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Abstract

We address the question: Why may reaction–diffusion equations with hysteretic nonlinearities become ill-posed and how to 
amend this? To do so, we discretize the spatial variable and obtain a lattice dynamical system with a hysteretic nonlinearity. We 
analyze a new mechanism that leads to appearance of a spatio-temporal pattern called rattling: the solution exhibits a propagation 
phenomenon different from the classical traveling wave, while the hysteretic nonlinearity, loosely speaking, takes a different value 
at every second spatial point, independently of the grid size. Such a dynamics indicates how one should redefine hysteresis to make 
the continuous problem well-posed and how the solution will then behave. In the present paper, we develop main tools for the 
analysis of the spatially discrete model and apply them to a prototype case. In particular, we prove that the propagation velocity is 
of order at−1/2 as t → ∞ and explicitly find the rate a.
© 2017 
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1. Introduction

1.1. Background

Hysteresis, or, more generally, bistability, refers to a class of nonlinear phenomena which are observed in numerous 
real-world systems. It arises in description of ferromagnetic materials, shape-memory alloys, elasto-plastic bodies, as 
well as many biological, economical, and social models, see [7,19–22,26]. The primary goal of the present paper is 
to analyze a new mechanism (which we call rattling) for pattern formation in spatially discrete systems of reaction–
diffusion equations (lattice dynamical systems) with hysteresis. The phenomenon occurs in any space dimension, 
including dimension one, and persists even for scalar equations. As it is explained below, our results are relevant 

* Corresponding author.
E-mail addresses: gurevich@math.fu-berlin.de (P. Gurevich), s.tikhomirov@spbu.ru (S. Tikhomirov).

L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
https://doi.org/10.1016/j.anihpc.2017.09.006
0294-1449/© 2017 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.

http://www.sciencedirect.com
https://doi.org/10.1016/j.anihpc.2017.09.006
http://www.elsevier.com/locate/anihpc
mailto:gurevich@math.fu-berlin.de
mailto:s.tikhomirov@spbu.ru
https://doi.org/10.1016/j.anihpc.2017.09.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.anihpc.2017.09.006&domain=pdf


1042 P. Gurevich, S. Tikhomirov / Ann. I. H. Poincaré – AN 35 (2018) 1041–1077
Fig. 1.1. Hysteresis a) with thresholds α < β , b) with thresholds α = −∞ and β = 0.

Fig. 1.2. Bacteria density at end of experiment.

not only for lattice dynamical systems, but also for continuous systems with hysteresis. On the other hand, they link 
pattern formation mechanisms in hysteretic and bistable slow-fast systems.

Let us begin with the prototype spatially continuous problem{
vτ = vxx +H(v), x ∈ (−1,1), τ > 0,

v(x,0) = ϕ(x), x ∈ (−1,1),
(1.1)

supplemented with, e.g., Neumann boundary conditions. Here H(·) is the simplest hysteresis operator, namely, the 
non-ideal relay or bistable switch, see Fig. 1.1.a and the (slightly modified) rigorous definition in Section 2.

Hysteresis is defined by two thresholds α < β and two values h1, −h2 ∈ R (in what follows, we are interested in 
the case h1 > 0 ≥ −h2). Given a continuous input function w(τ), its output H(w)(τ ) remains constant unless the 
input achieves the lower threshold α or the upper threshold β . In the former case, the output either switches to h1 if it 
was equal to −h2 “just before” or otherwise remains h1. Analogously, in the latter case, the output either switches to 
−h2 if it was equal to h1 “just before” or otherwise remains −h2. Since the function v(x, τ) in (1.1) depends not only 
on τ , but also on the spatial variable x, one defines H(v) =H(v(x, ·))(τ ) “pointwise”, i.e., for each fixed x. Thus, the 
hysteresis operator H becomes spatially distributed.

Problem (1.1) is the simplest model of a reaction–diffusion process in which a diffusive substance with density 
v(x, τ) interacts in a hysteretic way with a non-diffusive substance that affects the diffusive one via the reaction term 
taking values h1 or −h2. The first model of such a type was suggested by Hoppensteadt and Jäger [15]. It consisted 
of two reaction–diffusion equations and one ordinary differential equation and described the concentric rings pattern 
that occurs in a colony of bacteria (Salmonella typhimurium) on a Petri plate (Fig. 1.2).

Numerical simulations in [15,16] yielded a pattern that was consistent with experiments, however the rigorous 
mathematical description of the model was lacking. To begin with, the well-posedness was an open question, due to 
the discontinuous nature of the hysteresis operator. First analytical results were obtained in [3,25] (see also [2,18,26]
and a recent survey [27]), where existence of solutions for multi-valued hysteresis was proved. Formal asymptotic ex-
pansions of solutions were recently obtained in a special case in [17]. Questions about the uniqueness of solutions and 
their continuous dependence on the initial data as well as a thorough analysis of pattern formation still remained open.

In [11,12], we formulated the so-called transversality condition for the initial data ϕ(x) in (1.1) that guaranteed 
existence, uniqueness, and continuous dependence of solutions on initial data for scalar equations with hysteresis. 
In [13], this condition was generalized to systems, and in [9] to the case x ∈ R

2. For problem (1.1), the transversality 
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Fig. 1.3. Upper graphs represent spatial profiles of the hysteresis H(vn) and lower graphs the spatial profiles of the solution vn . a) Nontransverse 
initial data. b) Spatial profiles at a moment τ > 0 for h2 = 0. c) Spatial profiles at a moment τ > 0 for h2 = h1 > 0.

loosely speaking means that if ϕ(x0) = α or ϕ(x0) = β for some x0 ∈ (−1, 1), then ϕ′(x0) �= 0. Due to [11–13], either 
the solution exists and is unique for all τ ∈ [0, ∞), or there is T > 0 such that the solution exists and is unique for 
τ ∈ [0, T ] and v(x, T ) is not transverse. The approach of [11–13] was based on treating the problem with transverse 
initial data as a special free boundary problem. The study of regularity of the emerging free boundary was initiated 
in [5,6]. For an overview on classical free boundary problems of both elliptic and parabolic types, we refer the reader 
to [8,23,24] and the references therein.

The key question which we address in this paper is how the solution may behave after it becomes nontransverse. 
To answer this question, we consider the nontransverse initial data. First, set β = 0 (without loss of generality) and 
consider an initial function ϕ(x) = −cx2 + o(x2) in a neighborhood B(0) of x = 0. By taking a smaller neighborhood 
if needed, we have ϕ(x) < 0 for x ∈ B(0) \ {0}. We define the hysteresis at the initial moment in this neighborhood 
as follows: H(ϕ(0)) = −h2 and H(ϕ(x)) = h1 for x �= 0. Now we “regularize” the parabolic equation in B(0) by 
discretizing the spatial variable: for any ε > 0, setting vn(τ ; ε) := v(εn, τ), we replace the continuous model (1.1) in 
B(0) by the discrete one⎧⎨

⎩
dvn

dτ
= �vn

ε2 +H(vn), τ > 0, n = −Nε, . . . ,Nε,

vn(0) = −c(εn)2 + o(ε2n2), n = −Nε, . . . ,Nε,

(1.2)

where �vn := vn+1 − 2vn + vn−1 and Nε → ∞ as ε → 0. Since we are interested in small ε and in the behavior near 
the threshold β = 0 (i.e., in a small neighborhood B(0)), we consider the next approximation by omitting o(ε2n2) in 
the initial data, replacing Nε by ∞, and formally setting α := −∞. Thus, (1.2) assumes the form⎧⎨

⎩
dvn

dτ
= �vn

ε2 +H(vn), τ > 0, n ∈ Z,

vn(0) = −c(εn)2, n ∈ Z,

(1.3)

the hysteresis operator is represented by Fig. 1.1.b (see the rigorous definition in Section 2).
A nontrivial dynamics occurs in the case h1 > 2c > 0 ≥ −h2. To indicate the difficulty, note that, due to the initial 

configuration of hysteresis, we have 
dv0

dτ
(0; ε) = −h2 − 2c < 0, but 

dvn

dτ
(0; ε) = h1 − 2c > 0 for n ∈ Z \ {0}. Thus, 

for small τ > 0, v0(τ ; ε) decreases, while all the other nodes vn(τ ; ε), n ∈ Z \ {0}, increase. It is not clear at all, which 
node achieves the threshold β = 0 and switches first and hence what a further dynamics is.

In fact, numerical analysis does not reveal any general rule that could describe the behavior of vn(τ ; ε) for small τ . 
However, it reveals the formation of quite a specific spatio-temporal pattern for large τ , see Fig. 1.3.

If h2 = 0, then each node eventually achieves the threshold β = 0 and thus H(vn) eventually switches from h1 to 
h2 = 0 for each n ∈ Z. If h2 > 0, then some nodes achieve the threshold and some do not. If we denote by N1(j)

and N2(j) the number of nodes in the set {v0, v±1, . . . , v±j } that switch and do not switch, respectively, on the time 
interval [0, ∞), then numerics suggests that

lim
N2(j) = h2

. (1.4)

j→∞ N1(j) h1
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Moreover, if h2/h1 = p2/p1, where p1 and p2 are co-prime integers, then, for any j large enough, the set 
{vj+1, . . . , vj+p1+p2} contains exactly p1 nodes that switch and p2 nodes that do not switch on the time interval 
[0, ∞).

The next numerical observation is as follows. Let τn = τn(ε) be the switching moment of the node vn(τ ; ε) if this 
node switches on the time interval [0, ∞) and τn := ∞ otherwise. Then, for any fixed h2 ≥ 0, the τn’s that are finite 
satisfy, as n → ∞,

τn = a(εn)2 +
{

ε2O(
√

n) if h2 = 0,

ε2O(n) if h2 > 0,
(1.5)

where a > 0 depends on h1/c but does not depend on h2 or ε and O(·) does not depend on ε.

Remark 1.1. In Section 1.2, we will show that ε in (1.3) can be scaled out, see scaling (1.8). In particular, all the 
numerical observations concerning the dynamics of vn have been done for ε = 1 and then transferred to an arbitrary ε
according to the scaling in (1.8).

Consider the function

H(x, τ ; ε) := H(vn(·; ε))(τ ), x ∈ [εn − ε/2, εn + ε/2), n ∈ Z,

which is supposed to approximate the hysteresis H(v(x, ·))(τ ) in (1.1). Assuming the dynamics (1.4) and (1.5) and 
taking into account Remark 1.1, we see that H(x, τ ; ε) has no pointwise limit as ε → 0, but converges in a certain 
weak sense to the function H(x, τ) given by H(x, τ) = 0 for τ > ax2 and H(x, τ) = h1 for τ < ax2. We emphasize 
that H(x, τ) does not depend on h2 (because a does not). On the other hand, if h2 > 0, the hysteresis operator 
H(v(x, ·))(τ ) in (1.1) cannot take value 0 by definition, which clarifies the essential difficulty with the well-posedness 
of the original problem (1.1) in the nontransverse case. To overcome the non-wellposedness, one need to allow the 
intermediate value 0 for the hysteresis operator.

Such a re-definition of hysteresis is consistent with the behavior of v(x, τ) (also observed numerically) in the 
following sense. For a fixed ε > 0, the spatial profile of vn(·; ε)(τ ) forms two humps propagating away from the 
origin according to (1.5). The cavity between the humps has a bounded steepness characterized by the relations

|vk+1(τ ; ε) − vk(τ ; ε)| ≤ bε2, |k| ≤ n, τ ≥ τn, n = 0,1,2, . . . , (1.6)

where b > 0 does not depend on k, n, and ε. As time goes on, the profile executes downwards and upwards motions, 
always remaining beneath the threshold β = 0 and hitting this threshold at specific nodes characterized by (1.4). We 
call such a behavior of vn and H(vn) rattling. Furthermore, numerics indicates that, as ε → 0, the function

V (x, τ ; ε) := vn(τ ; ε), x ∈ [εn − ε/2, εn + ε/2), n ∈ Z,

approximates a smooth function V (x, τ), which satisfies V (x, τ) = 0 for τ > ax2 due to (1.5) and (1.6). In other 
words, V (x, τ) sticks to the threshold line β = 0 on the expanding interval x ∈ (−√

τ/a, 
√

τ/a).
We recall paper [3], in which Alt proved the existence of a function V (x, τ) that satisfies the equation

Vτ = Vxx + γ (x, τ ),

where γ (x, τ) = H(V (x, ·))(τ ) a.e. on the set A := {(x, τ) : V (x, τ) �= α, β} and γ (x, τ) = 0 a.e. on the set 
B := {(x, τ) : V (x, τ) = α or β} (which potentially may have a nonzero measure). Thus, our heuristic argument 
provides a qualitative description of the sets A and B and justifies the completion of hysteresis by the zero value via 
the thermodynamical limit. To make this argument mathematically rigorous, we should first rigorously describe the 
rattling phenomenon in the discrete system (1.3). This is the central topic of the present paper, in which we concen-
trate on the case h2 = 0 and develop general tools for treating discrete reaction–diffusion equations with discontinuous 
hysteresis. The application of these tools to the case h2 > 0 will be a subject of a forthcoming paper. We expect that 
these tools will be applicable whenever h2/h1 is rational.

Before we proceed with the description of our tools and of the structure of the paper, let us make two more 
comments. First, the rattling phenomenon also occurs in multidimensional domains. For example, Fig. 1.4 illustrates 
the switching pattern for a two-dimensional analog of (1.3), where we have implemented spatial discretizations on the 
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Fig. 1.4. A snapshot for a time moment τ > 0 of a two-dimensional spatial profile of hysteresis taking values h1 > 4c > 0 and h2 = h1 > 0. The 
nontransverse initial data is given by ϕ(x) = −c(x2

1 + x2
2 ). Grey (black) squares or hexagons correspond to the nodes that have (not) switched on 

the time interval [0, τ ]. a) Discretization on the square lattice. b) Discretization on the triangular lattice.

Fig. 1.5. a) The nullcline of the S-shaped nonlinearity f (v,w). b) Hysteresis with nonconstant branches H1(v) and H2(v).

square and triangular lattices, respectively. Moreover, numerical analysis of the Hoppensteadt–Jäger system indicates 
that the solution remains transverse as long as the central disc in Fig. 1.2 gets formed, but the formation of all the 
rings occurs via rattling.

Second, the rattling phenomenon is not a pure consequence of a discontinuous nature of hysteresis, but rather a 
consequence of bistability in a system. In particular, it persists in bistable slow-fast reaction–diffusion systems. The 
simplest example is the system

vτ = vxx + w, δwτ = f (v,w), (1.7)

where δ > 0 is a small parameter and the nullcline of f (v, w) is Z- or S-shaped. Formally, system (1.7) can be treated 
as another regularization of system (1.1). In the case where the nullcline of f (v, w) is S-shaped, one should replace 
h1 and −h2 in the definition of hysteresis H(v) by appropriate functions H1(v) and H2(v), see Fig. 1.5.

As δ → 0, the spatial profiles of v and w in (1.7) behave similarly to V (x, τ ; ε) and H(x, τ ; ε), respectively, as 
ε → 0, see Fig. 1.6, with the exception that the profile of w remains continuous and forms steep transition layers 
between mildly sloping steps of width tending to 0 as δ → 0. Interestingly, the time–scale separation parameter δ
in (1.7) yields the same effect as the grid-size parameter ε in (1.3). As far as we know, such a rattling phenomenon for 
slow-fast systems has not been explained in the literature, either.

1.2. Structure of the paper

Now we come back to the main topic of this paper, namely, discrete system (1.3). As it was mentioned in Re-
mark 1.1, ε in (1.3) can be scaled out. Indeed, setting

t := ε−2τ, un(t) := ε−2vn(τ ; ε) (1.8)

and using the equalities (recall that α = −∞ and β = 0)

H(vn)(τ ) =H(ε2un(ε
−2·))(τ ) =H(un(ε

−2·))(τ ) =H(un)(ε
−2τ) =H(un)(t),

we can rewrite (1.3) as follows:
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Fig. 1.6. Upper and lower graphs are spatial profiles of the solution w(x, τ) and v(x, τ), respectively, for problem (1.7) with initial data v|τ=0 =
−cx2 + o(x2), w|τ=0 = h1.

Fig. 1.7. Values of qn/
√

n for c = 1/2 and a) h1 = 1.5, b) h1 = 2.0.{
u̇n = �un +H(un), t > 0, n ∈ Z,

un(0) = −cn2, n ∈ Z,
(1.9)

where ˙ = d/dt . Problem (1.9) does not involve ε, which justifies the fact that un(t) in (1.8) does not depend on ε. 
Note that c in (1.9) could be also scaled out replacing un(t), h1 and −h2 by cũn(t), ch̃1 and −ch̃2, respectively. 
We prefer not to do this, in order to keep track of what exactly is influenced in our intermediate calculations by the 
“tangency” constant c.

From now on, we concentrate on the case h2 = 0. Due to (1.5) and (1.8), the asymptotics for the switching moment 
tn of the node un(t) is expected to be

tn = an2 + qn, |qn| ≤ E
√

n, (1.10)

where E > 0 does not depend on n ∈Z.
Our main result (Theorem 3.2) is as follows. Let h1 > 2c > 0 and h2 = 0. Assume that

finitely many nodes un(t)

switch at moments tn, n = 0,1, . . . , n0, satisfying (1.10),
(1.11)

where the constants a = a(h1/c) > 0 and n0 = n0(E) = n0(E, h1, c) will be explicitly specified in the main text. 
Then each node un(t), n ∈ Z, switches; moreover, the switching occurs at a time moment tn satisfying (1.10).

Since we will provide an explicit formula for the solution un(t), the fulfillment of finitely many assumptions (1.11)
can be verified numerically with an arbitrary accuracy for any given values of h1 and c (see Fig. 1.7).

The paper is organized as follows. In Section 2, we give definitions for the hysteresis operator and for the so-
lution of problem (1.9). Next, we formulate the existence and uniqueness theorem (Theorem 2.5), which includes 
a representation of the solution un(t) via the discrete Green function yn(t). In particular, Theorem 2.5 implies that 
un(t) = u−n(t), n ∈ Z.

In Section 3, we formulate our main result (Theorem 3.2).
In Section 4, we formulate three main ingredients for the proof of the main result.
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1. The first ingredient is asymptotic formulas for the Green function yn(t) and for its time derivatives, which were 
derived in [10].

2. The second ingredient is three equations for finding the constant a from equation (1.10). The equivalence of these 
equations as well as the existence and uniqueness of their root a > 0 are proved in Appendix A.

3. The third ingredient is the approximation of some singular integrals by Riemann sums and corresponding error 
estimates, which are proved in [14].

Sections 5, 6, and 7 are three key steps in the proof of our main result. The scheme of the proof is inductive. Assume 
we have proved that t0, t1, . . . , tn−1 satisfy (1.10) for some fixed n ≥ n0 + 1. We fix the hysteresis configuration, i.e., 
set Hn := H(un)(tn−1) and consider the solution vn(t) of the problem

{
v̇n = �vn + Hn, t > tn−1, n ∈ Z,

vn(tn−1) = u(tn−1), n ∈ Z

(we abuse the notation by using the same letter v as in Section 1.1). Obviously, vn(t) = un(t) as long as the nodes 
vn(t), vn+1(t), vn+2(t), . . . remain below the threshold β = 0.

The main theorem of Section 5 (Theorem 5.4) claims that the equation vn(an2 + qn) = 0 has a root qn satisfy-
ing (1.10). To prove this, we use an explicit representation of vn(t) via the convolution of Hn with the Green function 
yn(t) (see (5.19)). Then we use asymptotic formulas for yn(t) (the first ingredient from Section 4) and replace the 
convolution by a singular integral (the third ingredient from Section 4). As a result, we obtain a leading order term of 
order n2, which depends only on a and h1/c, and a remainder of order 

√
n, which also depends on q0, q1, . . . , qn−1

(that are known due to the inductive hypothesis) and on the unknown qn. It appears that the coefficient at n2 vanishes 
due to the choice of a (the second ingredient from Section 4). The hard part is to show that the remainder vanishes for 
some qn satisfying (1.10). This is done by an application of Brouwer’s fixed-point theorem.

The time moment tn := an2 + qn given by Theorem 5.4 is a candidate for being the switching moment of un(t). 
To show that it is the switching moment, we have to prove that neither of the nodes vn+1(t), vn+2(t), . . . achieves 
the value β = 0 on the interval (tn−1, tn], while vn(t) achieves it at the moment tn for the first time. This is done in 
Sections 6 and 7.

In Section 6, we prove that vn+1(tn) < 0 (Theorem 6.2). To do so, we estimate the gradient ∇vn(tn) := vn+1(tn) −
vn(tn) by using the representation of ∇vn(t) via the gradient ∇yn(t) of the Green function, applying asymptotic 
formulas for ∇yn(t) (recall the first ingredient from Section 4) and again replacing the corresponding convolution by 
an integral (recall the third ingredient from Section 4). It appears that the leading order term of order n vanishes due 
to the second ingredient from Section 4. Thus, we calculate the next term in the asymptotics, which turns out to be 
−3h1/4 < 0. Hence, vn+1(tn) = ∇vn(tn) ≤ −3h1/8 < 0.

In Section 7, we first show that vn(t) does not achieve the threshold β = 0 for t ∈ (tn−1, tn) (Theorem 7.1). To do 
so, we divide the interval (tn−1, tn) into two parts. We prove that the function v̇n(t) is so small on the first interval 
that it cannot overcome the distance exceeding −3h1/8 (the value coming from Theorem 6.2 with n + 1 replaced 
by n). Then we prove that v̈n(t) is nonnegative on the second interval. Hence, the equation vn(t) = 0 has a unique 
root, which must be tn. In particular, vn(t) < 0 for t ∈ (tn−1, tn). Finally, we show that ∇vj (t) < 0 for all t ∈ (tn−1, tn]
and j ≥ n, which implies that the nodes vn+1(t), vn+2(t), . . . remain negative for t ∈ (tn−1, tn] (Theorem 7.3).

In Section 8, we combine the results from Sections 5, 6, and 7 and rigorously implement the inductive scheme, 
which completes the proof of the main result, namely, Theorem 3.2.

The crucial role in our main result (Theorem 3.2) is played by the number n0 = n0(E), which determines the 
number of switchings one has to check “by hand” (see (1.11)). The number n0(E) is determined explicitly by 12 
inequalities that must hold for n ≥ n0(E). Each inequality is referred to as a requirement and is introduced in the text 
where it is used for the first time. These 12 requirements contain constants that are also introduced in the text where 
they are used for the first time. For reader’s convenience, we have collected all those constants in Appendices B.1–B.3
and the 12 requirements in Appendix B.4.

The graphs in Fig. 1.8 represent the values of a, E, and n0(E) that fulfill assumptions (1.11) for c = 1/2 and 
h1 = 1.1, 1.2, 1.3, . . . , 2.5.
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Fig. 1.8. Dependence on h1 of the values of a, E, and n0(E) that fulfill assumptions (1.11) for c = 1/2. a) The values of a are found explicitly for 
all h1 > 1 (see Section 4.2 below). b), c) The values of E and n0(E) are calculated numerically for h1 = 1.1, 1.2, 1.3, . . . , 2.5.

2. Setting of the problem and a proof of its well-posedness

For a sequence {vn}n∈Z of real numbers, we use the notation

∇vn := vn+1 − vn, �vn := ∇vn − ∇vn−1 = vn−1 − 2vn + vn+1.

Let {un(t)}n∈Z be real-valued functions defined for t ≥ 0. We study the problem

u̇n = �un +H(un), t > 0, n ∈ Z, (2.1)

un(0) = −cn2, n ∈ Z, (2.2)

where c > 0 and H(w)(t), t ≥ 0, is the hysteresis operator defined for functions w ∈ C[0, ∞) such that w(0) ≤ 0 by

H(w)(t) :=
{

h1 if w(s) < 0 for all s ∈ [0, t],
0 if w(s) = 0 for some s ∈ [0, t], (2.3)

where h1 > 0 is fixed. In other words, the output of hysteresis is h1 unless the input achieves the zero threshold; 
at this moment, the hysteresis switches and since then the output of hysteresis remains 0. In the context of prob-
lem (2.1)–(2.3), we will say “a node un(t) switches” or “a node n switches” whenever un(t) achieves the value zero 
for the first time.

Remark 2.1. In the terminology of, e.g., [19,26], the hysteresis operator (2.3) is a non-ideal relay with the thresholds 
−∞ and 0; see Fig. 1.1.b.

From now on, we assume throughout that the following condition holds.

Condition 2.2. h1 > 2c > 0.

We note that the function H(v)(t) may have discontinuity (actually, at most one) even if v ∈ C∞[0, ∞). Therefore, 
one cannot expect that a solution of problem (2.1)–(2.3) is continuously differentiable on [0, ∞). Thus, we define a 
solution as follows.
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Definition 2.3. We say that a sequence {un(t)}n∈Z is a solution of problem (2.1)–(2.3) on the time interval (0, T ), 
T > 0, if

1. un ∈ C[0, T ] for all n ∈ Z,
2. for each t ∈ [0, T ], there exists A, α ≥ 0 such that sup

s∈[0,t]
|un(s)| ≤ Aeα|n| for all n ∈ Z,

3. there is a finite sequence 0 = τ0 < τ1 < · · · < τJ = T , J ≥ 1, such that un ∈ C1(τj , τj+1) for all n ∈ Z and 
j = 0, . . . , J − 1,

4. the equations in (2.1) hold in (τj , τj+1) for all n ∈ Z and j = 0, . . . , J − 1,
5. un(0) = −cn2 for all n ∈ Z.

We say that a sequence {un(t)}n∈Z is a solution of problem (2.1)–(2.3) on the time interval (0, ∞) if it is a solution on 
(0, T ) for all T > 0.

Remark 2.4. If {un(t)}n∈Z is a solution, then, as we have mentioned above, the function H(un)(t) has at most one 
discontinuity point for each fixed n ∈Z. Hence, the equations in (2.1) imply that each function u̇n(t) has at most one 
discontinuity point on [0, ∞).

Before we treat existence and uniqueness of a solution, let us introduce one of our main tools, namely, the so-called 
discrete Green function

yn(t) := 1

2π

π∫
−π

1 − e−2t (1−cos θ)

2(1 − cos θ)
einθ dθ, t ≥ 0. (2.4)

One can directly check that yn ∈ C∞[0, ∞) and yn(t) solves the problem⎧⎪⎨
⎪⎩

ẏ0 = �y0 + 1,t > 0,

ẏn = �yn, t > 0, n �= 0,

yn(0) = 0, n ∈ Z.

(2.5)

Below, we will use the fact that

ẏn+1(t) < ẏn(t), t > 0, n = 0,1,2, . . . , (2.6)

which follows from the formula ẏn(t) = e−2t In(2t), where In(s) is the modified Bessel function of the first kind 
(see [1, Sec. 9.6.19]), and from, e.g., [4]. We will also use the estimate, which follows from the series representation 
of the modified Bessel function [1, Sec. 9.6.10]:

0 ≤ ẏn(t) = e−2t In(2t) = e−2t t |n|
∞∑

m=0

t2m

m!(m + |n|)! ≤ et2−2t t |n|

|n|! , n ∈ Z. (2.7)

Below we prove the following existence and uniqueness result.

Theorem 2.5.
1. Problem (2.1)–(2.3) has a unique solution {un(t)}n∈Z on the time interval (0, ∞).
2. Let tn be the switching moment of the node un(t) if this node switches on the time interval [0, ∞) and tn := ∞

otherwise. Then

tn ≥ cn2

h1 − 2c
, n ∈ Z. (2.8)

3. Let S(t) be the set of nodes that switch on the time interval [0, t], i.e.,

S(t) := {k ∈ Z :H(uk)(t) = 0}, (2.9)

and let |S(t)| be the number of elements in S(t). Then S(t) is finite for each t > 0, symmetric with respect to the 
origin, |S(t)| → ∞ as t → ∞, and
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un(t) = −cn2 + (h1 − 2c)t − h1

∑
k∈S(t)

yn−k(t − tk), t ∈ [0,∞), (2.10)

where we put yn−k(t − tk) = 0 for t < tk ,
4. for each n ∈N, we have t−n = tn and u−n(t) ≡ un(t).

Proof. Step 1. Using (2.5), we see that the functions

z(1)
n (t) := −cn2 + (h1 − 2c)t − h1yn(t), n ∈ Z, (2.11)

satisfy the initial condition (2.2) and the equation in (2.1) as long as z(1)
n (t) < 0 for all n ∈ Z \ {0}. By comparing 

z
(1)
n (t) with the solution

z+
n (t) = −cn2 + (h1 − 2c)t (2.12)

of problem (2.1)–(2.3) with H(un) replaced by h1 for all n ∈ Z, it is not difficult to see that

z(1)
n (t) ≤ z+

n (t), t ≥ 0, n ∈ Z. (2.13)

Therefore, the time moment tn at which zn(t) vanishes for the first time is not less than the moment t+n = cn2/(h1 −2c)

at which z+
n (t) vanishes.

In particular, z(1)
n (t) < 0 for all n ∈ Z \ {0} and t ∈ [0, c/(h1 − 2c)). Let τ1 := sup{t > 0 : z(1)

n (t) < 0 ∀n ∈ Z \ {0}}. 
It follows from (2.11), (4.3), and (4.7) that τ1 is finite. As we have seen, τ1 ≥ c/(h1 − 2c) > 0. Furthermore, z(1)

n (t)

satisfy the growth condition from item 2 of Definition 2.3 for t ∈ [0, τ1]. This follows from (2.11) and the fact that 
|yn(t)| given by (2.4) are bounded on any finite time interval, uniformly with respect to n ∈ Z. Thus, un(t) := z

(1)
n (t)

is a solution of problem (2.1)–(2.3) on the time interval (0, τ1).
Let us prove that the solution un(t) is unique on (0, τ1). Assume we have another solution ũn(t) on a time interval 

(0, τ̃1), where τ̃1 ≤ τ1 is such that ũn(t) < 0 for all t ∈ (0, τ1) and n ∈ Z \ {0}. Then the difference wn(t) := un(t) −
ũn(t) must satisfy the homogeneous diffusion equation on the time interval (0, τ̃1) with the zero initial data

ẇn(t) = �wn(t), t ∈ (0, τ̃1), n ∈ Z,

wn(0) = 0, n ∈ Z.

If we looked for solutions that are square summable with respect to n ∈Z, then the application of the discrete Fourier 
transform would immediately imply that all wn(t) ≡ 0. However, we are interested in solutions that may have expo-
nential growth with respect to n ∈ N (see item 2 in Definition 2.3). We will argue as follows. For each N ∈ N, we 
consider the functions

ζn(t) = ζN
n (t) := wn(t) for |n| ≤ N, ζn(t) = ζN

n (t) := 0 for |n| ≥ N + 1. (2.14)

They satisfy the relations

ζ̇n(t) = �ζn(t) + GN
n (t), t ∈ (0, τ̃1), n ∈ Z,

ζn(0) = 0, n ∈ Z,
(2.15)

where GN
n (t) = 0 for |n| ≤ N − 1 and |n| ≥ N + 2, GN±N(t) = w±(N+1)(t), and GN

±(N+1)(t) = −w±N(t). Since no 
more than finitely many elements in the sequences {ζn(t)}n∈Z and {GN

n (t)}n∈Z are nonzero, we can apply the discrete 
Fourier transform to (2.15) and obtain

ζN
n (t) =

N+1∑
|k|=N

t∫
0

ẏn−k(t − s)GN
k (s) ds, t ∈ [0, τ̃1], n ∈ Z. (2.16)

Now let us fix n ≥ 0 and t ∈ [0, τ̃1]. By assumption, there exist A, α ≥ 0 such that

sup |wk(s)| ≤ Aeα|k|, k ∈ Z. (2.17)

s∈[0,t]
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Combining (2.14), (2.16), (2.7), (2.17) and choosing N ≥ n, we have

|wn(t)| = |ζN
n (t)| ≤ t

N+1∑
|k|=N

sup
s∈[0,t]

(
|ẏn−k(s)| · |GN

k (s)|
)

≤ c
tNeαN

(N − n)! → 0 as N → ∞,

where c = c(n, t) ≥ 0 does not depend on N . Therefore, w−n(t) ≡ wn(t) ≡ 0. This proves that un(t) is a unique 
solution of problem (2.1)–(2.3) on the time interval (0, τ1).

Step 2. Set S(τ1) := {0} ∪ {n ∈ Z : z
(1)
n (τ1) = 0}, cf. (2.9). Due to (2.12) and (2.13), the set S(τ1) is finite. Due 

to (2.11) and the symmetry yn(t) ≡ y−n(t), the set S(τ1) is symmetric with respect to the origin. Note that t0 = 0 is 
the switching moment of the node 0, while tn = τ1 are the switching moments of the nodes n ∈ S(τ1) \ {0}.

Using (2.5) and assuming yn(t) := 0 for t < 0, we see that the functions

z(2)
n (t) = −cn2 + (h1 − 2c)t − h1

⎛
⎝yn(t) +

∑
k∈S(τ1)\{0}

yn−k(t − τ1)

⎞
⎠

= −cn2 + (h1 − 2c)t − h1

∑
k∈S(τ1)

yn−k(t − tk), t ∈ [0,∞),

(2.18)

satisfy the equations in (2.1) as long as z(2)
n (t) < 0 for all n ∈ Z \S(τ1), i.e., as long as S(t) = S(τ1). Obviously, z(2)

n (t)

also satisfy the initial condition (2.2).
As in Step 1, we see that the time moment tn at which zn(t), n ∈ Z \ S(τ1), vanishes for the first time is not less 

than cn2/(h1 − 2c). Hence, there is a positive time interval (of length bigger than τ1) on which z(2)
n (t) < 0 for all 

n ∈ Z \ S(τ1).
Let τ2 := sup{t > 0 : z

(2)
n (t) < 0 ∀n ∈ Z \ S(τ1)}. It follows from (2.11), (4.3), and (4.7) that τ2 is finite. We have 

proved that τ2 > τ1. Furthermore, z(2)
n (t) satisfy the growth condition from item 2 of Definition 2.3 for t ∈ [0, τ2]. 

Thus, un(t) := z
(2)
n (t) is a solution of problem (2.1)–(2.3) on the time interval (0, τ2). Note that un(t) = z

(1)
n (t) for 

t ∈ [0, τ1]. The uniqueness of un(t) on the interval (τ1, τ2) can be proved similarly to Step 1.
Continuing these steps, we obtain the desired infinite sequence {τj }j≥0 from Definition 2.3. On each step, we 

compare un(t) with z+
n (t) given by (2.12) and conclude that the switching moments satisfy tn ≥ cn2/(h1 − 2c). 

Hence, τj → ∞ as j → ∞. �
3. Main result

We recall that Condition 2.2 is assumed to hold throughout. Below in the text we define a > 0 (see Lemma 4.2), 
E0 > 0 (see (5.12)) and an increasing function n0 : (E0, ∞) → N (see Requirements 1–12 in Section B.4).

Definition 3.1. We say that a number E ≥ E0 is admissible if the following holds:

1. each node uk , k = 0, ±1 . . . , ±n0 = ±n0(E) switches at a moment tk satisfying

tk = ak2 + qk, |qk| ≤ E
√

n0, (3.1)

while neither of the nodes u±(n0+1), u±(n0+2), . . . switches on the time interval [0, tn0];
2. at the switching moment tn0 , we have

un0+1(tn0) = ∇un0(tn0) ≤ −3h1

8
. (3.2)

The main result of this paper is as follows. If finitely many nodes k = 0, . . . , n0(E) switch at time moments tk
satisfying (3.1), then all the nodes n ∈ Z will switch and their switching moments will be of order an2. On Fig. 1.8.b, 
one can see the values of admissible E, which we found numerically for c = 1/2 and h1 = 1.1, 1.2, 1.3, . . . , 2.5. 
Figs. 1.8.a and 1.8.c depict corresponding values of a and n0(E), respectively.

The rigorous formulation of our main result is as follows.
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Theorem 3.2. Assume that E ≥ E0 is an admissible number, and let n0 = n0(E). Then for all n ≥ n0 + 1:

1. each of the nodes un switches at a moment tn satisfying

tn = an2 + qn, |qn| ≤ E
√

n, (3.3)

tk < tn0 < tn0+1 < . . . , k = 0,1, . . . , n0 − 1,

2. there exists A∇ > 0 depending on h1, c, E, but not on n, such that∣∣∣∣∇un(tn) + 3h1

4

∣∣∣∣≤ A∇n−1/2, ∇un(tn) ≤ −3h1

8
.

4. Auxiliary statements

In this section, we formulate several auxiliary statements. Each of them is a key ingredient in the proof of our main 
result, i.e., Theorem 3.2.

In Section 4.1 (Proposition 4.1), we establish asymptotic formulas for the discrete Green function yn(t) given 
by (2.4). It is essential that the leading order terms in the asymptotics depend only on n/

√
t , while the remainders are 

estimated uniformly with respect to n.
In Section 4.2, we consider three expressions containing integrals (4.12) of leading order terms in the asymptotics 

of yn(t), ∇yn(t), and ẏn(t), respectively. These three expressions will enter the leading order terms in asymptotic 
formulas for un(tn), ∇un(tn), and u̇n(tn). In Proposition 4.2, we show that these terms vanish for the same value of a, 
thus determining the “propagation rate” an2 in the switching moment asymptotics for tn in (3.1) and (3.3).

In Section 4.3, we elaborate on properties of integrals (4.12) from Section 4.2. In the proof of our main result, these 
integrals will play the role of approximation of some Riemann sums. Note that the corresponding integrands are not 
smooth functions, but have singularities of order (1 − x)1/2 or (1 − x)−1/2 at x = 1. In Propositions 4.3 and 4.4, we 
provide error estimates for approximation of such integrals by their Riemann sums.

4.1. Properties of the discrete Green function yn(t)

Consider the functions h, f, g, f̃ :R+ →R given by

h(x) := 1

2
√

π
e− x2

4 , f (x) := 2x

∞∫
x

y−2h(y)dy, g(x) := f ′(x), f̃ (x) := −h′′′(x)

6x
. (4.1)

Note that these functions belong to C∞[0, ∞) and decay to zero as x → ∞, together with all their derivatives, faster 
than any exponential. Moreover,

h(x) = g′(x) = f ′′(x), 2h(x) + xg(x) − f (x) = 0, g(0) = −1

2
. (4.2)

Consider the functions r0, ̃r1, r1, r2, w0, w1 : (N ∪{0}) ×R+ → R satisfying the following relations for n = 0, 1, 2, . . .
and t > 0:

yn(t) = √
tf

(
n√
t

)
+ r0(n, t), yn(t) = √

tf

(
n√
t

)
+ 1√

t
f̃

(
n√
t

)
+ r̃1(n, t), (4.3)

ẏn(t) = 1√
t
h

(
n√
t

)
+ r1(n, t), ÿn(t) = 1

t
√

t
h′′
(

n√
t

)
+ r2(n, t), (4.4)

∇ẏn(t) = 1

t
h′
(

n√
t

)
+ w1(n, t), ∇yn(t) = g

(
n√
t

)
+ 1

2
√

t
h

(
n√
t

)
+ w0(n, t). (4.5)

We fix throughout the paper

τ0 > 0. (4.6)

The following estimates are proved in [10].
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Proposition 4.1. There exist constants A0, A1, A2, Ã1, B0, B1, A∗
2, B

∗
2 > 0 (depending on τ0) such that, for all t ≥ τ0, 

n = 0, 1, 2, . . . , and i = 0, 1, 2, the following inequalities hold:

|ri(n, t)| ≤ Ai

1

t i
√

t
, |r̃1(n, t)| ≤ Ã1

1

t
√

t
, (4.7)

|w0(n, t)| ≤ B0
1

t
, |w1(n, t)| ≤ B1

1

t
√

t
, (4.8)

|ÿn(t)| ≤ A∗
2

1

t
√

t
, |∇ÿn(t)| ≤ B∗

2
1

t2 . (4.9)

4.2. Equivalence of some equations

Consider the functions

F(a, x) :=
√

a(1 − x2) f

(
1√
a

√
1 − x

1 + x

)
, G(a, x) := g

(
1√
a

√
1 − x

1 + x

)
, (4.10)

H(a,x) := 1√
a(1 − x2)

h

(
1√
a

√
1 − x

1 + x

)
, H1(a, x) := 1

a(1 − x2)
h′
(

1√
a

√
1 − x

1 + x

)
, (4.11)

where a > 0, x ∈ (−1, 1) and f, g, h are given by (4.1). Set

IF (a) :=
1∫

−1

F(a, x)dx, IG(a) :=
1∫

−1

G(a,x)dx, IH (a) :=
1∫

−1

H(a,x)dx. (4.12)

The following proposition is proved in Appendix A.

Proposition 4.2. Each of the three equations

−c + (h1 − 2c)a − h1IF (a) = 0, (4.13)

−2c − h1IG(a) = 0, (4.14)

(h1 − 2c) − h1IH (a) = 0 (4.15)

has a unique root on the interval (0, ∞). Moreover, all these equations have the same root.

In what follows, we fix a given by Proposition 4.2 and write F(x), G(x), H(x), H1(x), IF , IG, IH , omitting the 
dependence on a.

4.3. Error estimates for Riemann sums

Let N ∈N, and let z0 = −1 or z0 = 0. The following propositions are proved in [14].

Proposition 4.3. Assume that a function F1(x) can be represented as

F1(x) = c1(1 − x)1/2 + c2(1 − x)3/2 + F̃1(x),

where c1, c2 ∈R and F̃1 ∈ C2[z0, 1]. Denote the error estimate of the Riemann sum of the integral 
∫ 1
z0

F1(x)dx by

Rn :=
1∫

z0

F1(x)dx −
⎛
⎝ 1

2n
F1(z0) + 1

2n
F1(1) +

n−1∑
k=z0n+1

1

n
F1

(
k

n

)⎞⎠ .

1. There exists L1 = L1(F1, N) > 0 such that

|Rn| ≤ L1
1

n3/2 , n ≥ N.
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2. If, additionally, F̃1(x) = c3(1 − x)5/2 + c4(1 − x)7/2 + F̄1(x), where c3, c4 ∈ R and F̄ ∈ C4[z0, 1], then there 
exists L̄1 = L̄1(F1, N) > 0 such that∣∣∣(n + 1)2Rn+1 − n2Rn

∣∣∣≤ L̄1
1

n1/2 n ≥ N.

Proposition 4.4. Assume that a function F2(x) can be represented as

F2(x) = c1(1 − x)−1/2 + c2(1 − x)1/2 + F̃2(x), (4.16)

where c1 > 0, c2 ∈ R, and F̃2 ∈ C1[z0, 1]. Then there exists L2 = L2(F2, N) > 0, L∗
2 = L∗

2(F2, N) > c1 and l2 =
l2(F2, N) such that

L∗
2

1

n1/2 − l2
1

n
≤

1∫
z0

F2(x)dx −
n−1∑

k=z0n

1

n
F2

(
k

n

)
≤ L2

1

n1/2 , n ≥ N. (4.17)

In particular, 

∣∣∣∣∣
n−1∑

k=z0n

1
n
F2
(
k
n

)∣∣∣∣∣ is bounded.

Proposition 4.5. Assume that F3 ∈ C0[−1, 1) and |(1 − x)3/2F3(x)| is bounded on [−1, 1). Then there exists L3 =
L3(F3, N) > 0 such that∣∣∣∣∣∣

∑
|k|≤n−1

1

n
F3

(
k

n

)∣∣∣∣∣∣≤ L3n
1/2, n ≥ N.

5. Asymptotics for un(tn)

5.1. Preliminaries

Set (h is defined in (4.1))

ha(x) := h

(
x√
a

)
+ h

(
1

x
√

a

)
, Da := inf

x∈(0,1]ha(x) > h(a−1/2), (5.1)

p := sup
x∈(0,1]

h′
a(x)x

ha(x)
, p(x) := ha(x)

xp
, x > 0. (5.2)

Lemma 5.1.
1. 0 < p ≤ 2e−1 < 1.
2. The function p(x) is nonincreasing on (0, 1).

Proof. 1. Let μ := 1/(4a). Then 2
√

πha(x) = e−μx2
(

1 + eμx2−μx−2
)

> e−μx2
,

2
√

πh′
a(x)x = e−μx2

2μ 
(
−x2 + x−2eμx2−μx−2

)
≤ e−μx2

2μ(x−2 − x2)e−μ(x−2−x2) ≤ 2e−1e−μx2
. Hence, h′

a(x)x <

2e−1ha(x) and p ≤ 2e−1. The inequality p > 0 is obvious.

2. Relations (5.2) imply the following for x ∈ (0, 1]:

′
p(x) = h′

a(x)xp − ha(x)pxp−1

x2p
= 1

xp+1 (h′
a(x)x − pha(x)) ≤ 0.

Hence, p is nonincreasing on (0, 1). �
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For any N ∈N, set

Dp1 := 2
1−p

2 − 1, Dp2 := N

⎛
⎝(1 + 1

N

) 1+p
2 − 1

⎞
⎠ . (5.3)

Lemma 5.2. For any N ∈ N we have for k ≥ 1, n ≥ N the following inequalities hold

(
1 + 1

k

) 1−p
2 ≥ 1 + Dp1

1

k
,

(
1 + 1

n

) 1+p
2 ≥ 1 + Dp2

1

n
, (5.4)

Dp1 < Dp2, Dp1 <
1

2
. (5.5)

Proof. Fix α ∈ (0, 1). Note that

(1 + x)1−α ≤ 1 + x(1 − α), x ∈ (0,1]. (5.6)

Consider the function Pα(x) := ((1 + x)α − 1)/x. Inequality (5.6) implies that

P ′
α(x) = α(1 + x)α−1x − ((1 + x)α − 1)

x2 ≤ 0.

Hence, Pα(x) is nonincreasing and, for any k1 ≥ k2, the following holds:

Pα(1/k1) ≥ Pα(1/k2). (5.7)

Inequalities (5.4) are straightforward consequences of (5.7) for α = (1 − p)/2 and α = (1 + p)/2, respectively. 
Obviously, Dp2 ≥ 2(1+p)/2 − 1 > Dp1 and Dp1 <

√
2 − 1 < 1/2. �

Set (Dp1, Dp2 are given by (5.3))

� := Dp2 − Dp1 − 2(Dp1 + Dp2)Dp1
1

N
. (5.8)

Lemma 5.1 and relations (5.3) imply that � > 0 for large enough N . In what follows, we fix

N ∈ N such that � > 0. (5.9)

Assume that n0 = n0(E) satisfies the following. (We remind that the complete list of requirements determining n0(E)

is given in Section B.4.)

Requirement 1. n0 ≥ N .

Set

Cn := −cn2 + (h1 − 2c)an2 − h1

∑
|k|≤n−1

yn−k(a(n2 − k2)). (5.10)

In other words, the values Cn are obtained by formally substituting t = an2, tk = ak2, and S(t) = {−(n −1), . . . , n −1}
in (2.10). In Section 5.3 below, we will prove the following.

Proposition 5.3. There exist K, K ′ > 0 such that for n ≥ N the following inequalities hold:

|Cn+1 − Cn| ≤ K
1√
n
, |Cn| ≤ K ′√n. (5.11)



1056 P. Gurevich, S. Tikhomirov / Ann. I. H. Poincaré – AN 35 (2018) 1041–1077
Fix K and K ′ from Proposition 5.3 and set

E0 := K + �K ′

(h1 − 2c)�
. (5.12)

Note that E0 > 0 due to (5.9). For each E > E0, set

amin
n := a − 2E

√
n

2n − 1
, amax

n := a + 2E
√

n

2n − 1
. (5.13)

We assume that n0 = n0(E) satisfies the following requirement.

Requirement 2. amin
n ≥ τ0/(2n − 1) for all n ≥ n0, where τ0 was fixed in (4.6).

Note that Requirement 2 implies that

a(n2 − k2) − 2E
√

n ≥ τ0, n ≥ n0, |k| ≤ n − 1. (5.14)

Set

δn := 2A1

aDa

1

n
+ 2A∗

2Ea1/2

Da(amin
n )3/2

1√
n
. (5.15)

Obviously,

amin
n → a, δn → 0 as n → ∞,

amin
n+1 > amin

n , δn+1 < δn, n ≥ n0.

We assume that n0 = n0(E) satisfies the following requirement.

Requirement 3. δn + δn+1 ≤ 2Dp1 for all n ≥ n0.

Below we will use the following constants Sα, Tα , and R. For α > 0, let Sα be the smallest number satisfying the 
inequalities

∑
|k|≤n−1

(n − k)α

(n2 − k2)α+1/2 ≤ Sα

1√
n

, n ≥ N. (5.16)

For α > 1, let Tα be the smallest number satisfying the inequalities

∑
|k|≤n−1

1

(n2 − k2)α
≤ Tα

1

nα
, n ≥ N. (5.17)

Let R be the smallest number satisfying the inequalities

∑
|k|≤n−1

1

(n2 − k2)1/2 ≤ R (= π), n ≥ N. (5.18)

5.2. Candidates for switching moments tn

5.2.1. Formulation of a theorem on existence of the candidates
In this section, we will prove the following result.

Theorem 5.4. Let the assumptions of Theorem 3.2 hold. Then there exists a sequence tk , k ∈ Z, such that 
t0, t±1, . . . , t±n0 are given by (3.1),
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tn = an2 + qn, |qn| ≤ E
√

n, t−n = tn for n ≥ n0 + 1,

tk < tn0 < tn0+1 < . . . , k = 0,1, . . . , n0 − 1,

and the functions

vn(t) := −cn2 + (h1 − 2c)t − h1

∑
|k|≤n−1

yn−k(t − tk), n ≥ n0 + 1, (5.19)

satisfy

vn(tn) = 0, n ≥ n0 + 1. (5.20)

Remark 5.5. The sequence tk in Theorem 5.4 is a sequence of candidates for switching moments in the following 
sense. Assume that, for some n ≥ n0 + 1, we know the following (this is what we will in particular prove in Sections 6
and 7 below):

1. the nodes u0, . . . , un−1 switch at time moments t0, . . . , tn−1, respectively,
2. the nodes un, un+1, un+2, . . . do not switch on the time interval [0, tn).

Then vn(t) coincides with the solution un(t) of problem (2.1)–(2.3) on the time interval [0, tn) and equality (5.20)
implies that tn is the switching moment of un(t).

5.2.2. Proof of Theorem 5.4
First, we substitute (5.19) into (5.20), replace tk and tn by ak2 + qk and an2 + qn, respectively, and expand yn−k

into the Taylor series around a(n2 − k2). This yields

0 = − cn2 + (h1 − 2c)(an2 + qn) − h1

∑
|k|≤n−1

yn−k(a(n2 − k2))

− h1

∑
|k|≤n−1

ẏn−k(a(n2 − k2))(qn − qk)

− h1

∑
|k|≤n−1

1

2
ÿn−k(a(n2 − k2) + ξn,k)(qn − qk)

2, n ≥ n0 + 1, (5.21)

where |ξn,k| ≤ |qn − qk|. We introduce the notation

αn,k := ẏn−k(a(n2 − k2)), βn,k(qn) := 1

2
ÿn−k(a(n2 − k2) + ξn,k)(qn − qk), (5.22)

where we omit an explicit indication of the dependence of βn,k on qk with |k| ≤ n − 1. Further, set for k = 1, 2, . . . ,
n − 1

Jn,k(qn) := αn,k + αn,−k + βn,k(qn) + βn,−k(qn), Jn,0(qn) := αn,0 + βn,0(qn), (5.23)

Jn(qn) :=
n−1∑
k=0

Jn,k, Dn(qn) := h1 − 2c − h1Jn(qn). (5.24)

Using this notation and recalling the definition of the constants Cn in (5.10), we rewrite (5.21) as follows (it will also 
be convenient to replace n by n + 1):

Cn+1 + Dn+1(qn+1)qn+1 + h1

n∑
k=0

Jn+1,k(qn+1)qk = 0, n ≥ n0. (5.25)

Thus, it remains to find a sequence qk , k ∈ Z, such that |qk| ≤ E
√

n0 for k = 0, ±1, . . . , ±n0, |qn+1| ≤ E
√

n + 1, 
q−(n+1) = qn+1 for n = n0, n0 + 1, . . . , and the equalities (5.25) hold.

First, we note that q0, . . . , q±n0 are already prescribed by the assumption of the theorem. Moreover, (5.25) holds 
with n + 1 replaced by n0:



1058 P. Gurevich, S. Tikhomirov / Ann. I. H. Poincaré – AN 35 (2018) 1041–1077
Cn0 + Dn0(qn0)qn0 + h1

n0−1∑
k=0

Jn0,k(qn0)qk = 0. (5.26)

Indeed, Requirement 2 implies that tn0 > tk , k = 0, . . . , n0 −1. Therefore, for all t ∈ [tn0−1, tn0) holds S(t) = {−(n0 −
1), . . . , n0 − 1}, in (2.10) and

un0(tn0) = −cn2
0 + (h1 − 2c)tn0 − h1

∑
|k|≤n0−1

yn0−k(tn0 − tk). (5.27)

Hence, (5.26) is obtained in the same way as (5.25) from (5.19) and (5.20).
Now we proceed by induction. Fix n ≥ n0. Suppose, we have constructed the desired sequence q0, . . . , qn. Let us 

find qn+1 satisfying |qn+1| ≤ E
√

n + 1 and equation (5.25). We rewrite equation (5.25) in the form

qn+1 = F(qn+1), F(qn+1) := − Cn+1

Dn+1(qn+1)
− h1

n∑
k=0

Jn+1,k(qn+1)

Dn+1(qn+1)
· qk. (5.28)

To prove Theorem 5.4, it now suffices to show that if qk ∈ [−E
√

n, E
√

n] for k = 0, ±1, . . . , ±n, then F has a 
fixed point on the interval [−E

√
n + 1, E

√
n + 1].

To do so, we need to show that F maps the interval [−E
√

n + 1, −E
√

n + 1] into itself. Let us indicate the 
main difficulty on this way. We will see in Sections 5.3 and 5.4 that Cn ∼ √

n, Dn ∼ 1/
√

n, and Jn+1,k(qn+1) ∼
1/

√
n2 − k2, provided that |qn+1| ≤ E

√
n + 1. Therefore, the straightforward attempt to estimate |F(qn+1)| would 

yield

|F(qn+1)| ≤
∣∣∣∣ Cn+1

Dn+1(qn+1)

∣∣∣∣+ E
√

n · h1

n∑
k=0

∣∣∣∣Jn+1,k(qn+1)

Dn+1(qn+1)

∣∣∣∣ , (5.29)

and we would obtain nothing better than |F(qn+1)| ≤ const · n.
To overcome this difficulty, we will use the following trick. Note that, by the induction hypothesis, (5.25) holds 

with n + 1 replaced by n. Therefore, we can multiply (5.25) by 1 +�/n with an appropriate � > 0 and subtract (5.25)
with n + 1 replaced by n. As a result, we will obtain the equation

qn+1 = F̃(qn+1), F̃(qn+1) = − C̃n+1

D̃n+1(qn+1)
− h1

n∑
k=0

J̃n+1,k(qn+1)

D̃n+1(qn+1)
· qk, (5.30)

which is equivalent to (5.28). The advantage of this new representation will be that we will obtain C̃n ∼ 1/
√

n and 
D̃n ∼ 1/

√
n. Hence, the first term in the formula for F̃ can be estimated by a constant α1 > 0. Furthermore, we will 

show that the expression h1

n∑
k=0

∣∣∣∣∣ J̃n+1,k(qn+1)

D̃n+1(qn+1)

∣∣∣∣∣ is estimated by 1 − α2/
√

n with α2 > 0. Therefore, (5.30) will yield

|F̃(qn+1)| ≤ α1 + E
√

n − Eα2 < E
√

n + 1, (5.31)

if E ≥ E0 = α1/α2. In particular, it will turn out that the appropriate � is given by (5.8) and E0 by (5.12). Interestingly, 
� = 0 would not be sufficient for this scheme as it would then follow that α2 = 0.

To make the above argument rigorous, we need the following proposition, in which we do not explicitly indicate 
the dependence of the functions on qn+1.

Proposition 5.6. Let the assumptions of Theorem 3.2 hold. Then for any n ≥ n0 and q0, q±1, . . . , q±(n+1) ∈
[−E

√
n + 1, E

√
n + 1], the following holds with � given by (5.8):

1. Jn,k ≥ 0, k = 0, 1, . . . , n − 1,

2. Jn,k −
(

1 + �

n

)
Jn+1,k ≥ 0, k = 0, 1, . . . , n − 1,

3. Dn − h1

(
1 + �

n

)
Jn+1,n ≥ 0.
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Now, assuming that Proposition 5.6 is true, we complete the proof of Theorem 5.4. After that, in Section 5.4, we 
prove Proposition 5.6.

Substituting n instead of n + 1 into (5.25) and using (5.26) for n = n0 or the induction hypothesis for n > n0 (and 
omitting the dependence of Jn,k on qn), we obtain the equation

Cn + Dnqn + h1

n−1∑
k=0

Jn,kqk = 0.

Multiplying (5.25) by 1 + �/n and subtracting the latter expression we have

0 = (Cn+1 − Cn) + �

n
Cn+1 +

(
1 + �

n

)
Dn+1qn+1

+
((

1 + �

n

)
h1Jn+1,n − Dn

)
qn + h1

n−1∑
k=0

((
1 + �

n

)
Jn+1,k − Jn,k

)
qk.

Equivalently (cf. (5.30)), qn+1 = F̃(qn+1), where F̃(qn+1) satisfies(
1 + �

n

)
Dn+1F̃(qn+1) = −

(
(Cn+1 − Cn) + �

n
Cn+1

)
+
(
Dn −

(
1 + �

n

)
h1Jn+1,n

)
qn

+ h1

n−1∑
k=0

(
Jn,k −

(
1 + �

n

)
Jn+1,k

)
qk.

According to Proposition 5.6, all the coefficients at qk , qn, qn+1 are positive. The inductive hypothesis |qk| ≤ E
√

n, 
k = 0, . . . , n, Proposition 5.3, and the inequality E ≥ E0 imply that(

1 + �

n

)
Dn+1|F̃(qn+1)| ≤

∣∣∣(Cn+1 − Cn) + �

n
Cn+1

∣∣∣
+
(
Dn −

(
1 + �

n

)
h1Jn+1,n

)
E

√
n + h1

n−1∑
k=0

(
Jn,k −

(
1 + �

n

)
Jn+1,k

)
E

√
n

≤ K + �K ′
√

n
+ E

√
n

((
Dn + h1

n−1∑
k=0

Jn,k

)
− h1

(
1 + �

n

)(
Jn+1,n +

n−1∑
k=0

Jn+1,k

))
.

Combining this with (5.24) yields (cf. (5.31))(
1 + �

n

)
Dn+1|F̃(qn+1)| ≤ (K + �K ′) 1√

n
+ E

√
n
(
(h1 − 2c) −

(
1 + �

n

)
((h1 − 2c) − Dn+1)

)

= (K + �K ′) 1√
n

+ E
√

nDn+1

(
1 + �

n

)
− E

√
n(h1 − 2c)

�

n
.

The latter estimate and the inequality E ≥ E0, where E0 is given by (5.12), imply(
1 + �

n

)
Dn+1|F̃(qn+1)| ≤ E

√
nDn+1

(
1 + �

n

)
.

Hence, |F̃(qn+1)| ≤ E
√

n < E
√

n + 1. Therefore, F̃ maps [−E
√

n + 1, E
√

n + 1] into itself.
Furthermore, the function F̃ is continuous, because the functions

βm,k(qm) =
{

ym−k(a(m2−k2)+qm−qk)−ym−k(a(m2−k2))
qm−qk

− αm,k, qm �= qk,

0, qm = qk,

are continuous with respect to qm ∈ R for k = 0, . . . , m − 1 and Dn+1(qn+1) > 0 by Proposition 5.6. Hence, by 
Brouwer’s fixed-point theorem, the map F̃ has a fixed point on the interval [−E

√
n + 1, E

√
n + 1]. The latter implies 

Theorem 5.4.
It remains to prove Propositions 5.3 and 5.6, which we do in the next two sections.
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5.3. Proof of Proposition 5.3

Taking into account equalities (4.3) and (4.13) we write (5.10) as follows:

Cn = C(1)
n + C(2)

n + C(3)
n ,

where

C(1)
n := h1

⎛
⎝n2IF −

∑
|k|≤n−1

√
a(n2 − k2)f

(
n − k√

a(n2 − k2)

)⎞⎠ ,

C(2)
n := −h1

∑
|k|≤n−1

1√
a(n2 − k2)

f̃

(
n − k√

a(n2 − k2)

)
,

C(3)
n := −h1

∑
|k|≤n−1

r̃1(n − k, a(n2 − k2)).

Proof of the second inequality in (5.11). Below we separately estimate C(1)
n and C(2)

n + C
(3)
n .

Step 1. Proposition 4.3 (item 1) applied to the function F(x) (see (4.10)), implies that

|C(1)
n | ≤ h1L1(F,N)

√
n = K ′

1
√

n, K ′
1 := h1L1(F,N). (5.32)

Step 2. Due to (4.3), (4.3), and (4.7),

|C(2)
n + C(3)

n | =
∣∣∣∣∣∣h1

∑
|k|≤n−1

r0(n − k, a(n2 − k2))

∣∣∣∣∣∣≤ h1

∑
|k|≤n−1

A0√
a(n2 − k2)

≤ l1,

where, by (5.18),

l1 := h1A0
1

a1/2 R. (5.33)

Hence inequality (5.11) is satisfied for

K ′ := K ′
1 + l1

1√
N

. � (5.34)

Proof of the first inequality in (5.11). Below we separately estimate C(1)
n+1 − C

(1)
n , C(2)

n+1 − C
(2)
n , and C(3)

n+1 − C
(3)
n in 

Steps 1, 2, and 3 respectively.
Step 1. Applying Proposition 4.3 (item 2) to the function F(x), we conclude that

|C(1)
n+1 − C(1)

n | ≤ K1
1√
n

, K1 := h1L̄1(F,N). (5.35)

Step 2. Set

F̃ (x) := 1√
a(1 − x2)

f̃

(
1 − x√

a(1 − x2)

)
, I

F̃
:=

1∫
−1

F̃ (x)dx. (5.36)

Note that lim
x→1

F̃ (x)(1 − x)1/2 < 0. Therefore, by Proposition 4.4 applied to the function −F̃ (x), for some constants 

L
f̃

, L∗
f̃

, l
f̃

≥ 0, we have

L∗
f̃

1√
n

− l
f̃

1

n
≤ −I

F̃
− 1

h1
C(2)

n ≤ L
f̃

1√
n
. (5.37)

Hence,
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|C(2)
n+1 − C(2)

n | ≤ K2
1√
n
, K2 := h1

(
L

f̃
− L∗

f̃
+ l

f̃

1√
N

)
(5.38)

Step 3. Inequalities (4.7) and (5.17) imply that

|C(3)
n | ≤ h1Ã1

∑
|k|<n

1

(a(n2 − k2))3/2 ≤ h1Ã1
1

a3/2 T3/2
1

n3/2 .

Hence,

|C(3)
n+1 − C(3)

n | ≤ K3
1

n3/2 , K3 := 2h1Ã1
1

a3/2 T3/2 (5.39)

Summarizing (5.35), (5.38), and (5.39) yields

|Cn+1 − Cn| ≤ K
1√
n
, K := K1 + K2 + K3

1

N
. � (5.40)

5.4. Proof of Proposition 5.6

5.4.1. Proof of Proposition 5.6: Preliminaries
For k = 1, . . . , n − 1, consider the following representation of Jn,k (see (5.23) and (4.4)):

Jn,k = J main
n,k + (wn,k + wn,−k) + (βn,k + βn,−k),

J main
n,k := γn,k + γn,−k, γn,±k := 1√

a(n2 − k2)
h

(√
n ∓ k

a(n ± k)

)
, wn,±k := r1(n ∓ k, (a(n2 − k2)).

For k = 0, we have

Jn,0 = J main
n,0 + wn,0 + βn,0, J main

n,0 := γn,0 := 1√
an2

h

(
1√
a

)
, wn,0 := r1(n, an2).

The general idea is to prove each assertion of Proposition 5.6 for J main
n,k first, and then consider Jn,k as a small 

perturbation of J main
n,k . We formulate this fact as a lemma.

Lemma 5.7. Let δn be given by (5.15). Then

|Jn,k − J main
n,k |

J main
n,k

≤ δn

n

n + k

1

n − k
, k ∈ {0,1, . . . , n − 1}. (5.41)

Proof. Fix k ∈ {1, . . . , n − 1} (the case k = 0 is similar). Due to (4.7) and (5.14),

|wn,k + wn,−k| ≤ 2A1
1

(a(n2 − k2))3/2 . (5.42)

Definition (5.22) of βn,k , (5.14), (4.9) and (5.13) imply that

|βn,k + βn,−k| ≤ max|ξn,k |≤|qn−qk |
|ÿn−k(a(n2 − k2) + ξn,k)| · |qn − qk|

≤ 2A∗
2E

√
n

(a(n2 − k2) − 2E
√

n)3/2
≤ 2A∗

2E
√

n

(amin
n (n2 − k2))3/2

. (5.43)

Note that, by (5.1),

J main
n,k ≥ Da

(a(n2 − k2))1/2 . (5.44)

Relations (5.42)–(5.44) imply
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|wn,k + wn,−k|
J main

n,k

≤
2A1

1
(a(n2−k2))3/2

Da

(a(n2−k2))1/2

= 2A1

aDa

1

n + k

1

n − k
,

|βn,k + βn,−k|
J main

n,k

≤
2A∗

2E
√

n

(amin
n (n2−k2))3/2

Da

(a(n2−k2))1/2

= 2A∗
2Ea1/2

Da(amin
n )3/2

√
n

n + k

1

n − k
.

Hence, inequality (5.41) holds. �
5.4.2. Proof of Proposition 5.6: Part 1

Since J main
n,k > 0, it suffices to show that the right-hand side in (5.41) is less than or equal to 1. The latter is true 

because δn ≤ 1 due to (5.5) and Requirement 3.

5.4.3. Proof of Proposition 5.6: Part 2
Fix k ∈ {1, . . . , n − 1} (the case k = 0 can be treated similarly). Note that

J main
n,k = 1√

a(n2 − k2)

(√
n − k

n + k

)p

p

(√
n − k

n + k

)
=

p

(√
n−k
n+k

)
√

a(n − k)(1−p)/2(n + k)(1+p)/2
,

where p(x), x ∈ (0, 1], is given by (5.2). Taking into account that p(x) is nonincreasing (see Lemma 5.1, item 2) 
and using (5.4), we have

J main
n,k

J main
n+1,k

≥ (n + 1 − k)(1−p)/2(n + 1 + k)(1+p)/2

(n − k)(1−p)/2(n + k)(1+p)/2
=
(

1 + 1

n − k

)(1−p)/2(
1 + 1

n + k

)(1+p)/2

≥
(

1 + Dp1
1

n − k

)(
1 + Dp2

1

n + k

)
≥ 1 + Dp1

1

n − k
+ Dp2

1

n + k
. (5.45)

Combining (5.45) with (5.41) yields

Jn,k

Jn+1,k

= J main
n,k

J main
n+1,k

1 + Jn,k−J main
n,k

J main
n,k

1 + Jn+1,k−J main
n+1,k

J main
n+1,k

≥ J main
n,k

J main
n+1,k

1 − δn

n−k
n

n+k

1 + δn+1
n+1−k

n+1
n+1+k

≥ J main
n,k

J main
n+1,k

(
1 − δn

n − k

n

n + k

)(
1 + δn+1

n − k

n

n + k

)−1

≥
(

1 + Dp1
1

n − k
+ Dp2

1

n + k

)(
1 − (δn + δn+1)

n

n + k

1

n − k

)
.

It is easy to show that Requirement 3 implies that the minimum of the last expression is achieved for k = 0. Hence, 
using Requirement 3 again, we obtain (� is given by (5.8))

Jn,k

Jn+1,k

≥
(

1 + (Dp1 + Dp2)
1

n

)(
1 − (δn + δn+1)

1

n

)

≥ 1 +
(

Dp1 + Dp2 − (δn + δn+1) − (Dp1 + Dp2)(δn + δn+1)
1

N

)
1

n
≥ 1 + �

n
.

5.4.4. Proof of Proposition 5.6: Part 3
Using (5.24) and the notation in the beginning of Section 5.4.1, we write

Dn − h1Jn+1,n

(
1 + �

n

)
= (h1 − 2c) − h1Jn − h1Jn+1,n

(
1 + �

n

)
= �1,n − (�2,n + �3,n + �4,n), (5.46)

where

�1,n := (h1 − 2c) − h1

n−1∑
J main

n,k , �2,n := h1γn+1,n

(
1 + �

n

)
,

k=0
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�3,n := h1

n−1∑
k=0

(
Jn,k − J main

n,k

)
, �4,n := h1

((
Jn+1,n − J main

n+1,n

)
+ γn+1,−n

)(
1 + �

n

)
.

In steps 1–4 below, we will estimate �1,n, . . . , �4,n. We will see that �1,n and �2,n are “large” with respect to 
�3,n and �4,n, which motivates the splitting in (5.46). Set

H̃1(x) := H(x) + H(−x), x ∈ [0,1),

where H(x) is given by (4.11). Then for k = 1, . . . , n − 1 we have

J main
n,k = 1

n
H̃1

(
k

n

)
, J main

n,0 = 1

2n
H̃1(0).

Step 1. Proposition 4.4 applied to the function H(x) (see (4.11)) and equation (4.12) imply

�1,n ≥ h1

(
CH

1√
n

− lH
1

n

)
,

CH := L∗
2(H,N), lH := l2(H,N). (5.47)

Step 2. Since the function h(x) is decreasing,

�2,n ≤ h1
1√
2a

h(0)
1√
n

(
1 + �

n

)
.

Step 3. Using (5.41) and Proposition 4.5 applied to the function 
1

1 − x2 H(x), we have

|�3,n| ≤ h1δn

n−1∑
k=0

n

n2 − k2 J main
n,k ≤ h1δnCH2

1√
n

,

where

CH2 := L3

(
1

1 − x2 H

)
. (5.48)

Step 4. Using (5.41), we obtain

|Jn+1,n − J main
n+1,n| ≤ δn+1

n + 1

2n + 1
J main

n+1,n ≤ δn+1
n + 1

2n + 1

(
h(0)√

2a

1√
n

+ γn+1,−n

)
.

Note that

γn+1,−n ≤ 1√
2a

h

(√
2n + 1

a

)
1√
n
.

Summarizing the last two inequalities, we have

�4,n ≤ h1
1√
2a

(
1 + �

n

)(
h(0)

n + 1

2n + 1
δn+1 + (1 + δn+1)h

(√
2n + 1

a

))
1√
n
.

Steps 1–4 yield Proposition 5.6 (part 2), if n0 = n0(E) satisfies the following.

Requirement 4. For n ≥ n0, the following holds:

CH − 1√
2a

h(0) ≥ lH
1√
n

+ �√
2a

h(0)
1

n
+ CH2δn

+ 1√
2a

(
1 + �

n

)(
h(0)

n + 1

2n + 1
δn+1 + (1 + δn+1)h

(√
2n + 1

a

))
.

Note that, according to (5.47) and Proposition 4.4, CH − h(0)/
√

2a > 0.
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6. Asymptotics for ∇un(tn)

We consider the sequence tk (k ∈ Z) given by Theorem 5.4 and the quantities

∇vn(tn) = −2cn − c − h1

∑
|k|≤n−1

∇yn−k(tn − tk), n ≥ n0 + 1, (6.1)

where vn(t) is given by (5.19).

Remark 6.1. Under the assumptions of Remark 5.5, we have ∇vn(tn) = ∇un(tn).

In this section, we will prove that ∇vn(tn) < 0.

Theorem 6.2. There exists A∇ > 0 depending on h1, c, E such that, for all n ≥ n0 + 1,∣∣∣∣∇vn(tn) + 3h1

4

∣∣∣∣≤ A∇n−1/2, ∇vn(tn) ≤ −3h1

8
.

6.1. Preliminaries

Set

xn,k := k

n
. (6.2)

Consider a constant Kh1 such that∣∣∣∣∣∣
∑

|k|≤n−1

1

n

1

a(1 − x2
n,k)

h′
(

1√
a

√
1 − xn,k

1 + xn,k

)∣∣∣∣∣∣≤ Kh1, n ≥ N. (6.3)

Such a constant exists because the left-hand side in (6.3) is the Riemann sum of a finite integral (note that h′(0) = 0).

6.2. Leading order terms

Substituting tk given by Theorem 5.4 into (6.1), we have

∇vn(tn) = −2cn − c − h1

∑
|k|≤n−1

∇yn−k(a(n2 − k2) + qn − qk). (6.4)

Due to the Taylor expansion,∑
|k|≤n−1

∇yn−k(a(n2 − k2) + qn − qk) =
∑

|k|≤n−1

∇yn−k(a(n2 − k2)) + �1,n, (6.5)

where

�1,n :=
∑

|k|≤n−1

∇ẏn−k(a(n2 − k2))(qn − qk) + 1

2

∑
|k|≤n−1

∇ÿn−k(a(n2 − k2) + ξn,k)(qn − qk)
2 (6.6)

with |ξn,k| ≤ |qn − qk| ≤ 2En1/2. Using (4.5) and the functions G(x) = G(a, x) and H(x) = H(a, x) given by (4.10)
and (4.11), we represent the sum in (6.5) as follows:∑

|k|≤n−1

∇yn−k(a(n2 − k2)) = n
∑

|k|≤n−1

1

n
G(xn,k) + 1

2

∑
|k|≤n−1

1

n
H(xn,k) + �2,n, (6.7)

where

�2,n :=
∑

w0(n − k, a(n2 − k2)). (6.8)

|k|≤n−1
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Now we replace the sums in (6.7) by the integrals. Set (recall that G(1) = −1/2)

�g,n :=
∑

|k|≤n−1

1

n
G(xn,k) − IG + G(1)

2n
=

∑
|k|≤n−1

1

n
G(xn,k) − IG − 1

4n
, (6.9)

�h,n :=
∑

|k|≤n−1

1

n
H(xn,k) − IH , (6.10)

where IG = IG(a) and IH = IH (a) are given by (4.12). Then (6.7) takes the form

∑
|k|≤n−1

∇yn−k(a(n2 − k2)) = IGn + IH

2
+ 1

4
+ n�g,n + �h,n

2
+ �2,n. (6.11)

Combining (6.4), (6.5), and (6.11) and using Lemma 4.2, we obtain

∇vn(tn) = (−2c − h1IG)n +
(

−c − h1IH

2
− h1

4

)
− h1

(
�1,n + �2,n + n�g,n + �h,n

2

)

= −3h1

4
− h1

(
�1,n + �2,n + n�g,n + �h,n

2

)
. (6.12)

6.3. Remainders and proof of Theorem 6.2

It remains to estimate �1,n, �2,n, �g,n, and �h,n in (6.12).

Lemma 6.3. |�1,n| ≤ 2EKh1n
−1/2 +

(
2EB1T3/2

a3/2 + 2E2B∗
2

T2

(amin
n )2

)
n−1.

Proof. Using (6.6), we write �1,n = �′
1,n + �′′

1,n, where

�′
1,n :=

∑
|k|≤n−1

∇ẏn−k(a(n2 − k2))(qn − qk),

�′′
1,n := 1

2

∑
|k|≤n−1

∇ÿn−k(a(n2 − k2) + ξn,k)(qn − qk)
2.

Using (4.5), (4.8), (6.3), (5.17), and the inequality |qn − qk| ≤ 2En1/2, we have

|�′
1,n| ≤ 2En−1/2

∣∣∣∣∣∣
∑

|k|≤n−1

1

n

1

a(1 − x2
n,k)

h′
(

1√
a

√
1 − xn,k

1 + xn,k

)∣∣∣∣∣∣
+

∑
|k|≤n−1

2EB1n
1/2

(a(n2 − k2))3/2 ≤ 2EKh1n
−1/2 + 2EB1T3/2

a3/2 n−1.

Further, using (4.9), (5.13) and the inequalities |ξn,k| ≤ |qn − qk| ≤ 2En1/2, we have

|�′′
1,n| ≤

1

2

∑
|k|≤n−1

4E2B∗
2 n(

amin
n (n2 − k2)

)2 ≤ 2E2B∗
2 T2

(amin
n )2

n−1. � (6.13)

Lemma 6.4. |�2,n| ≤ ∑
|k|≤n−1

B0

a(n2 − k2)
.

Proof. Proof Lemma 6.4 is a straightforward consequence of (6.8) and (4.8). �
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Remark 6.5. For n ≥ 4, we have

∑
|k|≤n−1

1

n2 − k2 = n−2 + 2
n−1∑
k=1

1

n2 − k2 ≤ n−2 + 2n−1
n−1∑
k=1

1

n − k
≤ n−1(2 ln(n − 1) + 2 + n−1) → 0.

Propositions 4.3 (item 1) and 4.4 imply the following.

Lemma 6.6. There exists Kg > 0 such that for n ≥ N the following holds: |�g,n| ≤ Kgn
−3/2.

Lemma 6.7. There exists Kh > 0 such that for n ≥ N the following holds: |�h,n| ≤ Khn
−1/2.

Now Theorem 6.2 follows from (6.12) and Lemmas 6.3–6.7, if the following is satisfied.

Requirement 5. For n ≥ n0, the following holds:

2EKh1n
−1/2 +

(
2EB1T3/2

a3/2 + 2E2B∗
2 T2

(amin
n )2

)
n−1 +

∑
|k|≤n−1

B0

a(n2 − k2)
+
(

Kg + Kh

2

)
n−1/2 ≤ 3

8
. (6.14)

7. Estimates of un(t), un+1(t), . . . for t ∈ (tn−1, tn)

7.1. Uniqueness of a switching moment

As before, we consider the sequence tk and the functions vn given by Theorem 5.4. In this section, we will prove 
the following result.

Theorem 7.1. For all n ≥ n0 + 1, we have

vn(t) < 0, t ∈ [tn−1, tn). (7.1)

Fix θ0 > 0, satisfying the inequality (Kh is given by Lemma 6.7)

θ0Kh <
1

4
. (7.2)

The proof of Theorem 7.1 is based on the following proposition.

Proposition 7.2. Let the assumptions of Theorem 3.2 hold. Then, for all n ≥ n0 + 1,

1. v̇n(t) ≤ 3h1Kh

2
(n − 1)−1/2 for all t ∈ [tn−1, tn−1 + θ0(n − 1)1/2],

2. v̈n(t) ≥ 0 for all t ∈ [tn−1 + θ0(n − 1)1/2, tn].

We first assume that Proposition 7.2 is true and prove Theorem 7.1. The proof of Proposition 7.2 is given in 
Sections 7.2 and 7.3 below.

Proof of Theorem 7.1. By (3.2) (for n = n0 + 1) and Theorem 6.2 (for n ≥ n0 + 2), we have vn(tn−1) ≤ −3h1/8. 
Therefore, Proposition 7.2 (part 1) and inequality (7.2) imply that, for t ∈ [tn−1, tn−1 + θ0(n − 1)1/2],

vn(t) = vn(tn−1) +
t∫

tn−1

v̇n(s) ds ≤ −3h1

8
+ θ0(n − 1)1/2 3h1Kh

2
(n − 1)−1/2 < 0. (7.3)

Now, for t ∈ [tn−1 + θ0(n − 1)1/2, tn], Proposition 7.2 (part 2) imply that vn(t) can vanish no more than once, and 
thus, by Theorem 5.4, this happens no earlier than at t = tn. �
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As a corollary of Theorem 7.1, we obtain the following result.

Theorem 7.3. For all n ≥ n0 + 1, we have

vj (t) < 0, t ∈ [tn−1, tn), j ≥ n.

Proof. First, we show that

∇vj (tn) < 0, j ≥ n. (7.4)

To do so, we estimate �vj(t) for t ∈ (tn−1, tn] and j ≥ n. Using (5.19), (2.5), and the fact that ẏn(t) ≥ 0, we have

�vj (t) = −2c − h1

∑
|k|≤n−1

�yj−k(t − tk) = −2c − h1

∑
|k|≤n−1

ẏj−k(t − tk) ≤ −2c.

In particular, �vj (tn) < 0. Together with the relations vn(tn) = 0 (Theorem 5.4) and vn+1(tn) < 0 (Theorem 6.2), this 
yields (7.4).

On the other hand, (2.6) implies that ∇yj−k(t − tk) decreases and thus

∇vj (t) = −c(2j + 1) − h1

∑
|k|≤n−1

∇yj−k(t − tk)

increases. Together with (7.4), this yields ∇vj (t) < 0 for all t ∈ (tn−1, tn] and j ≥ n. Since, additionally, vn(t) < 0 for 
all t ∈ [tn−1, tn) (Theorem 7.1), the desired result follows. �
Remark 7.4. Under the assumptions of Remark 5.5, Theorem 7.3 implies that tn is indeed the switching moment of 
the node un.

Remark 7.5. Theorem 7.1 implies that the equation in (5.28) has a unique root on the interval [−E
√

n + 1, E
√

n + 1]

In the rest part of this section, we will prove Lemma 7.1

7.2. Proof of Proposition 7.2: Part 1

7.2.1. Leading order terms
We take θ ∈ [0, θ0(n − 1)1/2] and set t = tn−1 + θ ∈ [tn−1, tn−1 + θ0(n − 1)1/2].
First, we represent v̇n(tn−1 + θ), using (5.19) and the relation t−(n−1) = tn−1, as follows:

v̇n(tn−1 + θ) = h1 − 2c − h1

∑
|k|≤n−2

ẏn−1−k(tn−1 + θ − tk)

− h1

∑
|k|≤n−2

∇ẏn−1−k(tn−1 + θ − tk) − h1
(
ẏ1(θ) + ẏ2n−1(θ)

)
.

(7.5)

Set

m := n − 1.

Since ẏ1(θ) ≥ 0 and ẏ2n−1(θ) ≥ 0 for all θ ≥ 0, we obtain

v̇n(tm + θ) ≤ h1 − 2c − h1

∑
|k|≤m−1

ẏm−k(tm + θ − tk) − h1�3,m, (7.6)

where

�3,m :=
∑

|k|≤m−1

∇ẏm−k(tm + θ − tk). (7.7)

Further, to apply the Taylor expansion in (7.6), we note that
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tm − tk + θ = a(m2 − k2) + (qm − qk + θ
)
.

Therefore, using (4.4), the function H(x) = H(a, x) given by (4.11), and (6.10), we obtain∑
|k|≤m−1

ẏm−k(tm + θ − tk) =
∑

|k|≤m−1

ẏm−k(a(m2 − k2)) + �4,m

=
∑

|k|≤m−1

1

m
H(xm,k) + �5,m + �4,m = IH + �h,m + �5,m + �4,m,

(7.8)

where

�4,m :=
∑

|k|≤m−1

ÿm−k(a(m2 − k2) + ξm,k)
(
qm − qk + θ

)
, (7.9)

�5,m :=
∑

|k|≤m−1

r1(m − k, a(m2 − k2)), (7.10)

xm,k = m/k, and −2Em1/2 ≤ ξm,k ≤ 2Em1/2 + θ0m
1/2.

Combining (7.6), (7.8), and Lemmas 4.2 and 6.7, we have

v̇n(tm + θ) ≤ h1

(
Khm

−1/2 + |�3,m| + |�4,m| + |�5,m|
)

. (7.11)

7.2.2. Remainders
It remains to estimate �3,m, �4,m, and �5,m in (7.11).

Lemma 7.6. |�3,m| ≤ Kh1m
−1 +

(
B1T3/2

a3/2 + (2E + θ0)B
∗
2

T2

(amin
m )2

)
m−3/2.

Proof. Using (7.7), we write �3,m = �′
3,m + �′′

3,m, where

�′
3,m :=

∑
|k|≤m−1

∇ẏm−k(a(m2 − k2)),

�′′
3,m :=

∑
|k|≤m−1

∇ÿm−k(a(m2 − k2) + ξm,k)(qm − qk + θ).

Using (4.5), (4.8), (6.3), and (5.17), we have

|�′
3,m| ≤ m−1

∣∣∣∣∣∣
∑

|k|≤m−1

1

m

1

a(1 − x2
m,k)

h′
(

1√
a

√
1 − xm,k

1 + xm,k

)∣∣∣∣∣∣
+

∑
|k|≤m−1

B1

(a(m2 − k2))3/2 ≤ Kh1m
−1 + B1

T3/2

a3/2 m−3/2.

Further, using (4.9), (5.17), and the inequalities |qm −qk +θ | ≤ (2E +θ0)m
1/2 and a(m2 −k2) +ξm,k ≥ amin

m (m2 −
k2), we have

|�′′
3,m| ≤

∑
|k|≤m−1

(2E + θ0)m
1/2B∗

2(
amin
m (m2 − k2)

)2 ≤ (2E + θ0)B
∗
2

T2

(amin
m )2

m−3/2. �

Lemma 7.7. |�4,m| ≤ (2E + θ0)A
∗
2T3/2

(amin
m )3/2

m−1.

Proof. Using (7.9), (4.9), (5.17), and the inequalities |qm − qk + θ | ≤ (2E + θ0)m
1/2 and a(m2 − k2) + ξm,k ≥

amin
m (m2 − k2), we have
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|�4,m| ≤
∑

|k|≤m−1

(2E + θ0)A
∗
2m

1/2(
amin
m (m2 − k2)

)3/2 ≤ (2E + θ0)A
∗
2T3/2

(amin
m )3/2

m−1. �

Lemma 7.8. |�5,m| ≤ A1T3/2

a3/2 m−3/2.

Proof. The assertion is a straightforward consequence of (7.10), (4.7), and (5.17). �
Now inequality (7.11) together with Lemmas 7.6–7.8 yield part 1 in Proposition 7.2, if the following requirement 

is satisfied

Requirement 6. For n ≥ n0, the following holds:(
Kh1 + (2E + θ0)A

∗
2T3/2

(amin
m )3/2

)
m−1/2 +

(
B1T3/2

a3/2 + (2E + θ0)B
∗
2 T2

(amin
m )2

+ A1T3/2

a3/2

)
m−1 ≤ Kh

2
. (7.12)

7.3. Proof of Proposition 7.2: Part 2

7.3.1. Preliminaries
We introduce the function

�(x) := h′′
(

1√
a

√
1 − x

1 + x

)
+ h′′

(
1√
a

√
1 + x

1 − x

)
, x ∈ (0,1). (7.13)

Note that

lim
x→1

�(x) = h′′(0) = − 1

4
√

π
. (7.14)

Fix

η ∈
(

0,
1

4
√

π

)
. (7.15)

We will need the following lemma.

Lemma 7.9. There exist x0 ∈ (0, 1) and ε0 > 0 such that

h′′
(

1 − x√
a(1 − x2) + ε1

)
+ h′′

(
1 + x√

a(1 − x2) + ε1

)
≤ −η (7.16)

for all x ∈ [x0, (m − 1)/m] and ε1 with

−min

(
ε0,

a

2m

(
2 − 1

m

))
≤ ε1 ≤ ε0. (7.17)

Proof. Choose η1 ∈ (η, 1/(4
√

π)). Equation (7.14) implies that there is x0 ∈ [0, 1) such that

�(x) ≤ −η1, x ∈ [x0,1). (7.18)

It is not difficult to check that there exists ε0 > 0 such that∣∣∣∣∣h′′
(

1 − x√
a(1 − x2) + ε

)
− h′′

(
1 − x√

a(1 − x2)

)∣∣∣∣∣≤ η1 − η

2
(7.19)

for all x ∈ (−1, 1) and ε satisfying |ε| ≤ ε0 and ε ≥ −a(1 − x2)/2.
Formulas (7.18) and (7.19) imply Lemma 7.9. �



1070 P. Gurevich, S. Tikhomirov / Ann. I. H. Poincaré – AN 35 (2018) 1041–1077
We fix x0 and ε0 from Lemma 7.9 and b such that

b > 2a. (7.20)

We introduce numbers R1 and R2 satisfying∑
|k|<x0m

1

(m2 − k2)3/2 ≤ R1m
−2, m ≥ N, (7.21)

∑
k∈[x0m,m−1]

1

(amax
m (m2 − k2) + bm)3/2 ≥ R2m

−3/2, m ≥ max

(
N,

1

1 − x0

)
. (7.22)

Set

Bh2 := sup
x∈[0,∞)

|h′′(x)| = −h′′(0), Bh4 := sup
x∈[0,∞)

|h′′′′(x)| = h′′′′(0). (7.23)

7.3.2. Leading order terms
As before, we assume that m = n −1. We take θ ∈ [θ0m

1/2, bm] and set t = tm+θ . Then t ∈ [tm+θ0m
1/2, tm+bm], 

and the latter interval contains [tm + θ0m
1/2, tn], if the following is satisfied.

Requirement 7. For n ≥ n0, the following holds (see (7.20)):

a(n − 1)2 − E(n − 1)1/2 + b(n − 1) ≥ an2 + En1/2. (7.24)

First, we represent v̈n(tn−1 + θ), using (5.19), as follows (cf. (7.5)):

v̈n(tm + θ) = −h1(I1,m + I2,m + �6,m), (7.25)

where

I1,m :=
∑

|k|≤m−1

ÿm−k(tm + θ − tk), I2,m := ÿ1(θ) + ÿ2m+1(θ), (7.26)

�6,m :=
∑

|k|≤m−1

∇ÿm−k(tm + θ − tk). (7.27)

Using (4.4), we represent I1,m as follows:

I1,m =
∑

|k|≤m−1

1

(a(m2 − k2) + qm − qk + θ)3/2 h′′
(

m − k√
a(m2 − k2) + qm − qk + θ

)
+ �7,m, (7.28)

where

�7,m :=
∑

|k|≤m−1

r2(m − k, a(m2 − k2) + qm − qk + θ). (7.29)

Now we split the sum in (7.28) into two sums in which the summation is taken over |k| < x0m and |k| ∈
[x0m, m −1], respectively. Let us estimate the first sum, using (7.21), (7.23), and the inequality a(m2 −k2) +qm−qk ≥
amin
m (m2 − k2):∣∣∣∣∣∣

∑
|k|<x0m

1

(a(m2 − k2) + qm − qk + θ)3/2 h′′
(

m − k√
a(m2 − k2) + qm − qk + θ

)∣∣∣∣∣∣
≤

∑
|k|<x0m

Bh2

(amin
m ((m2 − k2))3/2

≤ Bh2R1

(amin
m )3/2

m−2.

(7.30)

To estimate the second sum (which we do if m − 1 ≥ x0m, i.e., m ≥ 1/(1 − x0)), we set
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εm,k := qm − qk + θ

m2 .

Below we assume that the following holds.

Requirement 8. For n ≥ max
(
n0(E), 1

1−x0

)
, the following holds:

−min

(
ε0,

a

2m

(
2 − 1

m

))
≤ (θ0 − 2E)m1/2

m2 .

Requirement 9. For n ≥ max
(
n0(E), 1

1−x0

)
, the following holds:

2Em1/2 + bm

m2 ≤ ε0.

Then

−min

(
ε0,

a

2m

(
2 − 1

m

))
≤ εm,k ≤ ε0, amin

m ≤ a(m2 − k2) + qm − qk

m2 − k2 ≤ amax
m (7.31)

Using (7.31) as well as (7.16) and (7.22), we have (xm,k is given by (6.2))

∑
|k|∈[x0m,m−1]

1

(a(m2 − k2) + qm − qk + θ)3/2 h′′
(

m − k√
a(m2 − k2) + qm − qk + θ

)

=
∑

k∈[x0m,m−1]

1

(a(m2 − k2) + qm − qk + θ)3/2

·
⎡
⎢⎣h′′

⎛
⎜⎝ 1 − xm,k√

a(1 − x2
m,k) + εm,k

⎞
⎟⎠+ h′′

⎛
⎜⎝ 1 + xm,k√

a(1 − x2
m,k) + εm,k

⎞
⎟⎠
⎤
⎥⎦

≤ −η
∑

k∈[x0m,m−1]

1

(amax
m (m2 − k2) + bm)3/2 ≤ −ηR2m

−3/2.

(7.32)

Thus, using (7.28), (7.30), and (7.32), we obtain the following estimate for I1,m in (7.26):

I1,m ≤ −ηR2m
−3/2 + Bh2R1

(amin
m )3/2

m−2 + �7,m. (7.33)

In what follows, we assume that the following is satisfied.

Requirement 10. For n ≥ n0, the following holds:

τ0 ≤ θ0n
1/2.

Now we represent I2,m in (7.26), using (4.4) and the equalities h′′(0) = −1/(4
√

π) and h′′′(0) = 0, as follows:

I2,m = 1

θ3/2 h′′
(

1√
θ

)
+ 1

θ3/2 h′′
(

2m + 1√
θ

)
+ r2(1, θ) + r2(2m + 1, θ)

= 1

θ3/2

(
− 1

4
√

π
+ h′′′′(ξ)

2θ
+ h′′

(
2m + 1√

θ

)
+ θ3/2(r2(1, θ) + r2(2m + 1, θ)

))
,

where ξ ∈ [0, θ−1/2]. Below we assume that the following holds.
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Requirement 11. For n ≥ n0 and m = n − 1, the following holds:

Bh4

2θ0
m−1/2 + sup

x≥ 2m+1√
bm

h′′ (x) + 2A2

θ
1/2
0

m−1/2 ≤ 1

4
√

π
.

Hence,

I2,m ≤ 0. (7.34)

Due to (7.25), (7.33), and (7.34), Proposition 7.2 (part 2) follows if

−ηR2m
−3/2 + Bh2R1

(amin
m )3/2

m−2 + |�7,m| + |�6,m| ≤ 0. (7.35)

7.3.3. Remainders
Let us prove (7.35). To do so, we need to estimate �6,m and �7,m.

Lemma 7.10. |�6,m| ≤ B∗
2 T2

(amin
m )2

m−2.

Proof. Using (7.27), (4.9), (5.17), and (7.31), we have

|�6,m| ≤
∑

|k|≤m−1

B∗
2

(amin
m (m2 − k2))2

≤ B∗
2 T2

(amin
m )2

m−2. �

Lemma 7.11. |�7,m| ≤ A2T5/2

(amin
m )5/2

m−2.

Proof. Using (7.29), (4.7), (5.17), and (7.31), we have

|�7,m| ≤
∑

|k|≤m−1

A2

(amin
m (m2 − k2) + θ0m1/2)5/2

≤ A2T5/2

(amin
m )5/2

m−5/2. �

Using Lemmas 7.10 and 7.11, we see that (7.35) holds, if the following is satisfied.

Requirement 12. For n ≥ n0 and m = n − 1, the following holds:(
Bh2R1

(amin
m )3/2

+ B∗
2 T2

(amin
m )2

)
m−1/2 + A2T5/2

(amin
m )5/2

m−1 ≤ ηR2. (7.36)

8. Main result: Proof of Theorem 3.2

For n = n0 + 1, Theorems 5.4 and 7.3 imply that the node un(t) achieves the threshold 0 at a time moment 
tn = an2 + qn, where qn ∈ [−E

√
n, 0] with the same E as in (3.1). Moreover, neither of the nodes un, un+1, . . .

switches on the interval [tn−1, tn), and thus un(t) switches exactly at the moment tn. Furthermore, by Theorem 6.2, 
the required estimates for ∇un(tn) hold. Thus, the assertion of Theorem 3.2 holds for n = n0 + 1.

In particular, we see that items 1 and 2 in Definition 3.1 hold with n0 replaced by n0 + 1 and with the same E as 
before. Hence, we can repeat the above argument to obtain the assertion of Theorem 3.2 for n = n0 + 2, and so on, by 
induction, for any n ≥ n0 + 1.
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Appendix A. Equivalence of three equations: Proof of Proposition 4.2

We prove that

1. equation (4.15) has a unique root,
2. equations (4.13) and (4.15) have the same roots,
3. equations (4.14) and (4.15) have the same roots.

We will prove in detail items 1 and 2.

Making the change of variables y = 1√
a

√
1 − x

1 + x
in (4.11) and (4.10), we have

IH (a) =
+∞∫
0

2h(y)

1 + ay2 dy, IG(a) =
+∞∫
0

4ayg(y)

(1 + ay2)2 dy, IF (a) =
+∞∫
0

8a2y2f (y)

(1 + ay2)3 dy.

Now we see that IH (a) decreases from 1 to 0 as a increases from 0 to +∞. Hence, for any 0 < c < h1/2, equation 
(4.15) has a unique root a > 0. Item 1 is proved.

Let us prove item 2. Integrating by parts and using equations (4.1) and (4.2), we obtain

IF (a) =
+∞∫
0

(
8a2y2

(1 + ay2)3 − a

1 + ay2

)
f (y)dy +

+∞∫
0

a

1 + ay2 f (y)dy

= ay(−1 + ay2)

(1 + ay2)2 g(y)

∣∣∣∣
+∞

0
−

+∞∫
0

ay(−1 + ay2)

(1 + ay2)2 g(y)dy +
+∞∫
0

a

1 + ay2 f (y)dy

=
+∞∫
0

(
−ay(−1 + ay2)

(1 + ay2)2 + y
a

1 + ay2

)
g(y)dy +

+∞∫
0

a

1 + ay2 (f (y) − yg(y)) dy

= − 1

1 + ay2 g(y)

∣∣∣∣
+∞

0
+

+∞∫
0

1

1 + ay2 h(y)dy +
+∞∫
0

2a

1 + ay2 h(y)dy

= −1

2
+

+∞∫
0

2a + 1

1 + ay2 h(y)dy = 2a + 1

2
IH (a) − 1

2
.

It is easy to conclude from the last identity that equations (4.13) and (4.15) have the same roots. Item 2 is proved.
Similarly to item 2, integrating by parts and using relations (4.1) and (4.2), we obtain

IG(a) =
+∞∫
0

4ay

(1 + ay2)2 g(y)dy = − 2

1 + ay2 g(y)

∣∣∣∣
+∞

0
+

+∞∫
0

2

1 + ay2 h(y) = −1 + IH (a).

From this identity, it is easy to conclude item 3.
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Appendix B. Requirements on n0(E)

In this appendix, we collect the constants that we use throughout the paper to determine n0(E) as well as all the 12 
requirements on the number n0 = n0(E) entering Definition 3.1 of admissible E.

B.1. Constants not depending on a or E

1. τ0 > 0 is an arbitrarily fixed real number (see (4.6)).

2. Set (see (4.7)) A0 := supn≥0,t≥τ0

√
t

∣∣∣yn(t) − √
t f
(

n√
t

)∣∣∣.
3. Set (see (4.7)) A1 := supn≥0,t≥τ0

t
√

t

∣∣∣ẏn(t) − 1√
t
h
(

n√
t

)∣∣∣.
4. Set (see (4.7)) Ã1 := supn≥0,t≥τ0

t
√

t

∣∣∣yn(t) − √
t f
(

n√
t

)
− 1√

t
f̃
(

n√
t

)∣∣∣.
5. Set (see (4.7)) A2 := supn≥0,t≥τ0

t2√t

∣∣∣ÿn(t) − 1
t
√

t
h′′
(

n√
t

)∣∣∣.
6. Set (see (4.8)) B0 := supn≥0,t≥τ0

t

∣∣∣∇yn(t) − g
(

n√
t

)
− 1

2
√

t
h
(

n√
t

)∣∣∣.
7. Set (see (4.8)) B1 := supn≥0,t≥τ0

t
√

t

∣∣∣∇ẏn(t) − 1
t
h′
(

n√
t

)∣∣∣.
8. Set (see (4.9)) A∗

2 := supn≥0,t≥τ0
t
√

t |ÿn(t)|.
9. Set (see (4.9)) B∗

2 := supn≥0,t≥τ0
t2|∇ÿn(t)|.

10. We use the notation (see (5.18)) R := π .
11. Bh2 is given by (see (7.23)) Bh2 := sup

x∈[0,∞)

∣∣h′′(x)
∣∣= −h′′(0).

12. Bh4 is given by (see (7.23)) Bh4 := sup
x∈[0,∞)

∣∣h′′′′(x)
∣∣= h′′′′(0).

B.2. Constants depending on a but not depending on E

1. a is a unique root of equation (4.13) (or equivalently (4.14), (4.15)).

2. Consider the function ha(x) := h 
(

x√
a

)
+ h 
(

1
x
√

a

)
. Set (see (5.1)) Da := infx∈(0,1] ha(x).

3. Set (see (5.2)) p := supx∈(0,1]
h′

a(x)x

ha(x)
.

4. N is a fixed natural number satisfying (see (5.8), (5.9))

N

((
N+1
N

) 1+p
2 − 1

)
−
(
2

1−p
2 − 1

)
−
(

2
1−p

2 − 1 + N

((
N+1
N

) 1+p
2 − 1

))(
2

1−p
2 − 1

)
2
N

> 0.

5. Set (see (5.3)) Dp1 := 2
1−p

2 − 1, Dp2 := N

((
1 + 1

N

) 1+p
2 − 1

)
.

6. Constants needed to define K and K ′ from Lemma 5.3
(a) Set (see (5.32)) L1(F, N) := supn≥N n3/2

∣∣∣∫ 1
−1 F(x)dx −∑|k|≤n−1

1
n
F
(
k
n

)∣∣∣, where the supremum exists due 

to Proposition 4.3. Set K ′
1 := h1L1(F, N).

(b) Set (see (5.33)) l1 := h1A0
1

a1/2 R.

(c) Set (see (5.34)) K ′ := K ′
1 + l1

1√
N

.

(d) Set K1 := supn≥N n1/2|C(1)
n+1 − C

(1)
n |, where

C
(1)
l := h1

⎛
⎝l2IF −

∑
|k|≤l−1

√
a(l2 − k2)f

(
l − k√

a(l2 − k2)

)⎞⎠ , l = n,n + 1.

Note that the supremum exists due to (5.35).

(e) Consider the function F̃ (x) := 1√
a(1−x2)

f̃

(
1−x√

a(1−x2)

)
and constants L

f̃
, L∗

f̃
, l

f̃
≥ 0 such that (see (5.37))
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L∗
f̃

1√
n

− l
f̃

1

n
≤ −

1∫
−1

F̃ (x)dx +
∑

−n≤k≤n−1

1

n
F̃

(
k

n

)
≤ L

f̃

1√
n

, n ≥ N.

Set (see (5.38)) K2 := h1

(
L

f̃
− L∗

f̃
+ l

f̃
1√
N

)
.

(f) Set (see (5.39)) K3 := 2h1Ã1
1

a3/2 T3/2.

(g) Set (see (5.40)) K := K1 + K2 + K3
1
N

.

Remark B.1. In principle, due to Proposition 5.3, we could define K ′ := supn≥N n−1/2|Cn| and K := supn≥N n1/2 ×
|Cn+1 − Cn|. However, calculation of the values Cn is computationally consuming as it involves Bessel functions. We 
used the strategy described above, since it is based on error estimates of Riemann sums only.

7. Set (see (5.8)) � := Dp2 − Dp1 − 2(Dp1 + Dp2)Dp1
1
N

(> 0).

8. Set (see (5.12)) E0 := K+�K ′
(h1−2c)�

(> 0).

9. For α > 0, set (see (5.16)) Sα := supn≥N

(√
n
∑

|k|≤n−1
(n−k)α

(n2−k2)α+1/2

)
. We use only the values of S1, S2, and S3 to 

determine n0(E).

10. For α > 1, set (see (5.17)) Tα := supn≥N

(∑
|k|≤n−1

nα

(n2−k2)α

)
. We use only the values of T3/2, T2, and T5/2 to 

determine n0(E).
11. Let constants L∗

2(H, N) > 1√
2a

h(0) and l2(H, N) ≥ 0 be such that (see Proposition 4.4)

L∗
2(H,N)

1

n1/2 − l2(H,N)
1

n
≤ IH −

n−1∑
k=−n

1

n
H

(
k

n

)
, n ≥ N,

where H(x) is given by (4.11) and IH = IH (a) is given by (4.12). Set (see (5.47)) CH := L∗
2(H, N), lH :=

l2(H, N).
12. Consider the function H̄ (x) := 1

1−x2 H(x). Set (see (5.48))

CH2 := supn≥N n−1/2
∣∣∣∑|k|≤n−1

1
n
H̄
(
k
n

)∣∣∣.
13. Set (see (6.3)) Kh1 := supn≥N n−1

∣∣∣∣∣ ∑|k|≤n−1

1
a(1−(k/n)2)

h′
(

1√
a

√
1−k/n
1+k/n

)∣∣∣∣∣.
14. Set (see Lemma 6.6 and (6.9)) Kg := supn≥N n3/2

∣∣∣∣∣ ∑|k|≤n−1

1
n
G
(
k
n

)− IG − 1
4n

∣∣∣∣∣, where G(x) is given by (4.10), and 

IG = IG(a) is given by (4.12).

15. Set (see Lemma 6.7 and (6.10)) Kh := supn≥N n1/2

∣∣∣∣∣ ∑|k|≤n−1

1
n
H
(
k
n

)− IH

∣∣∣∣∣, where H(x) is given by (4.11), and 

IH = IH (a) is given by (4.12).
16. θ0 satisfies (see (7.2)) θ0Kh < 1

4 .

17. η satisfies (see (7.15)) η ∈
(

0, 1
4
√

π

)
.

18. x0 ∈ [0, 1) and ε0 > 0 satisfy (see (7.16), (7.17))

h′′
(

1 − x√
a(1 − x2) + ε1

)
+ h′′

(
1 + x√

a(1 − x2) + ε1

)
≤ −η

for all x ∈ [x0, (n − 1)/n] and ε1 with

−min

(
ε0,

a

2n

(
2 − 1

n

))
≤ ε1 ≤ ε0, n ≥ max

(
N,

1

1 − x0

)
19. b satisfies (see (7.20)) b > 2a.
20. Set (see (7.21)) R1 := supn≥N n2 ∑

|k|<x0n

1
(n2−k2)3/2
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B.3. Constants depending on E

1. Set (see (5.13)) amin
n := a − 2En1/2

2n−1 .

2. Set (see (5.13)) amax
n := a + 2En1/2

2n−1 .

3. Set (see (5.15)) δn := 2A1
aDa

1
n

+ 2A∗
2Ea1/2

Da(amin
n )3/2

1√
n

.

4. Set (see (7.22)) R2 := infn≥max(N,1/(1−x0))

∑
k∈[x0n,n−1]

n3/2

(amax
n (n2−k2)+bn)3/2 .

B.4. Requirements on n0(E)

We assume that the following requirements hold for n ≥ n0(E):

1. n ≥ N .

2. amin
n ≥ τ0

2n−1 .

3. δn + δn+1 ≤ 2Dp1.

4. CH − h(0)√
2a

≥ lH√
n

+ �h(0)√
2a·n + CH2δn + 1√

2a

(
1 + �

n

)(
h(0) n+1

2n+1δn+1 + (1 + δn+1)h

(√
2n+1

a

))
.

5. 2EKh1n
− 1

2 +
(

2EB1T3/2

a3/2 + 2E2B∗
2 T2

(amin
n )2

)
n−1 + ∑

|k|≤n−1

B0
a(n2−k2)

+
(
Kg + Kh

2

)
n− 1

2 ≤ 3
8 .

6.
(
Kh1 + (2E+θ0)A

∗
2T3/2

(amin
n )3/2

)
n−1/2 +

(
B1T3/2

a3/2 + (2E+θ0)B
∗
2 T2

(amin
n )2 + A1T3/2

a3/2

)
n−1 ≤ Kh

2 .

7. a(n − 1)2 − E(n − 1)1/2 + b(n − 1) ≥ an2 + En1/2.

8. 2E−θ0
n3/2 ≤ min

(
ε0,

a
2n

(
2 − 1

n

))
for n ≥ max

(
n0(E), 1

1−x0

)
.

9. 2En−3/2 + bn−1 ≤ ε0 for n ≥ max
(
n0(E), 1

1−x0

)
.

10. τ0 ≤ θ0n
1/2.

11. Bh4
2θ0

n−1/2 + sup
x≥ 2n+1√

bn

h′′ (x) + 2A2

θ
1/2
0

n−1/2 ≤ 1
4
√

π
.

12.
(

Bh2R1
(amin

n )3/2 + B∗
2 T2

(amin
n )2

)
n−1/2 + A2T5/2

(amin
n )5/2 n−1 ≤ ηR2.
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