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Abstract

We establish regularity for functions satisfying a dynamic programming equation, which may arise for example from stochastic 
games or discretization schemes. Our results can also be utilized in obtaining regularity and existence results for the corresponding 
partial differential equations.
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1. Introduction

In [12], we studied regularity for the stochastic game called tug-of-war with noise. Recalling the recently discovered 
connection to the p-harmonic functions [18], our results implied local Lipschitz regularity for the solutions to the 
p-Laplace equation for 2 < p < ∞. The approach was based on a choice of strategies for the players, and is thus quite 
different from the PDE proofs.

Our argument utilized symmetry properties of strategies, and a sharp cancellation effect produced by this symmetry, 
which directly allowed us to obtain a local Lipschitz estimate. It is a nontrivial task to extend this method to a more 
general class of problems where the perfect symmetry breaks down. Thus, in this paper, we develop a more flexible 
regularity method. As a starting point, we take a dynamic programming equation

u(x) = 1

2
sup

μ1∈A1(x)

ˆ

Rn

u(y) dμ1(y) + 1

2
inf

μ2∈A2(x)

ˆ

Rn

u(y) dμ2(y)
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as explained in detail in Section 2.1. This is a rather general formulation that covers a wide class of games; in addition 
to stochastic games it may as well arise from discretization schemes in numerical methods for partial differential 
equations, see for example [17].

To illustrate our approach, we prove asymptotic Hölder continuity, Theorem 2.1, for several examples using the 
method. For expository purposes we start with the examples of the tug-of-war (Section 3) and the random walk (Sec-
tion 4). In addition to symmetry issues mentioned above, a limitation in some known approaches is the requirement of 
translation invariance. Therefore our next example is the tug-of-war with noise with spatially dependent probabilities 
in Section 5. Finally, we deal with the tug-of-war with noise related to the p-Laplacian with the full range 1 < p ≤ ∞, 
including 1 < p < 2, in Section 6. Proving a local regularity result for the game of Section 6 may seem difficult since 
the players can affect the direction of the noise, and thus it is not easy to say much about the noise distribution. How-
ever, the method of this paper is well suited for the task. We did not exhaust the list of possible examples that can be 
treated by the method but expect it to be useful in many more problems. Also, at least in some cases, the method can 
be improved to give directly stronger regularity results.

Our method arises from stochastic game theory even if for expository reasons we have eventually avoided stochastic 
arguments. The idea is that we start the game simultaneously at two points x ∈ R

n and z ∈ R
n, and try to pull the 

points ‘closer’ to each other. Here closer means, at least roughly, in the sense of averages and in terms of a suitable 
comparison function. To show that we may pull the points closer in this sense, we may consider the process in the 
higher dimensional space by setting (x, z) ∈R

2n, and use the subspace

T := {(x, z) ∈ R
2n : x = z} ⊂R

2n

as a target. We use the following strategy: if our opponent takes a non optimal step we pull directly towards T . If 
the opponent pulls (almost) away from T , then our strategy is to aim at the exactly opposite step. The curvature of 
the comparison function gives an advantage to us. It is also worth noting that there is a freedom to choose among the 
probability measures in R2n having the measures arising from the original games as marginals; cf. the setting in the 
optimal mass transport problems. Suitable choices will be helpful in the proofs.

After finishing the paper it has come to our attention that couplings of stochastic processes have been employed 
in the study of regularity for second order linear uniformly parabolic equations with continuous highest order coeffi-
cients, see for example [10], [11], and [21]. The method here has also some similarities to the Ishii–Lions method [6], 
see also for example [20]. However, we do not rely on the theorem of sums in the theory of viscosity solution, but the 
proofs are built on the ideas arising from the game theory.

Our motivation to study the above problems is threefold: First, the study of stochastic games has received a lot 
of attention on their own right because of deep mathematical questions that arise and also due to their central role 
in many applications. Second, the dynamic programming principle can be interpreted as a discretization of the PDE. 
Thus, results can also be interpreted as results for the corresponding numerical schemes. Third, by passing to the limit 
with respect to the step size our results imply regularity results for PDEs: In particular, this gives an alternative proof 
for the Hölder continuity of the viscosity solutions of the normalized p(x)-Laplacian

�N
p(x)u =: �u + (p(x) − 2)�N∞u = 0,

and the infinity Laplacian

�N∞u = |∇u|−2
n∑

i,j=1

uijuiuj = 0

where ui and uij denote the elements of the gradient and the Hessian, respectively.
There is a powerful connection between the classical linear partial differential equations and probability theory. 

In the nonlinear case, the connection between the games and Bellman–Isaacs equations was established in the 80s. 
However, a similar connection between the normalized p-Laplace or ∞-Laplace equations (which are discontinuous 
operators in the gradient variable) and the tug-of-war games with noise was discovered only rather recently in [18,19]. 
This connection has later been extended or utilized in several different contexts, see for example [1–4,14–16,22].
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2. The regularity method

2.1. Background

Let � ⊂ R
n, n ≥ 2, be an open and bounded set. Denote by M the space of unit Radon measures on Rn, and 

suppose that we are given

A := (A1,A2) :Rn → P(M) ×P(M) ,

where P(M) denotes the family of all subsets of M. Our objective is to develop a regularity method for bounded 
Borel measurable solutions u : � →R to the dynamic programming equation

u(x) = 1

2
sup

μ1∈A1(x)

ˆ

Rn

u(y) dμ1(y) + 1

2
inf

μ2∈A2(x)

ˆ

Rn

u(y) dμ2(y) . (2.1)

The heuristic idea is that u represents a value function for a two players zero-sum game, where the rules of the game 
are determined by A1(x) and A2(x). More precisely, when the game token is at x ∈ �, the maximizer can choose 
μ1 ∈ A1(x) and minimizer μ2 ∈ A2(x) and then the distribution of the next location is determined by the probability 
measure μ1+μ2

2 . Then we can write

u(x) − u(z) = 1

2
sup

μ1∈A1(x)

ˆ

Rn

u(y) dμ1(y) + 1

2
inf

μ′
2∈A2(x)

ˆ

Rn

u(y) dμ′
2(y)

− 1

2
sup

μ′
1∈A1(z)

ˆ

Rn

u(y) dμ′
1(y) − 1

2
inf

μ′
2∈A2(z)

ˆ

Rn

u(y) dμ′
2(y)

= sup
μ1∈A1(x),μ2∈A2(z)

[
inf

μ′
2∈A2(x),μ′

1∈A1(z)(ˆ

Rn

u(y) d
(μ1 + μ′

2

2

)
(y) −

ˆ

Rn

u(y) d
(μ′

1 + μ2

2

)
(y)

)]
.

Let �(
μ1+μ′

2
2 , 

μ′
1+μ2

2 ) denote the joint measures whose marginals are 
μ1+μ′

2
2 and 

μ′
1+μ2

2 . Then for any joint measure 

μ ∈ �(
μ1+μ′

2
2 , 

μ′
1+μ2

2 ) we have
ˆ

Rn

u(y) d
(μ1 + μ′

2

2

)
(y)−

ˆ

Rn

u(y) d
(μ′

1 + μ2

2

)
(y)

=
ˆ

R2n

(
u(y) − u(y′)

)
dμ(y, y′).

Denoting

G(x, z) := u(x) − u(z),

it holds that

G(x, z) = sup
μ1∈A1(x),μ2∈A2(z)

[
inf

μ′
2∈A2(x),μ′

1∈A1(z)( ˆ

R2n

G(y, y′) dμμ1,μ
′
1,μ2,μ

′
2
(y, y′)

)]
.

Different couplings generate different dynamic programming equations as well as games in R2n, and we may take the 
advantage of this flexibility in the proofs.
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For example, with suitable couplings a tug-of-war with noise described in [16] corresponds to

G(x, z) =β

ˆ

B(0,ε)

G(x + h,y + Px,z(h)) dh

+ α

2
sup

B(x,ε)×B(z,ε)

G + α

2
inf

B(x,ε)×B(z,ε)
G,

in R2n, where Px,z(h) is any isometry.
Below we will prove regularity results for several nonlinear problems of the form (2.1). In all the examples of the 

paper, we require that μi ∈ Ai (x) implies sptμi ∈ B(x, ε), where ε > 0 can be though as a step size in the underlying 
game. Throughout the paper, we denote by B(x, ε) an open ball centered at x and of the radius ε > 0. When the center 
point plays no role, we may drop it and denote Bε.

In our main result, we prove that a function satisfying a suitable DPP in � (in the cases of the tug-of-war in 
Section 3, random walk in Section 4, tug-of-war with noise and spatially dependent probabilities in Section 5, and 
tug-of-war with noise with 1 < p ≤ ∞ in Section 6) is locally asymptotically Hölder continuous in the sense of the 
following estimate

|u(x) − u(z)| ≤ C
|x − z|δ

Rδ
+ C′(n)

εδ

Rδ
, (2.2)

where x, z ∈ BR C = C(n)(supB2R×B2R
u(y) −u(y′)). In other words, u is Hölder continuous up to an error that tends 

to zero as ε → 0.

Theorem 2.1. Let B2R ⊂ �. There exists δ = δ(n) ∈ (0, 1) such that if u satisfies (2.1) in � and in the specified cases, 
then it satisfies the estimate (2.2).

As shown in [12] this estimate can also be utilized in the proof of Harnack’s inequality for the corresponding 
stochastic game.

Without a loss of generality, we may assume that z = −x, R = 1 and supB2×B2
(u(y) −u(y′)) ≤ 1, by suitable trans-

lation, scaling and multiplication. Observe that this does not require translation invariance. After the simplifications 
we see that it suffices to show that

|u(x) − u(−x)| ≤ C|x|δ + C′(n)εδ , (2.3)

if x ∈ B1 and B2 ⊂ �.

2.2. Steps of the method

As indicated in the introduction, our method arises from game theory even if for expository reasons we have 
eventually avoided stochastic arguments. The first step of our regularity method is to choose a comparison function 
f : R2n → R that has the desired regularity properties. The key term in the comparison function we use to establish 
Hölder continuity in the examples below is C |x − z|δ , x, z ∈ R

n, δ ∈ (0, 1).
The second step is to make a counter assumption: We wish to show that u(x) − u(z) − f (x, z) is small enough in 

B1 × B1 \ T , and in particular smaller than in (B2 × B2) \ (B1 × B1 \ T ), and thrive for a contradiction by assuming 
that it is not.

As a third step, we write down a multidimensional dynamic programming equation for the comparison function f
in R2n by using a counter proposition.

As a final step, we derive a contradicting estimate for the dynamic programming equation of the previous step. 
Intuition based on game strategies gives guidelines how to obtain such an estimate by utilizing Taylor’s expansion of 
f (x, z) in suitable coordinates.

2.3. Comparison function

One of the key ideas of the proof is to use a suitably chosen comparison function, defined in R2n. We use throughout 
the work the function
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f1(x, z) = C|x − z|δ + |x + z|2 ,

where C > 1 and δ ∈ (0, 1) are fixed later. The first term will give us the desired regularity estimate, and the second 
term makes sure that the estimate holds at (B2 × B2) \ (B1 × B1), see (3.12).

It is known, [16, Example 2.2], that functions satisfying the dynamic programming equation can be discontinuous 
at the small scale. Therefore, to prove the claim in the case x and z are close to each other, we have to use an auxiliary 
annular step function. To this end, let N = N(n) be an integer. Then, set for i = 0, . . . , N

Ai = {(x, z) ∈R
2n : (i − 1)

ε

10
< |x − z| ≤ i

ε

10
}

and define f2 :R2n → [0, ∞) by

f2(x, z) =
{

C2(N−i)εδ if (x, z) ∈ Ai , and

0 if |x − z| > N ε
10 .

(2.4)

Observe that f2 reaches its maximum C2Nεδ on A0 = {(x, z) : x = z} = T . To see why we have chosen this f2, one 
should consult for example the calculations after (3.22).

Our final comparison function f is composed of f1 and f2 as

f (x, z) = f1(x, z) − f2(x, z). (2.5)

We are going to produce estimates in terms of Taylor’s expansion. It will be convenient to write the expansion in 
the form

f1(x + hx, z + hz)

= f1(x, z) + Cδ|x − z|δ−1(hx − hz)V + 2(x + z) · (hx + hz)

+ C

2
δ|x − z|δ−2((δ − 1)(hx − hz)

2
V + (hx − hz)

2
V ⊥

)
+ |hx + hz|2 + Ex,z(hx,hz),

(2.6)

where V is the space spanned by x−z, (hx −hz)V refers to the scalar projection onto V i.e. (hx −hz) ·(x−z)/ |x − z|, 
and (hx − hz)V ⊥ onto the orthogonal complement.

The error term satisfies

|Ex,z(hx,hz)| ≤ C|(hx,hz)|3(|x − z| − 2ε)δ−3 , (2.7)

if |x − z| > 2ε. Especially, if we choose

N ≥ 100C

δ
, (2.8)

then in the case |x − z| > N ε
10 and |hx |, |hz| ≤ ε, we can estimate

|Ex,z(hx,hz)| ≤ C(2ε)3(
|x − z|

2
)δ−3

≤ 64Cε2|x − z|δ−2 ε

|x − z|
≤ 64ε2|x − z|δ−2 δ

10
≤ 10ε2|x − z|δ−2.

(2.9)

3. Tug-of-war

We start with an example: we show how to obtain the asymptotic Hölder continuity for the value functions of the 
tug-of-war game by using the method of this paper. There would be simpler methods available for the tug-of-war or 
the random walk, but the work done here will pay-off later, as we will see. Indeed, we utilize these estimates later in 
more difficult cases of Sections 5 and 6.
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The tug-of-war is a two-player zero-sum stochastic game played in � with the following rules. Fix the step size 
ε > 0 and an initial position x0 ∈ �. The players toss a fair coin and the winner of the toss moves the game position to 
any x1 ∈ Bε(x0). The players continue playing until the game position leaves the domain �. At the end of the game 
Player II pays Player I the amount determined by a pay-off function F defined outside �. Naturally, Player I tries to 
maximize the outcome while Player II tries to minimize it, and thus the value of the game (for Player I) is defined as

u(x0) = sup
SI

inf
SII

E
x0
SI,SII

[F(xτ )].

Above SI and SII denote the strategies of Player I and Player II, respectively. If the players use strategies for which 
the game does not end almost surely and thus the expectation above is not well defined, we always set it to be −∞.

The value function of the tug-of-war game satisfies the dynamic programming principle

u(x) = 1

2

{
sup

B(x,ε)

u + inf
B(x,ε)

u
}

(3.10)

for x ∈ �, see [19] and [14]. Intuitively, we obtain the value at the point x by summing up the two possible outcomes 
of the coin toss with corresponding probabilities. The above equation is of the form (2.1) and we can follow the steps 
introduced above.

3.1. Multidimensional dynamic programming

Because u(x) − u(z) ≤ 1 in B2 × B2 and u(x) − u(z) = 0 on T , we see that

u(x) − u(z) − f (x, z) = u(x) − u(z) − f1(x, z) + f2(x, z)

≤ maxf2 = C2Nεδ ,
(3.11)

if (x, z) lies in T or in (B2 × B2) \ (B1 × B1). We also used the fact that f1 ≥ 1 in (B2 × B2) \ (B1 × B1).
Next we will show that this inequality also holds in B1 ×B1 \T . This would actually yield (2.3) with C′(n) = C2N

and, eventually, the whole theorem. For the proof by contradiction, assume that

M := sup
(x′,z′)∈B1×B1\T

(u(x′) − u(z′) − f (x′, z′)) > C2Nεδ . (3.12)

Let then η > 0. We choose (x, z) ∈ B1 × B1 \ T such that

u(x) − u(z) − f (x, z) ≥ M − η .

Lemma 3.1. Let ε > 0 and f, η, x and z be as above. Then

0 ≤ 1

2

(
sup

B(x,ε)×B(z,ε)

f + inf
B(x,ε)×B(z,ε)

f

)
+ η − f (x, z).

Proof. By using (3.10) and the choices above, we obtain

M ≤ u(x) − u(z) − f (x, z) + η

= 1

2
sup

B(x,ε)

u + 1

2
inf

B(x,ε)
u −

(
1

2
sup

B(z,ε)

u + 1

2
inf

B(z,ε)
u

)
− f (x, z) + η

= 1

2

(
sup

B(x,ε)

u − inf
B(z,ε)

u + inf
B(x,ε)

u − sup
B(z,ε)

u

)
− f (x, z) + η

= I1 − f (x, z) + η .

(3.13)

We estimate I1, and first observe that

sup
B(x,ε)

u − inf
B(z,ε)

u ≤ M + sup
B(x,ε)×B(z,ε)

f + η . (3.14)
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This estimate follows easily by the above definition for M as follows: Suppose that x0 ∈ B(x, ε), z0 ∈ B(z, ε) such 
that supB(x,ε) u ≤ u(x0) + η/2 and infB(z,ε) u ≥ u(z0) − η/2. Then

sup
B(x,ε)

u − inf
B(z,ε)

u ≤u(x0) − u(z0) + η

=u(x0) − u(z0) − f (x0, z0) + f (x0, z0) + η

≤M + f (x0, z0) + η

≤M + sup
B(x,ε)×B(z,ε)

f + η .

Observe that here we used the counter assumption. Indeed, the points x0 and z0 may lie outside B1 ×B1 \T , but from 
(3.12) and the preceding discussion, we deduce that M gives us the upper bound.

Furthermore, analogous reasoning using (3.12) gives us that

inf
B(x,ε)

u − sup
B(z,ε)

u ≤ M + inf
B(x,ε)×B(z,ε)

f + η . (3.15)

To be more precise, choose x0 ∈ B(x, ε), z0 ∈ B(z, ε) such that infB(x,ε)×B(z,ε) f ≥ f (x0, z0) − η. Then

inf
B(x,ε)

u − sup
B(z,ε)

u ≤ u(x0) − u(z0)

= u(x0) − u(z0) − f (x0, z0) + f (x0, z0)

≤ M + f (x0, z0)

≤ M + inf
B(x,ε)×B(z,ε)

f + η

and we obtain the above estimate.
Combining the estimates, we get

I1 ≤ M + 1

2

(
sup

B(x,ε)×B(z,ε)

f + inf
B(x,ε)×B(z,ε)

f

)
+ η.

From this and (3.13), the result follows. �
From the previous lemma, we conclude that for the desired contradiction it suffices to show that

f (x, z) >
1

2

(
sup

B(x,ε)×B(z,ε)

f + inf
B(x,ε)×B(z,ε)

f

)
. (3.16)

3.2. Estimates

Next we show the validity of the inequality (3.16) for f = f1 − f2, and for this we assume

C = 1010

δ2ω
, (3.17)

for the constant C in f1(x, z) = C |x − z|δ +|x + z|2. The constant ω ∈ (0, 1) will be later defined in this section. The 
choice is designed to cover also Sections 4 and 5 with additional n-dependence ω = ω(n). If |x − z| is large enough, 
the validity of the inequality (3.16) turns out to follow in a straightforward manner by using the Taylor expansion 
for f1. The intuition coming from the underlying stochastic game will be useful in deriving the estimates.

In the case |x −z| ≈ ε, we will have to take the small scale jumps into account, and use the properties of the annular 
step function f2 defined in (2.4).

Proof of inequality (3.16), case |x−z| > N ε
10 . Observe that the assumption |x−z| > N ε

10 implies that f2(x, z) = 0, 
and therefore, it suffices to show (3.16) for f1.
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Let η > 0 and choose hx, hz ∈ B(0, ε) such that

sup
B(x,ε)×B(z,ε)

f1 ≤ f1(x + hx, z + hz) + η.

We first let θ = 1/10 and assume that

(hx − hz)
2
V ≥ (4 − θ)ε2 . (3.18)

Since |hx − hz| < 2ε, this also means that

(hx − hz)
2
V ⊥ < θε2 .

This can be though as fixing a strategy in the game in R2n.
We get by using the Taylor formula (2.6) and the estimate (2.9) for the error term that

sup
B(x,ε)×B(z,ε)

f1 + inf
B(x,ε)×B(z,ε)

f1 − 2f1(x, z)

≤ f1(x + hx, z + hz) + f1(x − hx, z − hz) − 2f1(x, z) + η

= C

2
δ|x − z|δ−2(2(δ − 1)(hx − hz)

2
V + 2(hx − hz)

2
V ⊥

)
+ 2|hx + hz|2 + Ex,z(hx,hz) + Ex,z(−hx,−hz) + η

≤ C

2
δ|x − z|δ−2(2(δ − 1)(4 − θ)ε2 + 2θε2 ) + 2(2ε)2 + 20ε2|x − z|δ−2 + η

≤ |x − z|δ−2(20 − Cδ)ε2 + 8ε2 + η.

The final inequality above follows e.g. by the choices θ = 1/10 and δ ≤ 1/10. By using the assumption (3.17) for C, 
one observes that

|x − z|δ−2(20 − Cδ) < −|x − z|δ−2108 < −107 . (3.19)

Combining this with above estimates, we conclude that

sup
B(x,ε)×B(z,ε)

f1 + inf
B(x,ε)×B(z,ε)

f1 − 2f1(x, z) < −106ε2 .

In turn, if (3.18) above does not hold, implying that

(hx − hz)V ≤ (2 − θ

4
)ε , (3.20)

the desired estimate can be readily derived from the first order terms in Taylor estimate. More precisely, if 
|hx |, |hz| ≤ ε, the share of the second order term and the error terms in Taylor estimate (2.6) can be roughly esti-
mated by

C

2
δ|x − z|δ−2(2ε)2 + (2ε)2 + 10ε2|x − z|δ−2

≤3Cδε2|x − z|δ−2 ≤ 3Cδε|x − z|δ−1 ε

|x − z|
≤3Cδε|x − z|δ−1 ε

N ε
10

≤ 30C

N
δ|x − z|δ−1ε < δ2|x − z|δ−1ε .

(3.21)

Above we used the assumption (2.8) for N and at the last step the fact that δ ∈ (0, 1). This in connection with the 
Taylor formula and (3.20) gives

sup
B(x,ε)×B(z,ε)

f1 + inf
B(x,ε)×B(z,ε)

f1 − 2f1(x, z)

≤f1(x + hx, z + hz) + f1(x − ε
x − z

|x − z| , z + ε
x − z

|x − z| ) − 2f1(x, z) + η

≤Cδ|x − z|δ−1((hx − hz)V − 2ε) + 4 |x + z|2ε + δ2|x − z|δ−1ε + η
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≤Cδ|x − z|δ−1(−θ

4
ε) + 16ε + δ2|x − z|δ−1ε + η

≤(δ − θ

4
C)δ|x − z|δ−1ε + 16ε + η.

We point out that even if ε x−z
|x−z| /∈ B(0, ε), the estimate for inf above is valid due to continuity of f1. Again, by applying 

the assumption (3.17) for C and choosing ω ≤ 1/10, it is easy to check the desired negativity for this quantity. This 
completes the proof of the case |x − z| > N ε

10 .

Proof of inequality (3.16), case |x − z| ≤ N ε
10 . In this case we can use the following elementary estimate for f1: If 

x, z ∈ B1, and hx, hz ∈ B(0, ε), ε < 1, then

|f1(x + hx, z + hz) − f1(x, z)| ≤ 2Cεδ + 16ε ≤ 3Cεδ (3.22)

which immediately follows by using the concavity and convexity of the terms in f1. We further obtain

sup
B(x,ε)×B(z,ε)

f1 − f1(x, z) ≤ 3Cεδ . (3.23)

Moreover,

sup
B(x,ε)×B(z,ε)

(f1 − f2) ≤ sup
B(x,ε)×B(z,ε)

f1 − 0.

Since (i − 1) ε
10 < |x − z| ≤ i ε

10 for some i = 0, . . . , N , we have

inf
B(x,ε)×B(z,ε)

(f1 − f2) ≤ sup
B(x,ε)×B(z,ε)

f1 − sup
B(x,ε)×B(z,ε)

f2

≤ sup
B(x,ε)×B(z,ε)

f1 − C2(N−i+1)εδ

≤ sup
B(x,ε)×B(z,ε)

f1 − C2C2(N−i)εδ

= sup
B(x,ε)×B(z,ε)

f1 − (C2 − 2)C2(N−i)εδ − 2C2(N−i)εδ

= sup
B(x,ε)×B(z,ε)

f1 − (C2 − 2)C2(N−i)εδ − 2f2(x, z)

≤ sup
B(x,ε)×B(z,ε)

f1 − 10Cεδ − 2f2(x, z) .

Summing up the previous two estimates and recalling (3.23), we end up with

sup
B(x,ε)×B(z,ε)

f + inf
B(x,ε)×B(z,ε)

f

≤ sup
B(x,ε)×B(z,ε)

f1 + sup
B(x,ε)×B(z,ε)

f1 − 10Cεδ − 2f2(x, z)

≤ 2f1(x, z) + 6Cεδ − 10Cεδ − 2f2(x, z)

< 2f (x, z).

This proves the estimate (3.16), and thus (2.3) and finally Theorem 2.1 in the case of the tug-of-war.

Remark 3.2. By passing to a limit this implies Hölder continuity for the infinity harmonic functions, cf. [19] or the 
proof of Theorem 4.9 in [16], i.e. for the viscosity solutions to

�∞u =
n∑

i,j=1

uijuiuj = 0,

where ui and uij denote the elements of the gradient and the Hessian, respectively. As already pointed out, this known 
result is not our main motivation but we use the estimates of this section as a tool in Section 5 without repeating them 
there.
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4. Random walk

We continue with another well known example: we show the asymptotic Hölder continuity for the random walk. 
Again some estimates in more difficult cases in Sections 5 and 6 are essentially the same, and we do not need to repeat 
the estimates there. Therefore this expository choice does not add much to the length of the paper.

We consider a version of the random walk where at x ∈ � the next point is chosen according to the uniform 
probability distribution on B(x, ε), and this is repeated until the process exits �. At this time the amount given by a 
pay-off function F defined outside � is collected. The function u is the expected pay-off of this process

u(x0) = E
x0 [F(xτ )].

This expectation can also be written as an average over the neighboring expected pay-offs as

u(x) = −
ˆ

B(x,ε)

udy := 1

|B(x, ε)|
ˆ

B(x,ε)

udy. (4.24)

This again is of the form (2.1) and we can employ the same method as above.

4.1. Multidimensional dynamic programming

Lemma 4.1. Let ε > 0 and f, η, x and z be as in Lemma 3.1 but with u satisfying (4.24). Then

0 ≤ 1

|Bε|
( ˆ

B(0,ε)\B(z−x,ε)

f (x + h, z + Px,z(h)) dh

+
ˆ

B(x,ε)∩B(z,ε)

f (y, y) dy

)
− f (x, z) + η,

where Px,z(h) is a mirror point of h with respect to V ⊥ = span(x − z)⊥.

Proof. Similarly as in Section 3, the equation (4.24) gives

M ≤ u(x) − u(z) − f (x, z) + η

=
(

−
ˆ

B(x,ε)

u(y) dy − −
ˆ

B(z,ε)

u(y) dy

)
− f (x, z) + η

= I2 − f (x, z) + η .

The term I2 (we later utilize this estimate in Section 5, which explains the notation) can be written as

I2 = 1

|Bε|
( ˆ

B(x,ε)\B(z,ε)

u(y) dy −
ˆ

B(z,ε)\B(x,ε)

u(y) dy

+
ˆ

B(x,ε)∩B(z,ε)

u(y) − u(y)dy

)

= 1

|Bε|
( ˆ

B(0,ε)\B(z−x,ε)

u(x + h) − u(z + Px,z(h)) dh

+
ˆ

B(x,ε)∩B(z,ε)

0dy

)
.

Then by adding and subtracting we obtain
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I2 = 1

|Bε|
( ˆ

B(0,ε)\B(z−x,ε)

(
u(x + h) − u(z + Px,z(h))

− f (x + h, z + Px,z(h))
)

dh

−
ˆ

B(x,ε)∩B(z,ε)

f (y, y) dy

+
ˆ

B(0,ε)\B(z−x,ε)

f (x + h, z + Px,z(h)) dh +
ˆ

B(x,ε)∩B(z,ε)

f (y, y) dy

)

≤ M + 1

|Bε|
( ˆ

B(0,ε)\B(z−x,ε)

f (x + h, z + Px,z(h)) dh +
ˆ

B(x,ε)∩B(z,ε)

f (y, y) dy

)
,

where we again used the definition of M , as well as the counter assumption and the definition of f2 to estimate 
−f (y, y) = f2(y, y) ≤ M . This implies the result. �

From the previous lemma, we conclude the desired contradiction if at every (x, z) ∈ B1 × B1 \ T it holds that

f (x, z) >
1

|Bε|
( ˆ

B(0,ε)\B(z−x,ε)

f (x + h, z + Px,z(h)) dh

+
ˆ

B(x,ε)∩B(z,ε)

f (y, y) dy

)
.

(4.25)

4.2. Estimates

Similarly as in Section 3, we estimate the two cases separately.

Inequality (4.25), case |x − z| > N ε
10 . In this case the claim reduces to

f1(x, z) >
1

|Bε|
ˆ

B(0,ε)

f1(x + h, z + Px,z(h)) dh .

We utilize the Taylor series (2.6). When integrating the series, the first order terms vanish by symmetry, and by the 
definition of the mirror mapping Px,z also (h − Px,z(h))2

V ⊥ = 0. This and the error estimate (2.9), gives

1

|Bε|
ˆ

B(0,ε)

f1(x + h, z + Px,z(h)) dh − f1(x, z)

= 2Cδ(δ − 1)|x − z|δ−2

|Bε|
ˆ

B(0,ε)

h2
V dh + 1

|Bε|
ˆ

B(0,ε)

Ex,z(h,Px,z(h)) dh

≤ 2Cδ(δ − 1)|x − z|δ−2 ε2

n + 2
+ 10ε2|x − z|δ−2

≤ ε2|x − z|δ−2(10 − Cδ

4(n + 2)

)
,

where by a direct calculation −́
B(0,ε)

h2
V dy = ε2/(n + 2) and we assumed δ ≤ 1/10. Observe that since Px,z(h) gives 

the mirror point of h, the terms of the form (·)V ⊥ vanished. Moreover, by symmetry the first order terms vanished as 
well. Now, the assumption (3.17) on C with ω = ω(n) ≤ 1/(n + 2) guarantees the negativity of 

(
10 − Cδ

4(n+2l)

)
. This 

completes the proof of the present case.
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Inequality (4.25), case |x − z| ≤ N ε
10 . For this, suppose first that |x − z| ≥ 7

4ε. In this case, observe that

B

(
ε(z − x)

2|z − x| ,
ε

4

)
⊂ B(0, ε) \ B(z − x, ε) ,

and

|x + h − (z + Px,z(h))| ≤ |x − z| − ε

10

for every h ∈ B(
ε(z−x)
2|z−x| , 

ε
4 ). This in turn implies, by the definition of the annular function f2, that

f2(x + h, z + Px,z(h)) ≥ C2f2(x, z) if h ∈ B
(ε(z − x)

2|z − x| ,
ε

4

)
.

This implies

1

|Bε|
( ˆ

B(0,ε)\B(z−x,ε)

f2(x + h, z + Px,z(h)) dh +
ˆ

B(x,ε)∩B(z,ε)

f2(y, y) dy

)

>
1

|Bε|
ˆ

B(
ε(z−x)
2|z−x| ,

ε
4 )

f2(x + h, z + Px,z(h)) dh

>
|Bε

4
|

|Bε| C
2f2(x, z) = C2

4n
f2(x, z) .

Furthermore, as before we use the rough estimate (3.22) for f1, implying that the inequality (4.25) can fail for f1 at 
most by 3Cεδ . Combining this with the above estimate for f2, we conclude that

1

|Bε|
( ˆ

B(0,ε)\B(z−x,ε)

f (x + h, z + Px,z(h)) dh +
ˆ

B(x,ε)∩B(z,ε)

f (y, y) dy

)

< f1(x, z) + 3Cεδ − C2

4n
f2(x, z)

< f1(x, z) − f2(x, z) + 3Cεδ − (
C2

4n
− 1)f2(x, z) < f (x, z) ,

where the final inequality follows simply by using again the size condition (3.17) for C and choosing ω ≤ 4−n. This 
completes the proof of the case |x − z| ≥ 7

4ε.
For the final case |x − z| < 7

4ε, observe that

|B(x, ε) ∩ B(z, ε)| > 1

4n
|Bε| .

Moreover, because x �= z

f2(y, y) ≥ C2f2(x, z) .

Then we simply estimate that

1

|Bε|
ˆ

B(0,ε)\B(z−x,ε)

f2(x + h, z + Px,z(h)) dh

+ 1

|Bε|
ˆ

B(x,ε)∩B(z,ε)

f2(y, y) dy (4.26)

>
1

|Bε|
ˆ

f2(y, y) dy
B(x,ε)∩B(z,ε)
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>
C2

4n
f2(x, z) .

Then the desired inequality for f = f1 − f2 follows exactly in the same way as in the case |x − z| ≥ 7
4ε. Again 

Theorem 2.1 follows.
As an application, by passing to a limit, this implies local Hölder continuity for harmonic functions similarly as 

explained for infinity harmonic functions in Remark 3.2. By adjusting the comparison function, it would also be 
possible to obtain local Lipschitz continuity. However, for the consistency of the exposition we shall not pursue this 
analysis here.

5. Tug-of-war with noise and space dependent probabilities

Next we proceed to new results. We consider a tug-of-war with noise and space dependent probabilities: This is 
again a two-player zero-sum stochastic game played in a domain �. The rules are as follows. Fix the step size ε > 0
and an initial position x0 ∈ �. The players start by tossing a biased space dependent coin with probabilities α(x0) and 
β(x0), α(x0) + β(x0) = 1. If the result is heads (with probability α(x0)), then they play a tug-of-war as described in 
Section 3. On the other hand, if the result is tails (with probability β(x0)), the game state moves to a random point 
in the ball B(x0, ε). The players continue playing until the game position leaves the domain �. Then Player II pays 
Player I the amount determined by a pay-off function F defined outside �.

Similarly as in the tug-of-war, Player I tries to maximize the pay-off while Player II tries to minimize it and thus 
value of the game is defined as

u(x0) = sup
SI

inf
SII

E
x0
SI,SII

[F(xτ )],

where SI and SII again denote the strategies of Player I and Player II, respectively. The usual tug-of-war with noise 
with fixed probabilities in [16], the tug-of-war in Section 3, and the random walk in Section 4 are special cases of this 
game.

Deriving the dynamic programming principle for this game is beyond the scope of the paper (for the fixed proba-
bilities case, see [12]). Nonetheless, we directly take the dynamic programming equation

u(x) = α(x)

2

{
sup

B(x,ε)

u + inf
B(x,ε)

u

}
+ β(x) −

ˆ

B(x,ε)

udy (5.27)

as our starting point. Heuristically we obtain the value at the point x ∈ � by summing up the three possible outcomes 
with corresponding probabilities. This equation is again of such a form that we can apply our method. We also point 
out that we have no regularity assumption for α(x).

5.1. Multidimensional dynamic programming

Let ε > 0 and α : � → [0, 1] be a Borel measurable mapping. Without loss of generality, we may assume 
max{α(x), α(z)} = α(x) and u(x) − u(z) ≥ 0. Indeed, if u(x) − u(z) < 0, then consider −u instead. Along the same 
lines as before, the equation (5.27) gives

M ≤u(x) − u(z) − f (x, z) + η

=α(x)

2
sup

B(x,ε)

u + α(x)

2
inf

B(x,ε)
u + β(x) −

ˆ

B(x,ε)

u(y) dy

− α(z)

2
sup

B(z,ε)

u − α(z)

2
inf

B(z,ε)
u − β(z) −

ˆ

B(z,ε)

u(y) dy − f (x, z) + η

=α(z)

2

(
sup u − inf

B(z,ε)
u + inf

B(x,ε)
u − sup u

)

B(x,ε) B(z,ε)
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+ β(x)

(
−
ˆ

B(x,ε)

u(y) dy − −
ˆ

B(z,ε)

u(y) dy

)

+ (α(x) − α(z))

2

(
sup

B(x,ε)

u + inf
B(x,ε)

u − 2 −
ˆ

B(z,ε)

u(y) dy

)
− f (x, z) + η

= I1 + I2 + I3 − f (x, z) + η .

The terms I1 and I2 were already estimated in the previous sections, so we may focus our attention on I3. Choose 
a sequence xk such that limk u(xk) = supB(x,ε) u. We have

sup
B(x,ε)

u − −
ˆ

B(z,ε)

u(y) dy = −
ˆ

B(z,ε)

lim
k

u(xk) − u(y)dy

= −
ˆ

B(z,ε)

lim
k

(u(xk) − u(y) − f (xk, y) + f (xk, y)) dy

≤M + sup
x′∈B(x,ε)

−
ˆ

B(z,ε)

f (x′, y) dy .

By a reversed reasoning, one can also verify that

inf
B(x,ε)

u − −
ˆ

B(z,ε)

u(y) dy ≤ M + −
ˆ

B(z,ε)

inf
x̃∈B(x,ε)

f (x̃, y) dy .

To see this, write

inf
B(x,ε)

u − −
ˆ

B(z,ε)

u(y) dy = −
ˆ

B(z,ε)

inf
B(x,ε)

u − u(y)dy

= −
ˆ

B(z,ε)

inf
B(x,ε)

u − u(y) − inf
x̃∈B(x,ε)

f (x̃, y) dy + −
ˆ

B(z,ε)

inf
x̃∈B(x,ε)

f (x̃, y) dy

≤ M + −
ˆ

B(z,ε)

inf
x̃∈B(x,ε)

f (x̃, y) dy .

By combining these estimates, we get that

I3 ≤
(

α(x) − α(z)

2

)(
2M + sup

x′∈B(x,ε)

−
ˆ

B(z,ε)

f (x′, y) + inf
x̃∈B(x,ε)

f (x̃, y) dy

)
.

Summing up and also recalling the estimates from the previous sections, to obtain the desired contradiction it 
suffices to show that f satisfies the following three conditions at every (x, z) ∈ B1 × B1 \ T :

f (x, z) >
1

2

(
sup

B(x,ε)×B(z,ε)

f + inf
B(x,ε)×B(z,ε)

f

)
, (I)

f (x, z) >
1

|B(x, ε)|
( ˆ

B(0,ε)\B(z−x,ε)

f (x + h, z + Px,z(h)) dh (II)

+
ˆ

B(x,ε)∩B(z,ε)

f (y, y) dy

)
,

f (x, z) >
1

2
sup

x′∈B(x,ε)

[
−
ˆ

B(z,ε)

f (x′, y) + inf
x̃∈B(x,ε)

f (x̃, y) dy

]
. (III)
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The inequalities I and II were treated earlier in Sections 3 and 4, and we may concentrate on the inequality III.

5.2. Estimates

Inequality III, case |x − z| > N ε
10 . As in the previous case, it suffices to verify the desired inequality for f1. Let 

η > 0. Suppose that hx ∈ B(0, ε) is such that

sup
x′∈B(x,ε)

[
−
ˆ

B(z,ε)

f1(x
′, y) + inf

x̃∈B(x,ε)
f1(x̃, y) dy

]

≤ −
ˆ

B(z,ε)

f1(x + hx, y) + inf
x̃∈B(x,ε)

f1(x̃, y) dy + η =: I 1
3 .

(5.28)

Next we estimate infx̃∈B(x,ε) f1(x̃, y) ≤ f1(x − hx, y) and use the Taylor expansion for f1 to obtain

I 1
3 ≤ −

ˆ

B(z,ε)

f1(x + hx, y) dy + f1(x − hx, y) dy + η

= −
ˆ

B(0,ε)

f1(x + hx, z + hz) + f1(x − hx, z − hz) dhz + η

= −
ˆ

B(0,ε)

2f1(x, z) + Cδ|x − z|δ−2((δ − 1)(hx − hz)
2
V + (hx − hz)

2
V ⊥

)
dhz

+ −
ˆ

B(0,ε)

2|hx + hz|2 + Ex,z(hx,hz) + Ex,z(−hx,−hz) dhz + η

≤ 2f1(x, z) + Cδ|x − z|δ−2 −
ˆ

B(0,ε)

(δ − 1)(hx − hz)
2
V + (hx − hz)

2
V ⊥ dhz

+ 2(2ε)2 + 2(10ε2|x − z|δ−2) + η.

First, we consider the case, where hx lies close to ε x−z
|x−z| . To be more precise, let

∣∣∣∣hx − x − z

|x − z|ε
∣∣∣∣ ≤ θ(n)ε (5.29)

such that the estimate

−
ˆ

B(0,ε)

(δ − 1)(hx − hz)
2
V + (hx − hz)

2
V ⊥ dhz ≤ − 1

n + 2
ε2

holds for any δ ≤ 1
10(n+2)

and θ = 1
10(n+2)

by a direct estimation. Indeed, first observe that

−
ˆ

B(0,ε)

−
( x − z

|x − z|ε − hz

)2

V
+

( x − z

|x − z|ε − hz

)2

V ⊥ dhz = −ε2 + n − 2

n + 2
ε2

and then take the small adjustments into account. Combining the above estimates, we obtain in the case (5.29) that

I 1
3 ≤ 2f1(x, z) − Cδ|x − z|δ−2 ε2

n + 2
+ 8ε2 + 20ε2|x − z|δ−2 + η.

Using the assumption (3.17) on the size of C we get
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8ε2 + 20ε2|x − z|δ−2 − Cδ|x − z|δ−2 ε2

n + 2
+ η

<100ε2|x − z|δ−2 − Cδ|x − z|δ−2 ε2

n + 2
+ η

<ε2|x − z|δ−2(100 − Cδ

n + 2
)

< − ε2 ,

where we choose ω in the bound for C so that ω ≤ 1
n+2 , and η small enough. This verifies the claim in the case (5.29).

In the remaining case∣∣∣∣hx − x − z

|x − z|ε
∣∣∣∣ > θ(n)ε = 1

10(n + 2)
ε, (5.30)

we utilize the first order terms in the Taylor expansion. To this end, by (3.21), the second order and error terms are 
bounded by δ2|x − z|δ−1ε. Recalling (5.28) and estimating infx̃∈B(x,ε) f1(x̃, y) ≤ f1(x − ε x−z

|x−z| , y), we have

I 1
3 ≤ −

ˆ

B(0,ε)

f1(x + hx, z + hz) + f1(x − ε
x − z

|x − z| , z − hz) dhz + η

≤ 2f1(x, z) + −
ˆ

B(0,ε)

Cδ|x − z|δ−1((hx − hz)V + (−ε
x − z

|x − z| − (−hz))V
)
dhz

+ −
ˆ

B(0,ε)

2(x + z) · ((hx + hz)V + (−ε
x − z

|x − z| + (−hz))V
)
dhz

+ δ2|x − z|δ−1ε + η.

In the first integral above, we estimate (−hz)V + (hz)V = 0 and (−ε x−z
|x−z| )V = −ε. The second integral on the right 

hand side above is bounded by 16ε. Thus by using (5.30), we obtain

I 1
3 ≤ 2f1(x, z) + Cδ|x − z|δ−1((hx)V − ε) + 16ε + δ3|x − z|δ−1ε + η

≤ 2f1(x, z) − Cδ|x − z|δ−1 θ

2
ε + δ2|x − z|δ−1ε + η

≤ 2f1(x, z) − δ|x − z|δ−1ε
(Cθ

2
− δ

) + η

≤ 2f1(x, z) − ε .

Again the final inequality follows recalling the bound (3.17) for C and choosing ω ≤ 1
10(n+2)

. This completes the 
proof of the present case.

Inequality III, case |x − z| ≤ N ε
10 . In this case we again use the rough estimate (3.22) for f1 in a similar spirit as 

before.
Consider then the quantity(

sup
x′∈B(x,ε)

[
−
ˆ

B(z,ε)

−f2(x
′, y) + inf

x̃∈B(x,ε)
−f2(x̃, y) dy

])
+ 2f2(x, z)

for f2. We use the term −́
B(z,ε)

infx̃∈B(x,ε) −f2(x̃, y) dy, and choose x̃ such that the distance between this choice and 
y is suitably smaller than |x − y|, so that we get the desired estimate.

For that, let us define for every y ∈ B(z, ε), Px(y) ∈ B(x, ε2 ) such that

Px(y) =
{

x if |x − y| ≥ ε
2

y if |x − y| < ε .
2
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Then for any x′ ∈ B(x, ε) it holds that

−
ˆ

B(z,ε)

−f2(x
′, y) + inf

x̃∈B(x,ε)
(−f2(x̃, y)) dy

≤ −
ˆ

B(z,ε)

−f2(x
′, y) − f2(Px(y), y) dy ≤ − −

ˆ

B(z,ε)

f2(Px(y), y) dy .

Then suppose that |x − z| ≥ 2ε
3 , denote z′ = z + 2

3ε x−z
|x−z| and y ∈ B(z′, ε3 ) ⊂ B(z, ε). It follows that

|Px(y) − y| ≤ |x − y| ≤ ∣∣x − z′∣∣ + ε

3
≤ |x − z| − ε

3
.

Thus by the definition of f2 and the fact that always x �= z, it follows that

f2(Px(y), y) ≥ C2f2(x, z)

in the same ball. Using this and the fact that f2 ≥ 0, we obtain

−
ˆ

B(z,ε)

f2(Px(y), y) dy

≥ 1

|Bε|
( ˆ

B(z,ε)∩B(z′, ε
3 )

f2(Px(y), y) dy +
ˆ

B(z,ε)\B(z′, ε
3 )

f2(Px(y), y) dy

)

≥ C2

3n
f2(x, z) > 2f2(x, z) + 6Cεδ,

where the above inequalities follows from (3.17), the choice ω2 ≤ 3−n and the definition of f2.
In turn, if |x − z| < 2ε

3 , then we use the fact that Px(y) = y in B(x, ε3 ) ⊂ B(z, ε). This and the definition of f2

imply

−
ˆ

B(z,ε)

f2(Px(y), y) dy ≥ 1

|Bε|
ˆ

B(x, ε
3 )

f2(Px(y), y) dy

≥ C2

3n
f2(x, z) > 2f2(x, z) + 6Cεδ.

At the last step we again used (3.17) and properties of f2. This completes the proof of Theorem 2.1. Observe that the 
choices δ = 1

10(n+2)
and ω = min{ 1

10(n+2)
, 1

4n } are sufficient with respect to all the choices made above.
The above result can be applied to the game theoretic approach to the normalized p(x)-Laplacian

�N
p(x)u =: �u + (p(x) − 2)�N∞u = 0, for x ∈ ��R

n,

where �N∞u = |∇u|−2 ∑n
i,j=1 uijuiuj with the notation of Remark 3.2, and 2 ≤ p(x) ≤ ∞. Indeed, the regularity 

estimate derived above allows us to pass to a limit, and thus to obtain estimates for viscosity solutions (see [7], as well 
as [8] for a different version of the p(x)-Laplacian) to the above equation using game theory by setting

α(x) = p(x) − 2

p(x) + n
, β(x) = 2 + n

p(x) + n
.

It is also worth noting that the approach in [18] and [16] does not directly extend to the game of this section, since 
these papers utilize the translation invariance.
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6. Tug-of-war with noise

The previous sections covered the game related to p-harmonic functions in the case 2 ≤ p ≤ ∞. In this section, we 
will include the range 1 < p < 2 by considering a slight modification of the game in [18] suggested in [9].

Choose a starting point x0 ∈ �. The players fix their possible moves νI and νII with |νI | , |νII| ≤ ε, and toss a fair 
coin. If Player I wins the toss, then she tosses a biased coin. If she gets heads (with probability α > 0), the token is 
placed at x1 = x0 + νI. If she gets tails (with probability β), then the token is placed at a random point in BνI(x0, ε), 
which is a ball lying in the n − 1-dimensional hyperplane with the normal νI. Similarly if Player II wins the toss, then 
he tosses a biased coin. If he gets heads (with probability α), the token is placed at x1 = x0 + νII. If he gets tails (with 
probability β), then the token is placed at a random point in BνII(ε, x0). The game is played until the token exits �, 
and at the end Player II pays Player I the amount given by the pay-off function F . The value of the game is given by

u(x0) = sup
SI

inf
SII

E
x0
SI,SII

[F(xτ )].

To avoid measurability problems, we can incorporate the continuous boundary correction in Section 4 of [13] as 
explained in [5]. However as we are studying local results, we only give a local form of the dynamic programming 
equation, and take it for granted. By summing the possible outcomes of a single game round, we heuristically obtain

u(x) =1

2
sup

0<|ν|≤ε

{
αu(x + ν) + β −

ˆ

Bν
ε

u(x + h)dLn−1(h)

}

+ 1

2
inf

0<|ν|≤ε

{
αu(x + ν) + β −

ˆ

Bν
ε

u(x + h)dLn−1(h)

}
,

(6.31)

where Ln−1 denotes the n − 1-dimensional Lebesgue measure and Bν
ε := Bν(0, ε). Similarly as in Section 5, we take 

the dynamic programming equation as our starting point straight away.

6.1. Multidimensional dynamic programming

We use the same f as before, but now choose

C = 1010

δ2ω(α)
. (6.32)

Fix η > 0 and recall the counter assumption (3.12). Similarly as in Section 3, using (6.31), we end up with

M ≤ u(x) − u(z) − f (x, z) + η

≤ sup
νx

1

2

{
αu(x + νx) + β −

ˆ

B
νx
ε

u(x + h)dLn−1(h)

}

− inf
νz

1

2

{
αu(z + νz) + β −

ˆ

B
νz
ε

u(z + h)dLn−1(h)

}

+ inf
νx

1

2

{
αu(x + νx) + β −

ˆ

B
νx
ε

u(x + h)dLn−1(h)

}

− sup
νz

1

2

{
αu(z + νz) + β −

ˆ

B
νz
ε

u(z + h)dLn−1(h)

}
− f (x, z) + η.

Then, let Pνx,νz be a rotation, to be specified later, from the hyperplane determined by νx to the hyperplane determined 
by νz so that we may briefly write
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M ≤1

2
sup
νx

sup
νz

{
α(u(x + νx) − u(z + νz))

+ β −
ˆ

B
νx
ε

u(x + h) − u(z + Pνx,νz (h)) dLn−1(h)

}

+ 1

2
inf
νx

inf
νz

{
α(u(x + νx) − u(z + νz))

+ β −
ˆ

B
νx
ε

u(x + h) − u(z + Pνx,νz (h)) dLn−1(h)

}

− f (x, z) + η

≤ I1 + I2 − f (x, z) + η.

Next we choose νI
x, ν

II
z ∈ B(0, ε) that give supνx

(denoted by νI
x ) and supνz

in I1 above up to an error η/2 > 0. Then 
add and subtract f similarly as in (3.14). This gives

I1 ≤ M

2
+ sup

νx,νz

T (f, x, z, νx, νz) + η,

where we used a shorthand notation

Tf := T (f, x, z, νx, νz)

:= α

2
f (x + νx, z + νz)) + β

2
−
ˆ

B
νx
ε

f (x + h, z + Pνx,νz (h)) dLn−1(h).

Similarly to (3.15) we also estimate

I2 ≤ M

2
+ inf

νx,νz

T (f, x, z, νx, νz) + η.

In the previous two estimates, we used the counter assumption.
Similarly as before, to obtain a contradiction, it thus suffices to show

sup
νx,νz

T (f, x, z, νx, νz) + inf
νx,νz

T (f, x, z, νx, νz) < f (x, z). (6.33)

We accomplish this in several steps.

6.2. Estimates

Inequality (6.33), case |x − z| > N ε
10 . In this case we may again focus our attention on f1. We recall the Taylor 

expansion

f1(x + hx, z + hz) =f1(x, z) + Cδ|x − z|δ−1(hx − hz)V + 2(x + z) · (hx + hz)

+ C

2
δ|x − z|δ−2((δ − 1)(hx − hz)

2
V + (hx − hz)

2
V ⊥

)
+ |hx + hz|2 + Ex,z(hx,hz).

Choose ν′
x, ν

′
z ∈ Bε such that

sup
νx,νz

T (f1, x, z, νx, νz) ≤ T (f1, x, z, ν′
x, ν

′
z) + η.

Let us first assume that

(ν′
x − ν′

z)
2
V ≥ (4 − θ)ε2 . (6.34)

Since |ν′
x − ν′

z| ≤ 2ε, this also means that
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(ν′
x − ν′

z)
2
V ⊥ ≤ θε2 . (6.35)

In this case, the second order terms in the Taylor estimate of the α-terms dominate and thus yield the desired conclu-
sion. To be more precise, we estimate the quantity

T (f1, x, z, ν′
x, ν

′
z) + T (f1, x, z,−ν′

x,−ν′
z) − 2f1(x, z). (6.36)

To this end, by using the above Taylor formula and the estimate (2.9) for the error term, we see that the α-terms in 
(6.36) can be estimated as

α

2
f1(x + ν′

x, z + ν′
z)) + α

2
f1(x − ν′

x, z − ν′
z)) − 2f1(x, z)

≤ 0 + Cα

2
δ|x − z|δ−2(2(δ − 1)(ν′

x − ν′
z)

2
V + 2(ν′

x − ν′
z)

2
V ⊥

)
+ α|ν′

x + ν′
z|2 + α

2
Ex,z(ν

′
x, ν

′
z) + α

2
Ex,z(−ν′

x,−ν′
z)

≤ Cα

2
δ|x − z|δ−2(2(δ − 1)(4 − θ)ε2 + 2θε2 )

+ α(2ε)2 + 20αε2|x − z|δ−2.

(6.37)

Next we estimate the β-terms

β

2
−
ˆ

B
ν′
x

ε

f1(x + h, z + Pν′
x ,ν′

z
(h)) dLn−1(h)

+ β

2
−
ˆ

B
−ν′

x
ε

f1(x + h, z + P−ν′
x ,−ν′

z
(h)) dLn−1(h)

(6.38)

in (6.36) by the Taylor series. By symmetry, the first order terms vanish. So far we have not used a particular form of 

the rotations Pν′
x,ν′

z
and P−ν′

x ,−ν′
z
. Now we choose Pν′

x,ν′
z
= P−ν′

x ,−ν′
z

such that 
∣∣∣h − Pν′

x ,ν′
z
(h)

∣∣∣2 ≤ θε2. This and (6.35)

imply that

Cδ|x − z|δ−2 −
ˆ

B
νx
ε

(h − Pν′
x ,ν′

z
(h))2

V ⊥ dLn−1(h) ≤ Cδ|x − z|δ−2θε2.

The same estimate naturally also holds for the second term of (6.38). We may also estimate

C(δ − 1)δ|x − z|δ−2 −
ˆ

B
ν′
x

ε

(h − Pν′
x ,ν′

z
(h))2

V dLn−1(h) ≤ 0

and thus we may bound the quantity in (6.38) by

Cβδ|x − z|δ−2θε2 + β(2ε)2 + β20ε2|x − z|δ−2. (6.39)

Combining the estimates (6.37) and (6.39), choosing small enough δ and θ as well as by using the assumption 
(6.32) for C along with choosing ω(α) small enough, we observe that

|x − z|δ−2(20 + Cδ(βθ − α)) < −|x − z|δ−2108 < −107 .

This implies the negativity of the quantity in (6.36).
In turn, if (6.34) above does not hold, implying that

(ν′
x − ν′

z)V ≤ (2 − θ

4
)ε ,

the desired estimate can be readily derived from the first order terms in the Taylor estimate. Indeed, the share of the 
second order and error terms in the Taylor estimate of (6.36) can be roughly estimated by (3.21) as
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δ2|x − z|δ−1ε .

Furthermore, by using Taylor’s formula and the above estimate for the second order terms and the error, we have

supTf1 + infTf1 − 2f1(x, z)

≤T (f1, x, z, ν′
x, ν

′
z) + T (f1, x, z,−ε

x − z

|x − z| , ε
x − z

|x − z| ) − 2f1(x, z) + η

≤Cαδ|x − z|δ−1((ν′
x − ν′

z)V − 2ε) + 4|x + z|2ε + δ2|x − z|δ−1ε + η

≤Cαδ|x − z|δ−1(−θ

4
ε) + 16ε + δ2|x − z|δ−1ε + η

≤(δ − α
θ

4
C)δ|x − z|δ−1ε + 16ε + η.

Observe that above the first order terms in the Taylor series of β-terms vanish in the integration by symmetry and also 
since P·,· is a rotation. By applying the assumption (6.32) for C for small enough ω(α) ≤ αθ , it is easy to check the 
desired negativity for this quantity. This completes the proof of the case |x − z| > N ε

10 .

Inequality (6.33), case |x − z| ≤ N ε
10 . Recall that when x, z ∈ B1, and hx, hz ∈ Bε , then

|f1(x + hx, z + hz) − f1(x, z)| ≤ 3Cεδ

as in (3.22). This implies

supTf1 − f1(x, z) ≤ 3Cεδ .

Moreover,

supT (f1 − f2) ≤ supT (f1 − 0) = supTf1.

Letting (i − 1) ε
10 < |x − z| ≤ i ε

10 , i = 1, 2, . . . , N , we also have

infT (f1 − f2) ≤ supTf1 − supTf2

≤ supTf1 − αC2(N−i+1)εδ

= supTf1 − α(C2 − 2

α
)C2(N−i)εδ − 2C2(N−i)εδ

= supTf1 − α(C2 − 2

α
)C2(N−i)εδ − 2f2(x, z)

< supTf1 − 6Cεδ − 2f2(x, z)

for small enough ω(α) in (6.32). Combining the previous estimates, we end up with

supTf + infTf < supTf1 + supTf1 − 6Cεδ − 2f2(x, z)

≤ 2f1(x, z) + 6Cεδ − 6Cεδ − 2f2(x, z)

≤ 2f (x, z).

This completes the proof of Theorem 2.1.
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