + (bre - VIuk — Aug = =Vpiri—Vprr in By x(0,7), (3.6)
where vy = uy + Vpp k., and
Vpnk =—Ep, (),
Vpik=—Ep,((bre - Vuk), Vporx=Ep, (Aup).

Thus, (3.4) implies that v,/c =V (=bre Qui+ Vur — p1xl — p2xl) in By x (0, T). Since by, ur € M we get the
estimate

— Vuy — I — <c(1 K,
| —bie @ ug + Vur — pral — pak ||L5(0TL2(B)) c(1+ CJKD).

Furthermore, by means of the reflexivity 0f L%, T; W'2(B,)), and using Banach—Alaoglu’s theorem we get a
subsequence {uk } and a functionu e M NV, (R3 x [0, T']) such that

loc o
ug; — u  weakly in L*(0, T; Wh2(By)),
Ug; —> U weakly* in L0, T; L*>(By)) as j— oo.

In particular, we have for almost every ¢ € (0, T)
ug; (t) — u(t) weakly in L*(By) as j— oco. (3.7

In addition, verifying that {vg,} is bounded in V2(By x (0, T)), by Lions—Aubin’s compactness lemma we see that

v, > v in L*(Byx (0,T)) as j— 4oo, (3.8)
where v =u + Vpy, and Vp;, = —E*(u). Now, let t € (0, T') be fixed such that (3.7) is satisfied. Then

Vpnk; () = Vpp(t) weaklyin L*(By) as j— oo. (3.9)
Since pp  is harmonic in By, from (3.9) we deduce that

Vph,kj (t) > Vpu(t) a.ein By as j— oo. (3.10)

On the other hand, using the mean value property of harmonic functions, we see that {V pj, x} is bounded in L*° (B x
(0, T)). Appealing to Lebesgue’s theorem of dominated convergence, we infer from (3.10) that

Vpnk; = Vpn in L*(By x (0,T)) as j— oo. (3.11)

Now combining (3.8) and (3.11), we obtain uyx; — u in L%(B; x (0, T)). Recalling that {uy; } is bounded in V2(B; x
(0, 7)), we get the desired convergence property uy; — u in X as j — 0. To see this we argue as follows. Eventually
passing to a subsequence, we may assume that uy; — u almost everywhere in By x (0, 7). Let s > 0 be arbitrarily
chosen. We denote A,, = {(x,t) € By x (0, T)|Ei] >m: |uk (x,t) —u(x,t)| > g}. Clearly, N>°_ Ay, is a set of
Lebesgue measure zero. Thus meas A,, — 0 as m — 0o. We ndw get the following estimate

Uk, —u
ek =l 8 6 13y =
< (ug, —u Ug, —u
Iy = 0xanll 18 N =gl
<llug, —u Uk, — U)X Ac
e ”L4s O.T:L% (B, ))”XA I % 01188y ))+”( XA, ||L5(0TL3(BI))

< c(meas Am)m + ce.

This shows that |[[ux; — ull| — 0 as j — oo. Applying Schauder’s fixed point theorem, we get a function u, € M such
that u, = T¢(u). Thus, u, is a local suitable weak solution with projected pressure to
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V.u,=0 in O, (3.12)
org + (Reutg - Vg — Aug = —Vm, in Q, (3.13)
us=uy on R>x{0}. (3.14)

In particular, we have the a-priori estimate

Nuell L4, 7:038y)) t 1uellv2s, <0.7)) < 2CoKo. (3.15)
Let {¢;} be a sequence of positive numbers in (0, 2 — 1). Since u,; is A-DSS we may apply Lemma B.5 which shows
that, after redefining u, ; onaset in [0, 400) of measure zero, it holds u, € Cy, ([0, +00), L? (R3))) together with

loc
M(ue,) = [0, +00),

where M (uc;) denotes the set of all 7 € [0, +00) such that for all kK € Z and almost every x € R3
(e, 1) = Aug, 0Fx, 2% 1),

We now define for ¢ € [0, +00) and j € N the set P;(t) C R3 such that
Uug;(x,1) = kkugj (Akx, Azkt) VxePi(t), VkelZ.

Since t € M(ugj) it holds meas R3 \ P;(t) =0. Accordingly, meas R3 \ P(t) =0, where P(t) = ﬂj?';l P;(t). In other
words, it holds

ue; (6, 1) =2 ug, 0Fx,2%1) VxeP(t), VkeZVjeN
By means of the reflexivity we get a sequence £; — 0" as j — coand u € Vzic,g(R3 x [0, T']) such that
ug; —> u  weakly in L*0,T; W"(By) as j— 400,
e, — U weakly* in  L*°(0,T; L*>(B1)) as j— —+00.
Arguing as in the proof the compactness of 7, we infer
ue, —u in L5, T;L3(B) as j— 0",

Note that u is A-DSS, since u is obtained as a limit of sequence of A-DSS functions.
Together with Lemma A.3 we see that

Rejue;, > u in L%B(O,T;L3(Bl)) as j—0t. (3.16)

This shows that u € L?

loc,o

(R3 x [0, ~+00)) is a local Leray solution with projected pressure to (1.1)—(1.3). O
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Appendix A. Mollification for DSS functions

Let 1 <A < +4oo. Let u € L} _ DSS(R3). Let p € C°(By) denote the standard mollifying kernel such that
Jr3 pdx =1.For 0 <& < A — 1 we define

1 y
(k.= — [ ute=y.oo( )iy wneo.
Bﬁs
We have the following
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Lemma A.1. R, defines a bounded operator from L3 _p,s(Q) into itself. Furthermore, for all u € L;_¢(Q) it
holds for all (x.t) € Q
_3
[(Reu) (x, D] < e{ 1€} 75 u . DllLs s 00 (A1)

with a constant ¢ > 0 depending on s only.

Proof. Letu € L] _ ;5(Q). First we will verify that R.u is A-DSS. Indeed, using the transformation formula of the
Lebesgue integral, we calculate for any (x,?) € Q,

SN B / —y, 2200 ——
ARu)(Ax, A t)_)\2(\/?g)3 u(Ax —y, A t)p<k\/;8>dy,

B)Mﬁs
_ 1 o 202
= T [Au(k(x V), t)p(ﬁg)dy
R
__ _ Y N
— (ﬁgﬁ/m y,t)p<ﬁ£>dy—(R8u)(x,t).
R3

Firstly, let A=2 < ¢ < 1. Noting that (Reu)(-, 1) = u(-, 1) % P Jie» Where p s (v) = Wp(ﬁ) recalling that
& < A — 1, by means of Young’s inequality we find

I(Reu) (-, t)”;f(Bl) < lu(, t)||25(BI+S)||IO\ﬁg”2I = |lu(, I)HXLS(BA)'
Integrating the above inequality over (A~2, 1), and using a suitable change of coordinates, we obtain

| Reu ||LS(BI x(A2,1) = llu ||L'Y(Bx x(272,1)

= lull s gy x o2,y + 1wl Ls (8,0 By x 2,1
5-s
= Nl s g x20) +2 5 Nulls g, x-4.2-2)-
Secondly, for 0 <t < 272 we estimate
I(Reu)(:, t)||2S(Bl\B)L_1) =< lu(, t)”iS(BA\BA_.)||pﬁs||21 = [Ju(, t)”SLS(B;L\BA_.)'
Integration over (0, A~2) in time yields
IRetull s B\B, 1 x©2-2)) = NllLsB\B, ) x(0,1-2))
= Nulls B\, 1 x©.3-2) + 1l LB, By x0.0-2))
5-s
= llullLs g\, i x©2-2) T2 5 MullLs B, x4
Combining the last two estimates, we get

5;5
IReullscong,—1) = (L +2 5 ) llullLsone, 1)

This shows that Re : L] _ ,¢s(Q) — L3 _)5¢(Q) is bounded.
The inequality (A.1) follows immediately from the definition of R u with the help of Holder’s inequality. O

Remark A.2. Arguing as in the proof of Lemma A.1, we get for any u € Li_DSS(Q) N LI?S 0,T;L3(B1)),0<T <1

5
R < A9 . A2
| EM”L%<0,T;L3(BI>> - ”M”L%(ar;ﬁwm (A-2)

Lemma A3. Letu € L3, o(Q)NLS (0, T; L3(B1)), 0 < T < 1. Then

Rou—u in L%(O,T;L3(Bl)) as €— 0. (A.3)
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Proof. First by the absolutely continuity of the Lebesgue integral we see that for almost all ¢ € (0, T')
(Reu)(-, 1) > u(-,t) in L3(B1) as ¢— 0.

Let A C (0, T) be any Lebesgue measurable set. By Young’s inequality of convolutions we get for almost all ¢ € (0, T')

Since u € L ¥ (0, T; L3(By.)), the assertion (A.3) follows by the aid of Vitali’s convergence lemma. O
Appendix B. Weak trace for time dependent A-DSS functions

Let 1 < A < 400. A measurable function u : Q — R3 is said to be A-DSS, if for almost every (x, ) € Q
u(x,t) = au(x, A21). (B.1)
We denote by M (1) the set of all ¢ € [0, +00) such that for all k € Z
u(x, 1) = 2Fu(kx, 2%*r)  forae. x eR3, (B.2)

Lemma B.1. The set [0, +00) \ M (u) is a set of Lebesgue measure zero.
Proof. For m e N and k € Z by A,  we denote the set of all ¢ € [0, +00) such that

meas ix eR3 ‘ u(x,t) # Aku(kkx, AZkt)] > —

Since u is discretely self-similar, we must have meas(A;, x) = 0. Since M (u) \ [0, +-00) = Urez US| Ap i the
assertion follows. 0O

Lemma B.2. For every t € [0, +00) it holds t € M (u) iﬁ”)th e M(u).

Proof. Let t € M (u). There exists a set P C R3 with meas(R3 \ P) = 0 such that (B.2) holds for all x € P. Define
= {y = AMx|x € P}, k € Z. Clearly, meas(R> \ NgezPx) =0. Let x € Ngez Pr. Then x, A~ 'x € P, and therefore
for all k € Z we get u(A~"x, 1) = Au(x, A%1) = A1y (0Wkx, A272K1), which is equivalent to

u(x, A20) = M u(0kx, a%021).

This shows that A>t € M (u). Similarly, we get the opposite direction. 0

As an immediate consequence of Lemma B.2 we see that
reMu) < A rreM@w) VkeZ. (B.3)

Let {v;} be a sequence in L? (R3). We say

loc
v; —> v weaklyin Lloc(R ) as j— +oo
if for every 0 < R < 400

vj — v weakly in L*(Bg) as j— +oo.

Lemma B.3. Let {v;} be a sequence in L? (R3) such that for all 0 < R < 400

loc

sup ||Uj||L2(BR) < 400. (B.4)
JjeN

Then there exists a subsequence {v;, } and v € L? Toc (R3) such that

vj, = v weaklyin LZDC(R3) as m— +00.
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Proof. By induction and the reflexivity of L?(B,,) we construct a sequence of subsequences {vj(m)} - {Uj(mfl)} and
k k

{vj]?} = {v;} such that for some v, € L?(By) it holds
Uj(m) —> Uy, Iin L2(Bm) as k— 400
k

(m € N). Clearly, v;,|,_, = vm—1. This allows us to define v : R3 > Rbe setting v = v, on By,. Then by Cantor’s
diagonalization principle the subsequence v, = v meets the requirements. O

We denote V = L ([0, +00); L? (R?)) the space of all measurable functions # : Q — R such that u €

loc loc

L>(0, R?, L2(BR)) for all 0 < R < +o00. By V,_pss we denote the space of all A-DSS functions u € V.

Lemma B.4. Let u € V) _pss. We assume that ||u(t)||p2p,) < llull o0, R2: 12(BR)) Jor all t € (0, R?), 0 < R < 4o0.
There exists a constant C > 0 such that for every t € M (u)

lu()llp2(py) = € max HRl/z”””LOO(O,l;LZ(Bl))v ||M(f)||L2(Bﬁ)}' (B.5)

Proof. Lett € M(u). Let k € Z. Then by means of the transformation formula we get

f|u(x,t)|2dx=A3k/|u(kkx,t)|2dx=kk/|kku(kkx,A2kk_2kt)|2dx

B,k B B
:)\k/|u(x,,\—2’<t)|2dx.
B
In case A% > 1 we get
2 k 2
”u(t)“Lz(BAH =X ”u”L“’(O,l;LZ(Bl))'

A2k <t we find

On the contrary, if
lu@Ollz2p,) < lu®l2p -

Accordingly,

”u(t)”Lz(BAk) < cmax {)\-k/z||M||L°°(0,1;L2(B|))7 ”u(t)”LZ(Bﬁ)}
This yields (B.5). O
Lemma B.S. Let u € V,_pgs. Furthermore, let F;j, g; : O — R such that F;j, g; € Ll(QR) and forall 0 < R < 400,

i,j=1,2,3. We suppose for all t € [0, +00) the function u(-,t) € leoc(R3) with V - u(-,t) = 0 in the sense of
distributions, and that for all ¢ € C°(Q) with V - ¢ = 0 the following identity holds true

/u . 2—(fdxdt = / F:Vo+g-edxdt. (B.6)
Q Q

Then, eventually redefining u(t) for t in a set of measure zero, we have
1 € Cy([0, +00); L2(Bg)) V0 < R < 400, (B.7)
M (u) =10, +00). (B.8)

Proof. By L(u) C [0, +00) we denote the set of all Lebesgue points of #, more precisely, we say ¢ € L(u), if for
every 0 < R < +o00
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t+e
1
—/u(-,r)dr—>u(~,t) in LZ(BR) as & — +oo.
e

t

By Lebesgue’s differentiation theorem we have meas([0, +00)\ L(«#)) =0.Lett € L(u). By a standard approximation
argument we deduce from (B.6) that for every ¢ € CZ°(Q) with V- u =0

/u(t) <p(t)dx+ff —dxds_//F Vo + g - pdxds. (B.9)

0 R3 0 R3

Next, let {#;} be a sequence in M (u) N L(u) such that t; — t € L(u) as j € +00. Thanks to Lemma B.4 we are in
a position to apply Lemma B.3. Thus, there exists a subsequence {t;,} and v € L? (R3) with V - v in the sense of
distributions such that

loc

u(tj,) —> v weaklyin LIZUC(]RS) as m — +oo.

Then, in (B.9) with t =¢;,, letting m — oo, we see that for all ¢ € C°(Q) with V - ¢ = 0 it holds

/v (p(t)dx+// —dxds_f/F Vo + g - edxds. (B.10)

0 R3 0 R3

On the other hand, recalling that r € L (u), the identity (B.9) holds true. Combining both (B.9) and (B.10) we deduce
that for all ¢ € C3% (R?)

/(v —u(t))-ydx =0.

Consequently, v — u(z) is a harmonic function. On the other hand, by the lower semi continuity of the L? norm we
obtain from (B.5) that

luet) = vll 2y = € max {RY2ul e 0,122 1O sy - (B.11)

Whence, v = u(¢). In particular, u(s) — u(z) weakly in L%OC(R3) asse€ M(u)NL(u)—t.

Let t € [0, +00). There exists a sequence {z;} in M (u) N L(u) such thatt; — t as j — +o00. Thanks to Lemma B .4
and Lemma B.3 there exists a subsequence {¢;,,} and v € L (R3) with V - v = 0 in the sense of distributions such
that

loc

u(tj,) — v weaklyin L%OC(RS) as m — +00.

Observing (B.9) with ¢}, in place of ¢ and letting m — 400, we obtain for all ¢ € C°(Q) with V.- ¢ =0

/v w(t)dx—l—// —dxds—//F Vo + g - pdxds. (B.12)

0 R3 0 R3

On the other hand, by the lower semi continuity of the L> norm from (B.5) it follows that

0112205, < € max { RV ull (0 1220800 14O 205 - (B.13)

For a second subsequence {t}m} with limit w € leo . (R3) we derive the same property as v which leads to the fact that
for all ¥ € CZ% (R?)

/(v—w)w/xdx:O.
3
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Consequently, v — w is a harmonic function. Now taking into account the estimate (B.13), which is satisfied for w
too, we infer v = w. Thus, the limit is uniquely determined. In case ¢ ¢ M (u) N L(u) we set u(t) = v. In particular,
(B.13) yields for all ¢ € [0, +00) the estimate

||M(f)||L2(BR) < Cmax {RI/ZHM||L°°(O,1;L2(Bl))v ||M(l‘)||L2(Bﬁ)}- (B.14)

Furthermore, observing (B.10) for r € L(u)) and (B.12) otherwise, it follows that for all # € [0, +00) and for all
9 € C(Q) with Vo =0

/u(t) <p(t)dx+// —dxds—/fF Vo +g-edxds. (B.15)

0 R3 0 R3
Next, let t € [0, +00), and let {;} be any sequence in [0, +00) with 7; — t as j — +o0. In view of (B.14) once
more we may apply Lemma B.3, which yields a subsequence {¢;,,} and w € L l e (R3) such that
u(tj,) — w weaklyin L2 (R as m— +oo.

Observing (B.15) with ¢;,, in place of 7 and letting m — 00, it follows that

/w (p(t)dx+// —dxds—//F Vo + g - pdxds. (B.16)

0 R3 0 R3

Combining (B.16) and (B.15) and verifying (B.13) for w by a similar reasoning as above, we conclude w = u(¢). This
shows that u € Cy, ([0, +00); L7, (R?)).

It only remains to prove that M (u) = [0, +00). To see this let {z;} be a sequence in M (u) such that z; — ¢. By
using the transformation formula of the Lebesgue integral together with Lemma B.2 (cf. also (B.3)), we calculate for
all ¢ € C(R?)

/u(x, HY(x)dx = lim /u(x, 1) (x)dx
J—>00
R3 R3
=2 lim [ w7, )Y (x)dx
J—>00
R3

=27 1im [ w(x, A1)y (x)dx

j—o0
R3
:Afzk/M(x,AZkt)llf(Ax)dx:/Ak“()»kxa)?kt)‘/”(x)dx'
R3 R}

This yields u(x, t) = A*u(A*x, A2K¢) for almost every (x,1) € Q, and thus r € M(u). O
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