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Abstract

In this paper we obtain Sobolev estimates for weak solutions of first order variational Mean Field Game systems with coupling 
terms that are local functions of the density variable. Under some coercivity conditions on the coupling, we obtain first order 
Sobolev estimates for the density variable, while under similar coercivity conditions on the Hamiltonian we obtain second order 
Sobolev estimates for the value function. These results are valid both for stationary and time-dependent problems. In the latter case 
the estimates are fully global in time, thus we resolve a question which was left open in [23]. Our methods apply to a large class of 
Hamiltonians and coupling functions.
© 2018 
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1. Introduction

The theory of Mean Field Games (briefly MFG in the sequel) saw the light more than a decade ago, thanks to the 
works of J.-M. Lasry and P.-L. Lions on the one hand (see [17–19]) and M. Huang, R. Malhamé and P. Caines, on 
the other hand (see [16]). Their main motivation was to study limits of Nash equilibria of (stochastic or deterministic) 
differential games when the number of players tends to infinity. Since then, it became a very lively and active branch 
of the theory nonlinear partial differential equations.

In its most simple form an MFG can be described in an informal way as follows. As data, one considers the given 
quantities: T > 0 (the time horizon), H : Td ×R

d →R (the Hamiltonian), φT : Td → R (the final cost of the agents), 
f : Td × P (Td) → R (the running cost of the agents) and m0 ∈ P (Td) (the initial distribution of the agents), where 
T

d := R
d/Zd denotes the d-dimensional flat torus and P (Td) stands for the set of nonnegative Borel probability 

measures on Td . A typical agent predicts the evolution of the agents’ density m : [0, T ] ×T
d → [0, +∞) and to find 

her/his optimal strategy, solves the control problem
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inf
α

⎧⎨
⎩

T∫
t

L(γ (s),α(s)) + f (γ (s),m(s, γ (s)))ds + φT (γ (T ))

⎫⎬
⎭ =: φ(t, x) (1.1)

subject to{
γ ′(s) = α(s), s ∈ (t, T ]
γ (t) = x ∈ T

d .

Here the Lagrangian L : Td ×R
d → R is the Legendre–Fenchel transform of H w.r.t. the second variable. The optimal 

strategy is given in feedback form, hence for the agent it is optimal to play −DξH(γ (s), ∇φ(s, γ (s))). Having this 
velocity field as drift, the evolution of the agents’ density is given by the solution of a continuity equation. If the 
prediction coincides with this evolution, the game has a Nash equilibrium. Thus, searching for Nash equilibria for 
MFG is equivalent to solving the following system of PDEs:⎧⎪⎪⎨

⎪⎪⎩
−∂tφ + H(x,∇φ) = f (x,m), in (0, T ) ×T

d ,

∂tm − ∇ · (DξH(x,∇φ)m) = 0, in (0, T ) ×T
d ,

m(0, ·) = m0, φ(T , ·) = φT , in T
d .

(1.2)

With a well-chosen time rescaling, one can introduce stationary MFG systems as long time average of time depen-
dent ones. These take the form⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

λ + H(x,∇φ) = f (x,m), in T
d ,

−∇ · (DξH(x,∇φ)m) = 0, in T
d ,∫

Td

mdx = 1,

∫
Td

φ dx = 0, m ≥ 0, a.e. in T
d ,

(1.3)

where an additional variable λ ∈R appears in the first equation, which plays the role of the ergodic constant. We refer 
to [8,7] and [5, Section 4] for results on the limiting procedure and well-posedness of (1.3).

The case when the running cost f is monotone and regularizing (nonlocal) in the measure variable, is well under-
stood in the literature. Already in the original works of J.-M. Lasry and P.-L. Lions (see also [21]) has been shown 
the well-posedness of both systems (1.2) and (1.3). By contrast, when f is a local function of m, the question of 
well-posedness of these systems is more subtle. Notice also that in the lack of sufficient regularity for the density 
variable m (when f is a local function of m), the control problem (1.1) is not meaningful, while the system (1.2) may 
still have solutions in a suitable weak sense.

In the case when f is a local function of m, PDE techniques, which are used successfully for second order systems 
(see for instance [13–15,22]), can no longer be used to show the well-posedness of the system (1.2). Also, in general 
one cannot hope for the existence of classical solutions of (1.2). Nevertheless, as it was already mentioned in [18] that 
when f is non-decreasing in its second variable and H convex in its second variable, at least formally, systems (1.2)
and (1.3) can be seen as first order optimality conditions of two convex optimization problems in duality. In the first 
order case (or when a degenerate diffusion is present) these arguments were made rigorous in a series of papers (see 
[4–6]), and the existence of weak solutions (understood in a suitable sense) was shown. An important and interesting 
question in this context is the regularity of solutions of (1.2) and (1.3).

A first result in this direction was obtained in [10], which, it must be emphasized, provides first and foremost 
a regularity result for viscosity solutions of first-order Hamilton–Jacobi equations. Using techniques involving the 
inverse Hölder inequality, the authors obtained W 1,1

loc ((0, T ) ×T
d) estimates and a.e. differentiability of φ, depending 

only on the summability of the right-hand side of the equation. In the context of mean field games, this amounts to 
requiring a sufficiently high growth condition on f (x, m). Notice that their estimates are not owing to the variational 
structure of the mean field games system; in particular the density variable plays no role.

A second direction in the search for Sobolev estimates for first order MFGs was initiated in [23] (see also [24]), 
where the authors obtained H 1

loc((0, T ] × T
d) estimates for a well-chosen function of m, where (φ, m) is a weak 

solution of (1.2). Their technique is based on a so-called regularity by duality method, which relies on the fact that 
(1.2) is the optimality condition for two convex optimization problems in duality. In fact, these techniques are inspired 
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from [9] and more precisely they have their roots in [3] (see also [2]), where Y. Brenier introduced a similar approach 
to obtain regularity estimates for the pressure field arising from generalized solutions of the incompressible Euler 
equations. In a nutshell, the basic idea of this method is the following. One considers special competitors for the opti-
mization problem involving the m variable that are translations of the optimizers in time and space, then one compares 
the energy of these new competitors to the energy of the optimizers. Finally, assuming a sort of coercivity/monotonic-
ity property of the running cost f in the second variable (see the precise assumption in Sections 2-3), one can obtain 
a differential quotient estimate for a function of m via the difference of the energies and deduce the Sobolev estimate. 
A drawback of this method is that since the optimization problem is subject to the continuity equation with an initial 
condition, when one constructs the new competitors (via the time-space translations), one must preserve the initial 
condition, so it seems impossible to construct translations that allow to vary the initial time as well. We shall give 
more details on this method in Section 2.

Let us mention that in the framework of first order models, P.-L. Lions in his lectures ([21]) showed – at least 
formally – how to obtain a priori estimates in the case of the planning problem (where the initial and final density of 
the agents is prescribed). In particular, by rewriting the system as a very degenerate elliptic system in time and space, 
he obtains global L∞ estimates for the density variable m and W 1,∞ estimates for the value function φ. However, 
his techniques require strong smoothness assumptions on the prescribed densities, Hamiltonian and coupling and 
positivity (and monotonicity) of the coupling function. Nevertheless, our objective in this paper is different: it is to 
obtain first order Sobolev estimates for the m variable and second order Sobolev estimates for φ. Thus, it seems that 
such an approach using degenerate elliptic equations to obtain these regularity estimates cannot be applied in our case. 
In the same context enters the recent paper [20], where the authors obtain local in time L∞ estimates for first order 
MFG models (with quadratic Hamiltonians), using variational techniques. Their approach, however, is very different 
from the one of Lions and from ours as well.

Actually, the same techniques as in [23,24] can be used – more or less in a straight forward manner – for stationary 
problems (since there is no time involved there) as well, so as our preparatory results, we present how to gain Sobolev 
estimates for the solutions of (1.3). More precisely, we have

Theorem 1.1 (Theorem 3.3, Theorem 3.4). We assume the standard regularity and growth conditions on the data f
and H (see Sections 2 and 3 for the precise assumptions). Let (φ, m, λ) be a solution of (1.3). Then, one has a second 
order Sobolev estimate for φ, i.e.

J∗(H(·,∇φ) + λ) ∈ H 1(Td),

and a first order Sobolev estimate for m, i.e.

J (m) ∈ H 1(Td),

where J, J∗ : R → R are functions depending on f with a precise growth condition that depends on the growth 
condition of f in its second variable.

As our main result, we obtain global in time Sobolev estimates for weak solutions of first order MFG systems up 
to the initial (and final) time. While we keep the variational framework and rely on the convex duality, because of the 
obstruction described above, our approach is different from the one used in [23]. Our main results can be summarized 
in an informal way in the theorem below.

Theorem 1.2 (Proposition 4.3, Corollary 4.5). We assume that m0, φT ∈ W 2,∞(Td) and we assume some regularity 
and growth conditions on H (which has a growth like | · |r for some r > 1 in its second variable) and f (which has a 
growth like | · |q−1 for some q > 1 in its second variable). We refer to Sections 2 and 4 for the precise assumptions.

Then there exist a constant C > 0 depending only on the data such that

(i) ‖mq
2 −1∇m‖L2([0,T ]×Td ) ≤ C;

(ii) ‖m1/2D(j1(∇φ))‖L2([0,T ]×Td ) ≤ C;
(iii) if r = 2, then ‖∂t (m

q/2)‖L1([0,T ]×Td ) ≤ C.

Here j1 :Rd →R
d is a function depending on H and has a growth like | · |r/2.
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The core idea of our technique is the following. The space translations of the optimizers will actually solve some 
auxiliary optimization problems, where the data are the space translations of the data of the original problems. This 
observation leads us to obtain fully global in time differential quotient estimates in the space variable. Then using the 
continuity equation – when the Hamiltonian has a quadratic growth in its second variable – the first order Sobolev 
estimates in time for m, globally in time, will be a consequence.

Let us mention that while in [23] the authors considered only the case when H(x, ξ) = 1
2 |ξ |2, most of the com-

putations seem to be adaptable to more general Hamiltonians to obtain local in time Sobolev estimates, but to gain 
estimates up to the final time t = T , it seems crucial for them that DξH is a Lipschitz function. In comparison with 
this, our techniques allow us to consider quite general Hamiltonians (with no restriction on the growth condition) to 
obtain the global in time estimates for the space variable. Nevertheless, for the global in time estimates in the time 
variable, it seems that we have a similar obstruction.

Let us remark also that the estimate Theorem 1.2-(ii) seems to appear naturally in the context of Hamilton–Jacobi 
equations in connection with the nonlinear adjoint method introduced by L.C. Evans in [11]. Nevertheless, we believe 
that it is interesting to see this kind of second order estimates in the framework of first order Hamilton–Jacobi equa-
tions arising from MFGs, especially if we take into consideration that solutions to these equations a priori had to be 
understood in a very weak sense.

As a last remark, let us mention that it seems that our techniques to obtain global in time Sobolev estimates can 
be applied for other type of problems as well, in particular in the case of the first order planning problem (see [21]). 
These estimates – together with other results on this kind of systems – is the subject of a subsequent work ([12]).

The structure of the paper is simple. In Section 2 we collect the existing results on the well-posedness of first order 
variational MFG systems. The main assumptions, the convex duality results for the optimizations problems are also 
presented here. We also give a short summary on the main ideas of the technique “regularity by duality” presented in 
[23] in the framework of MFG.

In Section 3 we present the Sobolev estimates for first order stationary MFG systems and we prove Theorem 1.1.
Finally, Section 4 is devoted to the proof of the global in time Sobolev estimates presented in Theorem 1.2.

2. Preliminary results and the regularity by duality method

We list the standing assumptions which are sufficient to ensure the well-posedness of both (1.2) and (1.3).
Standing assumptions: the following conditions on the data were used to get the result in [5].

(H1) (Conditions on the Hamiltonian) H : Td ×R
d →R is continuous in both variables, convex and differentiable in 

the second variable, with DξH continuous in both variables. Moreover, H has superlinear growth in the gradient 
variable: there exist r > 1 and C > 0 such that

1

rC
|ξ |r − C ≤ H(x, ξ) ≤ C

r
|ξ |r + C, ∀ (x, ξ) ∈ T

d ×R
d . (2.1)

We denote by H ∗(x, ·) the Fenchel conjugate of H(x, ·), which, due to the above assumptions, satisfies

1

r ′C
|ζ |r ′ − C ≤ H ∗(x, ζ ) ≤ C

r ′ |ζ |r ′ + C, ∀ (x, ζ ) ∈ T
d ×R

d, (2.2)

where r ′ = r/(r − 1) is the conjugate of r .
(H2) (Conditions on the coupling) Let f be continuous on Td × (0, ∞), strictly increasing in the second variable, 

and there exists a constant C > 0 satisfying

1

C
|m|q−1 − C ≤ f (x,m) ≤ C|m|q−1 + C, ∀ m ≥ 1,∀ x ∈ T

d . (2.3)

(H3) (Conditions on the antiderivative of f ) We define F so that F(x, ·) is an antiderivative of f (x, ·) on (0, ∞), that 
is,

F(x,m) =
m∫

f (x, s)ds, ∀ m > 0. (2.4)
1
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It follows that F is continuous on Td × (0, ∞), is strictly convex and differentiable in the second variable, and 
satisfies the growth condition

1

qC
|m|q − C ≤ F(x,m) ≤ C

q
|m|q + C, ∀ m ≥ 1, ∀ x ∈ T

d . (2.5)

For m < 0 we set F(x, m) = +∞. We denote by F(x, 0) the limit limm→0+ F(x, m), which may be finite or 
+∞.
We will denote throughout the conjugate exponent of q by p = q ′. Define F ∗(x, ·) to be the Fenchel conjugate 
of F(x, ·) for each x ∈ T

d . Note that

1

pC
|a|p − C ≤ F ∗(x, a) ≤ C

p
|a|p + C, ∀a ≥ 0, ∀ x ∈ T

d . (2.6)

2.1. Preliminary results on the stationary system

Let us recall here the stationary MFG system.⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(i) λ + H(x,Dφ) = f (x,m(x)), in T
d ,

(ii) −∇ · (mDξH(x,∇φ)) = 0, in T
d ,

(iii)
∫
Td

mdx = 1;
∫
Td

φ dx = 0; m ≥ 0, a.e in T
d .

(2.7)

Definition 2.1. We say that a triple (λ, φ, m) ∈R × W 1,pr (Td) × Lq(Td) is a weak solution of (2.7) if

(i) m ≥ 0 a.e. in Td , 
∫
Td

m dx = 1, 
∫
Td

φ dx = 0 and mDξH(·, ∇φ) ∈ L1(Td),

(ii) Equation (2.7)-(i) holds in the following sense:

λ + H(x,∇φ(x)) = f (x,m(x)) a.e. in {m > 0} (2.8)

and

λ + H(x,∇φ(x)) ≤ f (x,m) a.e. in T
d, (2.9)

(iii) Equation (2.7)-(ii) holds:

−∇ · (mDξH(x,∇φ)) = 0 in T
d , (2.10)

in the sense of distributions.

In the sequel we summarize the results on the well-posedness of system (2.7). We define, on K0 := R ×W 1,pr (Td), 
the functional

A(λ,φ) =
∫
Td

F ∗ (x,λ + H(x,∇φ(x))) dx − λ. (2.11)

Our first optimization problem is

inf
(λ,φ)∈K0

A(λ,φ) (2.12)

To describe the second optimization problem, let us denote by K1 the set of pairs (m, w) ∈ L1(Td) × L1(Td ; Rd)

such that m ≥ 0 a.e. in Td , 
∫
d

m(x) dx = 1, and w is divergence free, i.e. it satisfies in the sense of distributions
T
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∇ · w = 0, in T
d . (2.13)

We define on K1 the functional

B(m,w) =
∫
Td

m(x)H ∗
(

x,−w(x)

m(x)

)
+ F(x,m(x))dx,

where we use the usual convention to define H ∗(x, −w/m), i.e.

mH ∗ (
x,−w

m

)
=

{ +∞, if m = 0 and w �= 0,
0, if m = 0 and w = 0.

(2.14)

Since H ∗ and F are bounded below and m ≥ 0 a.e., the integral in B(m, w) is well defined in R ∪ {+∞}. The 
second optimal control problem is the following:

inf
(m,w)∈K1

B(m,w) . (2.15)

Lemma 2.2 ([5]). We have

min
(λ,φ)∈K0

A(λ,φ) = − min
(m,w)∈K1

B(m,w). (2.16)

Moreover, the minimum in the right-hand side is achieved by a unique pair (m, w) ∈K1 satisfying (m, w) ∈ Lq(Td) ×
L

r ′q
r′+q−1 (Td).

Theorem 2.3 ([5]). There exists at least one solution (λ, φ, m) to the stationary MFG system (2.7). Moreover, the pair 
(λ, m) is unique.

If (m, w) ∈ K1 is a minimizer of (2.15) and (λ, φ) ∈ K0 is a minimizer of (2.12), then (λ, φ, m) is a solution of the 
MFG system (2.7) and w = −mDξH(·, ∇φ) a.e..

Conversely, any solution (λ, φ, m) of (2.7) is such that the pair (m, −mDξH(·, ∇φ)) is the minimizer of (2.15)
while (λ, φ) is a minimizer of (2.11).

2.2. Preliminary results on the time dependent system

Let us recall the time dependent MFG system that we will study.⎧⎪⎨
⎪⎩

(i) −∂tφ + H(x,∇φ) = f (x,m), in (0, T ) ×T
d,

(ii) ∂tm − ∇ · (mDξH(x,∇φ)
) = 0, in (0, T ) ×T

d,

(iii) φ(T , x) = φT (x),m(0, x) = m0(x), in T
d .

(2.17)

First, we need to impose some additional standard assumption on the initial and final data.

(H4) (Conditions on the initial and final conditions) m0 is a probability measure on Td which is absolutely continuous 
with respect to Lebesgue measure, having density (which we also call m0) in C(Td). We suppose moreover that 
m0 > 0 on Td . We assume that φT : Td →R is a Lipschitz continuous function on Td .

Definition 2.4. A pair (φ, m) ∈ BV ((0, T ) ×T
d) × Lq((0, T ) ×T

d) is called a weak solution to the system (2.17) if 
it satisfies the following conditions.

(1) ∇φ ∈ Lr([0, T ] ×T
d) and the maps mf (·, m), mH ∗ (·,−DξH(·,∇φ)

)
and mDξH(·, ∇φ) are integrable,

(2) φ satisfies a first-order Hamilton–Jacobi inequality

−∂tφ + H(x,∇φ) ≤ f (x,m) (2.18)

in the sense of distributions (tested against smooth nonnegative functions), the boundary condition φ(T , ·) ≤ φT

in the sense of trace and the following equality
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T∫
0

∫
Td

m(t, x)
[
H(x,∇φ(t, x)) − ∇φ(t, x) · DξH(x,∇φ(t, x)) − f (x,m(t, x))

]
dx dt

=
∫
Td

(φT (x)m(T , x)) − φ(0, x)m0(x))dx (2.19)

(3) m satisfies the continuity equation

∂tm − ∇ · (mDξH(x,∇φ)) = 0 in (0, T ) ×T
d, m(0, ·) = m0, (2.20)

in the sense of distributions.

We consider two optimal control problems which are in duality, see [4]. By the abuse of notion, we use the same 
notations A and B for the two functionals as in the stationary case. First, the control of the continuity equation reads 
as: minimize

B(m,w) =
T∫

0

∫
Td

mH ∗ (
x,−w

m

)
+ F(x,m)dx dt +

∫
Td

φT m(T )dx (2.21)

over K1 = {(m, w) ∈ L1(Td) × L1(Td ; Rd) : ∂tm + ∇ · w = 0, m(0) = m0}, where the continuity equation holds in 
the sense of distributions. (As usual, for (m, w) ∈ K1, the measure-valued function [0, T ] � t �→ m(t) ∈ P (Td) is 
continuous in time in the sense of weak (narrow) convergence of probability measures, cf. [1]).

Second, we control the Hamilton–Jacobi equation: minimize

A(φ) =
T∫

0

∫
Td

F ∗(x,−∂tφ + H(x,∇φ))dx dt −
∫
Td

φ(0)m0 dx (2.22)

over the set K0 consisting of maps φ ∈ C1([0, T ] ×T
d) such that φ(T , ·) = φT .

Set E1 = C1([0, T ] ×T
d), E0 = C([0, T ] ×T

d ; R) × C([0, T ] ×T
d; Rd). On E1 we define

F(φ) = −
∫
Td

φ(0)m0 + χK0(φ). (2.23)

On E0 define

G(a, b) =
T∫

0

∫
Td

F ∗(x,−a(t, x) + H(x,b(t, x)))dx dt. (2.24)

Then A can be written A(φ) =F(φ) + G(
(φ)) where 
 : E1 → E0 is given by 
(φ) = (∂tφ, ∇φ).
The two problems are in duality:

Theorem 2.5 (cf. [4]). We have

inf
φ∈K0

A(φ) = − min
(m,w)∈K1

B(m,w). (2.25)

Moreover, the minimum on the right-hand side is achieved by a unique pair (m, w) ∈ K1 which must satisfy m ∈
Lq([0, T ] ×T

d) and w ∈ L
r′q

r′+q−1 ([0, T ] ×T
d).

Proof. Use the Fenchel–Rockafellar Theorem, which shows that

infF(φ) + G(
(φ)) = max −G∗(−(m,w)) −F∗(
∗(m,w)).

φ (m,w)
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The right-hand side is just − minB. See [4] for details. �
We can relax the second problem in the following way. K will be defined as the set of all pairs (φ, α) ∈ BV ([0, T ] ×

T
d) × L1([0, T ] × T

d) such that ∇φ ∈ Lr([0, T ] × T
d), φ(T , ·) ≤ φT in the sense of traces, α+ ∈ Lp((0, T ) × T

d), 
φ ∈ L∞([t, T ] ×T

d) for every t ∈ (0, T ), and

−∂tφ + H(x,∇φ) ≤ α, (2.26)

in the sense of distributions. Then on K we define the functional

A(φ,α) =
T∫

0

∫
Td

F ∗(x,α(t, x))dx dt −
∫
Td

φ(0, x)m0(x)dx.

We have the following, due to [5].

Theorem 2.6. inf
φ∈K0

A(φ) = min
(φ,α)∈K

A(φ, α), the latter attained by some (φ, α) ∈ K of which φ can be obtained as a 

limit of smooth functions φn.

Minimizers of A(φ, α) and B(m, w) precisely characterize weak solutions to the MFG system.

Theorem 2.7 (Existence and (partial) uniqueness of weak solutions).

(i) If (m, w) ∈ K1 is a minimizer of B and (φ, α) ∈ K is a minimizer of A, then (φ, m) is a weak solution of (2.17)
and α(t, x) = f (x, m(t, x)) almost everywhere.

(ii) Conversely, if (φ, m) is a weak solution of (2.17), then there exist functions w, α such that (φ, α) ∈ K is a 
minimizer of A and (m, w) ∈ K1 is a minimizer of B.

(iii) If (φ, m) and (φ′, m′) are both weak solutions to (2.17), then m = m′ almost everywhere while φ = φ′ almost 
everywhere in the set {m > 0}.

Before we continue, let us remark that in [5], Theorem 2.7 holds only under the extra assumption r > d(q − 1). 
The reason for this assumption was to have a priori upper bounds on the solution φ. However, in [6] it was shown that 
this is not necessary; one has in general a priori bounds on the positive part φ+ in Lη for some η > 1. In particular, 
we have

Theorem 2.8 (cf. Theorem 3.3 in [6]). Suppose φ ∈ Lr((0, T ); W 1,r (Td)) satisfies, in the sense of distributions,{
(i) −∂tφ + c0|∇φ|r ≤ α, in (0, T ) ×T

d,

(ii) φ(T , x) ≤ φT (x), a.e. in T
d,

(2.27)

for some r > 1, c0 > 0, α ∈ Lp([0, T ] × T
d) and φT ∈ L∞(Td). Then there exists a constant C = C(p, d, r, c0, T ,

‖α‖Lp([0,T ]×Td ), ‖φT ‖Lη(Td )) such that

‖φ+‖L∞([0,T ];Lη(Td )) + ‖φ+‖Lγ ([0,T ]×Td ) ≤ C (2.28)

where η = d(r(p−1)+1)
d−r(p−1)

and γ = rp(1+d)
d−r(p−1)

if p < 1 + d
r

and η = γ = +∞ if p > 1 + d
r

.

Using Theorem 2.8, one can modify the proof of Theorem 2.9 in [5] to get existence of minimizers for the relaxed 
problem min

(φ,α)∈K
A(φ, α). Indeed, let φn ∈ K0 be a minimizing sequence, so that

T∫ ∫
d

F ∗(x,αn)dx dt −
∫
d

φn(0)m0 dx → inf
φ∈K0

A(φ) (2.29)
0 T T
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where αn = −∂tφn +H(x, ∇φn). For ε ∈R, set Kε = supx∈Td F (x, ε) and note that F ∗(x, a) ≥ aε−Kε for all a ∈ R. 
By the bounds (2.6) it follows that

T∫
0

∫
Td

F ∗(x,αn)dx dt ≥ 1

pC
‖(αn)+‖p

Lp − ε

T∫
0

∫
Td

(αn)− dx dt − KεT − C. (2.30)

Multiplying (αn)− = (αn)+ + ∂tφn − H(x, ∇φn) by m0 then integrating, using (2.1) and the fact that m0 is bounded 
above and below by positive constants, we deduce

T∫
0

∫
Td

(αn)− dx dt ≤ C

T∫
0

∫
Td

(αn)+m0 dx dt +
∫
Td

φT m0 − φn(0)m0 dx + CT

≤ C‖(αn)+‖Lp −
∫
Td

φn(0)m0 dx + C. (2.31)

Since

T∫
0

∫
Td

F ∗(x,αn)dx dt −
∫
Td

φn(0)m0 dx ≤ C (2.32)

we can combine (2.30) and (2.31) to get

1

pC
‖(αn)+‖p

Lp − εC‖(αn)+‖Lp − (1 − ε)

∫
Td

φn(0)m0 dx ≤ C + KεT . (2.33)

By fixing ε > 0 small enough and using (2.31) once more, we obtain a priori upper bounds on both ‖(αn)+‖p and 
− 

∫
Td φn(0)m0 dx. On the other hand, since

−
∫
Td

φn(t)m0 dx ≤ −
∫
Td

φn(0)m0 dx +
t∫

0

∫
Td

(αn − H(x,∇φn))m0 dx

≤ −
∫
Td

φn(0)m0 dx + C‖(αn)+‖p + C, (2.34)

we also have an upper bound on − 
∫
Td φn(t)m0 dx that holds uniformly in time. Combining this with Theorem 2.8, 

we deduce that φn is bounded in L∞([0, T ]; L1(Td)). Moreover, (2.31) implies that (αn)− is bounded in L1.
The rest of the proof now follows that of Theorem 2.9 in [5] and Proposition 5.4 in [6]. In particular, a modified 

version of αn now has a weak limit α in L1([0, T ] ×T
d), and φn is seen to have a weak limit φ in BV ([0, T ] ×T

d), 
and one shows (cf. [6]) that (φ, α) ∈ K is a minimizer of A.

The above arguments imply in particular that both optimization problems, and hence the MFG system have a 
solution, without imposing the joint assumption on the growth condition of f and H .

2.3. The regularity by duality method

The idea to obtain Sobolev estimates by duality on the m variable in the system (1.2) used in [23] dates back to 
[3] (see also [2] and [9]) and it is as follows. Consider the two optimization problems involving the functionals A and 
B and suppose that these have minimizers (φ, α) and (m, w) respectively in the corresponding spaces as described 
above. The duality implies in particular that

A(φ,α) +B(m,w) = 0.
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Now, consider η ∈ R small and δ ∈ T
d such that |δ| is small and construct some special competitors by translations 

for the problem involving B, i.e. set

(mη,δ,wη,δ)(t, x) := (m(t + η, x + δ),w(t + η, x + δ)).

Let us remark that in order to preserve in particular the initial condition m(0, ·) = m0, one needs to use some special 
cutoff functions in time, when one considers time translations, but let us skip this detail in this informal description.

Suppose that F satisfies the strong coercivity condition (H6). Then, the key part of the analysis is to show that

B(mη,δ,wη,δ) ≤ B(m,w) + C(η2 + |δ|2) (2.35)

for some constant C > 0 independent of η and δ. Then, one can show some H 1
loc estimates for m. Indeed, first we will 

have

A(φ̃, α̃) +B(m̃, w̃) ≥ ‖J (m̃) − J∗(α̃)‖2
L2

for any competitors (φ̃, α̃) and (m̃, w̃) respectively. This means in particular by the duality that for the optimizers 
(φ, α) and (m, w) one has J (m) = J∗(α). Second, by these last two observations if we add the quantity A(φ, α) to 
both sides of (2.35), one gets

‖J (m) − J (mη,δ)‖2
L2 ≤ C(η2 + |δ|2),

thus the Sobolev estimate follows for J (m).

3. A warm-up: Sobolev estimates for the stationary problem

Our goal, in fact, is to show that the weak solutions (φ, m, λ) given by Theorem 2.3 are such that for φ one can 
derive a second order Sobolev estimate, while in the same time one can obtain first order Sobolev estimates for m. 
These results are in the spirit of those in [23].

We will make some extra assumptions:

F ∗(·, α) ∈ C1,1(Td), ∀ α ∈R, DxF
∗(x, ·) ∈ Liploc(R),

DαF ∗ ∈ Liploc(T
d ×R) and H(·, ξ) ∈ C1,1(Td), ∀ ξ ∈ R

d .
(H5)

For h ∈ T
d , we define the translates

φh(x) := φ(x − h).

Choose (λ, φ) ∈ K0 such that A(λ, φ) is finite. Observe that

A(λ,φh) =
∫
Td

F ∗(x,λ + H(x,∇φ(x − h)))dx − λ =
∫
Td

F ∗(x + h,λ + H(x + h,∇φ(x)))dx − λ

is also finite.

Lemma 3.1. Suppose (λ, φ) ∈ K0 is such that A(λ, φ) is finite. Let A : Td → R be given by A(h) := A(λ, φh). Then 
A is C1,1(Td).

Proof. Observe that

A(y + h) − A(y) =
∫
Td

[F ∗(x + h,λ + H(x + h,∇φy(x))) − F ∗(x,λ + H(x,∇φy(x)))]dx

=
∫
Td

DxF
∗(x,λ + H(x,∇φy(x))) · hdx

+
∫
Td

DαF ∗(x,λ + H(x,∇φy(x)))DxH(x,∇φy(x)) · hdx + o(|h|).
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It follows that A ∈ C1(Td) with

DA(h) =
∫
Td

[DxF
∗(x,λ + H(x,∇φh(x))) + DαF ∗(x,λ + H(x,∇φh(x)))DxH(x,∇φh(x))]dx

=
∫
Td

[DxF
∗(x + h,λ + H(x + h,∇φ(x))) + DαF ∗(x + h,λ + H(x + h,∇φ(x)))DxH(x + h,∇φ(x))]dx.

By the assumption (H5) we see that DA(h) is Lipschitz continuous, as desired. �
Lemma 3.2. Suppose (λ, φ) ∈K0 is such that A(λ, φ) is minimized. Then A(h) =A(λ, φh) =A(λ, φ) + O(|h|2).

Proof. By the previous lemma, we can expand A(h) = A(0) + DA(0)h + O(|h|2), and since h = 0 is a minimizer 
for A we have DA(0) = 0. �

Now we are going to assume the following coercivity estimate on F : there exist J, J∗ : [0, +∞) → R and c0 > 0
such that

F(x,m) + F ∗(x, a) − ma ≥ c0|J (m) − J∗(a)|2. (H6)

Here the functions J, J∗ can be derived explicitly for many common examples of F (see the examples in [23, Sec-
tion 3]).

We deduce that

A(λ,φ) +B(m,w) =
∫
Td

[
F ∗ (x,λ + H(x,∇φ(x))) + m(x)H ∗ (x,−w(x)/m(x)) + F(x,m(x))

]
dx − λ

≥
∫
Td

c0|J (m) − J∗(λ + H(x,∇φ(x)))|2 dx

+
∫
Td

m(x)
[
H(x,∇φ(x)) + H ∗ (x,−w(x)/m(x))

]
dx

≥
∫
Td

[
c0|J (m) − J∗(λ + H(x,∇φ(x)))|2 − ∇φ(x) · w(x)

]
dx

= c0

∫
Td

|J (m) − J∗(λ + H(x,∇φ(x)))|2 dx

for any (λ, φ) ∈ K0 and (m, w) ∈ K1 such that w ∈ L(q ′r)′(Td) = Lr ′q/(r ′+q−1)(Td) (note that ∇ · w = 0 in the sense 
of distributions, hence 

∫
Td ∇φ(x) · w(x) dx = 0).

In particular, suppose that (λ, φ) ∈ K0 and (m, w) ∈ K1 are optimal, that is, A(λ, φ) and B(m, w) are minimized. 
Consider the translates φh(x) := φ(x − h). Then we have the estimates

‖J∗(H(·,∇φh) + λ) − J∗(H(·,∇φ) + λ)‖2
L2(Td )

≤ 2‖J∗(H(·,∇φh) + λ) − J (m)‖2
L2(Td )

+ 2‖J (m) − J∗(H(·,∇φ) + λ)‖2
L2(Td )

≤ 2

c0
(A(λ,φh) +B(m,w)) + 2

c0
(A(λ,φ) +B(m,w))

= 2

c0
(A(λ,φh) −A(λ,φ)) = O(|h|2),

where in the last line we have used the duality result of Lemma 2.2 and the estimate from Lemma 3.2.
This proves
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Theorem 3.3. J∗(H(·, ∇φ) + λ) is in H 1(Td).

Let us remark that the very same approach applies (even with simpler computations) to obtain Sobolev estimates 
for the m variable. Indeed, let us assume that the following regularity conditions hold true.

F(·,m) ∈ C1,1(Td), ∀ m ∈ [0,+∞), and H ∗(·, ζ ) ∈ C1,1(Td), ∀ ζ ∈ R
d . (H5’)

Then, considering any competitor (m, w) such that B(m, w) is finite, for h ∈ T
d defining the translates (mh, wh), it 

is easy to show that the map Td � h �→ B(mh, wh) is C1,1. A similar reasoning as for the proof of Theorem 3.3 yields 
the estimate for J (m). More precisely, one has

Theorem 3.4. J (m) is in H 1(Td).

Observe also that formally Theorem 3.3 implies Theorem 3.4. In fact, since λ +H(x, ∇φ) = f (x, m), Theorem 3.3
implies that J∗(f (·, m)) is in H 1(Td). Since the coupling f satisfying the growth condition (2.3), J grows like | · |q/2

and J∗ has a growth like | · |q ′/2, from where J∗(f (·, m)) has exactly the same growth as J (m). However, this reasoning 
stays formal, one of the main obstructions being that λ + H(x, ∇φ) = f (x, m) is an equality a.e. only on {m > 0}. 
Thus, in order to obtain the Sobolev estimate for m, one needs to use the regularity by duality machinery, as described 
above.

4. Sobolev estimates for the time-dependent case

Our goal in this section is to prove global in time Sobolev estimates for the time dependent system (1.2). We will 
see that the technique is quite different from the duality method used in the previous section. The main reason for this 
is that we need to perturb the data, and not just the solution. In this context, let us assume some extra monotonicity/co-
ercivity conditions for f and H .

Additional assumptions

(H7) (Conditions on the coupling) Let f be continuous on Td × (0, ∞), strictly increasing in the second variable, 
satisfying (2.3). Moreover, we will assume that f (x, m) is Lipschitz with respect to x, specifically

|f (x,m) − f (y,m)| ≤ Cmq−1|x − y| ∀x, y ∈ T
d , m ≥ 0; (4.1)

and also that f (x, m) is strongly monotone in m, i.e. there exists c0 > 0 such that

(f (x, m̃) − f (x,m)) (m̃ − m) ≥ c0 min{m̃q−2,mq−2}|m̃ − m|2 ∀m̃,m ≥ 0, m̃ �= m. (4.2)

(Note: if q < 2 one should interpret 0q−2 as +∞ in (4.2). In this way, when m̃ = 0, for instance, (4.2) reduces 
to f (x, m)m ≥ c0m

q , as in the more regular case q ≥ 2.)
(H8) (Coercivity assumptions.) We assume that there exist j1, j2 :Rd →R

d and c0 > 0 such that

H(x, ξ) + H ∗(x, ζ ) − ξ · ζ ≥ c0|j1(ξ) − j2(ζ )|2, ∀ ξ, ζ ∈ R
d . (4.3)

Notice that with this assumption we require that a sharper version of Young’s inequality (i.e. H(x, ξ) +
H ∗(x, ζ ) − ξ · ζ ≥ 0) takes place. In particular, in light of (2.1), one can check that if H(x, ξ) = 1

r
|ξ |r (r > 1), 

then (4.3) holds true with the choices of j1(ξ) := |ξ |r/2−1ξ , j2(ζ ) := |ζ |r ′/2−1ζ and c0 can be computed explic-
itly depending only on r .

Remark 4.1. The following “canonical” examples satisfy all of the hypotheses on the data:

f (x,m) = c1(x)mq−1, H(x, ξ) = c2(x)|ξ |r ,
where c1, c2 are continuous functions bounded below by a positive constant, and c1 is Lipschitz. In order to satisfy 
the hypotheses of Proposition 4.3, we would also require c2 to have W 2,∞ regularity.
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Remark 4.2. Hypothesis (H7) is akin to (H6), in that the monotonicity estimates on f (x, ·) are directly related to the 
convexity of F(x, ·). In particular, if F(x, m) = 1

q
c1(x)mq with c1 as described in the previous remark, then (H7) is 

satisfied (because f (x, m) = c1(x)mq−1) while (H6) is satisfied with J (m) = mq/2. Then the result of Proposition 4.3
below can be interpreted as giving an H 1 estimate on J (m).

4.1. Regularity in space

Let δ ∈ T
d be given. Here we will consider perturbations of the data which are translations in the space variable. 

To wit, we use the superscript δ to denote translation by δ, i.e. αδ(t, x) = α(t, x + δ), Fδ(x, m) = F(x + δ, m), and 
so on for all other data. Accordingly, we will write

Aδ =AFδ,mδ
0
, Bδ = BHδ,F δ,φδ

T
, Kδ =K(φδ

T ,Hδ), Kδ
1 =K1(m

δ
0).

Let (φ, α) ∈ K be a minimizer for A and (m, w) ∈ K1 be a minimizer for B. To construct minimizers for Aδ and Bδ , we 
can use translations in space of (φ, α) and (m, w). Indeed, we have that (φδ, αδ) ∈ Kδ and that Aδ(φδ, αδ) = A(φ, α). 
One can then deduce that (φδ, αδ) is a minimizer for Aδ , since any competitor can be translated backwards to get a 
competitor for (φ, α), which is a minimizer for A. In the same way (mδ, wδ)(t, x) = (m, w)(t, x + δ) is a minimizer 
for Bδ .

We will use these facts in the following proof.

Proposition 4.3. Let m0, φT ∈ W 2,∞(Td), and assume that H is twice continuously differentiable in x with

|D2
xH(x, ξ)| ≤ C|ξ |r + C. (H9)

Then ‖mq
2 −1∇m‖L2([0,T ]×Td ) ≤ C and ‖m1/2D(j1(∇φ))‖L2([0,T ]×Td ) ≤ C.

Proof. Step 1. As above, let (m, w) ∈ K1(m0) be a minimizer for B = BH,F,φT
. Initially we take a minimizing 

sequence of smooth functions φn ∈ K0(φT ) such that A(φn) → infA. Here A = AF,m0 . Denoting the translates as 
above, we see that φδ

n ∈ K0(φ
δ
T ) is also a minimizing sequence for Aδ =AFδ,mδ

0
.

Following the argument in [5] we get that, up to a subsequence, φn → φ in Lγ ([0, T ] ×T
d) with 1 ≤ γ < d/(d −

1), ∇φn ⇀ ∇φ weakly in Lr([0, T ] × T
d ; Rd) as n → +∞, and for αn := −∂tφn + H(x, ∇φn) we have α̃n :=

αnχ{αn≥−ln} → α in L1([0, T ] × T
d) as n → +∞, for any given sequence (ln)n∈N such that ln → ∞ as n → +∞; 

moreover, (φ, α) ∈ K is a minimizer of A. In particular, for all M > 0 we can pass to a subsequence on which 
αnχ{αn≥−M} → αχ{α≥−M} in Lp([0, T ] ×T

d).
We now show that (up to a subsequence) (∇φn) converges weakly to ∇φ in Lr

m([0, T ] ×T
d ; Rd). To see this, first 

use φn as a test function in ∂tm + ∇ · w = 0 to get

∫
Td

φT m(T ) − φn(0)m0 =
T∫

0

∫
Td

(H(x,∇φn) − αn)m + ∇φn · w dx dt. (4.4)

Using (2.1) we get

1

C

T∫
0

∫
Td

|∇φn|rm ≤ ‖φT ‖∞ +
∫
Td

|φn(0)|m0 +
T∫

0

∫
Td

(αn)+m + |∇φn|m
∣∣∣w
m

∣∣∣ dx dt, (4.5)

then apply Young’s inequality to get

1

C

T∫
0

∫
Td

|∇φn|rm ≤ ‖φT ‖∞ +
∫
Td

|φn(0)|m0 +
T∫

0

∫
Td

(αn)+m + Cm

∣∣∣w
m

∣∣∣r ′
dx dt (4.6)

where, as usual, C takes on a larger value. As argued in [6], lim supn→∞
∫
Td |φn(0)|m0 ≤ C. Since (αn)+ is bounded 

in Lp and m 
∣∣w
m

∣∣r ′
is integrable, this means that the right-hand side of (4.6) is bounded by a constant, as desired. Thus, 

we can assume that (up to a subsequence) (∇φn) converges weakly to some ξ in Lr
m([0, T ] ×T

d ; Rd).
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We now claim that ξ = ∇φ, m-a.e. in [0, T ] ×T
d . That is, we claim that mξ = m∇φ a.e. It is enough to show that

T∫
0

∫
Td

ψ · ∇φn m →
T∫

0

∫
Td

ψ · ∇φ m (4.7)

for all ψ ∈ C∞
c ((0, T ) × T

d ; Rd). Let K > 0 (large) and ε > 0 (small). Since (∇φn) converges weakly to ∇φ in 
Lr([0, T ] ×T

d ; Rd), we have∫∫
{m≤K}

ψ · ∇φn mdx dt →
∫∫

{m≤K}
ψ · ∇φ mdx dt. (4.8)

On the other hand, Young’s inequality yields∣∣∣∣∣∣∣
∫∫

{m≥K}
ψ · ∇φnmdx dt

∣∣∣∣∣∣∣ ≤ εr

r
‖ψ‖∞

T∫
0

∫
Td

|∇φn|rmdx dt + ε−r ′

r ′ ‖ψ‖∞
∫∫

{m≥K}
mdx dt (4.9)

so that, by (4.6), we have

lim sup
n→∞

∣∣∣∣∣∣∣
∫∫

{m≥K}
ψ · ∇φnmdx dt

∣∣∣∣∣∣∣ ≤ C
εr

r
‖ψ‖∞ + ε−r ′

r ′ ‖ψ‖∞
∫∫

{m≥K}
mdx dt. (4.10)

Since m is bounded in Lq([0, T ] ×T
d), one has

∫∫
{m≥K}

mdx dt ≤
⎛
⎜⎝ ∫∫

{m≥K}
1 dx dt

⎞
⎟⎠

1/q ′

‖m‖Lq ,

thus Chebyshev’s inequality yields that 
∫∫

{m≥K} m dx dt → 0, as K → +∞. Thus, we let K → ∞ and then ε → 0 to 
get in (4.9)

lim sup
K→∞

lim sup
n→∞

∣∣∣∣∣∣∣
∫∫

{m≥K}
ψ · ∇φnmdx dt

∣∣∣∣∣∣∣ = 0.

In fact, by similar arguments,

lim sup
K→∞

lim sup
n→∞

∣∣∣∣∣∣∣
∫∫

{m≥K}
ψ · ∇φn mdx dt −

∫∫
{m≥K}

ψ · ∇φ mdx dt

∣∣∣∣∣∣∣ = 0,

which, combined with (4.8), proves the claim.
Step 2. Now use φδ

n and φn as test functions in ∂tm + ∇ · w = 0 and ∂tm
δ + ∇ · wδ = 0 respectively to get

∫
Td

φδ
T m(T ) − φδ

n(0)m0 =
T∫

0

∫
Td

(H(x + δ,∇φδ
n) − αδ

n)m + ∇φδ
n · w dx dt (4.11)

and

∫
Td

φT mδ(T ) − φn(0)mδ
0 =

T∫
0

∫
Td

(H(x,∇φn) − αn)m
δ + ∇φn · wδ dx dt (4.12)

Combine (4.11) with (2.19) and use the regularity of H to get
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∫
Td

(φδ
T − φT )m(T ) − (φδ

n(0) − φ(0))m0

=
T∫

0

∫
Td

(H(x + δ,∇φδ
n) + H ∗(x,−w/m) + ∇φδ

n · w/m − αδ
n + f (m))mdx dt

=
T∫

0

∫
Td

(H(x,∇φδ
n) + H ∗(x,−w/m) + ∇φδ

n · w/m − αδ
n + f (m))mdx dt

+
T∫

0

∫
Td

1∫
0

〈DxH(x + sδ,∇φδ
n), δ〉ds dx dt. (4.13)

Likewise, combine (4.12) with (2.19) (but applied to translates) to get∫
Td

(φT − φδ
T )mδ(T ) − (φn(0) − φδ(0))mδ

0

=
T∫

0

∫
Td

(H(x,∇φn) + H ∗(x + δ,−wδ/mδ) + ∇φn · wδ/mδ − αn + f δ(mδ))mδ dx dt

=
T∫

0

∫
Td

(H(x − δ,∇φ−δ
n ) + H ∗(x,−w/m) + ∇φ−δ

n · w/m − α−δ
n + f (m))mdx dt

=
T∫

0

∫
Td

(H(x,∇φ−δ
n ) + H ∗(x,−w/m) + ∇φ−δ

n · w/m − α−δ
n + f (m))mdx dt

−
T∫

0

∫
Td

1∫
0

〈DxH(x − sδ,∇φ−δ
n ), δ〉ds dx dt. (4.14)

Note that, by the changes of variables x �→ x + δ for the first integral and x �→ x − δ for the second, followed by the 
translation s �→ 1 − s, we get

T∫
0

∫
Td

1∫
0

〈DxH(x + sδ,∇φδ
n), δ〉ds dx dt −

T∫
0

∫
Td

1∫
0

〈DxH(x − sδ,∇φ−δ
n ), δ〉ds dx dt

=
T∫

0

∫
Td

1∫
0

〈DxH(x + sδ,∇φn) − DxH(x − sδ,∇φn), δ〉ds dx dt

=
T∫

0

∫
Td

1∫
0

s∫
−s

〈D2
xxH(x + rδ,∇φn)δ, δ〉dr ds dx dt.

Then adding together (4.13) and (4.14) we get

T∫ ∫
d

(
H(x,∇φδ

n) + H(x,∇φ−δ
n ) + 2H ∗(x,−w/m) + ∇φδ

n · w/m + ∇φ−δ
n · w/m

)
mdx dt
0 T
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=
∫
Td

(
φδ

T + φ−δ
T − 2φT

)
m(T )dx −

∫
Td

(φn(0)(mδ
0 + m−δ

0 ) − 2φ(0)m0)dx

+
T∫

0

∫
Td

(
αδ

n + α−δ
n − 2f (m)

)
mdx dt +

T∫
0

∫
Td

1∫
0

s∫
−s

〈D2
xxH(x + rδ,∇φn)δ, δ〉dr ds dx dt. (4.15)

Now we pass to the limit as n → +∞ in each term above. First, we since H is convex in the second variable and 
(∇φ±δ

n ) converges weakly to ∇φ±δ in Lr
m([0, T ] ×T

d; Rd), by weak lower semicontinuity we get

T∫
0

∫
Td

(
H(x,∇φδ) + H(x,∇φ−δ)

)
mdx dt ≤ lim inf

n→+∞

T∫
0

∫
Td

(
H(x,∇φδ

n) + H(x,∇φ−δ
n )

)
mdx dt. (4.16)

Then, by the previous weak convergence and by the fact that w/m ∈ Lr ′
m([0, T ] ×T

d; Rd), we have that

T∫
0

∫
Td

(∇φδ · w/m + ∇φ−δ · w/m
)
mdx dt = lim

n→+∞

T∫
0

∫
Td

(∇φδ
n · w/m + ∇φ−δ

n · w/m
)
mdx dt (4.17)

Second, let us compute

lim inf
n→∞

⎧⎪⎨
⎪⎩

∫
Td

(
φδ

T + φ−δ
T − 2φT

)
m(T )dx −

∫
Td

(
φn(0)(mδ

0 + m−δ
0 ) − 2φ(0)m0

)
dx

+
T∫

0

∫
Td

(
αδ

n + α−δ
n − 2f (m)

)
mdx dt +

T∫
0

∫
Td

1∫
0

s∫
−s

〈D2
xxH(x + rδ,∇φn)δ, δ〉dr ds dx dt

⎫⎪⎬
⎪⎭ .

≤ lim sup
n→∞

⎧⎪⎨
⎪⎩

∫
Td

(
φδ

T + φ−δ
T − 2φT

)
m(T )dx −

∫
Td

(
φn(0)(mδ

0 + m−δ
0 ) − 2φ(0)m0

)
dx

+
T∫

0

∫
Td

(
αδ

n + α−δ
n − 2f (m)

)
mdx dt +

T∫
0

∫
Td

1∫
0

s∫
−s

〈D2
xxH(x + rδ,∇φn)δ, δ〉dr ds dx dt

⎫⎪⎬
⎪⎭ . (4.18)

Let us recall that (φn)n≥0 converges in L1([0, T ] ×T
d) to φ ∈ BV ([0, T ] ×T

d) and (φn(0))n≥0 is bounded in L1(Td). 
In particular ∂tφn ⇀ ∂tφ, as n → +∞, weakly-� in M([0, T ] ×T

d). These imply furthermore that

lim sup
n→+∞

−
∫
Td

φn(0)(mδ
0 + m−δ

0 )dx ≤ −
∫
Td

φ(0)(mδ
0 + m−δ

0 )dx (4.19)

Indeed, on the one hand we have

−
∫
Td

φn(0, x)ψ(x)dx = −
∫
Td

φT (x)ψ(x)dx +
T∫

0

∫
Td

∂tφnψ dx dt

→ −
∫
Td

φT (x)ψ(x)dx +
T∫

0

∫
Td

∂tφψ dx dt

=
∫
Td

(φ(T , x) − φT (x))ψ(x)dx −
∫
Td

φ(0, x)ψ(x)dx
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as n → +∞ for all ψ ∈ C(Td). On the other hand, since φ(T , x) ≤ φT (x) for a.e. x ∈ T
d , for ψ ≥ 0 one can conclude 

that

lim sup
n→+∞

−
∫
Td

φn(0)ψ dx ≤ −
∫
Td

φ(0)ψ dx,

which implies (4.19) as desired.
As for the third term, we take an arbitrary M > 0 and get

lim sup
n→∞

T∫
0

∫
Td

(
αδ

n + α−δ
n − 2f (m)

)
mdx dt

≤ lim sup
n→∞

T∫
0

∫
Td

(
αδ

nχ{αδ
n≥−M} + α−δ

n χ{α−δ
n ≥−M} − 2f (m)

)
mdx dt

=
T∫

0

∫
Td

(
f δ(mδ)χ{f δ(mδ)≥−M} + f −δ(m−δ)χ{f −δ(m−δ)≥−M} − 2f (m)

)
mdx dt,

where we used the fact (see for instance [5, Theorem 3.5-(i)]) that since (φ, α) is a minimizer of the primal problem 
and (m, w) is a minimizer of the dual problem, one has that α = f (·, m) a.e. This, after letting M → ∞ becomes

lim sup
n→∞

T∫
0

∫
Td

(
αδ

n + α−δ
n − 2f (m)

)
mdx dt ≤

T∫
0

∫
Td

(
f δ(mδ) + f −δ(m−δ) − 2f (m)

)
mdx dt.

Lastly, by (H9) we can assert∣∣∣∣∣∣∣
T∫

0

∫
Td

1∫
0

s∫
−s

〈D2
xxH(x + rδ,∇φn)δ, δ〉dr ds dx dt

∣∣∣∣∣∣∣ ≤ C(‖∇φn‖r
r + 1)|δ|2 ≤ C|δ|2. (4.20)

Thus, when passing to the lim inf in (4.15) as n → +∞, the previous inequalities and estimations imply,

T∫
0

∫
Td

(
H(x,∇φδ) + H ∗(x,−w/m) + ∇φδ · w/m

)
mdx dt

+
T∫

0

∫
Td

(
H(x,∇φ−δ) + H ∗(x,−w/m) + ∇φ−δ · w/m

)
mdx dt

≤
∫
Td

(
φδ

T + φ−δ
T − 2φT

)
m(T )dx −

∫
Td

φ(0)(mδ
0 + m−δ

0 − 2m0)dx

+
T∫

0

∫
Td

(
f δ(mδ) + f −δ(m−δ) − 2f (m)

)
mdx dt + C|δ|2 (4.21)

Now, the assumption (4.3) on H together with (4.21) on the one hand and the inequality |a + b|2 ≤ 2(|a|2 +
|b|2), ∀a, b ∈R

d on the other hand yield

c0

2

T∫ ∫
d

(
|j1(∇φδ) − j1(∇φ−δ)|2

)
mdx dt
0 T
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≤
∫
Td

(
φδ

T + φ−δ
T − 2φT

)
m(T )dx −

∫
Td

φ(0)
(
mδ

0 + m−δ
0 − 2m0

)
dx

+
T∫

0

∫
Td

(
f δ(mδ) + f −δ(m−δ) − 2f (m)

)
mdx dt + C|δ|2. (4.22)

Step 3. We estimate the terms in (4.22). First, we have∫
Td

φ(0)
(

2m0 − mδ
0 − m−δ

0

)
dx ≤ C|δ|2

∫
Td

|φ(0)|dx, (4.23)

where C depends on ‖m0‖W 2,∞ , and we know that 
∫
Td |φ(0)| dx is well-defined and finite (see [6, Lemma 5.1]). 

Similarly,∫
Td

m(T )
(

2φT − φδ
T − φ−δ

T

)
dx ≤ C|δ|2

∫
Td

m(T )dx = C|δ|2, (4.24)

where C depends on ‖φT ‖W 2,∞ . There is one more term to estimate. We rewrite it using change of variables and then 
apply Equations (4.2) and (4.1) to get

T∫
0

∫
Td

(f δ(mδ) + f −δ(m−δ) − 2f (m))mdx dt = −
T∫

0

∫
Td

(f δ(mδ) − f (m))(mδ − m)dx dt

= −
∫∫

{mδ≤m}
(f δ(mδ) − f (mδ))(mδ − m)dx dt −

∫∫
{mδ≤m}

(f (mδ) − f (m))(mδ − m)dx dt

−
∫∫

{m<mδ}
(f δ(mδ) − f δ(m))(mδ − m)dx dt −

∫∫
{m<mδ}

(f δ(m) − f (m))(mδ − m)dx dt

≤ C

T∫
0

∫
Td

|δ|min{(mδ)q−1,mq−1}|mδ − m|dx dt − c0

T∫
0

∫
Td

min{(mδ)q−2,mq−2}|mδ − m|2 dx dt

≤ C|δ|2
T∫

0

∫
Td

min{mδ,m}q dx dt − c0

2

T∫
0

∫
Td

min{(mδ)q−2,mq−2}|mδ − m|2 dx dt, (4.25)

where, we used Young’s inequality in the last inequality, and the expression min{(mδ)q−2, mq−2}|mδ − m|2 is treated 
as zero whenever mδ = m (even in the case q < 2). Since

T∫
0

∫
Td

min{mδ,m}q dx dt ≤
T∫

0

∫
Td

mq dx dt ≤ C,

we see from plugging (4.23), (4.24), and (4.25) into (4.22) that

c0

2

T∫
0

∫
Td

(
|j1(∇φδ) − j1(∇φ−δ)|2

)
mdx dt + c0

2

T∫
0

∫
Td

min{(mδ)q−2,mq−2}|mδ − m|2 dx dt ≤ C|δ|2, (4.26)

where C depends only on the data. The result now follows from dividing both sides by |δ|2 and letting δ → 0. �
As a potential application of Proposition 4.3, one might hope to derive second order in space regularity for φ. For 

this, one would like some summability estimate on m−1. Since, thanks to [5], the growth of f (x, m) is unrestricted 
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for small values of m, all of our results are still valid for data satisfying, for example, F(x, m) ≥ 1
C

m−s − C for 
some s ≥ 1, thus providing the desired estimate. Such a case would correspond to extreme congestion penalization, in 
which players experience a great benefit by moving toward unoccupied spaces. In this context, the following corollary 
is meaningful.

Corollary 4.4. Suppose m−1 ∈ Ls([0, T ] ×T
d) for some s ≥ 1. Then

‖∇(j1(∇φ))‖2
2s

s+1
≤ C‖m−1‖s , (4.27)

where, for simplicity of writing ‖ · ‖η denotes the norm ‖ · ‖Lη([0,T ]×Td ).

Proof. Observe that by Hölder’s inequality and Proposition 4.3, we have

‖j1(∇φδ) − j1(∇φ−δ)‖2
2s

s+1
≤ ‖m−1‖s

T∫
0

∫
Td

(|j1(∇φδ) − j1(∇φ−δ)|2)mdx dt ≤ C‖m−1‖s |δ|2, (4.28)

which implies the thesis of this corollary dividing both sides by |δ|2 and taking δ → 0. �
4.2. Some time regularity

Assume that r = 2, so that the Hamiltonian is of quadratic growth. In line with this assumption, we will assume 
that

|D2
ppH(x, ξ)| ≤ C, |D2

xpH(x, ξ)| ≤ C(|ξ | + 1) ∀x ∈ T
d,∀ξ ∈ R

d . (H10)

Then the result of Proposition 4.3 reads

‖mq/2−1∇m‖L2([0,T ]×Td ),‖m1/2D2φ‖L2([0,T ]×Td ) ≤ C. (4.29)

Recalling that w = −mDξH(x, ∇φ), we compute

−∇ · w = ∇m · DξH(x,∇φ) + m tr(D2
xpH(x,∇φ)) + m tr(D2

ppH(x,∇φ)D2φ) (4.30)

and deduce from (H10) that

mq/2−1|∇ · w| ≤ Cmq/2−1|∇m|(|∇φ| + 1) + Cmq/2(|∇φ| + 1) + Cmq/2−1/2m1/2|D2φ|. (4.31)

Now since ‖H(x, ∇φ)‖L1 ≤ C, we have that |∇φ| ∈ L2([0, T ] ×T
d) by (2.1). Moreover, since q > 1 and ‖m‖Lq ≤ C

it follows (by Hölder’s inequality) that ‖mq/2−1/2‖L2 ≤ C. Therefore (4.29) implies, by Hölder’s inequality, that

‖mq/2−1∇ · w‖L1([0,T ]×Td ) ≤ C. (4.32)

We deduce the following:

Corollary 4.5 (Global L1 bounds on ∂tm). Assume r = 2 and that (H10) holds. Suppose (m, w) is the minimizer of B. 
Then there exist C > 0 depending only on the data such that

‖∂t (m
q/2)‖L1([0,T ]×Td ) ≤ C.

Proof. Apply (4.32) to the equation ∂tm = −∇ · w. �
The argument breaks down if r �= 2. For simplicity, set H(x, ξ) = 1

r
|ξ |r . The result of Proposition 4.3 reads

‖mq/2−1∇m‖L2,‖m1/2(|∇φ|r/2−1D2φ + (r/2 − 1)|∇φ|r/2−2D2φ∇φ ⊗ ∇φ)‖L2 ≤ C. (4.33)

We compute

−∇ · w = ∇m · |∇φ|r−2∇φ + m|∇φ|r−2�φ + m(r − 2)|∇φ|r−4(D2φ∇φ) · ∇φ. (4.34)
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If r < 2, then the last two terms of the r.h.s. are degenerate: it is possible that m|∇φ|r−2�φ is not integrable, since even 
though one would have L2 regularity for |∇φ|r/2−1D2φ, there are no estimates on the remaining factor of m|∇φ|r/2−1. 
On the other hand, if r > 2, then the first term on the r.h.s. is problematic: |∇φ|r−2∇φ ∈ Lr ′

([0, T ] ×T
d), but r ′ < 2, 

and thus L2-regularity for ∇(mq/2) is not enough to ensure that the product ∇(mq/2) · |∇φ|r−2∇φ is integrable.
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