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Abstract

We consider the cubic nonlinear Schrödinger equation with a potential in one space dimension. Under the assumptions that the 
potential is generic, sufficiently localized, with no bound states, we obtain the long-time asymptotic behavior of small solutions. 
In particular, we prove that, as time goes to infinity, solutions exhibit nonlinear phase corrections that depend on the scattering 
matrix associated to the potential. The proof of our result is based on the use of the distorted Fourier transform – the so-called 
Weyl–Kodaira–Titchmarsh theory – a precise understanding of the “nonlinear spectral measure” associated to the equation, and 
nonlinear stationary phase arguments and multilinear estimates in this distorted setting.
© 2018 
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1. Introduction

1.1. The equation

Our aim in this paper is to describe the large time behavior of small solutions of the Cauchy problem for the one 
dimensional cubic nonlinear Schrödinger equation with an external potential:

i∂tu − ∂2
xu + V u = λ|u|2u, (NLS)
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where the space and time variables (t, x) ∈ R × R, u = u(t, x) ∈ C, λ ∈ R. This equation derives formally from the 
Hamiltonian

H = 1

2

ˆ

R

|∂xu|2 dx + 1

2

ˆ

R

V |u|2 dx − λ

4

ˆ

R

|u|4 dx, (1.1)

and also conserves the total mass

M =
ˆ

R

|u|2 dx.

Since we will only be interested in small solutions of (NLS), we might restrict our attention without loss of generality 
to the case λ = 1. We will work under fairly mild assumptions on the potential, namely

V ∈ W 2,1(R) ∩ L1
γ (R), γ > 6, L1

γ (R) := {f : |x|γ f ∈ L1}. (1.2)

Under this localization assumption, it is well known that the spectrum of LV = −∂2
x + V as a self-adjoint operator on 

L2(R) with domain H 2(R) is made of [0 + ∞) and a finite number of L2 eigenvalues (bound states). Moreover, on 
(0, +∞) the spectrum is purely absolutely continuous (actually it suffices that V ∈ L1, see for example [43] for these 
classical results).

Our main spectral assumption on LV will be

LV has no bound states, V is generic. (1.3)

The precise formulation of the assumption that V is generic is given in Remark 1 after Theorem 1.1 below; such 
assumption can be expressed in terms of properties of the scattering matrix associated to V , and is equivalent to the 
usual assumption that 0 is not a resonance.

We are going to consider the Cauchy problem for (NLS) with initial data u0 small in a suitable weighted Sobolev 
space, and study the global properties and asymptotic behavior of solutions. Since we deal with small solutions, the 
sign in front of the nonlinearity is irrelevant for our main result to hold. Our main motivation for studying this problem 
is the question of asymptotic stability for special solutions of nonlinear dispersive and hyperbolic equations, such as 
solitons, traveling waves, kinks... Indeed, nonlinear equations with external potentials arise as the linearization of the 
full nonlinear problems around these special solutions, and (NLS) is a prototypical model for nonlinear equations 
under the influence of an external potential.

Our approach will be based on the use of the distorted Fourier transform – the so-called Weyl–Kodaira–Titchmarsh 
theory – which will allow us to extend some Fourier analytical techniques which have been successfully employed 
in recent years to study small solutions of nonlinear equations without potentials, see for example [34,21,31]. Our 
hope is that the framework developed in the present article will prove useful to study open questions concerning the 
stability of (topological) solitons, and other special solutions for nonlinear evolution equations.

1.2. Previous results

Before discussing some recent works on one dimensional problems with potentials we briefly consider the one 
dimensional NLS equation in the case of zero potential

i∂tu − ∂2
xu = |u|2u. (NLS0)

We will call this the flat/unperturbed NLS in contrast to the distorted/perturbed equation (NLS).
It is well-known that the Cauchy problem for (NLS0) is globally well-posed in L2 [5]. Moreover, solutions to the 

Cauchy problem associated to (NLS0) with initial data u|t=0 ∈ H 1 ∩L2(x2dx) (bounded energy and variance) exhibit 
modified scattering as time goes to infinity. More precisely, solutions decay at the same rate as linear solutions but 
they differ from linear solutions by a logarithmic phase correction. Using complete integrability this was proven in the 
seminal work of Deift and Zhou [12] (see also [13]. Without making use of complete integrability (and in the case of 
similar but non-integrable versions of (NLS0)) and restricting the analysis to small solutions, proofs of this fact were 
given by Hayashi and Naumkin [25], Lindblad and Soffer [38], Kato and Pusateri [34], and Ifrim and Tataru [29]. 
Similar results for the nonlinear Klein–Gordon equation have been obtained by Delort [14], covering also the case of 
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quasilinear quadratic nonlinearities, and Lindblad and Soffer [37]. A similar asymptotic behavior occurs for solutions 
of many other dispersive and hyperbolic equations, such as for example the modified KdV equation [26,22], fractional 
Schrödinger equations [30], and water waves [31,1,32].

Notice that solutions scatter (without phase correction) if one replaces the cubic nonlinearity in (NLS0) by a higher 
power. In [8] Cuccagna, Georgiev and Visciglia considered the subcritical problem with external potential i∂tu −
∂2
xu +V u = |u|pu, with 2 < p < 4, and were able to prove linear decay and (regular) scattering in L2 for small initial 

data with bounded energy and variance. The key in this work is a commutator estimate involving a distorted version 
of the vector field J = x − 2it∂x . Successful commutation with this distorted vectorfield guarantees the boundedness 
of its action on solutions, and gives the decay which is necessary to close the argument. Recently, Delort published a 
result [15] for the critical case of (NLS) in the case of odd solutions and even potentials. Cuccagna–Georgiev–Visciglia 
also announced a similar result [9]. We will comment below on the relevance of considering odd solutions and how 
this is related to enhanced decay properties, cancellations and asymptotics.

After completing the present work, we learned of the paper [40], which proves a result similar to the main theorem 
below. The very elegant method is an extension to the distorted setting of the “factorization method” of Hayashi and 
Naumkin, see for example [25–27]. The conditions on u0 and V are weaker than ours, and probably close to minimal. 
However, the method which we propose here is very robust and flexible. In particular, it would be straightforward to 
extend it to the cubic nonlinear Klein–Gordon equation. Moreover, our results immediately apply to a nonlinearity of 
the type a(x)|u|2u, where a(x) → 1 as |x| → ∞. Note that such an inhomogeneous term does not seem straightfor-
ward to treat by the method in [40]. In particular, since this method relies on commuting the distorted analogue of the 
“vectorfield” J = x − 2it∂x through (an operator closely related to) the wave operator, one would also need to deal 
with the issues arising from the commutation of J and a. See the papers [37,48] for the treatment of similar issues 
in the context of the Klein–Gordon equation. Note that treating inhomogeneous terms is one of the basic issues that 
needs to be taken into consideration when studying linearized equations around special solutions.

As already pointed out, this paper is a first attempt to extend to the distorted setting, at least in 1 + 1 dimensions, 
the very general methods of [21,24], which have already proven to be largely successful in the study of the asymp-
totic dynamics of evolution PDEs. Some of the advantages of the adaptation of refined nonlinear Harmonic analysis 
techniques to the distorted setting are (1) the flexibility in using partial normal forms transformation and (2) an overall 
better understanding of nonlinear oscillations. For example, we hope that further developments of our methods will 
allow the treatment of quadratic Klein–Gordon equations with a potential, by combining normal form transformations 
and the type of multilinear Fourier analysis performed in this paper to deal with the fully resonant interactions. Such 
models would be very relevant in the study of the stability of kinks.

1.3. Motivation

One of our main motivations for studying (NLS) is the question of asymptotic stability for special solutions of 
nonlinear dispersive and hyperbolic equations. Studies on the existence and stability of solitons, traveling waves, and 
other types of special solutions are numerous and span an extensive body of literature. Given the impossibility of 
being exhaustive we refer the reader to the seminal papers by Weinstein [51], Pego and Weinstein [41], Soffer and 
Weinstein [46,47], and the more recent expository articles [45,49] and references therein.

The classical approach to asymptotic stability of, say, solitons, is to split the solution into a modulated soliton, plus 
a remainder which is called the radiation. The modulated soliton lives in a finite dimensional space which mirrors 
the symmetries of the equation. As for the radiation, it solves an equation whose linear part is given by an equation 
involving a potential (related to the soliton). One then tries to establish dispersive estimates for the linear part – 
involving the potential – [33,23,44,45] and leverage these to control the nonlinear terms, so to obtain decay of the 
radiation and therefore asymptotic stability. This approach is in general easier to implement in higher dimension, due 
to better decay properties: see for instance [42,6].

When the decay of the radiation is weak, an important difficulty in this program is to understand the coupling 
between the radiation and the modulation parameters. For equations that enjoy a separation property between the 
speeds of linear dispersive waves and solitary waves, such as the Korteweg de Vries equation, this coupling is weak and 
can be handled through monotonicity formulas. Asymptotic stability results then follow in the sense that perturbations 
decay on one side of the wave [41,39]. Recently, in [22], we could prove the full asymptotic stability of solitons – that 
is a description of the asymptotic behavior of the perturbation on the other side of the wave – for the mKdV equation, 
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by combining these techniques with the ones used to prove modified scattering for small data. For equations like 
Klein–Gordon or Schrödinger, the coupling between the radiation and the modulation parameters is stronger and it is 
usually controlled after normal form transforms in the system coupling the modulation parameters and the radiation 
via the “Fermi Golden rule” [47,6,4,2].

Note that very interesting virial type arguments have been developed recently to prove asymptotic stability results 
in the energy space for the φ4 model [35]. Other one dimensional asymptotic stability results in the energy space 
include [7] on ground states of NLS, and [3] on solitary waves of the Gross–Pitaevskii equations. Nevertheless, in 
the one-dimensional case, we are not aware of situations where a complete description of the asymptotic stability 
of solitons (in [35] initial data in the energy space are considered but the perturbation is only shown to enjoy local 
energy decay) has been shown for a nonlinearity which is critical for the dispersion (in the sense that small solutions 
do not scatter linearly) outside the use of complete integrability, see for example [10] on cubic NLS, or when there is 
separation between the soliton and the radiation, see our work [22].

1.4. Main result

Our main result, Theorem 1.1 stated below, gives, for any initial data in a weighted Sobolev space (in particular for 
any function in the Schwartz class) that solutions of the perturbed equation (NLS) decay globally-in-time at the same 
rate as solutions of the linear equation i∂tu − ∂xxu = 0. Furthermore, as time approaches infinity, they approach, up to 
a logarithmic phase correction, solutions of the linear problem. The precise statement about the asymptotic behavior 
involves the distorted Fourier transform, whose definition and properties are given in Section 2.

Theorem 1.1. Consider the nonlinear Schrödinger equation (NLS) with a potential V satisfying

V ∈ W 2,1, V ∈ L1
γ , γ > 6, V has no bound states, (1.4)

and V is generic in the sense of Remark 1 below. The following hold true:

• (Global existence and decay). There exists ε > 0 small enough such that for all ε0 ≤ ε and u0 satisfying

‖u0‖H 3 + ‖xu0‖L2 = ε0, (1.5)

the equation (NLS) with initial data u(t = 0) = u0 admits a unique global solution satisfying

sup
t∈R

‖u(t)‖L∞
x
� ε0(1 + |t |)−1/2. (1.6)

• (Global bounds). Define the profile of u by

f (t, x) := e−it (−∂2
x+V )u(t, x), f̃ (t, k) := e−itk2

ũ(t, k), (1.7)

where, for any g ∈ L2, g̃ = F̃g denotes the distorted Fourier transform of g (see (2.14)). Let p0 = 1/100, α ∈
(0, 1/4), then the global solution of (NLS) with data (1.5) satisfies

(1 + |t |)−p0
∥∥(1 + |k|)3f̃ (t)

∥∥
L2 + ∥∥f̃ (t)

∥∥
L∞ + (1 + |t |)−1/4+α

∥∥∂kf̃ (t)
∥∥

L2 � ε0. (1.8)

• (Asymptotic behavior as t → +∞). There exists W+∞ ∈ L∞ such that∣∣∣∣∣∣f̃ (t, k) exp

⎛⎝ i

2
√

2π

tˆ

0

|f̃ (s, k)|2 ds

s + 1

⎞⎠− W+∞(k)

∣∣∣∣∣∣� (1 + t)−ρ/2, for t > 0, (1.9)

for 0 < ρ < α/10.
• (Asymptotic behavior as t → −∞). Let S = S(k) be the scattering matrix associated to V , see (2.12), and let

Z(t, k) := (f̃ (t, k), f̃ (t,−k)
)
, k > 0. (1.10)
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Define the self-adjoint matrices

S0(t, k) := 1

2
√

2π
diag

(|f̃ (t, k)|2, |f̃ (t,−k)|2),
S1(t, k) := 1

2
√

2π
S−1(k)diag

(|(SZ(t, k))1|2, |(SZ(t, k))2|2
)
S(k),

(1.11)

and let1

S(t, k) := 1(k ≤ |t |−ρ)S0(t, k) + 1(k ≥ |t |−ρ)
1

2

[
S0(t, k) + S1(t, k)

]
, (1.12)

for 0 < ρ < α/10.
Then, if we denote

W(t, k) := exp
(
i

tˆ

0

S(t, k)
ds

s + 1

)
Z(t, k), |W(t, k)| = |Z(t, k)|, (1.13)

there exists W−∞ ∈ L∞ such that∣∣W(t, k) − W−∞(k)| � (1 + |t |)−ρ/2, for t < 0. (1.14)

Before describing in more details some of the main ideas in the proof, let us make some comments:

(1) Genericity of the potential. We assume that V is generic in the following sense:ˆ

R

V (x)m(x)dx �= 0 (1.15)

where m is the unique solution of (−∂2
x + V )m = 0 which approaches 1 as x goes to +∞, see (2.1)–(2.2). In 

particular one can see that (1.15) is equivalent to the fact that the transmission coefficient (see Section 2 below for 
the definitions of T and R±) satisfies T (0) = 0, T ′(0) �= 0 (and hence the reflection coefficients R±(0) = −1), see 
(2.7)–(2.10). This is also equivalent to the fact that 0 is not a resonance. Indeed the fact that 0 is not a resonance 
is usually formulated in dimension 1 (see [23] for example) in terms of W(0) �= 0 where W(k) = [f+(k), f−(k)]
is the Wronskian between the two Jost functions (see section 2.1 for the definition). Since W(k) = 2ik/T (k)

(see [11] p. 144) and W is continuous, our assumption is equivalent to W(0) �= 0.
Note, see Lemma 2.4 below, that under this generic assumption, for any f ∈ L1, one has f̃ (0) = 0, where f̃ is 

the distorted Fourier transform of f . See again Section 2 and the definitions (2.13)–(2.14). Note that if f̃ (0) = 0, 
according to the asymptotic formulas (1.16)–(1.17) below, one would get additional decay in time for u(x, t)
when |x|  t , provided f̃ is sufficiently smooth. This type of improved decay has been observed, for example, 
in [44]. While we do not directly make use of this additional time decay in physical space, we do rely on the 
improved behavior of some of the nonlinear interactions when the input frequencies are small.

(2) Assumptions on the data and the special case of odd solutions. Notice that we do not put any additional restriction 
on our initial data besides standard regularity and spatial decay. In particular we do not require the data to be odd 
and the potential to be even as in [9,15].

It is interesting to note that the expressions in (1.11)–(1.13) involve explicitly the scattering matrix S associated 
to the potential V , see (2.12). It turns out that this is not the case if one assumes that V is even and the initial data is 
odd. Indeed, under these additional assumptions, f̃ is odd, the reflection coefficients coincide, that is, R+ = R−, 
and the expression in (1.11) simplifies to S = S0 for all t .

(3) About the modified asymptotics: physical space. From (1.9) and a slight refinement of Proposition 3.1, one can 
also derive a statement about nonlinear asymptotics in physical space. More precisely one can show that, under 
our global bounds, see (1.8),

1 We denote by 1(A) the indicator function of the set A.
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u(t, x) = eix2/4t

√−2it
f̃
(
t,− x

2t

)
+ O(|t |−1/2+α), t � 1, (1.16)

while, for t  −1, denoting k0 := −x/2t , we have

u(t, x) = eix2/4t

√−2it

[
T (k0)f̃ (k0) + R+(k0)f̃ (−k0)

]
+ O(|t |−1/2−α), x > 0,

u(t, x) = eix2/4t

√−2it

[
T (−k0)f̃ (k0) + R−(−k0)f̃ (−k0)

]
+ O(|t |−1/2−α), x < 0.

(1.17)

Notice how the scattering matrix (2.12) associated to the potential also appears explicitly here.
Combining (1.16)–(1.17) with (1.9) it is then possible to obtain the following asymptotic expression:

u(t, x) = eix2/4t

√−2it
exp
( i

2
√

2π

∣∣∣W+∞
(

− x

2t

)∣∣∣2 log t
)
W+∞

(
− x

2t

)
+ O(|t |−1/2−α/2), (1.18)

for t ≥ 1.
As t → −∞, the expression in the distorted Fourier space is more complicated and involves the scattering 

matrix S, see (1.12)–(1.14). In particular, it is interesting to notice how the expression for the modified profile at 
frequency k involves both the frequencies k and −k.

(4) Reversing time. Though (NLS) is symmetrical by reversing time (and taking the complex conjugate of u), the 
phase correction for t → −∞ is much more complicated than it is for t → ∞. This follows from our choice of 
the distorted Fourier transform F̃ (defined in (2.14)), which is sometimes denoted F+, and can be defined through 
the wave operator W+ by

W+ = s − lim
t→∞ eit (−∂2

x+V )eit∂2
x =F−1+ F̂

(where F̂ is the flat, classical Fourier transform). Flipping the + signs in this definition, one obtains another 
distorted Fourier transform, F−, defined by

W− = s − lim
t→−∞ eit (−∂2

x+V )eit∂2
x =F−1− F̂ .

This second distorted Fourier transform is better adapted to analyzing negative times, and would give simple 
asymptotics as t → −∞.

(5) The bootstrap space. The bulk of our analysis is performed in the distorted Fourier space, and the nonlinear 
evolution stays small in the space

(1 + |t |)−p0
∥∥(1 + |k|)3f̃ (t)

∥∥
L2 + ∥∥f̃ (t)

∥∥
L∞ + (1 + |t |)−1/4+α

∥∥∂kf̃ (t)
∥∥

L2 , (1.19)

for some α ∈ (0, 1/4). The motivation for choosing the above space is that it guarantees the desired sharp decay 
of (1 + |t |)−1/2, see the linear estimates in Proposition 3.1.

(6) Vector fields methods. There is a substantial difference in the way we perform weighted estimates using the 
distorted Fourier transform, and alternative approaches based on the vector fields method, such as Donninger and 
Krieger [16] and Cuccagna, Georgiev and Visciglia [8]. These approaches are based on using L2 norms weighted 
by vectorfields to deduce decay for a general function u, and then estimating vectorfields of the full nonlinear 
solution. In our approach, we look at a true linear solutions of the perturbed equation, establish a decay estimate – 
in this case involving f̃ and ∂kf̃ – and then estimate the relevant quantities in the nonlinear problem.

1.5. Ideas of the proof

Our approach will be based on the use of the distorted Fourier transform (the Weyl–Kodaira–Titchmarsh theory), 
which will allow us to extend many recent successful Fourier analytical techniques used to study small solutions of 
nonlinear equations without potentials. In the setting of the distorted Fourier transform, we then follow the basic idea 
of the space–time resonance method by filtering the solution by the linear group, and viewing the (nonlinear) Duhamel 
term as an oscillatory integral: see [18,20,21] for higher-dimensional instances, and [34] for (NLS0), which provides 
in many respects a blueprint for the present paper. A first attempt to extend the space–time resonance method to a 
perturbed case can be found in [19].
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1.5.1. The equation on the profile in distorted Fourier space
We refer to section 2 for a more detailed presentation of the distorted Fourier transform, and admit for the moment 

the existence of generalized eigenfunctions ψ(x, k) such that

∀k ∈R, (−∂2
x + V )ψ(x, k) = k2ψ(x, k),

and that the familiar formulas relating the Fourier transform and its inverse in dimension d = 1 hold if one replaces 
eikx by ψ(k, x):

f̃ (k) =
ˆ

R

ψ(x, k)f (x) dx and f (x) =
ˆ

R

ψ(x, k)f̃ (k) dk.

Defining then the profile f by

f = e−it (−∂xx+V )u or equivalently f̃ (t, k) = e−itk2
ũ(t, k),

it is easy to check that it satisfies the equation

∂t f̃ (t, k) = −i

˚
eit (−k2+�2−m2+n2)f̃ (t, �)f̃ (t,m)f̃ (t, n)μ(k, �,m,n)d�dmdn,

hence

f̃ (t, k) = ũ0(k) − i

tˆ

0

˚
eis(−k2+�2−m2+n2)f̃ (s, �)f̃ (s,m)f̃ (s, n)μ(k, �,m,n)d�dmdnds, (1.20)

where

μ(k, �,m,n) =
ˆ

ψ(x, k)ψ(x, �)ψ(x,m)ψ(x,n)dx (1.21)

characterizes the interaction between the generalized eigenfunctions.
At this point, the essential difference with the flat case becomes clear: if V = 0, ψ(x, k) should be replaced by 

eikx , in which case μ(k, �, m, n) = δ(k − � + m − n). But if V �= 0, the structure of μ becomes much more involved: 
we will see that it can be decomposed into

μ(k, �,m,n) =
∑

β,γ,δ,ε=±1

[
Aβ,γ,δ,ε(k, �,m,n)δ(βk + γ � + δm + εn)

+ Bβ,γ,δ,ε(k, �,m,n)p.v.
1

βk + γ � + δm + εn

]
+ C(k, �,m,n),

(1.22)

where Aβ,γ,δ,ε , Bβ,γ,δ,ε , and C are relatively smooth functions (depending on the potential), and “p.v.” stands for 
principal value.

The structure of the coefficients in (1.22) plays an important role. In particular, we will see that the structure of 
the coefficients Bβ,γ,δ,ε will lead to some special cancellation of the worst terms appearing in the estimate for ∂kf̃ . 
Further null structures at low frequencies in some of the coefficients Bβ,γ,δ,ε and in C will also allow us to close the 
crucial bounds on ∂kf̃ and f̃ in (1.8).

1.5.2. The multilinear oscillatory integral
The whole challenge is to analyze the right-hand side of (1.20), which is a multilinear oscillatory integral with phase 

�(k, �, m, n) = −k2 + �2 −m2 +n2, where f̃ has limited regularity and the kernel μ is as above. It requires a delicate 
decomposition, which is the heart of the argument, and will be explained precisely in the following sections. For the 
moment, let us simply notice that, in regions in (�, m, n) where μ is smooth and � nondegenerate, the convergence 
of the right-hand of (1.20) is easy to establish.

First of all, problems arise, of course, close to the singular set of μ

Singμ = ∪β,γ,δ,ε=±1{βk + γ � + δm + εn = 0}.
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Next, to take advantage of oscillations, one can integrate by parts through the formula

1

is∂e�
∂ee

is� = eis�

if e is a vector in (�, m, n) space. This is however only helpful if this manipulation does not result in the singularity 
of μ getting worse. In other words, e should be tangent to {βk + γ � + δm + εn = 0} (where β, γ, δ, ε depend on the 
part of μ which is considered). In other words, we see that the relevant notion of stationary points in (�, m, n) (“space 
resonances”) is given by stationary points of � restricted to {βk + γ � + δm + εn = 0}.

Finally, a last option is to integrate by parts in s through the formula

1

i�
∂se

is� = eis�;
obviously, this is only helpful away from the set {� = 0} (“time resonances”).

Most worrisome are the points which belong to the three categories: the singular set of μ, space resonances, and 
time resonances. It turns out that these are of the form �, m, n = ±k and will ultimately lead to an ODE giving an 
oscillatory phase correction.

1.5.3. The bootstrap argument
We will prove an a priori estimate for the following norm

‖u‖X = sup
t

[
‖f̃ (t)‖L∞ + 〈t〉−p0‖u(t)‖H 3 + 〈t〉−1/4+α‖∂kf̃ (t)‖L2

]
(1.23)

(recall p0 = 1/100). More precisely, we will assume that the initial data u0 satisfies (1.5) and that for ε1 = ε
2/3
0 we 

have the a priori bound

‖u‖X ≤ ε1. (1.24)

We will then show that this estimate improves to

‖u‖X ≤ Cε0 + Cε3
1, (1.25)

for some absolute constant C > 0. For ε0 sufficiently small, this estimate combined with a bootstrap argument, and the 
choice ε1 = 2Cε0, gives global existence of solutions which are small in the space X. As part of the argument needed 
to obtain (1.25) we will establish the asymptotic behavior of solutions as described in (1.9)–(1.14) of Theorem 1.1.

For simplicity, and without loss of generality, we only consider t ≥ 1, assuming that a local solutions has been 
already constructed on the time interval [0, 1] by standard methods. Using also time reversibility we obtain solutions 
for all times.

We remark that in the definition (1.23) we could equivalently replace ‖∂kf̃ (t)‖L2 by

‖∂k1+f̃ (t)‖L2 + ‖∂k1−f̃ (t)‖L2 ,

where 1± denotes the characteristic function of {±k ≥ 0}, and control this quantity instead. Notice this is finite at time 
0 because ũ0(0) = 0, see Lemma 2.4.

1.5.4. Structure of the proof
The rest of the paper is organized as follows:

• Section 2 contains an exposition of the elements of the spectral theory of operators −∂2
x + V on R which will be 

needed.
• Section 3 is dedicated to three preliminary results: the linear estimate

‖u(t)‖L∞ � (1 + |t |)−1/2‖f ‖X,

which allows to deduce decay of u from the control of the bootstrap norm, the energy estimate in H 3, and a 
lemma describing precisely the structure of the measure μ in (1.21).
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• Section 4 gives the control of the weighted norm component of the space X. By weighted norm, we always mean 
‖∂kf̃ (t)‖L2 , which is indeed akin to a weighted norm in physical space. The control on this norm relies on a 
precise analysis of the multilinear oscillatory integral, and some key cancellation.

• Finally, Section 5 gives the control of ‖f̃ (t)‖∞. Once again, this is achieved through a precise analysis of the 
multilinear oscillatory integral. It allows us to derive an ODE which describes the leading order behavior of f̃ , 
and whose solutions are bounded.

Acknowledgments. We thank Z. Hani for communicating to us that Cuccagna, Georgiev and Visciglia had announced 
a result for the case of odd solutions and even potentials [9]. We thank A. Stefanov for letting us know about the 
paper [40]. P.G. was partially supported by the NSF grant DMS-1501019. F.P. was partially supported by the NSF 
grant DMS-1265875.

2. Spectral theory in dimension one

2.1. Jost solutions

Define f+(x, k) and f−(x, k) by the requirements that

(−∂2
x + V )f± = k2f±, for all x ∈R, and

{
f+(x, k) ∼ eixk as x → ∞
f−(x, k) ∼ e−ixk as x → −∞.

(2.1)

Define

m+(x, k) = e−ikxf+(x, k) and m−(x, k) = eikxf−(x, k). (2.2)

We will need precise bounds on m± and their derivatives, and for this we define

Ws+(x) =
+∞ˆ

x

〈y〉s |V (y)|dy, Ws−(x) =
xˆ

−∞
〈y〉s |V (y)|dy. (2.3)

Let us recall that we say that V ∈ L1
γ if 〈x〉γ |V | ∈ L1.

Lemma 2.1. For every s ≥ 0, assuming that V ∈ L1
s+1, we have the following estimates that are uniform in x and k,

|∂s
k (m±(x, k) − 1)| � 1

〈k〉W
s+1± (x), ±x ≥ −1, (2.4)

|∂s
k (m±(x, k) − 1)| � 1

〈k〉 〈x〉s+1, ±x ≤ 1. (2.5)

Moreover, we also have the following control of the x derivatives:

|∂x∂
s
km±(x, k)| �Ws±(x), ±x ≥ −1,

|∂x∂
s
km±(x, k)| � 〈x〉s , ±x ≤ 1.

The proof of these estimates is sketched in Appendix A.

2.2. Transmission, reflection, and scattering matrix

A classical reference for the formulas which we recall here is [11] (see also [53], [50] for example). Denote T (k)

and R±(k) respectively the transmission and reflection coefficients associated to the potential V . These coefficients 
are such that

f+(x, k) = 1

T (k)
f−(x,−k) + R−(k)

T (k)
f−(x, k),

f−(x, k) = 1

T (k)
f+(x,−k) + R+(k)

T (k)
f+(x, k),

(2.6)
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or, equivalently,

f+(x, k) ∼ 1

T (k)
eikx + R−(k)

T (k)
e−ikx as x → −∞,

f−(x, k) ∼ 1

T (k)
e−ikx + R+(k)

T (k)
eikx as x → ∞.

Moreover, they are given by the formulas, see [11, pp. 145–146],

1

T (k)
= 1 − 1

2ik

ˆ
V (x)m±(x, k) dx,

R±(k)

T (k)
= 1

2ik

ˆ
e∓2ikxV (x)m∓(x, k) dx,

(2.7)

and satisfy

T (−k) = T (k), R±(−k) = R±(k),

|R±(k)|2 + |T (k)|2 = 1, T (k)R−(k) + R+(k)T (k) = 0.
(2.8)

In the present paper, we recall that we consider the generic caseˆ
V (x)m±(x,0) dx �= 0, (2.9)

for which

T (0) = 0 and R±(0) = −1. (2.10)

From the formula (2.7) above giving T and R± and the estimates of Lemma 2.1, we obtain the following:

Lemma 2.2. Assuming that V ∈ L1
4, we have the uniform estimates for k ∈R:

|∂j
k T (k)| + |∂j

k R±(k)| � 1

〈k〉 , 1 ≤ j ≤ 3. (2.11)

Given T and R± as above one defines the scattering matrix associated to the potential V by

S(k) :=
(

T (k) R+(k)

R−(k) T (k)

)
, S−1(k) :=

(
T (k) R−(k)

R+(k) T (k)

)
. (2.12)

2.3. Flat and distorted Fourier transform

We adopt the following normalization for the (flat) Fourier transform on the line:

F̂φ(k) = φ̂(k) = 1√
2π

ˆ
e−ikxφ(x) dx.

As is well-known,

F̂−1φ = 1√
2π

ˆ
eikxφ(k) dk = F̂∗φ,

and F is an isometry on L2(R).
Setting now

ψ(x, k) := 1√
2π

{
T (k)f+(x, k) for k ≥ 0

T (−k)f−(x,−k) for k < 0,
(2.13)

the distorted Fourier transform is defined by

F̃φ(k) = φ̃(k) =
ˆ

R

ψ(x, k)φ(x) dx. (2.14)
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2.4. Decomposition of ψ(x, k)

Let ρ be a smooth, non-negative function, equal to 0 outside of B(0, 2) and such that 
´

ρ = 1. Define χ± by

χ+(x) = H ∗ ρ =
xˆ

−∞
ρ(y)dy, and χ+(x) + χ−(x) = 1, (2.15)

where H is the Heaviside function, H = 1(x ≥ 0).
With χ± as above, and using the definition of ψ in (2.13) and f± and m± in (2.1)–(2.2), as well as the identity 

(2.6) we can write

for k > 0
√

2πψ(x, k) = χ+(x)T (k)m+(x, k)eixk

+ χ−(x)
[
m−(x,−k)eikx + R−(k)m−(x, k)e−ikx

]
,

(2.16)

and

for k < 0
√

2πψ(x, k) = χ−(x)T (−k)m−(x,−k)eixk

+ χ+(x)
[
m+(x, k)eikx + R+(−k)m+(x,−k)e−ikx

]
.

(2.17)

We then decompose
√

2πψ(x, k) = ψS(x, k) + ψL(x, k) + ψR(x, k), (2.18)

where the singular part (non-decaying in x) is

for k > 0 ψS(x, k) := χ−(x)
[
eikx − e−ikx

]
,

for k < 0 ψS(x, k) := χ+(x)
[
eikx − e−ikx

]
,

(2.19)

the singular part with improved low frequencies behavior is

for k > 0 ψL(x, k) := χ+(x)T (k)eikx + χ−(x)(R−(k) + 1)e−ixk,

for k < 0 ψL(x, k) := χ−(x)T (−k)eikx + χ+(x)(R+(−k) + 1)e−ixk,
(2.20)

and the regular part is

for k > 0 ψR(k, x) := χ+(x)T (k)(m+(x, k) − 1)eikx

+ χ−(x)
[
(m−(x,−k) − 1)eikx + R−(k)(m−(x, k) − 1)e−ixk

]
,

for k < 0 ψR(k, x) := χ−(x)T (−k)(m−(x,−k) − 1)eikx

+ χ+(x)
[
(m+(x, k) − 1)eikx + R+(−k)(m+(x,−k) − 1)e−ixk

]
.

(2.21)

2.5. Properties of the distorted Fourier transform

Let us collect some useful results about the distorted Fourier transform defined in (2.14); these results can be 
obtained as consequences of the general “Weyl–Kodaira–Titchmarsh theory”, see for example [17] and [54]. Direct 
proofs in our framework can be found in the book [50], Chapter 5.

Theorem 2.3. Assume that V ∈ L1
1, and that V has no bound states, then F̃ is an isometry on L2,

‖F̃f ‖L2 = ‖f ‖L2, ∀f ∈ L2

and F̃ is a bijection with

F̃−1φ(x) =
ˆ

R

ψ(x, k)φ(k) dk.

Moreover, the distorted Fourier transform diagonalizes −∂2
x + V :

−∂2
x + V = F̃−1k2F̃ . (2.22)
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Note that we can express the wave operators associated to −∂2
x + V with the help of F̃ , for example, W+ = F̃−1F̂

and that these operators enjoy some Lp boundedness properties, [52], which nevertheless we will not use here.
We shall only use the following elementary properties:

Lemma 2.4. Consider a generic potential V ∈ L1
1 with no bound states, then:

(i) If φ ∈ L1, then φ̃ is a continuous, bounded function. Furthermore, φ̃(0) = 0.
(ii) There exists C > 0 such that

‖k ũ‖L2 ≤ C
(
1 + ‖V ‖1/2

L1

)‖u‖H 1, ∀u ∈ H 1. (2.23)

(iii) If V ∈ L1
3, there exists C > 0 such that

‖∂kφ̃‖L2 ≤ C‖〈x〉φ‖L2 .

We will use (ii) to obtain that a control on the regularity of the solution gives decay on the (generalized) Fourier 
side, see Proposition 3.4 below. Also note that for us, the main consequence of (iii) will be that at the initial time one 
has

‖∂kf̃ (0, k)‖L2 � ‖〈x〉u0‖L2 < ∞. (2.24)

Control at later times of ∂kf̃ will then guarantee decay for the nonlinear solution through the linear estimate (3.2) in 
Proposition 3.1 below.

Proof. (i) Considering for instance the case k > 0, recall that

φ̃(k) =
ˆ

ψ(x, k)φ(x) dx

= 1√
2π

ˆ [
χ+(x)T (k)m+(x, k)eikx + χ−(x)(m−(x,−k)eikx + R−(k)m−(x, k)e−ikx)

]
φ(x)dx.

The properties of m and T imply immediately that φ̃ is bounded and continuous. In the generic case, φ̃(0) follows by 
using T (0) = 0 and R±(0) = −1, see (2.10)–(2.11).

(ii) We note that

‖k ũ‖2
L2 =

(
F̃u, k2F̃u

)
L2

=
(
F̃u, F̃(−∂2

x + V )u
)

L2
=
(
u, (−∂2

x + V )u
)

L2

= ‖∂xu‖2
L2 +

ˆ

R

V |u|2 dx,

where we have used (2.22) for the second equality and the fact that F̃ is an isometry for the third. This yields

‖k ũ‖2
L2 ≤ ‖∂xu‖2

L2 + ‖V ‖L1‖u‖2
L∞ � (1 + ‖V ‖L1)‖u‖2

H 1 .

(iii) Assuming that 〈x〉φ ∈ L2, we aim at proving that ∂kφ̃ ∈ L2. Considering the case k > 0, φ̃ is given 
by the above formula. To alleviate notations, we will focus on the first summand and show that, if k > 0, 

∂k

ˆ
χ+(x)T (k)m+(x, k)eikxφ(x) dx ∈ L2. It splits into

∂k

ˆ
χ+(x)T (k)m+(x, k)eikxφ(x) dx = T ′(k)

ˆ
χ+(x)m+(x, k)eikxφ(x) dx (2.25)

+
ˆ

χ+(x)T (k)∂km+(x, k)eikxφ(x) dx (2.26)

− i

ˆ
χ+(x)T (k)m+(x, k)eikxxφ(x)dx. (2.27)



P. Germain et al. / Ann. I. H. Poincaré – AN 35 (2018) 1477–1530 1489
Note that, though we are only interested in k > 0, the terms (2.25), (2.26), (2.27) are well defined for k ∈ R, so 
that we can estimate their L2(R) norms. We can then view (2.25) as a pseudo differential operator applied to F̂−1φ

with k playing the role of the space variable and x the role of the frequency variable. Let us recall that for a usual 
pseudo-differential operator defined by

Opa(u)(y) = 1

2π

ˆ

R

eiyξ a(y, ξ )̂u(ξ) dξ,

we have by classical L2 continuity results, see for example Theorem 2 in [28] or [36], that in dimension 1, Opa is a 
bounded operator on L2 as soon as a, ∂ya, ∂ξ a and ∂yξ a are bounded functions. By using this criterion with

a(y, ξ) = T ′(y)χ+(ξ)m+(ξ, y)

we obtain the result from Lemmas 2.1 and 2.2. We handle (2.26), (2.27) in the same way, this yields∥∥∥∥∂k

ˆ
χ+(x)T (k)m+(x, k)eikxφ(x) dx

∥∥∥∥
L2

k(R+)

� ‖F̂−1φ‖L2 + ‖F−1(xφ)‖L2 � ‖〈x〉φ‖L2 . �

2.6. Littlewood–Paley decomposition and other notations

In this article we will work with localizations in frequency defined, as is standard in Littlewood–Paley theory, as 
follows: We let ϕ : R → [0, 1] be an even, smooth function supported in [−8/5, 8/5] and equal to 1 on [−5/4, 5/4]. 
For k ∈ Z we define ϕk(x) := ϕ(2−kx) − ϕ(2−k+1x), so that the family (ϕk)k∈Z forms a partition of unity,∑

k∈Z
ϕk(ξ) = 1, ξ �= 0.

We also let

ϕI (x) :=
∑

k∈I∩Z
ϕk, for any I ⊂R, ϕ≤a(x) := ϕ(−∞,a](x), ϕ>a(x) = ϕ(a,∞](x),

with similar definitions for ϕ<a, ϕ≥a . To these cut-offs we associate frequency projections Pk through

Pkg := F−1 (ϕk(ξ)ĝ(ξ))

and define similarly PIg := F−1 (ϕI (ξ)ĝ(ξ)), P≤kg := F−1
(
ϕ≤k(ξ)ĝ(ξ)

)
, k ∈ Z etc. We sometimes denote ϕk =

ϕ[k−2,k+2].
We also denote H the Heavyside function, and 1± = (1 ± H)/2 the characteristic function of {±x > 0}.
We will also use the following notation for trilinear operators

Tα(f1, f2, f3) = F̂−1
˚

R×R×R

α̂(k, �,m,n)f̂1(�)f̂2(m)f̂3(n) d�dmdn. (2.28)

3. Preliminary results

In this section we gather some preliminary results that we are going to use during the proofs of the nonlinear 
estimates in Sections 4 and 5. We first provide proofs of refined linear estimates in Subsection 3.1, and then basic 
energy estimates in Subsection 3.2. Subsection 3.3 contains our main proposition about the decomposition of the 
nonlinear spectral measure μ, see (1.21).
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3.1. Linear estimates

Proposition 3.1.

(i) For any t ≥ 0,

‖e−it∂2
x f ‖L∞ � 1√

t
‖f̂ ‖L∞ + 1

t
3
4

‖∂kf̂ ‖L2 . (3.1)

(ii) If V ∈ L1
1, and does not have bound states, then for any t ≥ 0,

‖eit (−∂2
x+V )f ‖L∞ � 1√

t
‖f̃ (t)‖L∞ + 1

t
3
4

‖∂kf̃ ‖L2 . (3.2)

Corollary 3.2. We have

‖e−it∂2
x 1+(D)f ‖L∞ � 1√

t
‖f̂ ‖L∞ + 1

t
3
4

‖∂kf̂ ‖L2 ,

where 1+(x) = 1(x > 0) is the characteristic function of {x > 0}, see the notation in Subsection 2.6.

Proof. For a smooth cutoff function χ , with compact support, and equal to one in a neighborhood of zero, write

f = χ(
√

tD)f + (1 − χ(
√

tD))f.

We then estimate separately the two parts: by the Hausdorff–Young inequality,

‖e−it∂2
x 1+(D)χ(

√
tD)f ‖L∞ � ‖χ(

√
tk)f̂ (k)‖L1 �

1√
t
‖f̂ ‖L∞,

while Proposition 3.1 implies

‖e−it∂2
x 1+(D)(1 − χ(

√
tD))f ‖L∞ � 1√

t
‖f̂ ‖L∞ + 1

t
3
4

∥∥∂k

[
1+(k)(1 − χ(

√
tk))f̂ (k)

]∥∥
L2

� 1√
t
‖f̂ ‖L∞ + 1

t
3
4

∥∥√t χ ′(
√

tk))f̂ (k)
]∥∥

L2 + 1

t
3
4

‖∂kf̂ ‖L2 .

The desired conclusion follows since 
∥∥√t χ ′(

√
tk))f̂ (k)

]∥∥
L2 � t

1
4
∥∥f̂ (k)

]∥∥
L∞ . �

Proof of Proposition 3.1 (i). This is a classical estimate; however, we give a proof which is a slightly adapted version 
of the Van der Corput lemma, which we will extend to prove (ii).

√
2πe−it∂2

x f =
ˆ

R

eixk+ik2t f̂ (k) dk = e−i x2
4t I (t, x)

with

I (t, x) =
ˆ

R

eit (k−X)2
f̂ (k) dk, X = − x

2t
.

For ε = 1√
t
, we write

I = I1 + I2 =
X+εˆ

X−ε

eit (k−X)2
f̂ (k) +

ˆ

|k−X|≥ε

eit (k−X)2
f̂ (k).

For I1, we simply use that by the choice of ε,
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|I1| � ε|f̂ (X)| + ε sup
[X−ε,X+ε]

|f̂ (k) − f̂ (X)|� ε|f̂ (X)| + ε
√

ε‖∂kf̂ ‖L2 �
1√
t
|f̂ (X)| + 1

t
3
4

‖∂kf̂ ‖L2 .

For I2, we integrate by parts:

I2 =
ˆ

|k−X|≥ε

∂k(e
it (k−X)2

)
1

2it (k − X)
f̂ (k) dk

to find that

|I2| � 1

tε
(|f̂ (X + ε)| + |f̂ (X − ε)|) + 1

t

ˆ

|k−X|≥ε

1

|k − X| |∂kf̂ (k)|dk + 1

t

ˆ

|k−X|≥ε

1

|k − X|2 |f̂ (k)|dk.

By Cauchy–Schwarz, we also have that

1

t

ˆ

|k−X|≥ε

1

|k − X| |∂kf̂ (k)|dk � 1

t

( ˆ

|k−X|≥ε

dk

|k − X|2
) 1

2 ‖∂kf̂ ‖L2 �
1

t

1√
ε
‖∂kf̂ ‖L2,

and we can estimate

1

t

ˆ

|k−X|≥ε

1

|k − X|2 |f̂ (k)|dk � 1

t

⎛⎜⎝1

ε
|f̂ (X)| +

ˆ

|k−X|≥ε

dk

|k − X| 3
2

‖∂kf̂ ‖L2

⎞⎟⎠
� 1

tε
|f̂ (X)| + 1

t
√

ε
‖∂kf̂ ‖L2 .

Since ε = 1√
t
, we have thus obtained that

|I2| � 1√
t
|f̂ (X)| + 1

t
3
4

‖∂kf̂ ‖L2 ,

which gives the desired estimate for I . �
Proof of Proposition 3.1 (ii). To handle the general case, we shall use the distorted Fourier transform,

eit (−∂2
x+V )f =

ˆ

R

ψ(x, k)eik2t f̃ (k) dk

and we shall deduce the estimate from the following lemma that is a generalization of the above estimate.

Lemma 3.3. Consider a function a(x, k) defined on I ×R+ and such that

|a(x, k)| + |k||∂ka(x, k)| � 1, ∀x ∈ I, ∀k ∈ R+ (3.3)

and for every X ∈R, consider the oscillatory integral

I (t,X,x) =
+∞ˆ

0

eit (k−X)2
a(x, k)f̃ (k) dk, t > 0, x ∈ I.

Then, we have the estimate

|I (t,X,x)| � 1√
t
‖f̃ (t)‖L∞ + 1

t
3
4

‖∂kf̃ ‖L2 (3.4)

which is uniform in X ∈R, t > 0 and x ∈ I .
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Let us first use the lemma to prove the proposition.
We focus on the case x ≥ 0, the other case being similar. We will only use the following estimates which hold for 

V ∈ L1
1: (see [53] Lemma 2.1, and [52] equations (2.6) and (2.9)):

|m+(x, k) − 1|� 1

1 + |k| , x ≥ 0, (3.5)

|∂km+(x, k)|� 1

|k| , x ≥ 0, (3.6)

|∂kT (k)| + |∂kR+(k)| � 1

|k| (3.7)

(and, obviously, |T (k)| + |R+(k)| � 1). We split

u(t, x) =
0ˆ

−∞
ψ(x, k)eik2t f̃ (k) dk +

+∞ˆ

0

ψ(x, k)eik2t f̃ (k) dk = J− + J+.

Start with J+, which can be written

J+ = e−i x2
4t I+(t,X,x) with I+(t,X,x) =

+∞ˆ

0

eit (k−X)2
T (k)m+(x, k)f̃ (k) dk, and X = − x

2t
.

Thanks to (3.5), (3.6), (3.7), we can thus use Lemma 3.3 with x ∈ I =R+, and a(x, k) = T (k)m+(x, k). This yields

|J+|� 1√
t
‖f̃ (t)‖L∞ + 1

t
3
4

‖∂kf̃ ‖L2 .

Let us turn to J−. Recall that for k < 0,
√

2πψ(x, k) = T (−k)f−(x,−k) = T (−k)eikxm−(x,−k) = e−ikxR+(−k)m+(x,−k) + eikxm+(x, k).

We thus split J− into

√
2πJ− =

0ˆ

−∞
e−ikxeik2tR+(−k)m+(x,−k) f̃ (k) dk +

0ˆ

−∞
eikxeik2tm+(x, k)f̃ (k) dk

= e−i x2
4t

+∞ˆ

0

eit (k+X)2
R+(k)m+(x, k)f̃ (−k) dk + e−i x2

4t

+∞ˆ

0

eit (k−X)2
m+(x,−k)f̃ (−k) dk,

where we have set X = x
2t

and changed k into −k to pass from the first line to the second line. Again, thanks to (3.5), 
(3.6), (3.7), we can use Lemma 3.3 for x ∈ R+ to also obtain that

|J−|� 1√
t
‖f̃ (t)‖L∞ + 1

t
3
4

‖∂kf̃ ‖L2 .

This completes the proof of (ii) in Proposition 3.1, but there remains to prove Lemma 3.3. �
Proof of Lemma 3.3. Let us first assume that X ≥ 0 so that there is a stationary point for the phase in the integration 
domain. We split

I (t,X,x) = I1(t,X,x) + I2(t,X,x) =
ˆ

[X−ε,X+ε]∩R+

+
ˆ

R+\[X−ε,X+ε]
. . . .

Choosing again ε = 1√
t
, we have by (3.3) that

|I1|� 1√ ‖f̃ ‖L∞ .

t
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For I2, we split again

I2 =
+∞ˆ

X+ε

+
X−εˆ

0

= I3 + I4

with the convention that I4 is defined only if X ≥ ε. In order to bound I3, we integrate by parts as previously:

|I3| � 1√
t
‖f̃ ‖L∞ + 1

t

+∞ˆ

X+ε

1

|k − X| |∂k(a(x, k)f̃ (k))|dk + 1

t

+∞ˆ

X+ε

1

|k − X|2 |a(x, k)f̃ (k)|dk.

For the last term, by using again (3.3), we find

1

t

+∞ˆ

X+ε

1

|k − X|2 |a(x, k)f̃ (k)|dk � 1

tε
‖f̃ ‖L∞ = 1√

t
‖f̃ ‖L∞ .

For the other term, still using (3.3),

1

t

+∞ˆ

X+ε

1

|k − X|
1

|k| |f̃ (k)|dk + 1

t

+∞ˆ

X+ε

1

|k − X| |∂kf̃ (k)|dk

� 1

t

( +∞ˆ

X+ε

dk

(k − X)2

) 1
2
( +∞ˆ

X+ε

dk

k2

) 1
2 ‖f̃ ‖L∞ + 1

t
√

ε
‖∂kf̃ ‖L2 �

1√
t
‖f̃ ‖L∞ + 1

t
3
4

‖∂kf̃ ‖L2 .

Consequently, we have proven that I3 satisfies

|I3| � 1√
t
‖f̃ ‖L∞ + 1

t
3
4

‖∂kf̃ ‖L2 .

It remains I4. If X ≤ 2ε, we use the crude estimate

|I4| � ε‖f̃ ‖L∞ = 1√
t
‖f̃ ‖L∞ .

If X ≥ 2ε, we write

|I4| ≤
∣∣∣ εˆ

0

. . .

∣∣∣+ ∣∣∣ X−εˆ

ε

. . .

∣∣∣� ε‖f̃ ‖L∞ + |Ĩ4|

with

Ĩ4 =
X−εˆ

ε

eit (k−X)2
a(x, k)f̃ (k) dk.

To bound Ĩ4, we integrate by parts to obtain

|Ĩ4| � 1

t
1
2

‖f̃ ‖L∞ + 1

t

X−εˆ

ε

1

|k − X| |∂k(a(x, k)f̃ (k))|dk + 1

t

X−εˆ

ε

1

|k − X|2 |a(x, k)f̃ (k)|dk.

For the last term, we get again

1

t

X−εˆ
1

|k − X|2 |a(x, k)f̃ (k)|dk � 1

t
‖f̃ ‖L∞

X−εˆ
1

|k − X|2 dk � 1√
t
‖f̃ ‖L∞ .
ε −∞
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For the next to last term, we use again (3.3), to get

1

t

X−εˆ

ε

1

|k − X| |∂k(a(x, k)f̃ (k))|dk � 1

t

X−εˆ

ε

1

|k − X||k| dk‖f̃ ‖L∞ + 1

t

X−εˆ

ε

1

|k − X| |∂kf |dk.

Thanks to Cauchy–Schwarz, we still have that the last term above is bounded by 1/(tε
1
2 )‖∂kf̃ ‖L2 , while

1

t

X−εˆ

ε

1

|k − X||k| dk � 1

t

( X−εˆ

−∞

1

|k − X|2
) 1

2
( +∞ˆ

ε

1

|k|2 dk
) 1

2 � 1

tε
.

Consequently,

|I4|� 1√
t
‖f̃ ‖L∞ + 1

t
3
4

‖∂kf̃ ‖L2 .

Gathering the previous estimates, we obtain that I satisfies (3.4) for X ≥ 0.
It remains to consider X ≤ 0. We observe that in this case, there is no stationary point on the integration domain, 

except if X = 0. We thus write

I =
εˆ

0

ei(k−X)2t a(x, k)f̃ (k) dk +
+∞ˆ

ε

ei(k−X)2t a(x, k)f̃ (k) dk.

For the first term, we just write

∣∣∣ εˆ

0

ei(k−X)2t a(x, k)f̃ (k) dk

∣∣∣� ε‖f̃ ‖L∞ .

For the second term, we integrate by parts and use (3.3) to get

∣∣∣ +∞ˆ

ε

ei(k−X)2t a(x, k)f̃ (k) dk

∣∣∣� 1

εt
‖f̃ ‖L∞ + 1

t

+∞ˆ

ε

1

|k − X|
1

|k| dk ‖f̃ ‖L∞

+ 1

t

+∞ˆ

ε

1

|k − X| |∂kf̃ (k)|dk + 1

t

+∞ˆ

ε

1

|k − X|2 dk‖f̃ ‖L∞ .

This yields from the same arguments as above

∣∣∣ +∞ˆ

ε

ei(k−X)2t a(x, k)f̃ (k) dk

∣∣∣� 1√
t
‖f̃ ‖L∞ + 1

t
3
4

‖∂kf̃ ‖L2 .

We have therefore obtained the estimate (3.4) in the case X ≤ 0. This ends the proof. �
3.2. Sobolev estimate

Proposition 3.4. If V ∈ W 2,1, then under the bootstrap assumption (1.24),

‖u(t)‖H 3 + ‖〈k〉3f̃ (t)‖L2 ≤ Cε0〈t〉Cε2
1 , ∀t ≥ 0.

Proof. Since V is real, we have that

d 1‖u(t)‖2
L2 = 0.
dt 2
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Then, we can apply −�V = −∂2
x + V to (NLS) to get

i∂t (−�V u) + �V (−�V )u = −�V (|u|2u).

This yields that for every M > 0, we have

1

2

d

dt

(
(−�V )u, (−�V )2u)L2 + M‖u‖2

L2

)
= �(i�V (|u|2u), (−�V )2u)

)
L2 .

Next, we observe that for some C > 0 independent of M ,

(−�V u, (−�V )2u)L2 + M‖u‖2
L2 ≥ ‖∇�u‖2

L2 + M‖u‖2
L2 − C

(
‖V ‖W 2,1 + ‖V ‖3

W 2,1

)
‖u‖2

W 2,∞

and therefore, by Sobolev embedding and interpolation, we get for M sufficiently large

(−�V u, (−�V )2u)L2 + M‖u‖2
L2 � ‖u‖2

H 3 .

Moreover, we also have that(
i�V (|u|2u), (−�2

V u)
)
L2 � (1 + ‖V ‖3

W 2,1)‖u‖2
L∞‖u‖2

H 3 � ε2
1〈t〉−1‖u(t)‖2

H 3,

by using the a priori assumption and Proposition 3.1. Consequently by integrating in time, we obtain that

‖u(t)‖2
H 3 � ε2

0 + ε2
1

tˆ

0

〈s〉−1‖u(s)‖2
H 3 ds

and hence, from the Gronwall’s inequality, we find

‖u(t)‖2
H 3 � ε2

0〈t〉Cε2
1 ,

which gives the desired estimate for u.
It remains to estimate ‖〈k〉3f̃ (t)‖L2 . By using the diagonalization property (2.22) and Lemma 2.4 ii), we obtain

‖〈k〉3f̃ ‖L2 � ‖kF̃(−∂2
x + V )f ‖L2 + ‖f ‖H 2 � ‖(−∂2

x + V )f ‖H 1 + ‖f ‖H 2 � ‖f ‖H 3

since V ∈ W 2,1, so that in particular V ′ ∈ L6 and the term V ′f can be bounded in L2 as claimed. �
3.3. Decomposition of the nonlinear spectral measure μ

According to the decomposition of ψ(k, x) in (2.18)–(2.21), we can decompose the measure μ in (1.21) into three 
main parts, which will be treated differently. More precisely we have the following:

Proposition 3.5. Let ψ be defined as in (2.13) and let μ be the measure defined by

μ(k, �,m,n) :=
ˆ

ψ(x, k)ψ(x, �)ψ(x,m)ψ(x,n)dx. (3.8)

We can decompose it as

(2π)2μ(k, �,m,n) = μS(k, �,m,n) + μL(k, �,m,n) + μR(k, �,m,n) (3.9)

where the following holds:

• We can write

μS(k, �,m,n) = μ+(k, �,m,n) + μ−(k, �,m,n), (3.10)

with

μ±(k, �,m,n) := 1∓(k, �,m,n)
∑

β,γ,δ,ε∈{−1,+1}
(βγ δε) ϕ̂±(βk − γ � + δm − εn),

1±(k, �,m,n) = 1±(k)1±(�)1±(m)1±(n), ϕ± := χ4±.

(3.11)
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• We can write

μL(k, �,m,n) = μ+
L(k, �,m,n) + μ−

L(k, �,m,n), (3.12)

where

μ±
L(k, �,m,n) :=

∑
β,γ,δ,ε∈{−1,+1}

a±
βγ δε(k, �,m,n) ϕ̂±(βk − γ � + δm − εn) (3.13)

with coefficients a±
βγ δε satisfying

|a±
βγ δε(k, �,m,n)| � min

(
1,max(|k|, |�|, |m|, |n|)). (3.14)

Moreover, the coefficients a±
βγ δε tensorize in the sense explained in Remark 3.6 below.

• The regular part μR has the following properties: let θi ∈ {0, 1}, i = 1, . . . , 4, with θ1 + θ2 + θ3 + θ4 ≤ 3, then∣∣∂θ1
k ∂

θ2
� ∂θ3

m ∂θ4
n μR(k, �,m,n)

∣∣� min(|k|,1)1−θ1 min(|�|,1)1−θ2 min(|m|,1)1−θ3 min(|n|,1)1−θ4 . (3.15)

We will use this Proposition to decompose

i∂t f̃ (t, k) = 1

4π2

[
NS +NL +NR

]
, NS =N+ +N−,

N∗(t, k) :=
˚

eit (−k2+�2−m2+n2)f̃ (t, �)f̃ (t,m)f̃ (t, n)μ∗(k, �,m,n)d�dmdn.

(3.16)

The singular part μS is a linear combination of singular measures and has a very explicit form, which is very 
helpful to compute and obtain estimates. The particular structure and signs combination will be important to achieve 
some key cancellations. The component μL is a also a linear combination of singular measures, but with coefficients 
that vanish at low frequencies. Such vanishing gives additional gains that allow us to close weighted estimates. Finally, 
the regular part μR is both smoother than the other components, and has gains at low frequencies.

Proof of Proposition 3.5. From the definition of (2π)2μ we can write it as a sum of terms of the formˆ
ψA(x, k)ψB(x, �)ψC(x,m)ψD(x,n)dx, A,B,C,D ∈ {S,L,R}, (3.17)

where we are using our main decomposition of ψ in (2.19)–(2.21).

The singular part μS . When all the indexes A, B, C, D = S, and the frequencies k, �, m, n have the same sign, these 
terms give rise to μS = μ+ + μ− where

μ±(k, �,m,n) = 1∓(k, �,m,n)

ˆ

R

χ4±(x)(eikx − e−ikx)(ei�x − e−i�x)(eimx − e−imx)(einx − e−inx) dx

= 1∓(k, �,m,n)
∑

β,γ,δ,ε∈{−1,+1}
(βγ δε) ϕ̂±(βk − γ � + δm − εn),

(3.18)

having defined ϕ± = (χ±)4, and with the equality understood in the sense of distributions.

The singular part μL. This component arises from terms like (3.17) when (at least) one index is L, and the remaining 
ones (if any) are S, and one has all χ+(x) or all χ−(x) contributions. More precisely,

μ±
L(k, �,m,n) =

∑
β,γ,δ,ε∈{−1,1}

ˆ

R

χ4±(x) a±
βγ δε(k, �,m,n) eβikx · eγ i�x · eδimx · eεinx dx, (3.19)

which, for convenience, we write as

μ±
L(k0, k1, k2, k3) =

∑
ε0,ε1,ε2,ε3∈{−1,1}

ϕ̂±(ε0k0 − ε1k1 + ε2k2 − ε3k3) a±
ε0ε1ε2ε3

(k0, k1, k2, k3), (3.20)
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recalling that ϕ± := χ4±, and with the coefficients a±
βγ δε described below. Let us look at the coefficients in μ−

L . One 
has

a−
ε0ε1ε2ε3

(k0, k1, k2, k3) =
3∏

j=0

a−
εj

(kj ) − (ε0ε1ε2ε3)1+(k0, k1, k2, k3), (3.21)

where

a−
εj

(kj ) =

⎧⎪⎪⎨⎪⎪⎩
1 if εj = 1 and kj > 0,

R−((−1)j+1kj ) if εj = −1 and kj > 0,

T ((−1)j kj ) if εj = 1 and kj < 0,

0 if εj = −1 and kj < 0.

(3.22)

These formulas follow directly from the definitions of ψS and ψL in (2.19) and (2.20), taking into account the conju-
gation property (2.8) for T and R±.

In other words, we have

a−
+1(kj ) = 1+(kj ) + 1−(kj )T ((−1)j kj ), a−

−1(kj ) = 1+(kj )R−((−1)j+1kj ) j = 0,1,2,3, (3.23)

which leads to the formulas

a−
1,1,1,1(k, �,m,n) = [1+(k) + 1−(k)T (k)][1+(�) + 1−(�)T (−�)][1+(m) + 1−(m)T (m)]

×[1+(n) + 1−(n)T (−n)] − 1+(k, �,m,n),

a−
1,1,1,−1(k, �,m,n) = [1+(k) + 1−(k)T (k)][1+(�) + 1−(�)T (−�)][1+(m) + 1−(m)T (m)]

×1+(n)R−(n) + 1+(k, �,m,n),

a−
1,1,−1,1(k, �,m,n) = [1+(k) + 1−(k)T (k)][1+(�) + 1−(�)T (−�)]1+(m)R−(−m)

×[1+(n) + 1−(n)T (−n)] + 1+(k, �,m,n),

...

a−
−1,−1,−1,1(k, �,m,n) = 1+(k)R−(−k)1+(�)R−(�)1+(m)R−(−m)[1+(n) + 1−(n)T (−n)]

+1+(k, �,m,n),

a−
−1,−1,−1,−1(k, �,m,n) = [R−(−k)R−(�)R−(−m)R−(n) − 1]1+(k, �,m,n).

(3.24)

Notice that the indicator functions subtracted off at the end of each expression are the contributions from μ−. We have 
similar formulas for the coefficients a+

βγ δε(k, �, m, n):

a+
ε0ε1ε2ε3

(k0, k1, k2, k3) =
3∏

j=0

a+
εj

(kj ) − (ε0ε1ε2ε3)1−(k0, k1, k2, k3),

with

a+
+1(kj ) = 1+(kj )T ((−1)j+1kj ) + 1−(kj ) = a−

+1(−kj ), a+
−1(kj ) = 1−(kj )R+((−1)j kj ), (3.25)

for j = 0, 1, 2, 3, so that expressions analogous to (3.24) hold.
We now observe the following tensorization property.

Remark 3.6. Let us label the set {(R−(±k) + 1)1+(k), T (±k)1−(k), 1+(k)} as {ai(k)}−2≤i≤2, with a0(k) = 1. Then, 
directly using the formulas (2.20), we can expand the coefficients as a sum of tensor products

a−
ε0ε1ε2ε3

(k0, k1, k2, k3) =
∑
σ∈F

C−
σ,ε aσ0(k0) · · ·aσ3(k3) (3.26)

where F is the set of all quadruples σ = (σ0, σ1, σ2, σ3) in the set (Z ∩ [−2, 2])4\(0,0,0,0), and the coefficients C−
σ,ε

are harmless. An analogous statement holds for a+.
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From (3.26) and (2.10), we also see that each term in the sum has at least one of the coefficients aσi
(k) vanishing 

at k = 0 which gives us the first property in (3.14).

The regular part μR . The regular part comes from terms of the form (3.17) when one of the indices A, B, C, D is R, 
or there are contributions from both χ+ and χ−. More precisely, we can write

μR(k, �,m,n) = μ
(1)
R (k, �,m,n) + μ

(2)
R (k, �,m,n) (3.27)

where, if we let XR = {(A0, A1, A2, A3) : ∃ j = 0, . . .3 : Aj = R},
μ

(1)
R (k, �,m,n) :=

∑
(A,B,C,D)∈XR

ˆ
ψA(x, k)ψB(x, �)ψC(x,m)ψD(x,n)dx (3.28)

and

μ
(2)
R (k, �,m,n) :=

∑
A,B,C,D∈{S,L}

ˆ
ψA(x, k)ψB(x, �)ψC(x,m)ψD(x,n)dx

−μS(k, �,m,n) − μL(k, �,m,n).

(3.29)

To see the validity of (3.15) recall the formulas (2.19)–(2.21) and observe that, in view of (2.10) and Lemma 2.2,

|ψS(x, k)| � min(|k||x|,1), |ψL(x, k)| � min(|k|,1). (3.30)

Moreover, in view of (2.3)–(2.4) and V ∈ L1
γ , we have

χ±(x)|∂s
k (m±(x, k) − 1)| � 1

〈k〉W
s+1± (x) � 1

〈k〉
1

〈x〉γ−s−1 , (3.31)

so that∣∣∣χ±(x)
[
(m±(x,±k) − 1)eikx + R±(∓k)(m±(x,∓k) − 1)e−ixk

]∣∣∣
� χ±(x)

∣∣m±(x,±k) − m±(x,∓k)
∣∣+ χ±(x)

∣∣m±(x,∓k) − 1
∣∣ ∣∣eikx − e−ixk

∣∣
+ ∣∣R±(∓k) + 1

∣∣χ±(x)
∣∣m±(x,∓k) − 1

∣∣� |k|
〈k〉

1

〈x〉γ−2

having used (3.31) with s = 1. It then follows that

|ψR(x, k)| � 1

〈x〉γ−1

1

〈k〉 min
(
1, |k|〈x〉), (3.32)

having used again the definition (2.21), (3.31), and Lemma 2.2. Combining (3.28), (3.30) and (3.32) we see that the 
first property in (3.15) holds true for μ(1)

R , provided γ > 6. The second property in (3.15) can be obtained similarly by 
differentiating (2.19)–(2.21), noticing that each derivative costs a factor of |x|, so that in particular

|∂kψS(x, k)| + |∂kψL(x, k)|� |x|, |∂kψR(x, k)|� 1

〈x〉γ−3 ,

and using again (3.30) and (3.32).
The verification that (3.15) also holds for μ(2)

R can be done similarly using again (3.30), (2.10) and Lemma 2.2, and 
the fact that χ+ · χ− is compactly supported in a ball of radius 2, see (2.15). More precisely, one can write (3.29) as a 
linear combination

μ
(2)
R (k, �,m,n) =

∑
j=1,2,3

∑
β,γ,δ,ε∈{−1,+1}

ˆ

R

χ
j
−(x)χ

4−j
+ (x) b

j
βγ δε(k, �,m,n) eix(−βk+γ �−δm+εn) dx,

for some suitable coefficients bj
βγ δε and estimate

|μ(2)
R (k, �,m,n)| �

∑
j=1,2,3

ˆ

R

χ
j
−(x)χ

4−j
+ (x)min(|k|,1)min(|�|,1)min(|m|,1)min(|n|,1) dx.

The second bound in (3.15) can also be obtained similarly. �
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4. Weighted estimate

The aim of this section is to prove the following proposition.

Proposition 4.1. Under the assumptions of Theorem 1.1, consider u, solution of (NLS) satisfying the bootstrap as-
sumptions (1.23)–(1.24). Then, there exists C > 0 such that we have

〈t〉− 1
4 +α‖∂kf̃ (t)‖L2 ≤ C(ε0 + ε3

1), ∀t ≥ 0. (4.1)

Note that our definitions of ε0 and ε1 in Section 1.5.3 give ε3
1  ε0. Nevertheless, we have stated the more precise 

estimate (4.1) to emphasize the contribution of the nonlinear terms, as in (1.25). The remaining of this section is 
devoted to the proof of Proposition 4.1.

Recall the equation

i∂t f̃ (t, k) =
˚

eit (−k2+�2−m2+n2)f̃ (t, �)f̃ (t,m)f̃ (t, n)μ(k, �,m,n)d�dmdn := N (t, k), (4.2)

with

μ(k, �,m,n) =
ˆ

ψ(x, k)ψ(x, �)ψ(x,m)ψ(x,n)dx. (4.3)

We use Proposition 3.5 to decompose

i∂t f̃ (t, k) =N+ +N− +N+
L +N−

L +NR,

N∗(t, k) = 1

(2π)2

˚
eit (−k2+�2−m2+n2)f̃ (t, �)f̃ (t,m)f̃ (t, n)μ∗(k, �,m,n)d�dmdn

(4.4)

and move on to prove the desired weighted bound for each term.

4.1. Estimate for N±

We shall prove that

‖∂kN±(t)‖L2 � ε3
1〈t〉

1
4 −α. (4.5)

Let us concentrate on the case k > 0, that is on N−; the case k < 0 is of course analogous.
By the choice (2.15) of χ−, ∂xϕ− as defined in (3.11), is a C∞

c function, which we can write as ∂xϕ− = φo − φ, 
where φo and φ are respectively odd and even and C∞

c . Furthermore, since φo is odd, we can write φo = ∂xψ where 
ψ ∈ C∞

c and ψ is even. We have thus obtained that

ϕ− = ψ +
+∞ˆ

x

φ(y) dy = ψ + φ ∗ 1−,

ˆ

R

φ(y)dy = 1,

where we denoted 1± = (1 ± H)/2 the characteristic function of {±x > 0}. Taking the Fourier transform, and using 
the classical formulas

f̂ ∗ g = √
2πf̂ · ĝ, 1̂ = √

2πδ0, ŝignx =
√

2

π

1

ik
, (4.6)

we see that 1̂− =
√

π
2 δ − 1√

2π

1
ik

, and therefore

ϕ̂− − ψ̂ = F̂
(
φ ∗ 1−

)= √
2π 1̂−(k)φ̂(k) =

√
π

2
δ0 − φ̂(k)

ik
.

A similar formula can be obtained for ϕ+. Let us record these formulas:

ϕ̂−(k) =
√

π
δ − φ̂(k) + ψ̂(k) and ϕ̂+(k) =

√
π

δ + φ̂(k) + ψ̂(k), (4.7)

2 ik 2 ik
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where φ ∈ C∞
c is even and has integral 1, and we slightly abuse notation by denoting with the same letter ψ a generic 

C∞
c even function. Then, we define

f̃±(k) = f̃ (k) · 1±(k), ũ±(k) = eitk2
f̃±(k), (4.8)

and write

N−(t, k) =N0(t, k) +NV (t, k) +NV,r (4.9)

where

N0(t, k) =
√

π

2

∑
β,γ,δ,ε∈{−1,+1}

βγ δε

¨
eit (−k2+(βk+δm−εn)2−m2+n2)1+(k)

×f̃+(t, γ (βk + δm − εn))f̃+(t,m)f̃+(t, n) dmdn,

(4.10)

NV (t, k) = i
∑

β,γ,δ,ε∈{−1,+1}
βγ δε

˚
eit (−k2+(βk−p+δm−εn)2−m2+n2)1+(k)

×f̃+(t, γ (βk − p + δm − εn))f̃+(t,m)f̃+(t, n)
φ̂(p)

p
dmdndp,

(4.11)

and

NV,r (t, k) =
∑

β,γ,δ,ε∈{−1,+1}
βγ δε

˚
eit (−k2+(βk−p+δm−εn)2−m2+n2)1+(k)

×f̃+(t, γ (βk − p + δm − εn))f̃+(t,m)f̃+(t, n)ψ̂(p)dmdndp,

(4.12)

having changed variables from � to p = βk−γ � +δm −εn in the last two terms. The term N0 essentially corresponds 
to the flat NLS, i.e., the case V = 0.

4.1.1. The term N0
Changing variables (m, n) → (a, b) by letting{

m = δ(−a + b + βk)

n = ε(βk + b)
i.e.

{
a = εn − δm

b = εn − βk,

we have

N0(t, k) =
√

π

2

∑
β,γ,δ,ε∈{−1,+1}

βγ δε

¨
e2itab1+(k)f̃+(t, γ (βk − a))f̃+(t, δ(b − a + βk))

×f̃+(t, ε(b + βk)) da db.

(4.13)

This is analogous to the case of flat cubic NLS where, due to the gauge invariance, the derivative ∂k simply distributes 
on the three profiles. Moreover, let us recall that ∂k(f̃+) = (∂kf̃ )1l≥0 := (∂kf̃ )+ since f̃+(0) = 0 and let us notice 
that the contribution occurring when ∂k hits 1+(k) also vanishes due to a cancellation. Indeed, we observe that

N0(t, k) =
√

π

2
1+(k)

∑
β∈{−1, 1}

β I (t, βk),

with

I (t, y) =
∑

γ,δ,ε∈{−1,+1}
γ δε

¨
e2itabf̃+(t, γ (y − a))f̃+(t, δ(b − a + y))f̃+(t, ε(b + y)) da db (4.14)

and hence that 
∑

β∈{−1, 1} βI (0) = 0. Consequently, we have that

∂kN0(t, k) =
√

π

2
1+(k)

∑
∂yI (t, βk).
β∈{−1, 1}
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After redistributing the phases, we obtain that ∂yI (t, βk) can be written as a sum of terms of the type
¨

eit (−k2+(βk+δm−εn)2−m2+n2)1+(k)∂kf̃+(t, γ (βk + δm − εn))f̃+(t,m)f̃+(t, n) dmdn.

The above term can be written as

F̂
[
eit∂2

x 1+(D)
(
e−it∂2

x (F̂−1∂kf̃+) (γ ·) e−it∂2
x (F̂−1f̃+) (δ·)e−it∂2

x (F̂−1f̃+)(ε ·)
)]

(βk).

This yields the estimate

‖∂kI (t)‖L2 � ‖F̂−1∂kf̃+‖L2‖e−it∂2
x F̂−1(1+(k)f̃ )‖2

L∞ . (4.15)

Hence, by using the (flat) linear estimate of Corollary 3.2 to deduce that

‖e−it∂2
x F̂−1(1+(k)f̃ )‖L∞ � 1√

t
‖f̃ (t)‖L∞ + 1

t3/4 ‖∂kf̃ (t)‖L2 , (4.16)

we finally obtain by using the bootstrap assumption that

‖∂kN0(t)‖L2 � ‖∂kI (t)‖� ε3
1〈t〉−

3
4 −α. (4.17)

Note that by using the above arguments, we have since

I (t, y) = F̂
[
eit∂2

x 1+(D)
(
e−it∂2

x (F̂−1f̃+) (γ ·) e−it∂2
x (F̂−1f̃+) (δ·)e−it∂2

x (F̂−1f̃+)(ε ·)
)]

(βy)

that

‖I (t)‖L2 � ‖f̃+‖L2‖e−it∂2
x F̂−1(1+(k)f̃ )‖2

L∞ �
ε3

1

t
. (4.18)

4.1.2. The term NV

Changing variables (m, n) → (a, b) by letting{
m = δ(−a + b − p + βk)

n = ε(βk − p + b)
i.e.

{
a = εn − δm

b = p + εn − βk,

we can write

NV (t, k) =
∑

β∈{−1,+1}
β

ˆ
eit (−k2+(p−βk)2) 1+(k) I (t, βk − p)

φ̂(p)

p
dp, (4.19)

where I (t, y) is defined in (4.14). By setting q = p − βk, we can also write that

NV (t, k) =
∑

β∈{−1,+1}
β

ˆ
eit (−k2+q2) 1+(k) I (t,−q)

φ̂(q + βk)

q + βk
dq

and we observe, first changing variable γ → −γ , δ → −δ, ε → −ε, and then a → −a and b → −b, that:

I (q) =
∑

γ,δ,ε∈{−1,+1}
γ δε

¨
e2itabf̃+(γ (q − a))f̃+(δ(b − a + q))f̃+(ε(b + q)) dadb

= −
∑

γ,δ,ε∈{−1,+1}
γ δε

¨
e2itabf̃+(γ (−q + a))f̃+(δ(−b + a − q))f̃+(ε(−b − q)) dadb

= −I (−q).

(4.20)

By using this symmetry property, we find that

NV (t, k) = −1

2

∑
β

ˆ
eit (−k2+q2) 1+(k) I (t, q)

(
φ̂(q + βk)

q + βk
− φ̂(−q + βk)

−q + βk

)
dq
β∈{−1,+1}
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and by writing out explicitly the terms corresponding to β = 1 and −1 we finally get

NV (t, k) = −1

2

ˆ
eit (−k2+q2) 1+(k)I (t, q)

×
[ φ̂(q + k)

q + k
− φ̂(−q + k)

−q + k
− φ̂(q − k)

q − k
+ φ̂(−q − k)

−q − k

]
dq.

(4.21)

Since φ is even, this yields NV (t, k) ≡ 0.

4.1.3. The term NV,r

As above, we can write

NV,r (t, k) =
∑

β,∈{−1,+1}
β

ˆ
eit (−k2+(p−βk)2) 1+(k) I (t, βk − p) ψ̂(p)dp (4.22)

where now ψ̂ is even (above φ̂(p)/p was odd) and in the Schwartz class. By computing ∂k, we find

∂kNV,r =N1 +N2 (4.23)

where

N1(t, k) = −2it1+(k)
∑

β∈{−1,+1}

ˆ
eit (−k2+q2) I (t, q) (q + βk)ψ̂(q + βk)dq,

N2(t, k) = −1+(k)
∑

β∈{−1,+1}

ˆ
eit (−k2+(p−βk)2) ∂yI (t,p − βk) ψ̂(p)dp,

(4.24)

having changed variables to q = p − βk for the first term.
Let us start with the estimate of N2. We first observe that since ψ is a Schwartz class function, we obtain from the 

Young inequality that

‖N2‖L2 � ‖∂yI‖L2

and hence, by using (4.17), we find

‖N2(t)‖L2 � ε3
1〈t〉−

3
4 −α.

To handle N1, we shall integrate by parts in q using that 1
q
∂q(eitq2

) = 2iteitq2
. This yields

N1(t, k) = 1+(k)
∑

β∈{−1,+1}

ˆ
eit (−k2+q2) I (t, q)

q
ψ1(q + βk)dq

+ p.v.
ˆ

eit (−k2+q2) ∂q

(
I (t, q)

q

)
ψ2(q + βk)dq

=N1,1 +N1,2

where

ψ1(y) = ψ̂(y) + y∂yψ̂(y), ψ2(y) = y ψ̂(y).

The above integration by parts can be justified by integrating by parts for |q| ≥ ε > 0 and passing to the limit ε → 0. 
Indeed, since I (t, q) is an odd function thanks to (4.20), we observe that the boundary term

eit (−k2+ε2)

(
I (t, ε)

ε
ψ̂(ε + βk) − I (t,−ε)

−ε
ψ̂(−ε + βk)

)
= eit (−k2+ε2) I (t, ε)

ε

(
ψ̂(ε + βk) − ψ̂(−ε + βk)

)
tends to zero when ε tends to zero. Since ψ1 is in the Schwartz class, we get as before

‖N1,1‖L2 � ‖I (t, q)/q‖L2 .
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Next, again since I (t, 0) = 0, we can use the Hardy inequality and (4.17) to get that

‖N1,1‖L2 � ‖∂qI (t)‖L2 � ε3
1〈t〉− 3

4 −α.

For the second term, we can symmetrize by using that the function ∂q(I/q) is odd, to obtain

N1,2 = 1

2
1+(k)

∑
β∈{−1,+1}

p.v.
ˆ

eit (−k2+q2) ∂q

(
I (t, q)

q

)
(ψ2(q + βk) − ψ2(−q + βk)) dq

= 1

2
1+(k)

∑
β∈{−1,+1}

p.v.
ˆ

eit (−k2+q2)

(
∂qI (t, q) − I (t, q)

q

) (
ψ2(q + βk) − ψ2(−q + βk)

q

)
dq.

Again, since ψ2 is a Schwartz class function, we have that

sup
k

ˆ

R

∣∣∣∣ψ2(q + βk) − ψ2(−q + βk)

q

∣∣∣∣ dq + sup
q

ˆ

R

∣∣∣∣ψ2(q + βk) − ψ2(−q + βk)

q

∣∣∣∣ dk < +∞

and therefore, we obtain that

‖N1,2(t)‖L2 � ‖∂kI (t)‖L2 +
∥∥∥∥I (t, k)

k

∥∥∥∥
L2

� ε3
1〈t〉−

3
4 −α

by using again the Hardy inequality and (4.17).
We have thus obtained that

‖∂kNV,r‖L2 � ε3
1〈t〉−

3
4 −α.

Gathering all the above estimates, we find (4.5).

4.2. Estimate for N±
L

As before, we only treat N−
L . By (4.7), we can write

N−
L (t, k) =NL,0(t, k) +NL,V (t, k) +NL,V,r (4.25)

where

NL,0(t, k) =
√

π

2

∑
β,γ,δ,ε∈{−1,+1}

¨
a−
βγ δε(k, γ (βk + δm − εn),m,n)eit (−k2+(βk+δm−εn)2−m2+n2)

×f̃ (t, γ (βk + δm − εn))f̃ (t,m)f̃ (t, n) dmdn,

NL,V (t, k) =
∑

β,γ,δ,ε∈{−1,+1}

˚
a−
βγ δε(k, γ (βk − p + δm − εn),m,n)eit (−k2+(βk−p+δm−εn)2−m2+n2)

×f̃ (t, γ (βk − p + δm − εn))f̃ (t,m)f̃ (t, n)
φ̂(p)

p
dmdndp,

and

NL,V,r (t, k) =
∑

β,γ,δ,ε∈{−1,+1}

˚
a−
βγ δε(k, γ (βk − p + δm − εn),m,n)eit (−k2+(βk−p+δm−εn)2−m2+n2)

×f̃ (t, γ (βk − p + δm − εn))f̃ (t,m)f̃ (t, n)ψ̂(p)dmdndp.

(4.26)
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4.2.1. The NL,0 contribution
This is similar to the term N0 in (4.13). Indeed, by using the expansion (3.26) of the symbols a−, the problem 

reduces to estimating terms of the form

aσ1(βk)

¨
eit (−k2+(βk+δm−εn)2−m2+n2)gσ2(t, γ (βk + δm − εn))gσ3(t,m)gσ4(t, n) dmdn, (4.27)

where we have set

gσi
(t, k) = aσi

(k)f̃ (t, k). (4.28)

The bounds on aσi
as well as the bootstrap assumption on f imply that

‖F̂−1e−itk2
gσi

(t)‖L∞ � ε1√
t
, ‖∂kgσi

(t)‖L2 � ε1〈t〉 1
4 −α,

and the estimates follow exactly as above, giving

‖∂kNL,0(t)‖L2 � ε3
1〈t〉−

3
4 −α.

4.2.2. The NL,V contribution
The main idea here is to use the vanishing of the a− coefficients, see (3.14), in order to perform various integration 

by parts. We begin by changing variables as we did before: (m, n) → (a, b) with letting (m, n) = (δ(−a + b − p +
βk), ε(βk − p + b)) so that

NL,V (t, k) = i
∑

β,γ,δ,ε∈{−1,+1}

ˆ
eit (−k2+(p−βk)2)Iβγ δε(βk − p)

φ̂(p)

p
dp, (4.29)

where

Iβγ δε(y) =
¨

e2itaba−
βγ δε(k, γ (y − a), δ(b − a + y), ε(y + b))

× f̃ (t, γ (y − a))f̃ (t, δ(b − a + y)f̃ (t, ε(y + b)) da db.

(4.30)

Applying ∂k gives two types of terms:

∂kNL,V =NL,1 +NL,2,

NL,1 = 2t
∑

β,γ,δ,ε∈{−1,+1}
β

ˆ
eit (−k2+q2) Iβγ δε(−q) φ̂(q + βk)dq,

NL,2 = i
∑

β,γ,δ,ε∈{−1,+1}
β

ˆ
eit (−k2+(p−βk)2) ∂yIβγ δε(p − βk)

φ̂(p)

p
dp.

(4.31)

The term NL,2. We start with this term, which can be easily bounded. Proceeding as in Section 4.2.1, we observe that 
Iβγ δε can be written as I (t, y) in (4.14) if one replaces f̃ by gσ . By the boundedness properties of aσ (D) exploited 
in Section 4.2.1, we can follow the argument used when estimating I (t, y) to deduce the equivalent of (4.17), namely

‖∂kIβγ δε‖L2 � t−
3
4 −αε3

1.

Now observe that

NL,2 =
∑

β,γ,δ,ε∈{−1,+1}
F̂eit∂2

x

[
e−it∂2

x F̂−1(∂kIβγ δε)F̂−1 φ̂(k)

k

]
.

Since F̂−1 φ̂(k)
k

is a bounded function, we obtain the desired estimate:

‖NL,2‖L2 � ‖∂kIβγ δε‖L2 � t−
3
4 −αε3

1.
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The term NL,1. This is the term where we exploit the vanishing of the μL part of the spectral measure, see (3.14). We 
aim to prove that∥∥∥ tˆ

0

NL,1 ds

∥∥∥
L2

k

� ε3
1〈t〉1/4−α.

The desired bound will thus be achieved if we can show (for any choice of β , γ , δ, and ε)∥∥∥ tˆ

0

M(s, k) ds

∥∥∥
L2

k

� ε3
1〈t〉1/4−α, (4.32)

where

M(t, k) = t

˚
eit (−k2+q2+2ab)f̃ (t, γ (−q − a))f̃ (t, δ(b − a − q)f̃ (t, ε(−q + b))μ(k, a, b, q) da db dq

with

μ(k, a, b, q) = a−
βγ δε(k, γ (−q − a), δ(b − a − q), ε(−q + b))φ̂(q + βk).

Using the notation for Littlewood–Paley cutoffs from Section 2.6, we decompose dyadically with respect to the output 
variable k, and the maximum of the input variables. More precisely, we decompose M =∑K,J MK,J (t, k) by setting

MK,J (k) := t

˚
eit (−k2+q2+2ab) f̃ (γ (−q − a))f̃ (δ(b − a − q)f̃ (ε(−q + b))μK,J (k, a, b, q) da db dq,

(4.33)

with

μK,J (k, a, b, q) := a−
βγ δε(k, γ (−q − a), δ(b − a − q), ε(−q + b))φ̂(q + βk)

× ϕK(k)ϕJ

(|(q + a, b − a − q, q − b)|). (4.34)

We then distinguish two main cases depending on the relative sizes of J and K by splitting

M =M1 +M2, M1 :=
∑

J≥K−10

MK,J , M2 :=
∑

J<K−10

MK,J . (4.35)

The first term corresponds to the case when the maximum of three input variables is larger or comparable to the output 
frequency k, while in the term M2 the frequency k is dominant.

Case 1: Estimate of M1. We begin by treating the case when k is not the dominant frequency and distinguish several 
subcases. Note that since K ≤ J + 10 we have

μK,J (k, a, b, q) = μK,J (k, a, b, q)ϕ≤J+20(q + βk).

Subcase 1.0: Small times t ≤ 1. It is easy to see that

‖M1(t)‖L2 � ‖u(t)‖3
H 3 � ε3

1.

Therefore, we can assume in the following that t ≥ 1.

Subcase 1.1: Low Frequencies 2J ≤ t−6/13. Due to the bound (3.14), for K ≤ J + 10 on the support of μK,J we have

|μK,J (k, a, b, q)| � 2J .

Using the support properties of μK,J we can then estimate

‖MK,J (t)‖L2 � t · 2K/2 sup
k

˚ ∣∣∣μK,J (k, a, b, q)f̃ (γ (−q − a))f̃ (δ(b − a − q)f̃ (ε(−q + b))

∣∣∣ da db dq

� t2K/22J ‖f̃ ‖3
L∞

˚ ∣∣ϕJ

(|(q + a, b − a − q, q − b)|)∣∣da db dq

� t2K/22J 23J ε3
1.
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Summing over K ≤ J + 10 with 2J ≤ t− 6
13 gives us∑

K−10≤J

2J ≤t−6/13

‖MK,J (t)‖L2 � t−1ε3
1. (4.36)

From now on we may assume 2J ≥ t−6/13. In the next step we compare the size of the integration variables a and b
to 2J . Without loss of generality we may assume that max{|a|, |b|} = |b|, and consider terms of the form

MK,J,B(t, k) := t

˚
eit (−k2+q2+2ab)f̃ (γ (−q − a))f̃ (δ(b − a − q)f̃ (ε(−q + b))

×μK,J (k, a, b, q)ϕB(b) da db dq.

(4.37)

Subcase 1.2: B ≥ J −20 and J ≤ 0. In this case we resort to the identity (1/2itb)∂ae
it (−k2+q2+2ab) = eit (−k2+q2+2ab)

to integrate by parts in a, leading to

MK,J,B =M1
K,J,B +M2

K,J,B + {similar term},
with

M1
K,J,B :=

˚
eit (−k2+q2+2ab)f̃ (γ (−q − a))f̃ (δ(b − a − q))f̃ (ε(−q + b))m1(k, a, b, q) da db dq,

m1(k, a, b, q) := ∂a

[
μK,J (k, a, b, q)

]ϕB(b)

2ib
,

and

M2
K,J,B :=

˚
eit (−k2+q2+2ab)∂af̃ (γ (−q − a))f̃ (δ(b − a − q))f̃ (ε(−q + b))m2(k, a, b, q) da db dq,

m2(k, a, b, q) := μK,J (k, a, b, q)
ϕB(b)

2ib
,

with a similar term arising when ∂a hits the second profile f̃ .
We will now denote, for any symbol m,

m�(k, �,m,n) = m(k,a, b, q), (4.38)

where a, b, q are given by the change of variables

(�,m,n) = (γ (−q − a), δ(b − a − q), ε(−q + b)) (4.39)

performed before. Notice that, in view of the support restrictions (in particular J ∼ B) and Proposition 3.5,

‖F̂−1m
�
1‖L2

wL1
x,y,z

� ‖F̂−1m
�
1‖1/4

L2
w,x,y,z

‖|(x, y, z)|2F̂−1m
�
1‖3/4

L2
w,x,y,z

= ‖m�
1‖1/4

L2
k,�,m,n

‖∇2
�,m,nm

�
1‖3/4

L2
k,�,m,n

� (2(K+J )/2)1/4(2(K−3J )/2)3/4

� 2
K
2 −J .

Since

M1
K,J,B = e−itk2F̂TF̂−1m

�
1
(F̂−1ũ, F̂−1ũ, F̂−1ũ),

see the notation in Section 2.6, we can bound, by Lemma A.1, the above estimate on F̂−1m
�
1, and the linear esti-

mate (3.1),

‖M1
K,J,B‖L2 � ‖F̂−1m

�
1‖L2

wL1
x,y,z

‖F̂−1ũ‖3
L∞

� 2
K
2 −J

[‖f̃ ‖L∞√
t

+ ‖∂kf̃ ‖L2

t3/4

]3

� 2
K
2 −J t−3/2ε3

1.
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Therefore, summing over all indices in the current configuration, we obtain the bound∑
K≤J+10

1>2J >t−6/13

J∼B

‖M1
K,J,B‖L2 �

∑
K≤J+10

1>2J >t−6/13

J∼B

2
K
2 −J t−3/2ε3

1 � t−
33
26 ε3

1,

which suffices!
Turning to M2

K,J,B , one proceeds similarly by observing first that

‖F̂−1m
�
2‖L2

w,xL1
y,z

� ‖F̂−1m
�
2‖1/2

L2
w,x,y,z

‖|(y, z)|2F̂−1m
�
1‖1/2

L2
w,x,y,z

� 2(K+J )/2.

Therefore,

‖M2
K,J,B‖L2 � ‖F̂−1m

�
2‖L2

w,xL1
y,z

‖F̂−1ũ‖2
L∞‖∂kf̃ ‖L2 � 2(K+J )/2t−

3
4 −αε3

1,

which, after summing over all indices in the current configuration, leads to the acceptable bound∑
K≤J+10

1>2J >t−6/13

J∼B

‖M2
K,J,B‖L2 �

∑
K≤J+10

1>2J >t−6/13

2(K+J )/2t−
3
4 −αε3

1 � t−
3
4 −αε3

1.

Subcase 1.3: B ≥ J − 20 and J ≥ 0. Integrating by parts in b as in the case J ≤ 0, matters reduce to estimating∑
K≤J+10,
B∼J, J≥0

M1
K,J,B +

∑
K≤J+10,
B∼J, J≥0

M2
K,J,B.

We will only discuss the latter sum, which is slightly more delicate. Arguing as in Section 4.2.1 to replace f by gσi

(in particular, using again the change of variables (4.39)), observe that∑
K≤J+10,
B∼J, J≥0

M2
K,J,B =

˚
eit (−k2+�2−m2+n2)gσ1(�)gσ2(m)gσ3(n)ϕJ (|(�,m,n)|)

×ϕ≤J+10(k)
ϕ

J
(−γ � + δm)

−γ � + δm
φ̂(βk − (γ l − δm + εn)) d�dmdn,

which can also be written as∑
K≤J+10
B∼J, J≥0

M2
K,J,B = e−itk2

ˆ
φ̂(p)TJ,p(gσ1, gσ2, gσ3) dp,

TJ,p(gσ1 , gσ2, gσ3) :=
¨

eit (�2−m2+n2)gσ1(�)gσ2(m)gσ3(n)νJ,p(k,m,n)dmdn,

νJ,p(k,m,n) := ϕJ (|(�,m,n)|)ϕ≤J+10(k)
ϕJ (−γ � + δm)

−γ � + δm
,

where, in the last integral, � always stands for � = γ (βk + δm − εn − p). Observe that the Fourier transform of the 
kernel νJ,p is easily bounded by

‖F̂−1νJ,p‖L1 � 2−J .

By using Lemma A.2, we thus get that∥∥∥ ∑
K≤J+10
B∼J, J≥0

M2
K,J,B

∥∥∥
L2

�
∑
J≥0

2−J ‖gσ1‖L2‖eit∂2
x F̂−1gσ2‖L∞‖e−it∂2

x F̂−1gσ3‖L∞

�
∑
J≥0

2−J ε3
1

t
3
4 +α

�
ε3

1

t
3
4 +α

,

which leads to the desired estimate.
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Subcase 1.4: B ≤ J − 20. We now consider the term MK,J,B , when B ≤ J − 20. Here again, the difficulty lies in 
estimating the contribution of J ≤ 0; we will focus on it and omit the case J ≥ 0. Observe that on the support of 
this oscillatory integral we must have |a| + |b| ≈ 2B  max{|a + q|, |b − a − q|, |b − q|} ≈ 2J . It then follows that 
|q| ≈ 2J . We can then integrate by parts in q . More precisely we can write∑

B≤J−20

MK,J,B(t, k) = t

˚
eit (−k2+q2+2ab) f̃ (γ (−q − a))f̃ (δ(b − a − q))f̃ (ε(−q + b))

μK,J (k, a, b, q)ϕ≤J−20(b)ϕ
J
(q) da db dq,

(4.40)

and, similarly to what was done above, obtain∑
B≤J−20

MK,J,B(t, k) =M3
K,J +M4

K,J ,

with

M3
K,J :=

˚
eit (−k2+q2+2ab)f̃ (γ (−q − a))f̃ (δ(b − a − q))f̃ (ε(−q + b))m3(k, a, b, q) da db dq,

m3(k, a, b, q) = ∂q

[
μK,J (k, a, b, q)

ϕ
J
(q)

2iq

]
ϕ≤J−20(b),

and

M4
K,J :=

˚
eit (−k2+q2+2ab)∂q

[
f̃ (γ (−q − a))f̃ (δ(b − a − q))f̃ (ε(−q + b))

]
m4(k, a, b, q) dadbdq,

m4(k, a, b, q) := μK,J (k, a, b, q)ϕ≤J−20(b)
ϕ

J
(q)

2iq
.

Direct computations show that the following bounds hold (by using again the convention (4.38) and by denoting 
(w, x, y, z) the dual Fourier variables of (k, l, m, n) as in Appendix A):∥∥F̂−1m

�
3

∥∥
L2

wL1
x,y,z

� 2
K
2 −J ,∥∥F̂−1m

�
4

∥∥
L2

wL2
xL1

yL1
z
� 2(K+J )/2.

We can then proceed exactly as we did for the terms M1
K,J,B and M2

K,J,B above, applying Lemma A.1 and obtaining 
the desired bounds. This shows that the term M1 in (4.35) satisfies the estimate (4.32).

Case 2: Estimate on M2. In this case the variable k dominates all the others. Again we distinguish the case of small 
and high frequencies.

Subcase 2.1: t ≤ 1 or 2K ≤ t−6/13. Here we can proceed exactly as in Subcase 1.1 above to deduce the desired 
estimate.

Subcase 2.2: 2K ≥ t−6/13. In this case we integrate by parts in time. Let us denote the oscillating phase in (4.33) by

� = �(k,a, b, q) = −k2 + q2 + 2ab,

and observe that for K ≥ J + 10, on the support of the integral, we have |k| � |a|, |b|, |q| and, in particular, |�| � k2. 
Integrating by parts in time via the identity ∂se

is� = (1/i�)eis�, we get

tˆ

0

MK,J (s, k) ds = tS1(t, k) − S1(1, k) +
tˆ

1

S1(s, k) ds +
tˆ

1

S2(s, k) ds + {similar terms},

S1(t, k) :=
˚

eit�f̃ (γ (−q − a))f̃ (δ(b − a − q))f̃ (ε(−q + b))σ (k, a, b, q) da db dq,

S2(t, k) :=
˚

t eit�∂t f̃ (γ (−q − a))f̃ (δ(b − a − q))f̃ (ε(−q + b))σ (k, a, b, q) da db dq,

(4.41)
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with similar terms arising when ∂t hits the second or the third profile f̃ , and

σ(k, a, b, q) := 1

i�(k, a, b, q)
μK,J (k, a, b, q).

It is not hard to verify that it satisfies, again by using the notation (4.38),∥∥F̂−1σ �
∥∥

L2
w,xL1

y,z
� 2

3
2 (J−K),

for J ≤ 0. For J > 0 the bound above would have an extra factor of 2J/2: This loss can be tolerated for 2J ≤ t1/3 by 
proceeding as we do below, while for 2J ≤ t1/3 one can rely on the a priori H 3 bound of Proposition 3.4 to obtain the 
desired estimate. We leave the details of this simpler case to the reader.

Using Lemma A.1 we have

‖S1(t)‖L2 � 2
3
2 (J−K)‖F̂−1ũ‖L2‖F̂−1ũ‖2

L∞ � 2
3
2 (J−K)t−1ε3

1,

which after summation in J, K over the current range of indices, leads to the acceptable contribution∑
K≥J+10

2K≥t−6/13

2
3
2 (J−K)t−1ε3

1 �
log t

t
ε3

1.

Finally, recalling that ∂tf = e−it (−∂2
x+V )|u|2u, we can estimate

‖S2(t)‖L2 � t2
3
2 (J−K)‖∂t f̃ ‖L2‖F̂−1ũ‖2

L∞ � 2
3
2 (J−K)t−1ε3

1,

which again largely suffices since∑
K≥J+10

1>2K>t−6/13

2
3
2 (J−K)t−1ε3

1 �
log t

t
ε3

1.

This concludes the proof of (4.32), and of the weighted L2-bound for NL,V .
To complete the estimate of N−

L , see (4.25), one needs to control the smoother remainder term NL,V,r in (4.26). 
This can be estimated exactly as in Section 4.1.3 where we treated the similar term NV,r , see the formula (4.12). 
Therefore, we omit the details.

4.3. Estimates for NR

We now look at the regular part

4π2NR(t, k) =
˚

eit�(k,�,m,n)f̃ (t, �)f̃ (t,m)f̃ (t, n)μR(k, �,m,n)d�dmdn,

�(k, �,m,n) = −k2 + �2 − m2 + n2,

(4.42)

where the measure μR is defined in Proposition 3.5, and want to show that this is a remainder term. In particular we 
will establish the following Lemma which contains also an estimate for the L∞

k norm of NR(t, ·) to be used in the 
next section.

Lemma 4.2. Under the a priori assumptions (1.24) we have

‖NR(t, k)‖L∞
k
� ε3

1〈t〉−5/4, (4.43)

∥∥∥ tˆ

0

∂kNR(t, s) ds

∥∥∥
L2

� ε3
1〈t〉1/4−α. (4.44)
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Proof. We will use (3.15) from Proposition 3.5:∣∣∂θ1
k ∂

θ2
� ∂θ3

m ∂θ4
n μR(k, �,m,n)

∣∣� min(|k|,1)1−θ1 min(|�|,1)1−θ2 min(|m|,1)1−θ3 min(|n|,1)1−θ4 (4.45)

for θ1, θ2, θ3, θ4 = 0 or 1, θ1 + θ2 + θ3 + θ4 ≤ 3.
We decompose

NR(t, k) :=
∑

K,L,M,N∈Z
NKLMN(t, k)

NKLMN(t, k) =
˚

eit�(k,�,m,n)f̃ (t, �)f̃ (t,m)f̃ (t, n)ϕ
KLMN

μR(k, �,m,n)d�dmdn,

ϕ
KLMN

(k, �,m,n) := ϕK(k)ϕL(�)ϕM(m)ϕN(n).

(4.46)

Without loss of generality, for the rest of this proof we will assume

L ≤ M ≤ N.

Let us begin by recording some basic estimates: under our bootstrap assumptions, see (1.23)–(1.24), we have
ˆ

R

|ϕK(k)f̃ (k)|dk � min(2K,2−5K/2tp0)ε1,

ˆ

R

|ϕK(k)k−1f̃ (k)|dk � min
(
2K/2〈t〉1/4−α,2−K/2)ε1,

ˆ

R

|∂k[ϕK(k)k−1f̃ (k)]|dk � 2−K/2〈t〉1/4−αε1,

(4.47)

where we used Hardy’s inequality in deriving the last two estimates. For example, we have used that
ˆ

R

|ϕK(k)k−1f̃ (k)|dk � 2K/2‖k−1f̃ ‖L2 � 2
K
2 ‖∂kf̃ ‖L2 .

Proof of (4.43). The case |t | < 1 is immediate, so we will assume that t ≥ 1. Integrating by parts and using the bounds 
(4.47) and (4.45), we can estimate

|NKLMN(t, k)| � 1

t2

˚ ∣∣∣f̃ (t, �)∂m∂n

( 1

m
f̃ (t,m)

1

n
f̃ (t, n)ϕ

KLMN
(k, �,m,n)μR(k, �,m,n)

)∣∣∣
d�dmdn

�
ε3

1

t2 2K−+L−+M−+N− min(2L,2−5L/2tp0) · 2−M/2t
1
4 −α · 2−N/2t

1
4 −α

where we denoted K− = min(0, K). Summing over L, M and N gives the desired bound:

∑
L<M<N

|NKLMN(t, k)| � ε3
1

t5/4
.

Proof of (4.44). We now prove the weighted L2 bound. Adopting the notation (4.46) we calculate

4π2∂kN (t, k) = I (t, k) + II (t, k),

I (t, k) :=
˚

eit�(k,�,m,n)f̃ (t, �)f̃ (t,m)f̃ (t, n)∂kμR(k, �,m,n)d�dmdn,

II (t, k) := −2itk

˚
eit�(k,�,m,n)f̃ (t, �)f̃ (t,m)f̃ (t, n)μR(k, �,m,n)d�dmdn.

(4.48)
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We will focus on the more complicated estimate of II (t, k). Again we decompose according to (4.46):

II (t, k) :=
∑

K,L,M,N∈Z
IIKLMN(t, k)

IIKLMN(t, k) = −2itk

˚
eit�(k,�,m,n)f̃ (t, �)f̃ (t,m)f̃ (t, n)ϕ

KLMN
μR(k, �,m,n)d�dmdn.

(4.49)

We now distinguish between the cases K ≥ N + 10 and K < N + 10.

Case 1: K ≥ N + 10. In this case we have |�| � k2 ≈ 22K , and we can resort to integration by parts in s:

tˆ

0

IIKLMN(s, k) ds = −2tA(t, k) + 2

tˆ

0

A(s, k) ds +
tˆ

0

2sB(s, k) ds, (4.50)

AKLMN(t, k) =
˚

eit�(k,�,m,n) k

�(k, �,m,n)
f̃ (t, �)f̃ (t,m)f̃ (t, n)ϕ

KLMN
μR(k, �,m,n)d�dmdn,

BKLMN(t, k) =
˚

eit�(k,�,m,n) k

�(k, �,m,n)
∂t

[
f̃ (t, �)f̃ (t,m)f̃ (t, n)

]
ϕ

KLMN
μR(k, �,m,n)d�dmdn.

To estimate A we integrate by parts in the frequencies m and n similarly to what was done above in the proof of 
(4.44). Using the bootstrap bounds (4.47) and the bounds on μR (4.45), we get

|AKLMN(t, k)|
� 1

|t |2
˚ ∣∣∣f̃ (t, �)∂m∂n

(kϕ
KLMN

(k, �,m,n)

�(k, �,m,n)

1

m
f̃ (t,m)

1

n
f̃ (t, n)μR(k, �,m,n)

)∣∣∣d�dmdn

�
ε3

1

|t |2 2K−+L−+M−+N−2−K min(2L,2−5L/2tp0) · 2−M/2t
1
4 −α · 2−N/2t

1
4 −α.

Using the above bound and summing over the current configuration,∑
L≤M≤N
K≥N+10

‖AKLMN(t, k)‖L2 �
∑

L≤M≤N
K≥N+10

2K/2‖AKLMN(t, k)‖L∞ �
ε3

1

|t |5/4
.

Turning to BKLMN , split it first into

BKLMN(t, k) =
˚

eit�(k,�,m,n) k

�(k, �,m,n)
∂t f̃ (t, �)f̃ (t,m)f̃ (t, n)ϕ

KLMN
μR(k, �,m,n)d�dmdn

+
˚

eit�(k,�,m,n) k

�(k, �,m,n)
f̃ (t, �)f̃ (t,m)∂t f̃ (t, n)ϕ

KLMN
μR(k, �,m,n)d�dmdn

+ {similar term}
= B1

KLMN(t, k) + B2
KLMN(t, k) + {similar term}.

Let us consider first B1
KLMN . Integrating by parts in m and n, and using that ‖∂t f̃ ‖L2 � ε3

1t
−1, we see that

|B1
KLMN(t, k)| � 1

|t |2
˚ ∣∣∣∂t f̃ (t, �)∂m∂n

(kϕ
KLMN

(k, �,m,n)

�(k, �,m,n)

1

m
f̃ (t,m)

1

n
f̃ (t, n)μR(k, �,m,n)

)∣∣∣
d�dmdn

�
ε3

1

|t |2 2K−+L−+M−+N− · 2−K · 2L/2

t
· 2−M/2t

1
4 −α · 2−N/2t

1
4 −α.

This L∞ bound leads to an acceptable contribution:∑
L<M<N
K≥N+10

‖B1
KLMN(t, k)‖L2 �

∑
L<M<N
K≥N+10

2K/2‖B1
KLMN(t, k)‖L∞ �

ε3
1

t5/2
.
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To estimate B2
KLMN first notice that

‖〈k〉∂t f̃ ‖L2 �
∥∥〈k〉ũ3

∥∥
L2 �

∥∥u3
∥∥

H 1 � ε3
1t

p0−1,

having used (2.23). Then we can integrate by parts in � and m to obtain

|B2
KLMN(t, k)| � 1

|t |2
˚ ∣∣∣∂�∂m

(kϕ
KLMN

(k, �,m,n)

�(k, �,m,n)

1

�
f̃ (t, �)

1

m
f̃ (t,m)μR(k, �,m,n)

)
∂t f̃ (t, n)

∣∣∣
d�dmdn

�
ε3

1

|t |2 2K−+L−+M−+N− · 2−K · 2−L/2t
1
4 −α · 2−M/2t

1
4 −α · 2−N/2tp0−1,

which, after summing over all current indices, leads to an acceptable contribution:∑
L<M<N
K≥N+10

‖B2
KLMN(t, k)‖L2 �

∑
L≤M≤N
K≥N+10

2K/2‖B2
KLMN(t, k)‖L∞ �

ε3
1

t5/2
.

Case 2: K < N + 10. We distinguish two subcases depending on the size of N .

Subcase 2.1: 2N ≥ t1/4. We integrate by parts in � and m, and use again (4.47), to obtain

|IIKLMN(t, k)|
� 1

|t |2
˚ ∣∣∣∂�∂m

(
kϕ

KLMN
(k, �,m,n)

1

�
f̃ (t, �)

1

m
f̃ (t,m)μR(k, �,m,n)

)
f̃ (t, n)

∣∣∣d�dmdn

�
ε3

1

|t | · 2K · 2K−+L−+M−+N− · 2−L/2t
1
4 −α · 2−M/2t

1
4 −α · 2−5N/2tp0,

which, after using this to estimate the L2 norm and summing over all current indices, gives an acceptable contribution∑
L≤M<N≤

2N≥t1/4

‖IIKLMN(t, k)‖L2 �
∑

L≤M≤N

2N≥t1/4

2K/2‖IIKLMN(t, k)‖L∞ �
ε3

1

t3/4+2α−p0
.

Subcase 2.2: 2N ≤ t1/4. Integrating by parts in �, m, and n leads to the bound

|IIKLMN(t, k)|
� 1

|t |2
˚ ∣∣∣∂m∂n∂�

(1

�
f̃ (t, �)

1

m
f̃ (t,m)

1

n
f̃ (t, n) kϕ

KLMN
(k, �,m,n)μR(k, �,m,n)

)∣∣∣d�dmdn

�
ε3

1

t2 2K2K−+L−+M−+N− · 2−L/2t
1
4 −α · 2−M/2t

1
4 −α · 2−N/2t

1
4 −α,

which gives∑
L≤M≤N

2N≤t1/4

‖IIKLMN(t, k)‖L2 �
∑

L≤M≤N

2N≤t1/4

2K/2‖IIKLMN(t, k)‖L∞ �
ε3

1

t1+3α
.

This concludes the proof of (4.44). �
5. Pointwise estimate

In this section we prove the key L∞ bound. Recall Duhamel’s formula

i∂t f̃ (t, k) = 1

4π2

[
N+ +N− +NL +NR

]
,

N∗(t, k) =
˚

eit (−k2+�2−m2+n2)f̃ (t, �)f̃ (t,m)f̃ (t, n)μ∗(k, �,m,n)d�dmdn,

(5.1)
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together with Proposition 3.5. Our aim is to find asymptotics for such expressions, and show that f̃ (t, k) satisfies an 
ODE whose solutions are bounded in L∞

k , uniformly in time.

5.1. Three stationary phase lemmas

Lemma 5.1. For k, t ∈ R, consider the integral expression

I [g1, g2, g3](t, k) =
˚

eit�(k,p,m,n)g1(γ (βk − p + δm − εn))g2(m)g3(n)
φ̂(p)

p
dmdndp

�(k,p,m,n) = −k2 + (βk − p + δm − εn)2 − m2 + n2,

(5.2)

for an even bump function φ ∈ C∞
0 , and with g := (g1, g2, g3) satisfying

‖g(t)‖L∞ + ‖〈k〉g(t)‖L2 + 〈t〉−1/4+α‖g′(t)‖L2 ≤ 1, (5.3)

for some α > 0. Then, for any t ∈R,

I [g1, g2, g3](t, k) = π

|t |e
−itk2

ˆ
eit (−p+βk)2

g1(γ (−p + βk))g2(δ(−p + βk))g3(ε(−p + βk))
φ̂(p)

p
dp

+O(|t |−1−α/3).

(5.4)

The remainder O(|t |−1−α/3) is uniform in k.

Note that the assumptions (5.3) above are consistent with taking g(k) = ai(k)f̃ (k), −2 ≤ i ≤ 2, where the coeffi-
cients ai(k) are as in Remark 3.6, in view of our a priori assumptions (1.23), (2.11), and Lemma 2.4.

Proof of Lemma 5.1. This is a nonlinear stationary phase argument with amplitudes of limited smoothness, and 
singularities in the integrand. We assume from now on that t > 0; the case t < 0 can be easily deduced by taking the 
complex conjugate of I .

Step 1: The case |p| � t−3 Let us define

�−(p) = φ̂(p)ϕ(pt3), �+(p) = φ̂(p) − �−(p),

and correspondingly let

I±[g1, g2, g3](t, k) :=
˚

eit�(k,p,m,n)g1(γ (βk − p + δm − εn))g2(m)g3(n)
�±(p)

p
dmdndp. (5.5)

Let us look at I− and observe that, since the dp integral is understood in the p.v. sense and φ− is even, we have

I−[g1, g2, g3](t, k) =
˚ [

eit�(k,p,m,n)g1(γ (βk − p + δm − εn))g2(m)g3(n)

−eit�(k,0,m,n)g1(γ (βk + δm − εn))g2(m)g3(n)
]�−(p)

p
dmdndp.

(5.6)

It follows that we can estimate |I−(t, k)| � A + B , with

A =
˚ ∣∣∣g1(γ (βk − p + δm − εn)) − g1(γ (βk + δm − εn))

∣∣∣∣∣g2(m)g3(n)
∣∣ |�−(p)|

|p| dmdndp

B =
˚ ∣∣∣eit�(k,p,m,n) − eit�(k,0,m,n)

∣∣∣∣∣g1(γ (βk + δm − εn))g2(m)g3(n)
∣∣ |�−(p)|

|p| dmdndp.

(5.7)

Using the assumption on the derivative of g1 in (5.3) we can estimate∣∣∣g1(γ (βk − p + δm − εn)) − g1(γ (βk + δm − εn))

∣∣∣� p̂

0

|g′
1(γ (βk + z + δm − εn))|dz

� |p|1/2‖g′
1‖L2
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and therefore obtain

A� ‖g′
1‖L2‖g2‖L1‖g3‖L1

ˆ |�−(p)|
|p|1/2 dp � 〈t〉−5/4.

For the second term in (5.7) we have

B �
˚

t
∣∣p2 − 2p(βk + δm − εn)

∣∣ ∣∣g1(γ (βk + δm − εn))g2(m)g3(n)
∣∣ |�−(p)|

|p| dmdndp

� 〈t〉‖〈k〉g‖2
L2‖g‖L1

ˆ
|�−(p)|dp � 〈t〉−2.

This shows that I− is a remainder term, and from now on we concentrate on I+[g1, g2, g3](t, k), often simply denoting 
it I+.

In a similar way, one can show that

π

t
e−itk2

ˆ
eit (−p+βk)2

g1(γ (−p + βk))g2(δ(−p + βk))g3(ε(−p + βk))
φ̂(p)

p
dp

= π

t
e−itk2

ˆ
eit (−p+βk)2

g1(γ (−p + βk))g2(δ(−p + βk))g3(ε(−p + βk))
�+(p)

p
dp + O(t−1−α/3).

Step 2. We change variables from (m, n) to (a, b) by letting m = δ(a − b − p + βk) and n = ε(−p + βk − b). This 
gives

I+(t, k) = e−itk2
ˆ

eit (−p+βk)2
J (k,p)

�+(p)

p
dp, J (k,p) :=

¨
e2itabG(a, b;p,k) da db,

G(a, b;p,k) := g1(γ (a − p + βk))g2(δ(a − b − p + βk))g3(ε(−p + βk − b)).

(5.8)

We then decompose, for a parameter ρ > 0 to be determined,

J = π

t
G(0,0;p,k) + J1 + J2 + J3,

J1 =
¨

e2itabG(a, b;p,k)ϕ(|a|t1/2−ρ)ϕ(|b|t1/2−ρ) da db − π

t
G(0,0;p,k),

J2 =
¨

e2itabG(a, b;p,k)
[
1 − ϕ(|a|t1/2−ρ)

]
da db,

J3 =
¨

e2itabG(a, b;p,k)ϕ(|a|t1/2−ρ)
[
1 − ϕ(|b|t1/2−ρ)

]
da db.

(5.9)

Notice that since the integral in dp is supported on |p| � t−3 it will suffice to show that Ji , i = 1, 2, 3, are O(t−1−α/3)

to obtain that their contributions to I+, through (5.8), are acceptable remainder terms.
Integrating successively in a and b, one obtains that

¨
e2itab ϕ(t1/2−ρ |a|)ϕ(t1/2−ρ |b|) da db = √

2π

ˆ
tρ− 1

2 ϕ̂(2t
1
2 +ρb)ϕ(t

1
2 −ρb) db

= π

t
ϕ(0)2 + O(t−2) = π

t
+ O(t−2).

(5.10)

Therefore, we can write

J1 =
¨

e2itab[G(a,b;p,k) − G(0,0;p,k)]ϕ(|a|t1/2−ρ)ϕ(|b|t1/2−ρ) da db + O(t−2).

Arguing as above, using the a priori bounds on the derivative of g, we see that

|G(a,b;p,k) − G(0,0;p,k)|� (|a| + |b|)1/2‖g′‖L2‖g‖2
L∞ � (|a| + |b|)1/2t1/4−α,
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which gives us

|J1| �
¨

|G(a,b;p,k) − G(0,0;p,k)|ϕ(|a|t1/2−ρ)ϕ(|b|t1/2−ρ) da db + t−2

� t (−1/2+ρ)(5/2)t1/4−α + t−2 � t−1−α+(5/2)ρ + t−2.

To treat J2 we integrate by parts in b and estimate

|J2| � 1

t

∣∣∣¨ 1

a
e2itab∂bG(a, b;p,k)

[
1 − ϕ(|a|t1/2−ρ)

]
da db

∣∣∣
� 1

t
‖g1‖L∞‖a−1(1 − ϕ(|a|t1/2−ρ)‖L2

a

∥∥∥ˆ eit[−(a−b)2+b2]∂b

[
g2(a − b)g3(−b)

]
db

∥∥∥
L2

a

� 1

t
· t1/4−ρ/2 · ‖g′‖L2‖eit∂2

x ĝ‖L∞ � t−1−ρ/2−α.

Notice that we have used the linear estimate (3.1) and the a priori assumptions (5.1) to deduce ‖eit∂2
x ĝ‖L∞ � t−1/2. 

A similar estimate can be obtained for J3 by integrating by parts in a:

|J3| �K1 + K2

K1 = 1

t

∣∣∣¨ 1

b
e2itab∂aG(a, b;p,k)ϕ(|a|t1/2−ρ)

[
1 − ϕ(|b|t1/2−ρ)

]
da db

∣∣∣
K2 = 1

t

∣∣∣¨ 1

b
e2itabG(a, b;p,k)ϕ′(|a|t1/2−ρ)t1/2−ρ

[
1 − ϕ(|b|t1/2−ρ)

]
da db

∣∣∣.
The term K1 can be estimated analogously to J2 above so we can skip it. For K2 we have

K2 �
1

t
· t1/2−ρ

∥∥g1(a − p + βk)ϕ′(|a|t1/2−ρ)
∥∥

L2
a

×
∥∥∥ˆ 1 − ϕ(|b − p + βk|t1/2−ρ)

b − p + βk
eit[−(a−b)2+(−b)2]g2(a − b)g3(−b)db

∥∥∥
L2

a

� 1

t
· t1/2−ρ · t−1/4+ρ/2‖g‖L∞ · ‖eit∂2

x ĝ‖L∞ · ‖b−1(1 − ϕ(|b|t1/2−ρ)‖L2
b
‖g‖L∞

� t−1−ρ.

Choosing ρ = α/3 concludes the proof. �
From the proof of the above lemma, we record the following corollary.

Lemma 5.2. For k, t ∈ R, consider the integral expression

L[g1, g2, g3](t, k) =
¨

eit�(k,p,m,n)g1(γ (βk + δm − εn))g2(m)g3(n) dmdn, (5.11)

with �(k, p, m, n) = −k2 + (βk + δm − εn)2 − m2 + n2 and g := (g1, g2, g3) satisfying

‖g(t)‖L∞ + ‖〈k〉g(t)‖L2 + 〈t〉−1/4+α‖g′(t)‖L2 ≤ 1, (5.12)

for some α > 0. Then, for any t ∈R,

L[g1, g2, g3](t, k) = π

|t |g1(γβk)g2(δβk)g3(εβk) + O(|t |−1−α/3). (5.13)

The remainder O(|t |−1−α/3) is uniform in k.

Proof. Simply notice that the trilinear operator L in (5.11) coincides with J (k, p = 0) in (5.8). �
To deal with expressions such as those in (5.4), we will use the following:
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Lemma 5.3. For K ∈ R, t > 0, consider the integral expression

I (t,K) = p.v.

ˆ
eitx2

g(x)
ψ(x − K)

x − K
dx (5.14)

for ψ ∈ S , and g satisfying

‖g‖L∞ + 〈t〉−1/4+α‖g′‖L2 ≤ 1, (5.15)

for some α ∈ (0, 14 ). Then, for large t > 0 we have

I (t,K) = h(t,
√|t |K)g(K) + O(|t |−α/3) (5.16)

where the remainder is uniform in K , and we denote

h(t, y) =
⎧⎨⎩ψ(0)eiy2

p.v.

ˆ
ei2xy+ix2

ϕ(|x||t |−2α+2ρ)
dx

x
for t > 0,

h(−t, y) for t < 0.

(5.17)

Proof. We only deal with the case t > 0; the case t < 0 can be deduced by taking the complex conjugate. Introduce a 
parameter 0 < ρ < α/2, which we will optimize at the end of the proof. In what follows we will often omit the p.v.

notation where it is understood. A change of variables gives then

h(
√

tK) = ψ(0)

ˆ
eitx2 1

x − K
ϕ(t

1
2 −2α+2ρ |x − K|) dx

=
ˆ

eitx2 ψ(x − K)

x − K
ϕ(t

1
2 −2α+2ρ |x − K|) dx + O(t−

1
2 +2α−2ρ).

Next, we decompose

I = A + B,

A =
ˆ

eitx2
g(x)

ψ(x − K)

x − K
ϕ(|x − K|t1/2−2α+2ρ) dx,

B =
ˆ

eitx2
g(x)

ψ(x − K)

x − K

[
1 − ϕ(|x − K|t1/2−2α+2ρ)

]
dx.

(5.18)

For the first term we have∣∣∣∣A − g(K)

ˆ
eitx2 ψ(x − K)

x − K
ϕ(|x − K|t1/2−2α+2ρ) dx

∣∣∣∣
�
ˆ

|g(x) − g(K)| |ψ(x − K)|
|x − K| ϕ(|x − K|t1/2−2α+2ρ) dx

� ‖g′‖L2

ˆ
ϕ(|x − K|t1/2−2α+2ρ)√|x − K| dx

� t1/4−α
(
t−1/2+2α−2ρ

)1/2 � t−ρ.

For the second terms we write

B = B1 + B2,

B1 =
ˆ

eitx2
g(x)

ψ(x − K)

x − K

[
1 − ϕ(|x − K|t1/2−2α+2ρ)

]
ϕ(|x|t1/2−α) dx,

B2 =
ˆ

eitx2
g(x)

ψ(x − K)

x − K

[
1 − ϕ(|x − K|t1/2−2α+2ρ)

][
1 − ϕ(|x|t1/2−α)

]
dx.

(5.19)

We can see directly that B1 is an acceptable remainder:

|B1|� ‖g‖L∞
ˆ

1

|x − K| [1 − ϕ(|x − K|t1/2−2α+2ρ)
]
ϕ(|x|t1/2−α) dx

� t1/2−2α+2ρt−1/2+α � t−α+2ρ.
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For B2 notice that we are away from the singularity of the integrand as well as from the stationary point x = 0. We 
can then integrate by parts in x to show this is also a remainder. In particular we can estimate

|B2| =
∣∣∣∣ˆ 1

t
eitx2

∂x

( 1

2x
g(x)

ψ(x − K)

x − K

[
1 − ϕ(|x − K|t1/2−2α+2ρ)

][
1 − ϕ(|x|t1/2−α)

])
dx

∣∣∣∣
� 1

t

(
C1 + C2 + C3

)
,

where

|C1| �
ˆ

1

|x| |g
′(x)| 1

|x − K|
[
1 − ϕ(|x − K|t1/2−2α+2ρ)

][
1 − ϕ(|x|t1/2−α)

]
dx,

|C2| �
ˆ

g(x)

|x|
∣∣∣∂x

[ψ(x − K)

x − K
[1 − ϕ(|x − K|t1/2−2α+2ρ)]

]∣∣∣[1 − ϕ(|x|t1/2−α)
]
dx,

|C3| �
ˆ

|g(x)| 1

|x − K|
[
1 − ϕ(|x − K|t1/2−2α+2ρ)

]∣∣∣∂x

[1

x

(
1 − ϕ(|x|t1/2−α)

)]∣∣∣dx.

(5.20)

We can bound the first term by

|C1| � ‖g′‖L2 t
1/2−2α+2ρ

(ˆ
1

|x|2
[
1 − ϕ(|x|t1/2−α)

]
dx

)1/2

� t1/4−α · t1/2−2α+2ρ · (t1/2−2ρ)1/2 � t1−7α/2+2ρ.

We can estimate the second term by

|C2| � ‖g‖L∞ t1/2−α

ˆ ∣∣∣∂x

[ψ(x − K)

x − K
[1 − ϕ(|x − K|t1/2−2α+2ρ)]

]∣∣∣dx � t1−3α+2ρ.

Finally, C3 can be bounded similarly. Optimizing over ρ leads to the choice ρ = α/3, which gives the desired re-
sult. �
5.2. Asymptotics for NS +NL

Let us recall Proposition 3.5 and that we have decomposed, see (4.4),

i∂t f̃ (t, k) = 1

4π2

[
NS +NL +NR

]
,

N∗(t, k) =
˚

eit (−k2+�2−m2+n2)f̃ (t, �)f̃ (t,m)f̃ (t, n)μ∗(k, �,m,n)d�dmdn.

(5.21)

By Lemma 4.2, |NR| � 1
t5/4 , which will be an acceptable error. Therefore, we focus on NS +NL.

5.2.1. Setting up the spectral measure
We now want to derive asymptotics for NS + NL. For this purpose it is convenient to rewrite slightly the ex-

pressions for the measures μS(k, �, m, n) = μ+(k, �, m, n) + μ−(k, �, m, n) and μL(k, �, m, n) = μ+
L(k, �, m, n) +

μ−
L(k, �, m, n) by going back to the decomposition of ψ(x, k). In particular, it follows from the definitions in (2.19)

and (2.20) that we can write ψS(x, k) + ψL(x, k) as

ψS(x, k) + ψL(x, k) = ψ+(x, k) + ψ−(x, k),

ψ+(x, k) = [T (k)eikx1+(k) + (eikx + R+(−k)e−ikx
)
1−(k)

]
χ+(x),

ψ−(x, k) = [(eikx + R−(k)e−ikx
)
1+(k) + T (−k)eikx1−(k)

]
χ−(x),

(5.22)

in order to distinguish more easily the contribution from positive and negative x and k.
By definition see (3.18)–(3.19), we can write

μS(k, �,m,n) + μL(k, �,m,n) = ν+(k, �,m,n) + ν−(k, �,m,n), (5.23)
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where

ν±(k, �,m,n) =
ˆ

R

ψ±(x, k)ψ±(x, �)ψ±(x,m)ψ±(x,n) dx

=
∑

β,γ,δ,ε∈{−1,+1}

ˆ

R

χ4±(x)a±
βγ δε(k, �,m,n)eβikx · eγ i�x · eδimx · eεinx dx

=
∑

β,γ,δ,ε∈{−1,+1}
a±
βγ δε(k, �,m,n)ϕ̂±(βk − γ � + δm − εn), ϕ± = χ4±.

(5.24)

By (5.22) the coefficients can be written

a±
βγ δε(k, �,m,n) = a±

β (k) · a±
γ (�) · a±

δ (m) · a±
ε (n) (5.25)

where

a+
ε (k) =

⎧⎪⎪⎨⎪⎪⎩
T (k) if ε = +1, k > 0
1 if ε = +1, k < 0
0 if ε = −1, k > 0
R+(−k) if ε = −1, k < 0

(5.26)

and

a−
ε (k) =

⎧⎪⎪⎨⎪⎪⎩
1 if ε = +1, k > 0
T (−k) if ε = +1, k < 0
R−(k) if ε = −1, k > 0
0 if ε = −1, k < 0.

(5.27)

According to (5.23) we have

NS +NL = I+ + I−

I±(t, k) =
˚

eit (−k2+�2−m2+n2)f̃ (t, �)f̃ (t,m)f̃ (t, n)ν±(k, �,m,n)d�dmdn.
(5.28)

We now proceed to find asymptotic expressions for these integrals. The upshot of these calculations is stated at the 
end of the subsection in Lemma 5.4.

5.2.2. Asymptotics for I+
Using formula (5.24) we can write

I+(t, k) =
∑

β,γ,δ,ε∈{−1,+1}

˚
eit (−k2+�2−m2+n2)a+

βγ δε(k, �,m,n) f̃ (t, �)f̃ (t,m)f̃ (t, n)

×ϕ̂+(βk − γ � + δm − εn)d�dmdn.

(5.29)

Since we are often going to have sums over all possible sign combinations, for brevity we will adopt the short-hand 
notation∑

∗
:=

∑
β,γ,δ,ε∈{−1,+1}

. (5.30)

Recalling the formula (4.7),

ϕ̂+(k) =
√

π

2
δ0 + φ̂(k)

ik
− ψ̂,

we can change variables and split into three parts as before:

I+(t, k) =
√

π

2
I+

0 (t, k) − iI+
V (t, k) + I+

V,r (t, k), (5.31)
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where, denoting

g+
ρ (y) := a+

ρ (y)f̃ (t, y) (5.32)

(omitting the time variable), we have

I+
0 (t, k) =

∑
∗

¨
eit (−k2+(βk+δm−εn)2−m2+n2)a+

β (k) g+
γ (γ (βk + δm − εn))g+

δ (m)g+
ε (n) dmdn, (5.33)

I+
V (t, k) =

∑
∗

˚
eit (−k2+(−p+βk+δm−εn)2−m2+n2)a+

β (k) g+
γ (γ (−p + βk + δm − εn))

g+
δ (m)g+

ε (n)
φ̂(p)

p
dmdndp,

(5.34)

and

I+
V,r (t, k) =

∑
∗

˚
eit (−k2+(−p+βk+δm−εn)2−m2+n2)a+

β (k) g+
γ (γ (−p + βk + δm − εn))

g+
δ (m)g+

ε (n) ψ̂(p)dmdndp.

(5.35)

Asymptotics for I+
0 . This is similar to the case of flat NLS treated in [34]; it follows from Lemma 5.2 that

I+
0 (t, k) = π

|t |
∑

∗
a+
β (k) g+

γ (γβk)g+
δ (δβk)g+

ε (εβk) + O(|t |−1−α/3)

= π

|t |
∑

∗
a+
β (k) a+

γ (γβk)a+
δ (δβk)a+

ε (εβk)f̃ (γβk)f̃ (δβk)f̃ (εβk) + O(|t |−1−α/3).
(5.36)

For k > 0, recall from (5.26) that a+
+1(k) = T (k), a+

−1(k) = 0, a+
−1(−k) = R+(k), so that the sum in (5.36) reduces to

T (−k)
∑

γ,δ,ε∈{+1,−1}
a+
γ (γ k)a+

δ (δk)a+
ε (εk)f̃ (γ k)f̃ (δk)f̃ (εk)

= T (−k)
( ∑

γ∈{+1,−1}
a+
γ (γ k)f̃ (γ k)

)( ∑
δ∈{+1,−1}

a+
δ (δk)f̃ (δk)

)( ∑
ε∈{+1,−1}

a+
ε (εk)f̃ (εk)

)
= T (−k)

(
T (k)f̃ (k) + R+(k)f̃ (−k)

)(
T (k)f̃ (k) + R+(k)f̃ (−k)

)(
T (k)f̃ (k) + R+(k)f̃ (−k)

)
= T (−k)

∣∣T (k)f̃ (k) + R+(k)f̃ (−k)
∣∣2(T (k)f̃ (k) + R+(k)f̃ (−k)

)
.

(5.37)

Similarly, since for k < 0 we have a+
+1(k) = 1, a+

−1(k) = R+(−k), a+
+1(−k) = T (−k) and a+

−1(−k) = 0, the sum in 
(5.36) is given by∑

γ,δ,ε∈{+1,−1}
a+
γ (γ k)a+

δ (δk)a+
ε (εk)f̃ (γ k)f̃ (δk)f̃ (εk)

+ R+(k)
∑

γ,δ,ε∈{+1,−1}
a+
γ (−γ k)a+

δ (−δk)a+
ε (−εk)f̃ (−γ k)f̃ (−δk)f̃ (−εk)

= |f̃ (k)|2f̃ (k) + R+(k)
∣∣T (−k)f̃ (−k) + R+(−k)f̃ (k)

∣∣2(T (−k)f̃ (−k) + R+(−k)f̃ (k)
)
.

(5.38)

In conclusion, if we define

N+[f ](k) := ∣∣T (k)f̃ (k) + R+(k)f̃ (−k)
∣∣2(T (k)f̃ (k) + R+(k)f̃ (−k)

)
(5.39)

we have

I+
0 (t, k) = π

|t |
[
T (−k)N+[f ](k)1+(k) +

(
|f̃ (k)|2f̃ (k) + R+(k)N+[f ](−k)

)
1−(k)

]
+ O(|t |−1−α/3). (5.40)
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Asymptotics for I+
V . We now use Lemmas 5.1 and 5.3 to derive asymptotics: we see that I+

V is an operator of the form 
(5.2) with g = (g+

γ , g+
δ , g+

ε ) satisfying the assumptions (5.3). Applying Lemma 5.1 we then obtain

I+
V (t, k) =

∑
∗

a+
β (k)I [g+

γ , g+
δ , g+

ε ](t, k)

=
∑

∗
a+
β (k)

π

|t |e
−itk2

ˆ

R

eitq2
g+

γ (−γ q)g+
δ (−δq)g+

ε (−εq)
φ̂(q + βk)

q + βk
dq + O(|t |−1−α/3).

Applying Lemma 5.3 to this last expression, noticing that the assumptions (5.15) hold, we obtain

I+
V (t, k) = π

|t |
∑

∗
e−itk2

h(t,−√|t |βk)a+
β (k)g+

γ (γβk)g+
δ (δβk)g+

ε (εβk) + O(|t |−1−α/3) (5.41)

where h denotes the function from (5.17) with ψ(0) = φ̂(0) = 1/
√

2π . To write out more explicitly the sum (5.41)
we proceed as above, using the formulas (5.26) and looking at the cases k > 0 and k < 0, eventually obtaining

I+
V (t, k) = π

|t |e
−itk2

[
h(t,−√|t |k)T (−k)N+[f ](k)1+(k)

+
(
h(t,−√|t |k)|f̃ (k)|2f̃ (k) + h(t,

√|t |k)R+(k)N+[f ](−k)
)

1−(k)
]
+ O(|t |−1−α/3),

(5.42)

where N+[f ](k) is defined in (5.39).

The term I+
V,r . This is a remainder term that decays faster than |t |−1−ρ and therefore does not contribute to the 

asymptotic behavior of solutions. To see this, we can change variables as done before, cfr. (4.12) and (4.22), and write 
the term in (5.35) as

I+
V,r (t, k) =

∑
β∈{1,−1}

a+
β (k)

ˆ
eit (−k2+q2) 1+(k) I (t, q) ψ̂(βk − q)dq (5.43)

where, similarly to (4.14),

I (t, q) =
∑

γ,δ,ε∈{−1,+1}
γ δε

¨
e2itabg̃+

γ (t, γ (q − a))g̃+
δ (t, δ(b − a + q))g̃+

ε (t, ε(b + q)) da db.

In particular, arguing as in (4.15) and (4.18), we have

|t |‖I (t)‖L2 + |t |3/4‖∂qI (t)‖
L2 � ε3

1,

for |t | ≥ 1. Using this it is not hard to see how to estimate (5.43), so we just sketch the argument. When the integral is 
taken over |q| ≤ |t |−1/2, we can directly use Hölder’s inequality to bound the L∞

k norm of (5.43) by

‖I+
V,r (t)‖L2 |t |−1/4 � ε3

1|t |−5/4.

If instead |q| ≥ |t |−1/2 in the support of the integral in (5.43), we can integrate by parts in q obtaining the bound

1

|t |
ˆ

R

∣∣∣∂q

[
q−1I (t, q)ϕ≥0(q|t |1/2)ψ̂(βk − q)

∣∣∣dq

� 1

|t |
[
|t |3/4‖I (t)‖L2 + |t |1/4‖∂qI (t)‖

L2

]
� ε3

1|t |−5/4.

5.2.3. Asymptotics for I−
Using formula (5.24) we can write

I−(t, k) =
∑

β,γ,δ,ε∈{−1,+1}

˚
eit (−k2+�2−m2+n2)a−

βγ δε(k, �,m,n) f̃ (t, �)f̃ (t,m)f̃ (t, n)

×ϕ̂−(βk − γ � + δm − εn)d�dmdn.

(5.44)
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As before, we can write ϕ̂−(k) =
√

π

2
δ0 − φ̂(k)

ik
+ ψ̂(k), change variables and split

I−(t, k) =
√

π

2
I−

0 (t, k) + iI−
V (t, k) + I−

V,r (t, k) (5.45)

where

I−
0 (t, k) =

∑
∗

¨
eit (−k2+(βk+δm−εn)2−m2+n2)a−

β (k) g−
γ (γ (βk + δm − εn))g−

δ (m)g−
ε (n) dmdn, (5.46)

I−
V (t, k) =

∑
∗

˚
eit (−k2+(−p+βk+δm−εn)2−m2+n2)a−

β (k) g−
γ (γ (−p + βk + δm − εn))

g−
δ (m)g−

ε (n)
φ̂(p)

p
dmdndp,

(5.47)

I−
V,r (t, k) =

∑
∗

˚
eit (−k2+(−p+βk+δm−εn)2−m2+n2)a−

β (k) g−
γ (γ (−p + βk + δm − εn))

g−
δ (m)g−

ε (n) ψ̂(p)dmdndp,

(5.48)

and we have denoted

g−
ρ (y) := a−

ρ (y)f̃ (t, y). (5.49)

The term (5.48) is a remainder term which satisfies

|I−
V,r (t, k)| � ε3

1|t |−5/4,

as it can be seen by applying the same argument used for the term I−
V,r in (5.35) and (5.43) above.

Asymptotics for I−
0 . By Lemma 5.2,

I−
0 (t, k) =

¨
e2itaba−

β (k) g−
γ (γ (βk + a))g−

δ (δ(βk + a − b))g−
ε (ε(βk − b)) dadb

= π

|t |
∑

∗
a−
β (k) a−

γ (γβk)a−
δ (δβk)a−

ε (εβk)f̃ (γβk)f̃ (δβk)f̃ (εβk) + O(|t |−1−α/3).
(5.50)

For k > 0 we have a−
+1(k) = 1, a−

−1(−k) = 0, a−
+1(−k) = T (k) and a−

−1(k) = R−(k), and therefore the above sum is∑
γ,δ,ε∈{1,−1}

a−
γ (γ k)a−

δ (δk)a−
ε (εk)f̃ (γ k)f̃ (δk)f̃ (εk)

+ R−(−k)
∑

γ,δ,ε∈{1,−1}
a−
γ (−γ k)a−

δ (−δk)a−
ε (−εk)f̃ (−γ k)f̃ (−δk)f̃ (−εk)

= |f̃ (k)|2f̃ (k) + R−(−k)
∣∣T (k)f̃ (−k) + R−(k)f̃ (k)

∣∣2(T (k)f̃ (−k) + R−(k)f̃ (k)
)
.

(5.51)

Similarly, since for k < 0 we have a−
+1(k) = T (−k), a−

−1(k) = 0, and a−
−1(−k) = R−(−k), we obtain

T (k)
∑

γ,δ,ε∈{1,−1}
a−
γ (γ k)a−

δ (δk)a−
ε (εk)f̃ (γ k)f̃ (δk)f̃ (εk)

= T (k)
∣∣T (−k)f̃ (k) + R−(−k)f̃ (−k)

∣∣2(T (−k)f̃ (k) + R−(−k)f̃ (−k)
)
.

(5.52)

By letting

N−[f ](k) := ∣∣T (k)f̃ (−k) + R−(k)f̃ (k)
∣∣2(T (k)f̃ (−k) + R−(k)f̃ (k)

)
(5.53)
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we have showed that

I−
0 (t, k) = π

|t |
[(

|f̃ (k)|2f̃ (k) + R−(−k)N−[f ](k)
)

1+(k) + T (k)N−[f ](−k)1−(k)
]

+O(|t |−1−α/3).

(5.54)

Asymptotics for I−
V . From the formula (5.47), the definition (5.49), and the properties (2.11), we see that I−

V is an 
operator of the form (5.2) appearing in Lemma 5.1, with g = (g−

γ , g−
δ , g−

ε ) satisfying the assumptions (5.3). Applying 
Lemma 5.1 we then obtain

I−
V (t, k) =

∑
∗

a−
β (k)I [g−

γ , g−
δ , g−

ε ](t, k)

=
∑

∗
a−
β (k)

π

|t |e
−itk2

ˆ

R

eitq2
g−

γ (−γ q)g−
δ (−δq)g−

ε (−εq)
φ̂(q + βk)

q + βk
dq + O(|t |−1−α/3).

Applying Lemma 5.3 to this last expression, noticing that the assumption (5.15) holds, we obtain

I−
V (t, k) = π

|t |
∑

∗
e−itk2

h(t,−√|t |βk)a−
β (k)g−

γ (γβk)g−
δ (δβk)g−

ε (εβk) + O(|t |−1−α/3). (5.55)

To write out more explicitly (5.55) we proceed as above, using the formulas (5.27), to get

I−
V (t, k) = π

|t |e
−itk2

[(
h(t,−√|t |k)|f̃ (k)|2f̃ (k) + h(t,

√|t |k)R−(−k)N−[f ](k)
)

1+(k)

+h(t,−√|t |k)T (k)N−[f ](−k)1−(k)
]
+ O(|t |−1−α/3).

(5.56)

Putting together the results above, starting from the decomposition of i∂t f̃ in (5.21), the definitions of I+ and 
I− in (5.28), their decompositions (5.31) and (5.45) and using the asymptotic expansions obtained in (5.40), (5.42), 
(5.54) and (5.56), and the estimate (4.43) for NR , we have obtained the following

Lemma 5.4. Let f be the profile defined in (1.7). Under the a priori assumptions (1.23)–(1.24) we have, for k > 0,

i∂t f̃ (k) = 1

4π |t |
[√π

2
T (−k)N+[f ](k) +

√
π

2
|f̃ (k)|2f̃ (k) +

√
π

2
R−(−k)N−[f ](k)

−ie−ik2t h(t,−√|t |k)T (−k)N+[f ](k) + ie−ik2t h(t,−√|t |k)|f̃ (k)|2f̃ (k)

+ie−ik2t h(t,
√|t |k)R−(−k)N−[f ](k)

]
+ O(|t |−1−α/3),

(5.57)

and

i∂t f̃ (−k) = 1

4π |t |
[√π

2
|f̃ (−k)|2f̃ (−k) +

√
π

2
R+(−k)N+[f ](k) +

√
π

2
T (−k)N−[f ](k)

−ie−ik2t h(t,
√|t |k)|f̃ (−k)|2f̃ (−k) − ie−ik2t h(t,−√|t |k)R+(−k)N+[f ](k)

+ie−ik2t h(t,
√|t |k)T (−k)N−[f ](k)

]
+ O(|t |−1−α/3),

(5.58)

where we are using the notation (5.39) and (5.53) for N±[f ], and h is as in (5.17) with ψ(0) = 1/
√

2π .

5.3. The asymptotic ODE and proof of the L∞ bound

We now want to analyze the ODE (5.57)–(5.58) and identify the necessary structure that will guarantee the bound-
edness of its solutions. To this end let us define

Z(k) := (f̃ (k), f̃ (−k)
)
, b(t, y) := 1

4π

[√π

2
− ie−iy2

h(t, y)
]

(5.59)
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where, see (5.17) and recall the choice ψ(0) = φ̂(0) = 1/
√

2π ,

−ie−iy2
h(t, y) = 1√

2π

ˆ
ei2xy+ix2 1

ix
ϕ(|x||t |−2α+2ρ) dx, t > 0, (5.60)

and h(t, y) = h(−t, y) when t < 0.
Recall that h is an odd function in y. In what follows we will sometimes omit the dependence of b and h on the 

variable t . With the above definitions, the equations (5.57)–(5.58) become

i∂t f̃ (k) = 1

t

[
b(
√|t |k)|f̃ (k)|2f̃ (k) + b(−√|t |k)T (k)N+[f ](k) + b(−√|t |k)R−(k)N−[f ](k)

]
+O(|t |−1−ρ),

(5.61)

and

i∂t f̃ (−k) = 1

t

[
b(
√|t |k)|f̃ (−k)|2f̃ (−k) + b(−√|t |k)R+(k)N+[f ](k) + b(−√|t |k)T (k)N−[f ](k)

]
+O(|t |−1−ρ).

(5.62)

It is then convenient to write (5.61)–(5.62) in matrix form. Recalling the definition of the (unitary) scattering matrix

S(k) :=
(

T (k) R+(k)

R−(k) T (k)

)
, S−1(k) :=

(
T (k) R−(k)

R+(k) T (k)

)
, (5.63)

using the definitions in (5.39) and (5.53), we see that

N+[f ](k) = ∣∣(S(k)Z(k))1
∣∣2(S(k)Z(k))1,

N−[f ](k) = ∣∣(S(k)Z(k))2
∣∣2(S(k)Z(k))2,

(5.64)

where the index j = 1, 2 denotes the j -th component of a vector. We then have obtained the following:

Lemma 5.5. The equation (5.57)–(5.58) can be written in vector form as

i∂tZ(t, k) = 1

t
A(t, k)Z(t, k) + O(|t |−1−ρ), (5.65)

for ρ ∈ (0, α/10), where

A(t, k) := b(
√|t |k)diag

(|Z1|2, |Z2|2
)+ b(−√|t |k)S−1diag

(|(SZ)1|2, |(SZ)2|2
)
S. (5.66)

To understand (5.59)–(5.60) for large t we will use the following lemma:

Lemma 5.6. Let c(t, y) = −ie−iy2
h(t, y) be the expression in (5.60). For all y ∈ R and t > 0 such that y ≥ |t |1/4 we 

have ∣∣∣c(t, y) −
√

π

2

∣∣∣� |y|−1/2. (5.67)

In particular, from the definition of b and h in (5.59)–(5.60) above, we have the following: for t > 0∣∣∣b(t, y) − 1

2
√

2π

∣∣∣� |y|−1/2, y ≥ t1/4,

|b(y)| � |y|−1/2, y ≤ −t1/4,

(5.68)

while for t < 0∣∣∣b(t, y) − 1

4
√

2π
(1 + e−2iy2

)

∣∣∣� |y|−1/2, y ≥ |t |1/4,∣∣∣b(t, y) − 1

4
√

2π
(1 − e−2iy2

)

∣∣∣� |y|−1/2, y ≤ −|t |1/4.

(5.69)
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Proof. Using (4.6), we write

c(y) = c1(y) + c2(y) +
√

π

2
sign(2y),

c1(y) := 1√
2π

ˆ
ei2xy(eix2 − 1)

1

ix
ϕ(|x|t−2α+2ρ) dx,

c2(y) := 1√
2π

ˆ
ei2xy 1

ix

[
ϕ(|x|t−2α+2ρ) − 1

]
dx.

In c1 we see that the integrand is bounded by |x| which, for |x| ≤ |y|−1/4, gives the desired bound. For |x| ≥ |y|−1/4

instead we can integrate by parts to obtain:∣∣∣∣∣∣∣
ˆ

|x|≥|y|−1/4

ei2xy(eix2 − 1)
1

x
ϕ(|x|t−2α+2ρ) dx

∣∣∣∣∣∣∣
� 1

|y|

∣∣∣∣∣∣∣
ˆ

|x|≥|y|−1/3

ei2xy∂x

(
(eix2 − 1)

1

x
ϕ(|x|t−2α+2ρ)

)
dx

∣∣∣∣∣∣∣
� 1

|y|

∣∣∣∣∣∣∣
ˆ

|x|≥|y|−1/4

( 1

|x|2 + 1
)
ϕ(|x|t−2α+2ρ) dx +

ˆ

|x|≥|y|−1/4

ϕ′(|x|t−2α+2ρ)t−2α+2ρ dx

∣∣∣∣∣∣∣� |y|−1/2,

(5.70)

having used that |y| ≥ |t |1/4 � |t |−2α+2ρ � |x| on the support of the integral. A similar integration by parts argument 
can be used to estimate c2 by showing

∣∣∣∣ˆ ei2xy 1

x

[
ϕ(|x|t−2α+2ρ) − 1

]
dx

∣∣∣∣� 1

|y| t
−2α+2ρ + 1

|y|

∣∣∣∣∣∣∣
ˆ

|x|�t2α−2ρ

1

x2 dx

∣∣∣∣∣∣∣� |y|−1/2.

This gives us (5.67). (5.68) follows since b(y) = 1/(4π)[√π/2 + c(y)] and c is odd. The bounds (5.69) are also a 
direct consequence of (5.67) since h(t, y) = h(−t, y) for t < 0 gives c(t, y) = e2iy2

c(−t, y). �
We can now prove our main proposition about asymptotics for Z(k).

Proposition 5.7. Let S be the scattering matrix (5.63), for k > 0, define self-adjoint matrices

S0 := 1

2
√

2π
diag

(|Z1|2, |Z2|2
)
,

S1 := 1

2
√

2π
S−1diag

(|(SZ)1|2, |(SZ)2|2
)
S,

(5.71)

and

S(t, k) :=
⎧⎨⎩ S0(t, k), t > 0

1(k ≤ |t |−ρ)S0(t, k) + 1(k ≥ |t |−ρ)
1

2

[
S0(t, k) + S1(t, k)

]
, t < 0.

(5.72)

Define the modified profile

W(t, k) := exp
(
i

tˆ

0

S(t, k)
ds

1 + s

)
Z(t, k), (5.73)

where Z(k) = (f̃ (k), f̃ (−k)) is the solution of (5.66)–(5.65).
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Then, for every |t1| < |t2|, t1t2 > 0, we have∣∣W(t1, k) − W(t2, k)| � ε3
1|t1|−ρ/2, (5.74)

for ρ ∈ (0, α/10).
In particular, |W(t, k)| = |Z(t, k)| is uniformly bounded, and W(t) is a Cauchy sequence in time. If we denote 

W±∞(k) its limits as t → ±∞, these are the asymptotic profiles appearing in (1.9) and (1.14) respectively.

Proof. Let us look at the case t > 0 first. For small frequencies |k|  1 we see from the properties of T and R± in 
(2.10) that

S(k) − S(0) = S(k) −
(

0 −1
−1 0

)
= O(|k|). (5.75)

Under our a priori assumptions on the boundedness of |Z(k)|, and since

S(0)−1diag
(|(S(0)Z)1|2, |(S(0)Z)2|2

)
S(0) = S(0)−1diag

(|Z2|2, |Z1|2)S(0)

= diag(|Z1|2, |Z2|2),
we see that, for all |k| ≤ t−ρ , we have

A(t, k) = [b(t,
√

tk) + b(t,−√
tk)]diag

(|Z1|2, |Z2|2
)+ O(|t |−ρ)

= 1

2
√

2π
diag

(|Z1|2, |Z2|2
)+ O(|t |−ρ) = S0(t, k) + O(|t |−ρ).

In the case of larger frequencies |k| ≥ t−ρ we can write∣∣∣A(t, k) − 1

2
√

2π
diag

(|Z1|2, |Z2|2
)∣∣∣

�
∣∣∣b(

√
tk) − 1

2
√

2π

∣∣∣∣∣diag
(|Z1|2, |Z2|2

)∣∣+ |b(−√
tk)|∣∣S−1diag

(|(SZ)1|2, |(SZ)2|2
)
S
∣∣

� O(|t |−ρ),

having used (5.68) in Lemma 5.6 with y = k
√

t ≥ t1/4. It follows, see the definitions (5.66) and (5.71), that

A(t, k) = S0(t, k) + O(|t |−ρ), t > 0. (5.76)

Let us now look at the case t < 0. For small frequencies we can deduce as before that

A(t, k) = S0(t, k) + O(|t |−ρ), t < 0, |k| ≤ |t |−ρ. (5.77)

When |k| ≥ |t |−ρ we use instead (5.69) in Lemma 5.6 to obtain, see the notation (5.71),

A(t, k) = 1

2
S0(t, k) + 1

2
S1(t, k) + 1

2
e2ik2tS0(t, k) − 1

2
e2ik2tS1(t, k) + O(|t |−ρ). (5.78)

We now look at the ODE (5.65)–(5.66) and use (5.76)–(5.78), and the definition of the modified profile W in 
(5.72)–(5.73), to see that, for t > 0 we have

i∂tW(t, k) = O(|t |−1−ρ),

from which the conclusion (5.74) follows immediately when 0 < t1 < t2.
For t < 0 we see instead that

i∂tW(t, k) = 1

t
B(t, k)1(|k| ≥ t−ρ)

1

2

[
e−2ik2tS0(t, k) − e−2ik2tS1(t, k)

]
+ O(|t |−1−ρ),

B(t, k) := exp
(
i

tˆ

0

S(t, k)
ds

1 + s

)
.

(5.79)
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We can then integrate the right-hand side in the above equation between t2 < t1 < 0, and exploit the oscillations of the 
factors e−2ik2t , for |k| ≥ t−ρ , to integrate by parts. Using the bounds∣∣∂tB(t, k)

∣∣� ε3
1|t |−1,∣∣∂t f̃ (t, k)

∣∣= ∣∣ũ3(t, k)
∣∣� ∥∥u3(t)

∥∥
L1 � ε3

1(1 + |t |)−1/2,

we obtain the desired conclusion (5.74). �
Conflict of interest statement
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Appendix A. Useful bounds

A.1. Proof of Lemma 2.1

In this section, we give the proof of Lemma 2.1. We focus on m+, the case of m− being completely similar. Recall 
that m+ solves

∂2
xm+(x, k) + 2ik∂xm+(x, k) = V (x)m+(x, k). (A.1)

It also solves the Volterra equation

m+(x, k) = 1 +
+∞ˆ

x

Dk(y − x)V (y)m+(y, k) dy, (A.2)

where

Dk(x) =
xˆ

0

e2ikz dz = e2ikx − 1

2ik
. (A.3)

We will denote

∂km+(x, k) = ṁ+(x, k) and ∂2
k m+(x, k) = m̈+(x, k).

By differentiating in k the Volterra equations solved by m+, we obtain immediately that

ṁ+(x, k) =
∞̂

x

Dk(y − x)V (y)ṁ+(y, k) dy +
+∞ˆ

x

Ḋk(y − x)V (y)m+(y, k) dy (A.4)

m̈+(x, k) =
∞̂

x

Dk(y − x)V (y)m̈+(y, k)dy +
+∞ˆ

x

Ḋk(y − x)V (y)ṁ+(y, k) dy (A.5)

+
+∞ˆ

x

D̈k(t − x)V (y)m+(y, k) dy.

We first prove the existence of m+ with the desired behavior at +∞ by solving the Volterra equation (A.2) for 
x ≥ x0, x0 sufficiently large. More precisely, we can set

z+(x, k) = 〈k〉m+(x, k) − 1

W1 (x)
+
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and look for z+ bounded solution on [x0, +∞[ of

z+(x, k) − Lz+ = 〈k〉
W1+(x)

+∞ˆ

x

Dk(y − x)V (y)dy (A.6)

with

Lz+(x) = 1

W1+(x)

∞̂

x

Dk(y − x)V (y)W1+(y)z+(y, k) dy.

By using that uniformly in x and k, we have |Dk(z)| � 〈x〉
〈k〉 , we obtain that again uniformly in k,∥∥∥∥∥∥ 〈k〉

W1+(x)

+∞ˆ

x

Dk(y − x)V (y)dy

∥∥∥∥∥∥
L∞(x0,+∞)

� 1

and

‖Lz+‖L∞(x0,+∞) � ‖z+‖L∞(x0,+∞)W1+(x0)

therefore Id − L is invertible on L∞(x0, +∞) for x0 sufficiently large and there exists a unique solution with 
‖z+‖L∞(x0,+∞) � 1. This proves the existence of m+ with the desired asymptotic behavior on [x0, +∞[. Since m+
solves a linear ODE this completely determines m+ on R. To get the estimates for x ≤ x0, we can use the Gronwall 
lemma.

For −1 ≤ x ≤ x0, we have from (A.6) that uniformly in k,

|z+(x, k)|� 1 +
x0ˆ

x

〈y〉|V (y)| |z+(y, k)|dy, ∀x, −1 ≤ x ≤ x0

and hence we find |z+(x, k)| ≤ 1.
For x ≤ 0, we have again uniformly in k that

|z+(x, k)|
〈x〉 � 1 + 1

〈x〉
0ˆ

x

〈x − y〉〈y〉|V (y)| |z+(y, k)|
〈y〉 dy � 1 +

0ˆ

x

〈y〉|V (y)| |z+(y, k)|
〈y〉 dy

and hence we find again by Gronwall that z+(x, k)/〈x〉 is bounded.
To estimate ṁ+(x, k) and m̈+(x, k), we proceed in the same way on the Volterra equations (A.4), (A.5) by using 

that uniformly in x, k, we have

|Ḋk(x)| � 〈x〉2

〈k〉 , |D̈k(x)| � 〈x〉3

〈k〉 .

Let us turn to the x derivatives. By taking the x derivative in (A.2), we get that

∂xm+(x, k) = −
+∞ˆ

x

e2ik(x−y)V (y)m+(y, k) dy. (A.7)

By using the estimate for m+, we then find uniformly in k that

|∂xm+(x, k)| �
+∞ˆ

x

|V (y)|dy �W0+(x)

for x ≥ 0 and that
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|∂xm+(x, k)|� 1 +
0ˆ

x

|y| |V (y)|dy � 1

for x ≤ 0.
The estimates for ∂s

k∂xm± follow by differentiating in k the equation (A.7).

A.2. Basic multilinear estimates

Let us consider

Tα(f1, f2, f3) = F̂−1
˚

α̂(k, �,m,n)f̂1(�)f̂2(m)f̂3(n) d�dmdn.

We will denote (w, x, y, z) the dual variables of (k, �, m, n). In other words,

α̂(k, �,m,n) = 1

(2π)2

˘
e−i(wk+x�+ym+zn)α(w,x, y, z) dw dx dy dz.

We shall prove that

Lemma A.1. The operator Tα

• maps L∞ × L∞ × L∞ → L2 with norm bounded by ‖α(x, y, z, w)‖L2
wL1

x,y,z
;

• maps L∞ × L∞ × L2 → L2 with norm bounded by ‖α(x, y, z, w)‖L2
w,xL1

y,z
.

Proof. We observe that for every g ∈ S(R),

(Tα(f1, f2, f3), g)L2 =
˘

α̂(k, �,m,n)f̂1(�)f̂2(m)f̂3(n)ĝ(k) dk d�dmdn

=
˘

α(w,x, y, z)f1(x)f2(y)f3(z)g(−w)dw dx dy dz.

Therefore, we easily get that∣∣(Tα(f1, f2, f3), g)L2

∣∣� ‖α‖L2
w(L1

x,y,z)
‖f1‖L∞‖f2‖L∞‖f3‖L∞‖g‖L2

and ∣∣(Tα(f1, f2, f3), g)L2

∣∣� ‖α‖L2
w,x(L1

y,z)
‖f1‖L∞‖f2‖L∞‖f3‖L2‖g‖L2,

which, by duality, proves the desired result. �
Similarly, define

Uβ(f1, f2, f3) = F̂−1
¨

β̂(k,m,n)f̂1(k − m − n)f̂2(m)f̂3(n) dmdn.

Lemma A.2. If 1 ≤ p, q, r, s ≤ ∞ satisfy 1
p

+ 1
q

+ 1
r
+ 1

s
= 1, the operator Uβ maps Lp × Lq × Lr → Ls′

with norm 
bounded by ‖β‖L1 .

Proof. Simply notice that

Uβ(f1, f2, f3) = 1√
2π

ˆ
β(w − x, x − y, x − z)f1(x)f2(y)f3(z) dx dy dz,

and argue by duality. �
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