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Abstract

In this paper we study a perturbative approach to the problem of quantization of probability distributions in the plane. Motivated 
by the fact that, as the number of points tends to infinity, hexagonal lattices are asymptotically optimal from an energetic point 
of view [10,12,15], we consider configurations that are small perturbations of the hexagonal lattice and we show that: (1) in the 
limit as the number of points tends to infinity, the hexagonal lattice is a strict minimizer of the energy; (2) the gradient flow of the 
limiting functional allows us to evolve any perturbed configuration to the optimal one exponentially fast. In particular, our analysis 
provides a new mathematical justification of the asymptotic optimality of the hexagonal lattice among its nearby configurations.
© 2018 
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1. Introduction

The term quantization refers to the process of finding an optimal approximation of a d-dimensional probability 
density by a convex combination of a finite number N of Dirac masses. The quality of such an approximation is 
measured in terms of the Monge–Kantorovich or Wasserstein metric.

The need for such approximations first arose in the context of information theory in the early 1950s. The idea 
was to see the quantized measure as the digitalization of an analog signal which should be stored on a data storage 
medium or transmitted via a channel [5,11]. Another classical application of the quantization problem concerns nu-
merical integration, where integrals with respect to certain probability measures needs to be replaced by integrals 
with respect to a good discrete approximation of the original measure [16]. For instance, quasi-Monte Carlo methods 
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use low discrepancy sequences, and the notion of discrepancy can be regarded as one approach to the quantization 
problem. See [7] for an introduction to this subject, especially section 5 for a presentation of the notion of discrepancy 
of a sequence, and section 7 for applications in the context of rarefied gas dynamics. Moreover, this problem has 
applications in cluster analysis, pattern recognition, speech recognition, stochastic processes (sampling design) and 
mathematical models in economics (optimal location of service centers). For a detailed exposition and a complete list 
of references see the monograph [13].

We now introduce the theoretical setup of the problem. Given r ≥ 1, consider ρ a probability density on an open 
set � ⊂ Rd with finite r-th order moment,

ˆ

�

|y|rρ(y)dy < ∞.

Given N points x1, . . . , xN ∈ �, we seek the best approximation of ρ, in the sense of Monge–Kantorovich, by a 
convex combination of Dirac masses centered at x1, . . . , xN . Hence one minimizes

inf

{
MKr

(∑
i

miδxi , ρ(y)dy

)
: m1, . . . ,mN ≥ 0,

N∑
i=1

mi = 1

}
,

with

MKr(μ, ν) := inf

{ ˆ

�×�

|x − y|rdγ (x, y) : π ∈ �(μ,ν)

}
,

where �(μ, ν) is the set of all Borel probability measures on � × � whose marginals onto the first and second 
component are given by μ and ν respectively. In other words, a Borel probability π measure on � × � belongs to 
�(μ, ν) if

¨

�×�

(φ(x) + ψ(y))π(dxdy) =
ˆ

�

φ(x)μ(dx) +
ˆ

�

ψ(y)ν(dy)

for each φ, ψ ∈ Cc(�) (see [2,17] for more details on the Monge–Kantorovich distance between probability mea-
sures).

As shown in [13], the following facts hold:

(1) The best choice of the masses mi is given by

mi :=
ˆ

V (xi |{x1,...,xN })
ρ(y)dy,

where

V (xi |{x1, . . . , xN }) := {y ∈ � : |y − xi | ≤ |y − xj |, j ∈ 1, . . . ,N}
is the so-called Voronoi cell of xi in the set x1, . . . , xN .

(2) The following identity holds:

inf

{
MKr

(∑
i

miδxi , ρ(y)dy

)
: m1, . . . ,mN ≥ 0,

N∑
i=1

mi = 1

}
=QN,r (x

1, . . . , xN),

where

QN,r (x
1, . . . , xN) :=

ˆ

�

min
1≤i≤N

|xi − y|rρ(y)dy.
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Assume that the points x1, . . . , xN are chosen in an optimal way so as to minimize the quantization functional 
QN,r : (Rd)N → R+; then in the limit as N tends to infinity these points distribute themselves accordingly to a 
probability density proportional to ρd/d+r . In other words, by [13, Chapter 2, Theorem 7.5] one has

1

N

N∑
i=1

δxi ⇀
ρd/d+r (x)dxˆ

�

ρd/d+r (y)dy

(1.1)

weakly in the sense of Borel probability measures on � as N → ∞.
These issues are relatively well understood from the point of view of the calculus of variations [13, Chapter 1, 

Chapter 2], and [14]. Moreover, in [6] we considered a gradient flow approach to this problem in dimension 1. Now 
we will explain the heuristic of the dynamical approach and the main difficulties in extending our result to higher 
dimensions.

1.1. A dynamical approach to the quantization problem

Given N points x1
0 , . . . , xN

0 , we consider their evolution under the gradient flow generated by QN,r , that is, we 
solve the system of ODEs in (Rd)N{ (

ẋ1(t), . . . , ẋN (t)
) = −∇QN,r

(
x1(t), . . . , xN(t)

)
,(

x1(0), . . . , xN(0)
) = (x1

0 , . . . , xN
0 ).

(1.2)

As usual in gradient flow theory, as t tends to infinity one expects that the points 
(
x1(t), . . . , xN(t)

)
converge to a 

minimizer (x̄1, . . . , x̄N ) of QN,r . Hence, in view of (1.1), the empirical measure

1

N

N∑
i=1

δx̄i

is expected to converge weakly in the sense of probability measures to

ρd/d+rˆ

�

ρd/d+r (y)dy

dx

as N → ∞.
Our approach of this problem involves exchanging the limits as t → +∞ and N → ∞. More precisely, we first 

pass to the limit in the ODE above as N → ∞, and take the limit in the resulting PDE as t → +∞. For this, we take 
a set of reference points (x̂1, . . . , x̂N ) and we parameterize a general family of N points xi as the image of x̂i via a 
slowly varying smooth map X : Rd → Rd , that is

xi = X(x̂i).

In this way, the functional QN,r(x
1, . . . , xN) can be rewritten in terms of the map X and (a suitable renormaliza-

tion of it) should converge to a functional F[X]. Hence, we can expect that the evolution of xi(t) for N large is 
well-approximated by the L2-gradient flow of F .

Although this formal argument may sound convincing, already the 1-dimensional case is rather delicate. We briefly 
review the results of [6] below.

1.2. The 1D case

Without loss of generality let � be the open interval (0, 1), and consider ρ a smooth probability density on �. In 
order to obtain a continuous version of the functional
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QN,r (x
1, . . . , xN) =

1ˆ

0

min
1≤i≤N

|xi − y|rρ(y) dy,

with 0 ≤ x1 ≤ . . . ≤ xN ≤ 1, assume that

xi = X

(
i − 1/2

N

)
, i = 1, . . . ,N

with X : [0, 1] → [0, 1] a smooth non-decreasing map such that X(0) = 0 and X(1) = 1. Then,

NrQN,r (x
1, . . . , xN) −→ Cr

1ˆ

0

ρ(X(θ))|∂θX(θ)|r+1dθ := F[X]

as N → ∞, where Cr := 1
2r (r+1)

.

By a standard computation, we obtain the gradient flow PDE for F for the L2-metric,

∂tX(t, θ) = Cr

(
(r + 1)∂θ

(
ρ(X(t, θ))|∂θX(t, θ)|r−1∂θX(t, θ)

)− ρ′(X(t, θ))|∂θX(t, θ)|r+1
)
, (1.3)

coupled with the Dirichlet boundary condition

X(t,0) = 0, X(t,1) = 1. (1.4)

Our main result in [6] shows that, provided that r = 2, one has ‖ρ − 1‖W 2,∞(0,1) � 1, and that the initial datum 
is smooth and increasing, the discrete and the continuous gradient flows remain uniformly close in L2 for all times. 
In addition, by entropy-dissipation inequalities for the PDE, we show that the continuous gradient flow converges 
exponentially fast to the stationary state for the PDE, which is seen in Eulerian variables to correspond to the measure

ρ1/3(x)dx

1ˆ

0

ρ1/3(y)dy

as predicted by (1.1).

1.3. The 2D case: setting and main result

Our goal is to extend the result above to higher dimensions. As a first step, it is natural to consider the quanti-
zation problem for the uniform measure in space dimension 2. The main advantage in this situation is that optimal 
configurations are known to be asymptotically hexagonal lattices [10,12,15]. (Notice however that the reference [15]
considers the 2-dimensional quantization problem in the Monge–Kantorovich distance of exponent 1, i.e. with r = 1, 
at variance with our approach in the present paper which assumes r = 2.) Hence, it will be natural to use the vertices 
of the optimal, hexagonal lattice as reference points x̂i , and to assume that the time-dependent configuration of points 
are obtained as slowly varying deformations of the optimal configuration.

More precisely, we shall consider the following setting. Let us consider a regular hexagonal tessellation of the 
Euclidean plane R2. Up to some inessential displacement, one can choose the centers of the hexagons to be the 
vertices of the regular lattice

L := Ze1 ⊕ Ze2 where e1 = (1,0) and e2 =
(

1
2 ,

√
3

2

)
.

Let � be the fundamental domain of R2/L centered at the origin defined as follows:

� := {x1e1 + x2e2 : |x1|, |x2| ≤ 1
2 } .

Henceforth, we consider the sequence of scaled lattices homothetic to L , of the form εL with ε = 1/n and n ∈ N∗.
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The slowly varying deformations of L used in this work are discrete sets of the form Xε := X(εL ) with ε = 1/n

and n ∈ N∗, where X ∈ Diff1(R2), i.e. X is a C1-diffeomorphism of R2 onto itself. We shall assume that X satisfies 
the following properties:

(a) X is a periodic perturbation of the identity map, i.e.

X(x + l) = X(x) + l for all x ∈ R2 and l ∈ L ;
(b) X is C1-close to the identity map, i.e.,

‖X − id‖W 1,∞ < η where η � 1 ;
(c) X is centered at the origin, i.e.ˆ

�

X(x)dx = 0 .

(This last condition does not restrict the generality of our approach: if X fails to satisfy property (c), set

〈X〉 :=
ˆ

�

X(x)dx =
ˆ

�

(X(x) − x)dx ;

then 〈X〉 < η and X̂(x) = X(x) − 〈X〉 satisfies properties (a) and (c), and property (b) where η is replaced by 2η.)

If η is sufficiently small, then for every x ∈ Xε the Voronoi cell V (x|Xε) centered in x with respect to the set 
of points Xε is an hexagon. Indeed, the angle between two adjacent edges starting from any vertex in the deformed 
configuration Xε is π/3 + O(η) by the mean value theorem. Hence the center of the circumscribed cercle to any 
triangle with nearest neighbor vertices in the deformed configuration lies in the interior of this triangle, and ethe 
perpendicular bissectors of the edges of the triangle intersect at the center of the circumscribed circle with an angle 
2π/3 +O(η). Hence the family of all such centers are the vertices of an (irregular) hexagonal tessellation of the plane, 
which is the Voronoi tessellation of the deformed configuration.

To avoid all difficulties pertaining to boundary conditions, we formulate our quantization problem in the ergodic 
setting. In other words, we consider the discrete quantization functional averaged over disks with radius L � 1:

Gε,L(Xε) :=
ˆ

B(0,L)

dist(y,Xε)
2dy .

Our first main result describes the asymptotic behavior of Gε,L as follows.

Theorem 1.1. Assume that X ∈ Diff1(R2) satisfies the properties (a–c) above, and that η is small enough. For each 
ε = 1/n with n ∈ N∗

1

πL2Gε,L(Xε) →
ˆ

X(�)

dist(y,Xε)
2dy as L → ∞ .

Moreoverˆ

X(�)

dist(y,Xε)
2dy ∼ ε2F(X) as ε → 0,

where F is given by

F(X) :=
ˆ

�

F(∇X(x))dx .

In this expression, the function F is defined by the formula

F(M) := 1
48

∑
|Mω|4�(ω,M)(3 + �(ω,M)2) ,
ω∈{e1,e2,e1−e2}
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where

�(e,M) :=
√

|MRe|2|MRT e|2
3
4 |det(M)|2 − 1

for each invertible 2 × 2-matrix M with real entries and each unit vector e, and where R designates the rotation of 
an angle π3 centered at the origin.

The proof of Theorem 1.1 occupies sections 2 and 3 below.
Observe that the integrand in the definition of F depends exclusively on the gradient of the map ∇X. In particular, 

the integrand in F involves the Jacobian determinant det(∇X) of the deformation map. However the dependence of 
F on det(∇X) becomes singular as det(∇X) → 0. Therefore, our analysis is restricted to small perturbations of the 
uniform, hexagonal tessellation of the plane. This is obviously consistent with the fact that we postulated that our 
configuration of points remains close to the uniform hexagonal tessellation in order to arrive at the explicit expression 
of F given in Theorem 1.1.

On the other hand, at variance with the 1D case, the limiting function F does not depend on X only through its 
Jacobian determinant. This seriously complicates the Eulerian formulation of the 2D case, which was relatively simple 
in the 1D case, and which we used in a significant manner in our earlier work [6].

Our second result is a simplified expression for F near the identity matrix.

Theorem 1.2. Let

S =
(

1 0
0 −1

)
.

There exists 0 < η0 � 1 such that, for all M ∈ GL2(R) satisfying |M − I | ≤ η0, one has

F(M) = 1
16

√
3

det(M) trace(MT M(2S − I ))

+ 1
64

√
3

trace(MT M)2 trace(MT MS)

det(M)

− 1
192

√
3

trace(MT M)3

det(M)
− 1

48
√

3

trace(MT MS)3

det(M)
.

Moreover, for each 2 × 2-matrix N with real entries, one has

48F(I + εN) = 10√
3

+ 20√
3
ε trace(N)

+ 1√
3
ε2
(

14 det(N) + 10 trace(N)2 + 3 trace(NT N)
)

+ O(ε3) .

The proof of Theorem 1.2 is given in section 5 below.
Our third main result bears on the basic properties of the L2-gradient flow of the asymptotic quantization functional 

F obtained in Theorem 1.1.

Theorem 1.3. Let Xin ∈ Diff(R2) satisfy the properties (a–c) above, together with the condition

‖Xin − id‖Wσ,p(�) ≤ ε0, (1.5)

with p > 2 and 1 + 2/p < σ . Consider the PDE defining the L2-gradient flow of F :⎧⎪⎨
⎪⎩

∂tXj (t, x) = − δF
δXj (t, x)

, j = 1,2,

X(0, x) = Xin(x).

(1.6)

The L2-gradient flow of F starting from any initial diffeomorphism Xin satisfying the conditions above exists and is 
unique. In other words, the Cauchy problem (1.6) has a unique solution X defined for all t > 0, and X(t, ·) satisfies 
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Fig. 1.1. 720 points at time 0.

properties (a–c) for all t > 0. Besides, the solution t �→ X(t, ·) of (1.6) converges exponentially fast to the identity 
map as t → +∞: for each Xin satisfying (a–c) and (1.5), there exist C, μ > 0 (depending on ε0) such that

‖X(t, ·) − id‖L∞(�) ≤ Ce−μt

for all t > 0.

Since F depends on det(∇X), one cannot hope that F has any convexity property. Moreover, since the dependence 
of F in det(∇X) is singular, one cannot hope that some compensations would offset the lack of convexity coming 
from the determinant. For this reason, we consider initial configurations that are small perturbations of the hexagonal 
lattices, and we study in detail the linearization at the equilibrium configuration of the system of equations defining 
the gradient flow of F . Combining this with some general ε-regularity theorems for parabolic systems, we prove that 
the nonlinear evolution is governed by the linear dynamics, and in this way we can prove exponential convergence 
to the hexagonal (equilibrium) configuration. As we shall see, our proof of Theorem 1.3, which occupies section 6
below, is based on tools coming from the regularity theory for parabolic systems, and this is why we need assumptions 
on the initial data in appropriate Sobolev spaces.

Moreover, our numerical simulations confirm the asymptotic optimality of the hexagonal lattice as the number 
of points tends to infinity — see Figs. 1.1, 1.2, and 1.3. The colored polygons in Figs. 1.1, 1.2, and 1.3 are the 
hexagons. Fig. 1.3 suggests that the minimizers may have some small 1-dimensional defects with respect to the 
hexagonal lattice. This may be caused by the boundary conditions used in the numerical simulation which are not 
periodic, at variance with the setting used in Theorems 1.1 and 1.3. Another possible explaination is that the par-
ticle system may remain frozen in some local minimum state. Also, the hexagonal tessellation is not the global 
minimizer for a finite number N of points, and this is another difference between the discrete and the continuous 
problems.

2. The contribution of a single Voronoi cell of the deformed lattice

From now on, we adopt the setting defined in the previous section, and we begin with some elementary geometrical 
observations used in computing the continuous functional F . This is the first step in the proof of Theorem 1.1.
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Fig. 1.2. 720 points after 19 iterations.

Fig. 1.3. 720 points after 157 iterations.

Under the assumptions of Theorem 1.1, our goal is to compute

ˆ

V (X(ε(k1e1+k2e2))|Xε )

|y − X(ε(k1e1 + k2e2))|2dy

in terms of the displacement X(ε(k1e1 + k2e2)) and of the centers of the adjacent cells V (X(ε(k1e1 + k2e2))|Xε), 
i.e.:
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Fig. 2.1. Voronoi cell.

Fig. 2.2. Right triangle.

X(ε((k1 + 1)e1 + k2e2)) , X(ε((k1 − 1)e1 + k2e2)) ,

X(ε((k1 − 1)e1 + (k2 + 1)e2)) , X(ε((k1 + 1)e1 + (k2 − 1)e2)) ,

X(ε(k1e1 + (k2 − 1)e2)) , X(ε(k1e1 + (k2 + 1)e2)) .

To do that, up to sets of measure zero, we can partition each hexagon into 12 right triangles, each of them similar 
either to AOK or to AOJ in Fig. 2.1. We start integrating the function |y −X(ε(k1e1 + k2e2))|2 on one of these right 
triangles. Let T be a right triangle with adjacent sides to the right angle of length h and l (see Fig. 2.2).

With the notation of Fig. 2.2,

ˆ

T

(x2
1 + x2

2)dx1dx2 =
hˆ

0

lx1/hˆ

0

(x2
1 + x2

2)dx2dx1 =
hˆ

0

(
lx1

h
x2

1 + l3x3
1

3h3

)
dx1

=
hˆ

0

x3
1

(
l

h
+ l3

3h3

)
dx1 = 1

4 lh(h2 + 1
3 l2).

Coming back to the notation of Fig. 2.1, we obtainˆ

V [A]
| �Ay|2dy =

ˆ

AOK

| �Ay|2dy +
ˆ

AOJ

| �Ay|2dy + 10 similar terms.

Let us focus on the first term on the right hand side. We compute it in the triangle ABC.
Recalling the notation in Fig. 2.3ˆ

| �Ay|2dy = 1
8c|OK|( 1

4c2 + 1
3 |OK|2) .
AOK
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Fig. 2.3. Triangle ABC.

In the triangle ABC, we have

̂AOK = ̂ACB = γ ,

and

|OK|2 = |OA|2 − 1
4c2 = 1

4c2
(

1

sin2 γ
− 1

)
.

Moreover, denoting by S the surface of the triangle ABC,

2S = | �CA ∧ �CB| = ab sinγ .

Thus,

|OK|2 = 1
4c2
(

a2b2

4S2 − 1

)
,

so that

ˆ

AOK

| �Ay|2dy = 1
16c2

√
a2b2

4S2 − 1

(
1
4c2 + 1

12c2
(

a2b2

4S2 − 1

))

= 1
192c4

√
a2b2

4S2 − 1

(
a2b2

4S2 + 2

)
.

In other words,

ˆ

AOK

| �Ay|2dy = 1
192 | �AB|4

√
| �CB|2| �CA|2
| �CA ∧ �CB|2 − 1

(
| �CB|2| �CA|2
| �CA ∧ �CB|2 + 2

)
.

Exchanging B and C, we find by symmetry that

ˆ

AOJ

| �Ay|2dy = 1
192 | �AC|4

√
| �BC|2| �BA|2
| �BA ∧ �BC|2 − 1

(
| �BC|2| �BA|2
| �BA ∧ �BC|2 + 2

)
.

Let us now write the latter expression for A = X(ε(k1e1 + k2e2)), where the points B and C are the centers of the 
Voronoi cells adjacent to the Voronoi cell centered in A. For simplicity of notation, we define

X(ε(k1e1 + k2e2)) =: Xk1,k2 .
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Thus, the contribution to

ˆ

V (X(ε(k1e1+k2e2))|Xε )

|y − X(ε(k1e1 + k2e2))|2dy

of the terms related to the triangle ABC with A = Xk1,k2 , B = Xk1+1,k2 and C = Xk1,k2+1 is:

ˆ

AOK

| �Ay|2dy +
ˆ

AOJ

| �Ay|2dy

= 1
192 |Xk1+1,k2 − Xk1,k2 |4

√
|Xk1+1,k2 − Xk1,k2+1|2|Xk1,k2 − Xk1,k2+1|2

|(Xk1,k2 − Xk1,k2+1) ∧ (Xk1+1,k2 − Xk1,k2+1)|2 − 1

×
( |Xk1+1,k2 − Xk1,k2+1|2|Xk1,k2 − Xk1,k2+1|2

|(Xk1,k2 − Xk1,k2+1) ∧ (Xk1+1,k2 − Xk1,k2+1)|2 + 2

)

+ 1
192 |Xk1,k2+1 − Xk1,k2 |4

√
|Xk1,k2+1 − Xk1+1,k2 |2|Xk1,k2 − Xk1+1,k2 |2

|(Xk1,k2 − Xk1+1,k2) ∧ (Xk1,k2+1 − Xk1+1,k2)|2
− 1

×
( |Xk1,k2+1 − Xk1+1,k2 |2|Xk1,k2 − Xk1+1,k2 |2

|(Xk1,k2 − Xk1+1,k2) ∧ (Xk1,k2+1 − Xk1+1,k2)|2
+ 2

)
.

(2.1)

The total contribution of the integral on the Voronoi cell

ˆ

V (X(ε(k1e1+k2e2))|Xε )

|y − X(ε(k1e1 + k2e2))|2dy

is therefore the sum of 6 terms analogous to the right hand side of (2.1).

3. The continuous functional F

In order to derive the formula for the continuous function F , we need to replace the finite differences appearing 
on the right hand side of (2.1) with (partial) derivatives of the deformation, i.e. of the map X. This is done by using 
Taylor’s formula, and we arrive at the leading order term in the form:

ˆ

AOK

| �Ay|2dy +
ˆ

AOJ

| �Ay|2dy

∼ 1
192ε4|e1 · ∇X(A)|4

√
|(e1 − e2) · ∇X(A)|2| − e2 · ∇X(A)|2

|(−e2 · ∇X(A)) ∧ ((e1 − e2) · ∇X(A))|2 − 1

×
( |(e1 − e2) · ∇X(A)|2| − e2 · ∇X(A)|2

|(−e2 · ∇X(A)) ∧ ((e1 − e2) · ∇X(A))|2 + 2

)

+ 1
192ε4|e2 · ∇X(A)|4

√
|(e1 − e2) · ∇X(A)|2| − e1 · ∇X(A)|2

|(−e1 · ∇X(A)) ∧ ((e2 − e1) · ∇X(A))|2 − 1

×
( |(e1 − e2) · ∇X(A)|2| − e1 · ∇X(A)|2

|(−e1 · ∇X(A)) ∧ ((e2 − e1) · ∇X(A))|2 + 2

)
.

It can be simplified as
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ˆ

AOK

| �Ay|2dy +
ˆ

AOJ

| �Ay|2dy

∼ 1
192ε4|e1 · ∇X(A)|4

√
|(e1 − e2) · ∇X(A)|2|e2 · ∇X(A)|2
|(e1 · ∇X(A)) ∧ (e2 · ∇X(A))|2 − 1

×
( |(e1 − e2) · ∇X(A)|2|e2 · ∇X(A)|2

|(e1 · ∇X(A)) ∧ (e2 · ∇X(A))|2 + 2

)

+ 1
192ε4|e2 · ∇X(A)|4

√
|(e1 − e2) · ∇X(A)|2|e1 · ∇X(A)|2
|(e2 · ∇X(A)) ∧ (e1 · ∇X(A))|2 − 1

×
( |(e1 − e2) · ∇X(A)|2|e1 · ∇X(A)|2

|(e2 · ∇X(A)) ∧ (e1 · ∇X(A))|2 + 2

)
,

as ε → 0. This can be recast as follows:
ˆ

AOK

| �Ay|2dy +
ˆ

AOJ

| �Ay|2dy

∼ 1
192ε4|e1 · ∇X(A)|4

√
|(e1 − e2) · ∇X(A)|2|e2 · ∇X(A)|2

3
4 |JX(A)|2 − 1

×
(

|(e1 − e2) · ∇X(A)|2|e2 · ∇X(A)|2
3
4 |JX(A)|2 + 2

)

+ 1
192ε4|e2 · ∇X(A)|4

√
|(e1 − e2) · ∇X(A)|2|e1 · ∇X(A)|2

3
4 |JX(A)|2 − 1

×
(

|(e1 − e2) · ∇X(A)|2|e1 · ∇X(A)|2
3
4 |JX(A)|2 + 2

)

as ε → 0, with the notation JX := det(∇X).
The total contribution of the Voronoi cell centered in A is the sum of the latter term, plus 5 analogous contributions 

obtained by transforming the 3 unit vectors e12 := e1 − e2, e1, e2 in their images under the action of the cyclic group 
generated by the rotation of π3 .

Since each term is invariant by the symmetry centered in A, we find that:

ˆ

V (X(ε(k1e1+k2e2))|Xε )

|y − X(ε(k1e1 + k2e2))|2dy

∼ ε4

48
|e1 · ∇X|4�(e1,∇X)(3 + �(e1,∇X)2)(ε(k1e1 + k2e2))

+ ε4

48
|e2 · ∇X|4�(e2,∇X)(3 + �(e1,∇X)2)(ε(k1e1 + k2e2))

+ ε4

48
|e12 · ∇X|4�(e12,∇X)(3 + �(e1,∇X)2)(ε(k1e1 + k2e2))

as ε → 0, where

�(e,M) :=
√

|MRe|2|MRT e|2
3
4 |det(M)|2 − 1 , (3.1)

and where R is the rotation of an angle π .
3
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Then the computation above can be summarized as follows:
ˆ

V (X(ε(k1e1+k2e2))|Xε )

|y − X(ε(k1e1 + k2e2))|2dy ∼ ε4F(∇X(ε(k1e1 + k2e2)))

as ε → 0, where

F(M) := 1
48

∑
ω∈{e1,e2,e12}

|Mω|4�(ω,M)(3 + �(ω,M)2) . (3.2)

At this point, we recall that X satisfies property (a). Therefore for each ε = 1/n with n a positive integer, the 
function

y �→ dist(y,Xε) is L -periodic.

Indeed

dist(y,Xε) = y − X(εk) ⇒ dist(y,Xε) = y + l − X(ε(k + nl) ≥ dist(y + l,Xε)

for each y ∈ R2 and each l ∈ L . Repeating the same argument with y + l and −l instead of y and l shows that

dist(y,Xε) ≥ dist(y + l,Xε) ≥ dist(y,Xε)

for each y ∈ R2 and l ∈ L , which is precisely the L -periodicity condition.
On the other hand, property (a) implies that X(�) is a fundamental domain for R2/L . Indeed

X(� + l) = X(�) + l , l ∈ L

so that

⋃
l∈L

X(�) + l = X

⎛
⎝⋃

l∈L

� + l

⎞
⎠= X(R2) = R2 .

On the other hand, since X is one-to-one,

(X(�) + l) ∩ X(�) = X(� + l) ∩ X(�) = X((� + l) ∩ �) ⊂ X(∂�)

is a set of measure 0.
Finally

|X(�)| = 1 . (3.3)

By property (a), the deformation map

Y := X − id : x �→ X(x) − x =: Y(x)

is L -periodic. We recall the following classical observation.

Lemma 3.1. Let Y ∈ C1(R2; R2) be L -periodic. Then
ˆ

�

det(∇Y)(x)dx1 ∧ dx2 = 0 .

Proof. If Y is of class C2, one has

det(∇Y)dx1 ∧ dx2 = d(Y1dY2)

where Y1(x) and Y2(x) are the components of the vector Y(x). Then, by Stokes’ formula
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ˆ

�

det(∇Y)(x)dx1 ∧ dx2 =
ˆ

�

d(Y1dY2) =
ˆ

∂�

Y1dY2 = 0

because Y is L -periodic.
If Y is only of class C1, let χα be a regularizing sequence. Then, for each α > 0, the map χα �Y =: Yα ∈ C2(R2; R2)

is still L -periodic and ∇Yα → ∇Y uniformly on � as α → 0. Therefore
ˆ

�

det(∇Y)(x)dx1 ∧ dx2 = lim
α→0

ˆ

�

det(∇Yα)(x)dx1 ∧ dx2 = 0 . �

Thus

|X(�)| =
ˆ

X(�)

dy =
ˆ

�

|det(∇X(x))|dx =
ˆ

�

det(∇X(x))dx

since X is C1-close to the identity (property (b)), and

det(∇X) = det(I + ∇Y) = 1 + divY + det(∇Y) .

Therefore

|X(�)| =
ˆ

�

(1 + divY + det(∇Y))(x)dx1 ∧ dx2 = 1 +
ˆ

∂�

Y · nds = 1

by L -periodicity of Y . This proves (3.3).
Set

BR[L ] := {l ∈ L s.t. X(�) + l ⊂ B(0,R)} ,

and δ := diam(X(�)). Then

B(0,R − δ) ⊂
⋃

l∈BR[L ]
(X(�) + l) ⊂ B(0,R)

and since the sets X(�) + l are pairwise disjoint (up to sets of measure 0) as l ∈ L , we conclude from (3.3) that

π(R − δ)2 = |B(0,R − δ)| ≤ #BR[L ] ≤ |B(0,R)| = πR2

so that

#BR[L ] ∼ πR2 as R → ∞ .

Thus

#BR[L ]
ˆ

X(�)

dist(y,Xε)
2dy ≤

ˆ

B(0,R)

dist(y,Xε)
2dy

≤ #BR+δ[L ]
ˆ

X(�)

dist(y,Xε)
2dy ,

and hence

1

πR2

ˆ
dist(y,Xε)

2dy →
ˆ

dist(y,Xε)
2dy as R → ∞ .
B(0,R) X(�)



E. Caglioti et al. / Ann. I. H. Poincaré – AN 35 (2018) 1531–1555 1545
Thus

lim
R→∞

1

πR2

ˆ

B(0,R)

dist(y,Xε)
2dy =

ˆ

X(�)

dist(y,Xε)
2dy

=
∑

ε max(|k1|,|k2|)<1/2

ˆ

V (X(ε(k1e1+k2e2))|Xε )

|y − X(ε(k1e1 + k2e2))|2dy

∼ ε2
ˆ

�

F(∇X(x))dx

as ε → 0+.

4. Gradient of the functional F

Henceforth we denote

H0 :=
⎧⎨
⎩Z ∈ L2(R2/L ;R2) s.t. Z is L -periodic and

ˆ

�

Z(x)dx = 0

⎫⎬
⎭

and

id+H0 := {id+Z s.t. Z ∈H0} .

The function F is obviously defined on (id+H0) ∩ Diff1(R2), and we seek to compute its L2-gradient at each X in 
Diff2(R2).

Let X ∈ (id+H0) ∩ Diff2(R2) and Y ∈ H0 ∩C1(R2/L ; R2); by the implicit function theorem, we see that X + τY

is in (id+H0) ∩ Diff2(R2) for all τ sufficiently small. With the expression for F obtained in Theorem 1.1, one 
anticipates that

d

dτ
F(X + τY )

∣∣
t=0 =

ˆ

�

∇F(∇xX(x)) · ∇xY (x)dx

= −
ˆ

�

divx(∇F(∇xX(x))) · Y(x)dx .

(4.1)

In order to verify the second equality above, one only needs to check that F is of class C2 on the set of invertible 
matrices. Notice indeed that the boundary term coming from Green’s formula satisfies

ˆ

∂�

∇F(∇xX(x))) · Y(x) ⊗ nxds(x) = 0

because ∇xX(x) = I + ∇xZ and Y are both L -periodic, while nx takes opposite values on segments in ∂� that are 
symmetric with respect to the center of �. That F is of class C2 on a neighborhood of I in GL2(R) follows from 
(3.2). Indeed, det(M) �= 0 for all M ∈ GL2(R), and one has

�(e,M)2 → �(e, I ) = 1
3 for all unit vector e as M → I .

By continuity, there exists an open neighborhood � of I in GL2(R) such that

�(e,M)2 > 1
4 for all (e,M) ∈ S2 × �.

Therefore �(e, ·) is of class C2 on � for each unit vector e, and therefore F is of class C2 on �.
Next we compute ∇F . The first step is to compute the directional derivative of M �→ �(e, M) at M ∈ GL2(R)

along the direction N ∈ M2(R). We find that
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d

dτ
�(e,M + τN)|τ=0 = 1

2�(e,M)

[
2(NRe|MRe)|MRT e|2

3
4 det(M)2

+ 2(NRT e|MRT e)|MRe|2
3
4 det(M)2

−2|MRe|2|MRT e|2 det(M) trace(M−1N)

3
4 det(M)3

]
.

Recalling that

(Nu|v) = trace
(
N(u ⊗ v)

)
, u, v ∈ R2, N ∈ M2(R),

and

d

dτ
det(M + τN)|τ=0 = det(M) trace(M−1N) , M ∈ GL2(R), N ∈ M2(R),

we obtain

d

dτ
�(e,M + τN)|τ=0 = 4

3�(e,M)det(M)2

[
trace[N(Re ⊗ MRe)]|MRT e|2

+ trace[N(RT e ⊗ MRT e)]|MRe|2 − |MRe|2|MRT e|2 trace(M−1N)
]
.

Defining

A(e,M) := (Re ⊗ MRe)

|MRe|2 + (RT e ⊗ MRT e)

|MRT e|2 − M−1 , (4.2)

we see that the map M �→ A(e, M) is a tensor-field on GL2(R), homogeneous of degree −1 with respect to M . The 
differential of M �→ �(e, M) can be easily expressed in terms of A: multiplying and dividing each term of the latter 
equality by �(e, M)2 + 1, we get

dM�(e,M)[N] = �(e,M)2 + 1

�(e,M)
trace(A(e,M)N).

In other words, considering the Frobenius inner product defined on M2(R) by

(M1|M2) = trace(MT
1 M2) ,

the gradient of the map M �→ �(e, M) at the point M ∈ GL2(R) is

∇M�(e,M) = �(e,M)2 + 1

�(e,M)
A(e,M)T .

Therefore

48∇F(M) =4
∑

ω∈{e1,e2,e12}
|Mω|2�(ω,M)(3 + �(ω,M)2)ω ⊗ (Mω)

+ 3
∑

ω∈{e1,e2,e12}
|Mω|4 (1 + �(ω,M)2)2

�(ω,M)
A(ω,M)T .

Inserting this expression in (4.1), we find that

d

dτ
F(X + τY )|τ=0 = − 1

12

∑
ω∈{e1,e2,e12}

ˆ

�

divx(|ω · ∇X|2(3 + �2)�(ω,∇X)(ω · ∇X) ⊗ ω) · Ydx

− 1
16

∑
ω∈{e1,e2,e12}

ˆ
divx

(
|ω · ∇X|4 (1 + �(ω,∇X)2)2

�(ω,∇X)
A(ω,∇X)

)
· Ydx .
�
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In other words, the L2-gradient of F is given by the formula

δF(X)

δX(x)
= − divx(∇F(∇xX(x))

= − 1
12

∑
ω∈{e1,e2,e12}

divx(|ω · ∇X|2(3 + �2)�(ω,∇X)ω ⊗ (ω · ∇X))

− 1
16

∑
ω∈{e1,e2,e12}

divx

(
|ω · ∇X|4 (1 + �(ω,∇X)2)2

�(ω,∇X)
A(ω,∇X)T

)
.

(4.3)

Its i-th coordinate is given by the expression

δF(X)

δXi(x)
= − 1

12

∑
ω∈{e1,e2,e12}

∂j (|ω · ∇X|2(3 + �2)�(ω,∇X)ωjωk∂kXi))

− 1
16

∑
ω∈{e1,e2,e12}

∂j

(
|ω · ∇X|4 (1 + �(ω,∇X)2)2

�(ω,∇X)
Aji(ω,∇X)

)
,

(4.4)

with the usual convention of summation on repeated indices.

5. The asymptotic energy functional for a slightly deformed hexagonal lattice

In this section we study the functional F(X) near X = id. More precisely, we seek a rational expression of F(M)

(with F defined by (3.2)) for M ∈ GL2(R) near I . In view of Theorem 1.1, this gives a simplified expression of F(X)

near X = id.
Let

M1 =
(

α β

γ δ

)
be a near-identity matrix. Straightforward computations show that

�(e1,M1) = 1
2
√

3

√(
α2 − 3β2 + γ 2 − 3δ2

)2
(βγ − αδ)2 = −α2 + 3β2 − γ 2 + 3δ2

2
√

3(αδ − βγ )
. (5.1)

Indeed, since |M1 − I | � 1, one has α2 − 3β2 + γ 2 − 3δ2 < 0.
Next, we observe that

�(Re,M) =
√

|MR2e|2|Me|2
3
4 |det(M)|2 − 1

=
√

|RT MR2e|2|RT MRRT e|2
3
4 |det(RT MR)|2 − 1 = �(e,RT MR)

for each M ∈ GL2(R) and each unit vector e. Indeed, the second equality above follows from the obvious identity 
|Rξ | = |RT ξ | = |ξ | for all ξ ∈ R2 since R is a rotation. Therefore

�(e2,M1) = �(e1,M2) with M2 = RT M1R

�(e12,M1) = �(e1,M12) with M12 = RM1R
T

(5.2)

since e2 = Re1 and e12 = RT e1.
Elementary computations show that

M2 = 1
4

(
α + √

3γ + √
3β + 3δ −√

3α − 3γ + β + √
3δ

−√
3α + γ − 3β + √

3δ 3α − √
3γ − √

3β + δ

)

and
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M12 = 1
4

(
α − √

3γ − √
3β + 3δ

√
3α − 3γ + β − √

3δ√
3α + γ − 3β − √

3δ 3α + √
3γ + √

3β + δ

)

Notice that

|M1 − I | � 1 ⇒ |M2 − I | = |RT (M1 − I )R| � 1 and |M12 − I | = |R(M1 − I )RT | � 1.

Hence we can use formula (5.1) to compute �(e2, M1) and �(e12, M1) with the help of and (5.2). We find that

�(M1, e2) =
√

3α2 − 3αβ + √
3γ 2 − 3γ δ

3(αδ − βγ )
, (5.3)

and

�(M1, e12) =
√

3α2 + 3αβ + √
3γ 2 + 3γ δ

3(αδ − βγ )
. (5.4)

Finally, we insert the expressions found in (5.1), (5.3) and (5.4) in formula (3.2), and find that

F(M1) = 1
96

√
3

P(α,β, γ, δ)

αδ − βγ
(5.5)

where

P(α,β, γ, δ) = − α6 + 6α4β2 − 9α2β4 − 3α4γ 2

+ 18α2β2γ 2 + 9β4γ 2 − 3α2γ 4 + 12β2γ 4 − γ 6 − 12α3βγ δ

− 36αβ3γ δ − 12αβγ 3δ + 12α4δ2 + 18α2γ 2δ2

+ 6γ 4δ2 − 36αβγ δ3 + 9α2δ4 − 9γ 2δ4 .

(5.6)

We shall simplify this expression, and more precisely give an intrinsic formula for the polynomial P . Set

S =
(

1 0
0 −1

)
.

Elementary (although tedious) computations show that

P(α,β, γ, δ) = 1
2 (Q+(α,β, γ, δ) + Q−(α,β, γ, δ))

with

Q+(α,β, γ, δ) := (α2 + β2 + γ 2 + δ2)
(

24(αδ − βγ )2 − (α2 + β2 + γ 2 + δ2)2
)

,

Q−(α,β, γ, δ) := (α2 − β2 + γ 2 − δ2)
(

12(αβ + γ δ)2 − (α2 − β2 + γ 2 − δ2)2
)

.

One has

(α2 + β2 + γ 2 + δ2) = trace(MT
1 M1) ,

(α2 − β2 + γ 2 − δ2) = trace(MT
1 M1S) ,

while

(αβ + γ δ)2 = (α2 + γ 2)(β2 + δ2) − (αδ − βγ )2

= trace(MT
1 M1

I+S
2 ) trace(MT

1 M1
I−S

2 ) − det(M1)
2

= 1
4

(
trace(MT

1 M1)
2 − trace(MT

1 M1S)2
)

− det(M1)
2 .

Therefore

P(α,β, γ, δ) =6 det(M1)
2 trace(MT

1 M1(2I − S))

+ 3
2 trace(MT

1 M1)
2 trace(MT

1 M1S)

− 1 trace(MT M )3 − 2 trace(MT M S)3 .
2 1 1 1 1
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Hence

F(M1) = 1
16

√
3

det(M1) trace(MT
1 M1(2I − S))

+ 1
64

√
3

trace(MT
1 M1)

2 trace(MT
1 M1S)

det(M1)

− 1
192

√
3

trace(MT
1 M1)

3

det(M1)
− 1

48
√

3

trace(MT
1 M1S)3

det(M1)
.

We finally compute the Taylor expansion of 48F at order 3 near the identity matrix. Setting

N =
(

a b

c d

)
we find that

48F(I + εN) = 10√
3

+ 20√
3
ε(a + d)

+ 1√
3
ε2(13a2 + 3b2 − 14bc + 3c2 + 34ad + 13d2)

+ 1√
3
ε3(a3 + 9ab2 − 2abc + 9ac2 + 23a2d − 3b2d − 26bcd − 3c2d + 11ad2 + 5d3)

+ O(ε4)

(5.7)

It is interesting to notice that the Taylor expansion of F around the identity matrix is invariant under the substitutions 
a ↔ d and b ↔ c only up to second order. More precisely

48F(I + εN) = 10√
3

+ 20√
3
ε trace(N) + 1√

3
ε2
(

14 det(N) + 10 trace(N)2 + 3 trace(NT N)
)

+ O(ε3) . (5.8)

6. Stability and asymptotic convergence for small perturbations

In this section we use a perturbative approach to study stability properties of the energy functional F(X) around 
the identity.

Following formula (4.1), we consider the PDE defining the gradient flow of F in the form

∂tX(t, x) = divx(∇F(∇xX(t, x)) , X(0, x) = Xin(x) . (6.1)

We assume that Xin satisfies properties (a–c), and we seek a (weak) solution of the Cauchy problem (6.1) such that 
X(t, ·) ∈ Diff1(R2) satisfies (properties (a–c) for all t ≥ 0. In particular, property (c) is preserved by the evolution of 
(6.1) since the system of PDEs governing X is in divergence form.

Therefore, we henceforth seek X of the form

X(t, x) = x + εY (t, x)

with 0 < ε � 1, and property (a) implies that Y(t, ·) is a L -periodic map from R2 to itself.

Step 1: Convexification of the problem.
Define the function F0 on GL2(R) as follows:

F0(M) := F(M) − 5
12

√
3

trace(M − I ) − 7
24

√
3

det(M − I ) . (6.2)

Thus

F(I + ε∇xY ) = F0(I + ε∇xY ) + 5
12

√
3
ε divx(Y ) + 7

24
√

3
ε2 det(∇xY ) .

Therefore

F(id+εY ) =
ˆ

�

F(I + ε∇xY (x))dx =
ˆ

�

F0(I + ε∇xY (x))dx

since
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ˆ

�

divx(Y )(x)dx = 0 and
ˆ

�

det(∇xY (x))dx = 0 .

The first equality is obvious since Y is L -periodic, while the second follows from Lemma 3.1.
With formula (5.8), we see that

F0(I + εN) = 5
24

√
3

+ 5
24

√
3
ε2 trace(N)2 + 1

16
√

3
ε2 trace(NT N) + O(ε3) . (6.3)

Formula (6.2) shows that F0 ∈ C∞(GL2(R)) since F ∈ C∞(GL2(R)). Then, formula (6.3) implies that

∇2F0(I ) · (N,N) ≥ 1
8
√

3
trace(NT N) . (6.4)

Henceforth we denote by ‖ · ‖2 the Frobenius norm on M2(R), defined by the formula

‖A‖2 = trace(AT A)1/2 .

The inequality (6.4) implies that there exists three positive constants 0 < λ ≤ � and ρ0 such that

λ‖N‖2
2 ≤ ∇2F0(A) · (N,N) ≤ �‖N‖2

2 , for all A such that ‖A − I‖2 < ρ0 (6.5)

Choose G ∈ C2(M2(R)) such that

‖A − I‖2 < ρ0/2 ⇒ G(A) = F0(A)

while

1
2λ‖N‖2

2 ≤ ∇2G(A) · (N,N) ≤ 2�‖N‖2
2 for all A,N ∈ M2(R) . (6.6)

Instead of (6.1), consider the Cauchy problem

∂tX(t, x) = divx(∇G(∇xX(t, x)) , X(0, x) = Xin(x) . (6.7)

Let X be the solution of this Cauchy problem.
For instance, one can apply Theorem 3.2 of [4] to the convex function G defined on the Hilbert space L2(�; R2)

by the formula

G(X) =

⎧⎪⎨
⎪⎩
ˆ

�

G(∇xX(x))dx if X ∈ V ,

+ ∞ if X /∈ V ,

where

V :=
⎧⎨
⎩X = Id� + Y

∣∣
�

, Y ∈ H 1(R2/L ;R2) s.t.
ˆ

�

Y(x)dx = 0

⎫⎬
⎭ .

Indeed (6.6) and the fact that ∇F0(I ) = 0 (which follows from (6.3)) imply that

F0(I ) + 1
4λ‖A − I‖2

2 ≤ G(A) ≤ F0(I ) + �‖A − I‖2
2 ,

so thatˆ

�

G(∇xX(x))dx < ∞ implies ∇xX ∈ L2(�;M2(R)) .

Step 2: Stability in L2.
Multiplying both sides of (6.1) by X(t, x) − x and integrating over �, one finds that

d

dt
1
2

ˆ
|X(t, x) − x|2dx = −

ˆ
trace(∇G(∇xX(t, x))T (∇xX(t, x) − I ))dx .
� �
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Since ∇G(I) = ∇F0(I ) = 0 (by (6.3), for each M ∈ M2(R), one has

trace(∇G(M)T (M − I )) = trace((∇G(M)T − ∇G(I)T )(M − I ))

=
1ˆ

0

d

ds
trace(∇G(I + s(M − I ))T (M − I ))ds

=
1ˆ

0

∇2G(I + s(M − I )) · (M − I,M − I )ds

≥ 1
2λ‖M − I‖2

2 .

Hence
d

dt

ˆ

�

|X(t, x) − x|2dx ≤ −λ

ˆ

�

‖∇xX(t, x) − I‖2
2dx .

Since x �→ X(t, x) − x is L -periodic by property (a), we deduce from the Poincaré–Wirtinger inequality that

CP

ˆ

�

|X(t, x) − x|2dx ≤
ˆ

�

‖∇xX(t, x) − I‖2
2dx

(denoting by CP > 0 the best constant in the Poincaré–Wirtinger inequality). Therefore

d

dt

ˆ

�

|X(t, x) − x|2dx ≤ −λCP

ˆ

�

|X(t, x) − x|2dx ,

so thatˆ

�

|X(t, x) − x|2dx ≤ e−CP λt

ˆ

�

|Xin − x|2dx . (6.8)

Step 3: Uniform stability.
Next we prove that the solution X of the Cauchy problem (6.7) remains close enough to the identity map. This 

implies the existence and uniqueness for the gradient flow of F for initial data sufficiently close to the identity. Indeed, 
for such initial data, the gradient flow of F coincides with the gradient flow of G, which is known to exist and be unique 
since G is C2 and uniformly convex. (See Step 1 above for the existence and uniqueness theory for the gradient flow 
of G.)

Assume that

‖Xin − id‖Wσ,p(�) ≤ ε0

with p > 2 and 1 + 2/p < σ < 2.

Short time estimate. By the Theorem on page 192 in [1], there exists t0 > 0 such that the solution X of the Cauchy 
problem (6.7) satisfies1

‖X(t, ·) − id‖Wσ,p(�) ≤ 2ε0 for all t ∈ [0, t0] .
Since (σ − 1)p > 2, by Sobolev embedding on the 2-dimensional torus � one has

‖X(t, ·) − id‖C1,α(�) ≤ Cε0 for all t ∈ [0, t0] , (6.9)

for some positive α ≡ α(σ, p) and C ≡ C(α, σ, p).

1 Theorem on page 192 in [1] considers solutions in bounded domains. However, this result is based on abstract results on evolution equations 
that apply also to the periodic case.



1552 E. Caglioti et al. / Ann. I. H. Poincaré – AN 35 (2018) 1531–1555
Local estimate for positive times. Next pick 0 < t1 ≤ t0/2, and consider the point (x̄, ̄t) with t̄ ≥ t0, together with the 
parabolic cylinder

Qt1(x̄, t̄ ) := {(x, t) ∈ � × R s.t. t ∈ [t̄ − t1, t̄] and |x − x̄| ≤ √
t1}.

Let us now compute

ˆ

Qt1 (x̄,t̄ )

|X(t, x) − x|2dxdt ≤
t̄ˆ

t̄−t1

ˆ

�

|X(t, x) − x|2dxdt .

By (6.8)

t̄ˆ

t̄−t1

ˆ

�

|X(t, x) − x|2dxdt ≤
t̄ˆ

t̄−t1

e−CP λt

ˆ

�

|Xin(x) − x|2dxdt

≤ 1

CP λ
‖Xin − id‖2

L2(�)
.

In particular,

1

|Qt1(x̄, t̄)|
ˆ

Qt1 (x̄,t̄ )

|X(t, x) − x|2dxdt ≤ 1

CP λπt2
1

‖Xin − id‖2
L2(�)

.

Thus, in the parabolic cylinder Qt1(x̄, ̄t), the map X is L2-close to the identity map, and we seek to improve this result 
into a similar statement with the C1,α instead of L2 topology. This is done by appealing to the local regularity theory 
of parabolic equations. Specifically, we apply the A-caloric approximation argument in [9], especially Lemma 7.3 in 
that reference.

Pick any point (x̂, ̂t) ∈ Qt0/2(x̄, ̄t)). At this point, and throughout the next paragraph, we adopt the notation of [9, 
Lemma 7.3].

Set M = 3 and ρ = t1. First, we assume that 0 < t1 ≤ min(t0/2, ρ0(M)), where ρ0(M) is defined in formula (7.12) 
in [9]. Hence assumption (ii) in [9, Lemma 7.3] is satisfied. Next we deduce from the formulas on p. 711 in [9] that

∣∣D�ρ

∣∣=
∣∣∣∣∣∣∣

4

t2
1 |Qt1(x̄, t̄ )|

ˆ

Qt1 (x̄,t̄ )

X(t, x) ⊗ (x − x̂)dxdt

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
4

t2
1 |Qt1(x̄, t̄ )|

ˆ

Qt1 (x̄,t̄ )

(X(t, x) − x) ⊗ (x − x̂)dxdt

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
4

t2
1 |Qt1(x̄, t̄ )|

ˆ

Qt1 (x̄,t̄ )

x ⊗ (x − x̂)dxdt

∣∣∣∣∣∣∣
≤ 4

t2
1

(
ε1√

CP λπt1
t1 + 1

2 t2
1

)
= 4ε1√

CP λπt2
1

+ 2 ≤ M

(where the penultimate inequality follows from the Cauchy–Schwarz inequality) provided that

‖Xin − id‖L2(�) ≤ ε1 ≤ min(ε0,
1
4

√
CP λπt2

1 ) .

Choosing ε1 in this way implies that condition (i) in [9, Lemma 7.3] is satisfied (see Remark 7.4 following the proof 
of Lemma 7.3 in [9]). Reducing ε1 and t1 if needed, we can also satisfy
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�̃2(ρ) ≤ 1

t2
1 |Qt1(x̄, t̄)|

ˆ

Qt1 (x̄,t̄ )

|X(t, x) − �ρ,(x̂,t̂)(x)|2dxdt + t
2β
1

≤ 1

t2
1 |Qt1(x̄, t̄)|

ˆ

Qt1 (x̄,t̄ )

|X(t, x) − x|2dxdt + t
2β
1

≤ ε2
1

CP λπt4
1

‖Xin − id‖2
L2(�)

+ t
2β
1 ≤ �̃0(M)

where �̃0(M) is defined by formula (7.10) of [9] with ω(s) = 2�
√

s (according to formula (2.7) in [9]), and where β ∈
(0, 1) is arbitrary. Hence assumption (iii) in [9, Lemma 7.3] is satisfied. Summarizing, the assumptions of Lemma 7.3 
in [9] are satisfied provided that

0 < t1 ≤ min(t0/2, ρ0(M), (�̃(M)/2)1/2β) ,

0 ≤ ε1 ≤ min(ε0,
1
2

√
CP λπt2

1 min( 1
2 , �̃0(M))) .

Applying Lemma 7.3 in [9] shows that there exists a vector �x̂,t̂ ∈ R2 and a positive constant ĉ such that

1

|Qr(x̂, t̂)|
ˆ

Qr(x̂,t̂)

|∇X(t, x) − �x̂,t̂ |2dxdt ≤ ĉ
(
(2r/t1)

2α�̃0(M) + r2β
)

for all r ∈ (0, t1/2). In this inequality α ∈ (β, 1), and ĉ ≡ ĉ(λ, �, α, β, M) > 0. In particular

1

|Qr(x̂, t̂)|
ˆ

Qr(x̂,t̂)

|∇X(t, x) − �x̂,t̂ |2dxdt ≤ cr2β for all r ∈ (0, t1/2)

with

c := ĉ
(
(2/t1)

2β�̃0(M) + 1
)

.

This means that ∇X belongs to a Campanato space, which is known to coincide with the classical Hölder space [8]. 
Thus

‖∇X − I‖C0,β (Qt0/2(x̄,t̄ )) ≤ c̄ ,

with c̄ independent of x̄ and t̄ .
By localization, interpolation with (6.8) and Sobolev embedding, we see that

‖X(t, ·) − id‖L∞(B(x̄,
√

t0/2)) ≤ CS(θ)c̄θ e−(1−θ)CP λt/4ε1−θ
0 , t ∈ [t̄ − t0, t̄]

for all θ ∈ ( 2
3 , 1), where CS(θ) denotes the Sobolev constant for the continuous embedding

Wθ,4/(2−θ)(B(x̄,
√

t0/2)) ⊂ L∞(B(x̄,
√

t0/2)) .

(Indeed, applying Theorem 6.4.5 (7) in [3] with s0 = 0, p0 = 2, s1 = 1 and p1 = 4 shows that

‖X(t, ·) − id‖Wθ,4/(2−θ)(B(x̄,
√

t0/2)) ≤ c̄θ e−(1−θ)CP λt/4ε1−θ
0 ,

and Wθ,4/(2−θ)(B(x̄, 
√

t0/2)) ⊂ L∞(B(x̄, 
√

t0/2)) provided that θ > 1 − θ/2 by Sobolev’s embedding theorem.)
By a classical argument2

‖∇X(t, ·) − I‖L∞(B(x̄,
√

t0/2) ≤
(

2
β

) β
β+1

CS(θ)
1

1+β c̄
1+θβ
1+β e

− (1−θ)βCP λt

4(1+β) ε

β(1−θ)
1+β

0 ,

2 Let f ∈ C1,β (B(0, R)) for some β ∈ (0, 1). Then

‖∇f ‖L∞(B(0,R)) ≤
(

2
β

)β/(β+1) ‖f ‖1/(β+1)
1,β ‖f ‖β/(β+1)

∞ .

C (B(0,R) L (B(0,R)
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for |t̄ − t | ≤ t0. With (6.9), this implies that, for all t ≥ 0, one has

‖∇X(t, ·) − I‖L∞(�) ≤ max

(
Cε0,

(
2
β

) β
β+1

CS(θ)
1

1+β c̄
1+θβ
1+β e

− (1−θ)βCP λt

4(1+β) ε

β(1−θ)
1+β

0

)
.

Step 4: Conclusion.
By choosing ε0 small enough, we conclude that

‖∇X(t, ·) − I‖L∞(�) ≤ ρ0/2 , t ≥ 0 ,

so that

∇G(∇xX(t, x)) = ∇F0(∇xX(t, x)) , t ≥ 0 , x ∈ �.

Hence X satisfies

∂tX(t, x) = divx(∇F0(∇xX(t, x))) , t > 0 , x ∈ �.

On the other hand, (6.2) implies that

(∇F(M) − ∇F0(M)) · N = 1
8
√

3
trace(N) + 7

24
√

3
det(M) trace(M−1N)

so that

∇F(∇xX(t, x)) − ∇F0(∇xX(t, x)) = 1
8
√

3
I + 7

24
√

3
JX(t, x)(∇xX(t, x)−1)T .

Since

JX(∇xX
−1)T =

(
∂X2/∂x2 −∂X2/∂x1

−∂X1/∂x2 ∂X1∂x1

)

one has divx(JX(∇xX
−1)T ) = 0, so that

divx ∇F(∇xX(t, x))) = divx(∇F0(∇xX(t, x))) .

In other words, X is in fact the solution of (6.1).
Finally, for each θ ∈ ( 2

3 , 1), one has

|X(t, x̄) − id | ≤ max(2,CS(θ)c̄θ )e−(1−θ)CP λ(t−t0)/4ε1−θ
0 , t > 0 ,

and the proof is complete.
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Indeed, by the Mean Value Theorem

f (x + h) − f (x) = ∇f (x) · h + (∇f (x + sh) − ∇f (x)) · h
for some s ∈ (0, 1), so that

|∇f (x)| ≤ 2‖f ‖L∞(B(0,R))

|h| + |h|β‖∇f ‖
C0,β (B(0,R))

.

Optimizing in |h| leads to the conclusion.
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