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Abstract

We study singularity structure of Yang–Mills flow in dimensions n ≥ 4. First we obtain a description of the singular set in terms 
of concentration for a localized entropy quantity, which leads to an estimate of its Hausdorff dimension. We develop a theory of 
tangent measures for the flow, which leads to a stratification of the singular set. By a refined blowup analysis we obtain Yang–Mills 
connections or solitons as blowup limits at any point in the singular set.
© 2018 
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1. Introduction

Given (Mn, g) a compact Riemannian manifold and E → M a vector bundle, a one parameter family of connec-
tions ∇t on E is a solution to Yang–Mills flow if

∂∇t

∂t
= −D∗∇t

F∇t .

This is the negative gradient flow for the Yang–Mills energy, and is a natural tool for investigating its variational 
structure. Global existence and convergence of the flow in dimensions n = 2, 3 was established in [16]. Finite time 
singularities in dimension n = 4 can only occur via energy concentration, as established in [18]. More recently this 
result has been refined in [5,21] to show concentration of the self-dual and antiself-dual energies. Preliminary investi-
gations into Yang–Mills flow in higher dimensions have been made in [7,15,22].

In this paper we establish structure theorems on the singular set for Yang–Mills flow in dimensions n ≥ 4. Our 
results are inspired generally by results of harmonic map flow, specifically [12–14]. The first main result is a weak 
compactness theorem for solutions to Yang–Mills flow which includes a rough description of the singular set of a 
sequence of solutions. A similar result for harmonic map flow was established in [12]. Moreover, a related result on 
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the singularity formation at infinity for a global solution of Yang–Mills flow was established in [9]. We include a 
rough statement here, see Theorem 4.1 for the precise statement.

Theorem 1.1. Fix n ≥ 4 and let E → (Mn, g) be a vector bundle over a closed Riemannian manifold. Weak H 1,2

limits of sequences of smooth solutions to Yang–Mills flow are weak solutions to Yang–Mills flow which are smooth 
outside of a closed set � of locally finite (n − 2)-dimensional parabolic Hausdorff measure.

The first key ingredients of the proof are localized entropy monotonicities for the Yang–Mills flow, defined in [9], 
together with a low-entropy regularity theorem [9]. Fairly general methods allow for the existence of the weak limit 
claimed in Theorem 1.1, and the entropy monotonicities are the key to showing that the singular set is small enough to 
ensure that the weak limit is a weak solution to Yang–Mills flow. The arguments are closely related to those appearing 
in [9,12,19].

The second main result is a stratification of the singular set. This involves investigating tangent measures associated 
to solutions of Yang–Mills flow. In particular we are able to establish the existence of a density for these measures 
together with certain parabolic scaling invariance properties. One immediate consequence is that we can apply the 
general results of [23] to obtain a stratification of the singular set. See §5 for the relevant definitions.

Theorem 1.2. For 0 ≤ k ≤ n − 2 let

�k :=
{
z0 ∈ � | dim

(
�0 (μ∗, ·)) ≤ k,∀μ∗ ∈ Tz0(μ)

}
.

Then dimP (�k) ≤ k and �0 is countable.

The third main theorem characterizes the failure of strong convergence in the statement of Theorem 1.1 in terms 
of the bubbling off of Yang–Mills connections. Again, an analogous result for harmonic maps was established in 
[12]. The proof requires significant further analysis on tangent measures, leading to the existence of a refined blowup 
sequence which yields the Yang–Mills connection. We give a rough statement below, see Theorem 6.1 for the precise 
statement.

Theorem 1.3. Fix n ≥ 4 and let E → (Mn, g) be a vector bundle over a closed Riemannian manifold. A sequence of 
solutions to Yang–Mills flow converging weakly in H 1,2 either converges strongly in H 1,2, and the (n −2)-dimensional 
parabolic Hausdorff measure of � vanishes, or it admits a blowup limit which is a Yang–Mills connection on S4.

A corollary of these theorems is the existence of a either Yang–Mills connection or Yang–Mills soliton as a blowup 
limit of arbitrary finite time singularities. For type I singularities the existence of soliton blowup limits was established 
in [22], following from the entropy monotonicity for Yang–Mills flow demonstrated in [8]. The existence of soliton 
blowup limits for arbitrary singularities of mean curvature flow was established in [10], relying on the structure theory 
associated with Brakke’s weak solutions. A preliminary investigation into the entropy-stability of Yang–Mills solitons 
was undertaken in [3] and [11]. Those results now apply to studying arbitrary finite-time singularities of Yang–Mills 
flow, as all admit singularity models which are either Yang–Mills connections or Yang–Mills solitons.

Corollary 1.4. Fix n ≥ 4 and let E → (Mn, g) be a vector bundle over a closed Riemannian manifold. Let ∇t a smooth 
solution to Yang–Mills flow on [0, T ) such that lim supt→T

∣∣F∇t

∣∣
C0 = ∞. There exist a sequence {(xi, ti , λi)} ⊂ M ×

[0, T ) × [0, ∞) such that the corresponding blowup sequence converges modulo gauge transformations to either

(1) A Yang–Mills connection on S4.
(2) A Yang–Mills soliton.
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2. Background

We will begin with a discussion of notation and conventions that are used throughout the paper. We will then 
provide general analytic background as well as a review of Yang–Mills flow and its key properties.

2.1. Notation and conventions

Let (E, h) → (M, g) be a vector bundle over a closed Riemannian manifold. Let S(E) denote the smooth sections 
of E. For each point x ∈ M choose a local orthonormal basis of T M given by {∂i} with dual basis {ei} and a local 
basis for E given by {μα} with dual basis {(μ∗)α} for the dual E∗. Let �p(M) denote the set of smooth p-forms over 
M and set �p(E) := �p(M) ⊗ S(E). Next set EndE := E ⊗ E∗, where E∗ denotes the dual space of E and take

�p(AdE) := {ω ∈ �p(EndE) | hαγ ω
γ
β = −hβγ ωγ

α }.
The set of all bundle metric compatible connections on E will be denoted by AE(M). Given a chart containing p ∈ M

the action of a connection ∇ on E is captured by the coefficient matrices � = (�
β
iαei ⊗ μβ ⊗ μ∗

α), where

∇μβ = �δ
iβei ⊗ μδ.

When sequences of one-parameter families of connections {∇ i
t } are in play we will at times drop the explicit depen-

dence on t and i for notational simplicity.

2.2. Weak solutions of Yang–Mills flow

We first recall here the definitions of Sobolev spaces relevant to discussing convergence of connections. Refer to 
([18] §1.3) for further information. Using this we give the definition of a weak solution to Yang–Mills flow.

Definition 2.1. Fix ∇ref a background connection on E. The space Hl,p(�i(AdE)) is the completion of the space of 
smooth sections of �i(AdE) with respect to the norm

||ϒ||Hl,p(�i(Ad E)) :=
(

l∑
k=0

∣∣∣∣∣∣∇(k)
ref ϒ

∣∣∣∣∣∣p
Lp(�i(Ad E))

)1/p

< ∞.

We will say that a connection ∇ is of Sobolev class Hl,p , and write ∇ ∈ Hl,p , if ∇ = ∇ref + ϒ where ϒ ∈
Hl,p

(
�1(AdE)

)
.

Now, for a vector bundle E → (M, g) over a Riemannian manifold, recall that the Yang–Mills energy of a smooth 
connection ∇ on E with curvature F∇ is

YM(∇) := 1
2

∫
M

|F∇|2 dV.

From this we can consider the corresponding negative gradient flow, which is easily shown to be the Yang–Mills flow:

∂∇t

∂t
= − D∗∇t

F∇t .

With these definitions in place we can now define the notion of a weak solution to the flow.
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Definition 2.2. A one-parameter family ∇t = ∇0 + ϒt is a weak solution of Yang–Mills flow on [0, T ] if

ϒt ∈ L1([0, T ];L2(�1(AdE))), F∇t ∈ L∞([0, T ];L2(�2(AdE))),

and if for all αt ∈ C∞([0, T ]; H 2
1 (�2(AdE))) which vanish at t = 0, t = T , one has

T∫
0

∫
M

〈
ϒt,

∂αt

∂t

〉
− 〈

F∇t ,∇t αt

〉
dV dt = 0. (2.1)

2.3. Blowup constructions

Here we will give a discussion of the construction of blowup limits in the setting of Yang–Mills flow. First we 
define the fundamental scaling law.

Definition 2.3. Fix U ⊂R
n and consider the restricted bundle E → U . Suppose ∇t is a smooth solution to Yang–Mills 

flow over U on [0, T ). Fixing a basis for E, ∇t is described by local coefficient matrices �t . Given z0 = (x0, t0) ∈
U × [0, T ) and λ ∈R we define a connection ∇λ,z0

t via coefficient matrices

�
λ,z0
t (x) = λ�λ2t+t0

(λx + x0) . (2.2)

Typically the basepoint z0 will be suppressed notationally when understood.

Now consider a sequence {(xi, ti , λi)} ⊂ M × R × [0, ∞) with λi → 0. Assuming M is compact there exists a 
subsequence such that {xi} → x∞ ∈ M . Moreover, we can pick a chart around x∞ so that the tail of the sequence {xi}
is contained within this chart, identified with B1 ⊂ R

n. For sufficiently large i, define a connection ∇ i
t via coefficient 

matrices

�i
t (x) := �

λi,zi
t (x).

We call 
{∇ i

t

}
an (xi, ti , λi)-blowup sequence. Note the corresponding curvatures are scaled in the following manner,

F∇i
t
(x) = λ2

i F∇
λ2
i
t+ti

(λix + xi) . (2.3)

Observe that the domain of ∇ i
t contains B

λ−1
i

(xi) × [−ti
λ2

i

, T −ti
λ2

i

], so that the limiting domain is Rn × (−∞, 0]. If the 

points are chosen as a maximal blowup sequence so that the curvatures are bounded, then these blowup solutions 
converge to a smooth ancient solution to Yang–Mills flow. However, in our analysis though we will be choosing very 
general sequences and taking weak limits.

2.4. Parabolic Hausdorff measures

For any 0 ≤ k ≤ n and any � ⊂R
n, the k-dimensional Hausdorff measure of � is defined by

Hk(�) = lim
δ→0

Hk
δ (�) = lim inf

δ→0

{∑
i

rk
i | � ⊂

⋃
i

Bri (zi), zi ∈ �,ri ≤ δ

}
.

This leads to the definition of Hausdorff dimension, i.e.

dimH(�) = inf {d ≥ 0 | Hd(�) = 0}.
Next, we define the parabolic metric � on Rn ×R given by, for (x, t) , (y, s) ∈ R

n ×R,

� ((x, t) , (y, s)) := max
{
|x − y| ,√|t − s|

}
.

We can obtain the notion of parabolic Hausdorff dimension by using covers by balls with respect to this metric. In 
particular, for any 0 ≤ � ≤ n + 2 and any � ⊂ R

n ×R, the �-dimensional parabolic Hausdorff measure of � is given 
by
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P�(�) = lim
δ→0

P�
δ (�) = lim inf

δ→0

{∑
i

r�
i | � ⊂

⋃
i

Pri (zi), zi ∈ �,ri ≤ δ

}
,

where, for z0 = (x0, t0) ∈ R
n ×R,

Pr(z0) :=
{
z = (x, t) ∈ R

n ×R | |x − x0| < r, |t − t0| < r2
}

.

Using this we can then define the parabolic Hausdorff dimension

dimP (�) := inf {d ≥ 0 | Pd(�) = 0}.

3. Monotonicity formulas

In this section we observe some energy and entropy monotonicity formulas for solutions to Yang–Mills flow which 
are central to the analysis below.

3.1. Energy monotonicity

Lemma 3.1. Let ∇t be a solution to Yang–Mills flow on M × [t1, t2]. For any φ ∈ C1
0(M, [0, ∞)),

1
4

∫
M

(∣∣∣F∇t1

∣∣∣2 −
∣∣∣F∇t2

∣∣∣2)φ2 dV =
t2∫

t1

∫
M

(∣∣∣ ∂∇t

∂t

∣∣∣2 +
〈

2∇t φ
φ

F∇t ,
∂∇t

∂t

〉)
φ2 dV dt.

Proof. We differentiate and find that

d
dt

⎡⎣ 1
2

∫
M

|F |2 φ2 dV

⎤⎦ =
∫
M

〈
F, ∂F

∂t

〉
φ2 dV

=
∫
M

〈
F,D

[
∂∇
∂t

]〉
φ2 dV

= 2
∫
M

〈
F,∇ [

∂∇
∂t

]〉
φ2 dV

= 2
∫
M

〈
D∗F − 2∇φ

φ
F, ∂∇

∂t

〉
φ2 dV

= 2
∫
M

〈
− ∂∇

∂t
− 2∇φ

φ
F, ∂∇

∂t

〉
φ2 dV

= −2
∫
M

(〈
∂∇
∂t

,2∇φ
φ

F
〉
+ ∣∣ ∂∇

∂t

∣∣2)φ2 dV.

Integrating both sides over [t1, t2] yields the result. �
3.2. Entropy setup and scaling laws

Let (M, g) be a Riemannian manifold. Let ιM > 0 be a lower bound for the injectivity radius of M . Note that if ∇t

is a smooth solution to Yang–Mills flow on M × [0, T ), we can restrict it to any coordinate neighborhood BιM ⊂ R
n

is the Euclidean ball in Rn centered at the origin. Now fix z0 := (x0, t0) ∈R
n × [0, ∞), and define

Gz0 (x, t) = e
−

∣∣x−x0
∣∣2

4
∣∣t−t0

∣∣
n/2 .
(4π |t − t0|)
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We need to move this function onto the manifold M , and so we must localize. For x0 ∈ M we let Bx0 denote the set 
of cutoff functions, that is, all φ ∈ C∞

0

(
BιM (x0), [0,∞)

)
such that

φ ∈ [0,1] , φ ≡1 on BιM
2

(x0), suppφ ⊂ BιM (x0).

In this sense, given z0 = (x0, t0) ∈ M × R, for φ ∈ Bx0 one may consider the globally defined function φGz0 : M ×
R → [0, ∞). Lastly, given z0 = (x0, t0) ∈ M ×R and R ∈ (0, ∞), we define

SR(t0) := M × {t0 − R2},
PR(z0) := BR(x0) ×

([
t0 − R2, t0

]
∩ (0,∞)

)
,

TR(t0) := M ×
([

t0 − 4R2, t0 − R2
]
∩ (0,∞)

)
.

Definition 3.2. Assume ∇t is a solution to Yang–Mills flow on M × [0, T ). For z0 = (x0, t0) ∈ M × [0, T ), φ ∈ Bx0 , 
and R ∈ [0, min{ιM, 

√
t0/2}], let

�z0(R;∇t ) := R4

2

∫
SR(t0)

∣∣F∇t

∣∣2 φ2Gz0 dV,

�z0(R;∇t ) := R2

2

∫
TR(t0)

∣∣F∇t

∣∣2 φ2Gz0 dV dt.

Next we record a fundamental scaling law for the entropy functionals which is utilized in deriving the monotonicity 
formulas under Yang–Mills flow. These monotonicity formulas are shown in ([9]), but we include some brief discus-
sion of some properties for convenience, and also because we utilize some of the calculations in the sequel. We restrict 
the lemma to flat space for convenience.

Lemma 3.3. Fix ∇t a solution to Yang–Mills flow on (Rn, gEuc) × [0, T ). For all z0 = (x0, t0) ∈ R
n × [0, T ), and (

0 < R ≤ √
t0/2

)
, setting φ ≡ 1 in Definition 3.2 yields

�z0(R;∇t ) = �z0

(
1;∇R

t

)
,

�z0(R;∇t ) = �z0

(
1;∇R

t

)
,

where here ∇R
t is the rescaled connection as defined in Definition 2.3.

Proof. Without loss of generality we may take z0 = 0. For notational convenience we suppress the subscripts on �, 
�, and G. We fix R > 0 and consider a change of coordinates

x = Ry, t = R2s.

Then, rescaling coordinates and recalling the rescaling of the curvature tensor (2.3),

dx = Rn dy, dt = R2 ds, G(x, t) = R−nG(y, s), F∇R
s
(y) = R2F∇

R2s
(Ry).

It follows that

�(R;∇t ) = R4

2

∫
S1

∣∣∣F∇
R2s

(Ry)

∣∣∣2 φ(y)G(y, s) dy

= 1
2

∫
S1

∣∣∣F∇R
s
(y)

∣∣∣2 φ(y)G(y, s) dy

= �(1;∇R
t ).

Similarly,
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�(R;∇t ) = R4

2

∫
T1

∣∣∣F∇
R2s

(Ry)

∣∣∣2 φ(y)G(y, s) dy ds

= 1
2

∫
T1

∣∣∣F∇R
s
(y)

∣∣∣2 φ(y)G(y, s) dy ds

= �
(

1;∇R
t

)
.

The result follows. �
3.3. Entropy monotonicities

In this section we recall the monotonicity formulae for � and �, established in [9]. Again we record the proof on 
R

n for convenience and as we will use parts of argument in the sequel.

Proposition 3.4. Let ∇t to be a smooth solution to Yang–Mills flow for (Rn, gEuc) × [0, T ). For all z0 = (x0, t0) ∈
R

n × [0, T ), and 0 < ρ ≤ r <
√

t0/2, setting φ ≡ 1 in Definition 3.2 yields

�z0(ρ;∇t ) ≤ �z0(r;∇t )

�z0(ρ;∇t ) ≤ �z0(r;∇t ).

Proof. We begin with the monotonicity statement for �. We will include a generic cutoff function for purposes of a 
later lemma. We fix R > 0 and consider a change of coordinates as in Lemma 3.3. As described there, it follows that

�(R;∇t ) = R4

2

∫
S1

∣∣∣F∇
R2s

(Ry)

∣∣∣2 φ2(Ry)G(y, s) dy.

A crucial point here is that we are not rescaling the connection as well. One now differentiates and rescales back to 
obtain

∂
∂R

[�(R;∇t )] = 4
R

�(R;∇t ) +
⎡⎢⎣R3

∫
SR

〈
F∇t , x ∂F∇t

〉
φ2Gdx

⎤⎥⎦
I1

+
⎡⎢⎣2R3

∫
SR

〈
F∇t , t

(
∂F∇t

∂t

)〉
φ2Gdx

⎤⎥⎦
I2

+
⎡⎢⎣R3

∫
SR

|F∇|2 φx ∇φ dx

⎤⎥⎦ .

To address I1, we recall some coordinate formulas

∇iF
β
jkα = ∂iF

β
jkα + �

β
iμF

β
jkα − F

β
jkμ�

μ
iα,

∇iF
β
jkα = −

(
∇kF

β
ijα + ∇jF

β
kiα

)
.

Combining these we conclude that

∂iF
β
jkα = −

(
∇kF

β
ijα + ∇jF

β
kiα

)
− �

β
iμF

μ
jkα + F

β
jkμ�

μ
iα.

With this in mind we manipulate I1,

I1 = R3
∫
SR

xi
(
∇kF

β
ijα + ∇jF

β
kiα

)
Fα

jkβφ2Gdx

+ R3
∫

xi�
β
iμF

μ
jkαFα

jkβφ2Gdx − R

∫
xiF

β
jkμ�

μ
iαFα

jkβφ2Gdx
SR SR
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= 2R3
∫
SR

xi
(
∇kF

β
ijα

)
Fα

jkβφ2Gdx

= −2R3
∫
SR

F
β
ijα∇k

[
xiFα

jkβφ2G
]

dx

= 2R3
∫
SR

[
F

β
ijαFα

ijβ + F
β
ijαxi

(
∇kF

α
kjβ

)
− 1

2t
xiF

β
ijαxkFα

kjβ

]
φ2Gdx

− 4R3
∫
SR

F
β
ijαxiF α

jkβ (∇kφ)φGdx

= − 4
R

�(R;∇) + R3
∫
SR

[
1
t
|x F |2 − 2

〈
x F,D∗F

〉]
φ2Gdx

− 4R3
∫
SR

F
β
ijαxiF α

jkβ (∇kφ)φGdx.

Also we have

I2 = 2R3
∫
SR

t
〈
F, ∂F

∂t

〉
φ2Gdx

= −2R3
∫
SR

t
〈
F,DD∗F

〉
φ2Gdx

= 4R3
∫
SR

tF
β
ijα∇i (D

∗F)αjβφ2Gdx

= R3
∫
SR

[
4t

∣∣D∗F
∣∣2 − 2

〈
x F,D∗F

〉]
φGdx − 8R3

∫
SR

tF
β
ijα(D∗F)αjβ (∇iφ)φGdx.

Combining these calculations gives

∂
∂R

[�(R;∇t )] = |t |R3
∫
SR

∣∣ x
t

F∇t − 2D∗∇t
F∇t

∣∣2 φ2Gdx

+ 4R3
∫
SR

(
xkFα

kjβ − 2t
(
D∗F

)α
jβ

)
F

β
ijα (∇iφ)φGdx

+ R3
∫
SR

|F∇|2 φx ∇φ dx.

(3.1)

In particular, when φ ≡ 1, we have monotonicity, which yields the first claim.
Next we prove the monotonicity of �, only considering the case where φ ≡ 1. We fix R > 0 and use the coordinate 

change as in Lemma 3.3 once more, and it follows that

�(R;∇t ) = R4
∫
T1

∣∣∣F∇
R2s

(Ry)

∣∣∣2 φ2(y)G(y, s) dy ds.

Once again, crucially, we are not rescaling the connection. One now obtains

∂
∂R

[�(R;∇t )] = 4
R

�(R;∇t ) +
⎡⎢⎣2R

∫
TR

〈
F∇t , x ∂F∇t

〉
φ2Gdx dt

⎤⎥⎦

I1
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+
⎡⎢⎣4R

∫
TR

〈
F∇t , t

(
∂F∇t

∂t

)〉
φ2Gdx dt

⎤⎥⎦
I2

.

Nearly identical estimates for I1 and I2 as in the case of � above yield

∂
∂R

[�(R;∇t )] = 2R

∫
TR

|t | ∣∣ x
t

F∇t − 2D∗∇t
F∇t

∣∣2 φ2Gdx dt.

The result follows. �
Next we state the general monotonicity formula for � and � on arbitrary Riemannian manifolds. The proof is 

similar to that of Proposition 3.4, incorporating further estimates due to the presence of the cutoff function. We 
state here the result of ([9] Theorem 2), which applies to Yang–Mills–Higgs flow, and we just restrict the result to 
Yang–Mills flow. We point out that a similar result was claimed in [2], but uses definitions of � and � with incorrect 
scaling. Note that the notation for � and � agrees with various other literature, but is reversed from that chosen in 
[9]. Moreover, we state an improved statement which is clearly implicit in [9], simply including an extra term in the 
inequality which is dropped in the statement in [9].

Theorem 3.5 ([9] Theorem 2, pp.448). Let ∇t be a smooth solution to Yang–Mills flow on M × [0, T ). Then for 
z0 = (x0, t0) ∈ M × [0, T ] and 0 < R1 ≤ R2 ≤ min{ιM, 

√
t0/2}, we have

�z0(R1;∇t ) +
R2∫

R1

r

∫
Tr (t0)

|t − t0|
∣∣∣ x−x0

2|t−t0| F∇t − D∗∇t
F∇t

∣∣∣2 φ2Gz0 dV dt dr (3.2)

≤ eC(R2−R1)�z0(R2;∇t ) + C(R2 − R1)YM(∇0),

�z0(R1;∇t ) +
R2∫

R1

r3
∫

Sr (t0)

|t − t0|
∣∣∣ x−x0

2|t−t0| F∇t − D∗∇t
F∇t

∣∣∣2 φ2Gz0 dV dr

≤ eC(R2−R1)�z0(R2;∇t ) + C (R2 − R1)YM(∇0).

(3.3)

As the statement above makes clear, the functionals � and � are fixed if the connection satisfies a certain modified 
Yang–Mills type equation:

Definition 3.6. Let ∇t be a nontrivial smooth one-parameter family of connections on Rn × (−∞, 0]. Then ∇t is a 
soliton if

D∗∇t
F∇t = x

2t
F∇t .

We end with a useful technical observation showing that the different entropies � and � are uniformly equivalent, 
which exploits the monotonicity

Lemma 3.7. Let ∇t be a solution to Yang–Mills flow on M × [0, T ). There exists a uniform constant C such that for 
z0 = (x0, t0) ∈ M × [0, T ) and for R with 0 < R ≤ min{ιM, 

√
t0/2}, we have

C−1�z0(R;∇t ) ≤ �z0(2R;∇t ) ≤ C�z0(2R;∇t ).

Proof. We give the proof on Rn, in which case the monotonicity does not involve the error term involving the Yang–
Mills energy, with the generalization to manifolds a straightforward extension. Without loss of generality we can 
consider the time interval to be [−1, 0] and choose z0 = (0, 0). Then we have, using the monotonicity of � and a 
change of variables,
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�(2R) ≥ 1
R

2R∫
R

�(s) ds

= R3

2

s=2R∫
s=R

∫
M×{−s2}

|Fs |2 φ2GdV ds

= R3

2

t=−4R2∫
t=−R2

1
2
√−t

∫
M×{t}

|Ft |2 φ2GdV dt

≥ cR2
∫

TR(0)

|Ft |2 φ2GdV dt

= c�(R).

Analogously we have

�(R) ≤ 1
R

2R∫
R

�(s) ds

= R3

4

s=2R∫
s=R

∫
M×{−s2}

|Fs |2 φ2GdV ds

= R3

4

t=−4R2∫
t=−R2

1
2
√−t

∫
M×{t}

|Ft |2 φ2GdV dt

≤ CR2
∫

TR(0)

|Ft |2 φ2GdV dt

= C�(R).

The result follows. �
3.4. Epsilon-regularity

A central phenomenon in understanding the singularity formation of geometric flows is that of ε-regularity. A result 
of this kind for Yang–Mills flow is shown in [9], relying centrally on the monotonicity formula for � and the evolution 
equation for the curvature. Once again we only state the result for solutions to Yang–Mills flow though the result is 
shown for Yang–Mills–Higgs flow in [9]. We also point out that a similar result is claimed in [2], although it relies on 
the incorrectly defined � functional.

Theorem 3.8 ([9] Theorem 4, pp.454). Suppose ∇t is a solution to Yang–Mills flow on M × [0, T ). There exist 
constants C, δ, ε0 > 0 depending on (M, g) and YM(∇0) so that given z0 = (x0, t0) ∈ M × [0, T ) and 0 < R <

min{ιM, 
√

t0/2} such that

�z0(R;∇t ) < ε0,

one has

sup
PδR(z0)

∣∣F∇t

∣∣2 ≤ C

(δR)4 .
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4. Weak compactness and limit measures

In this section we establish a weak compactness result for solutions to Yang–Mills flow satisfying certain weak 
convergence hypotheses. In the first subsection below we establish this theorem, and in the following subsection we 
refine the analysis to show a number of properties of the limiting energy densities and defect measures.

4.1. Weak compactness theorem

Theorem 4.1. Suppose {∇i
t } is a sequence of smooth solutions to Yang–Mills flow over M × [−1, 0] with YM(∇ i

t ) ≤
YM(∇ i

−1) < C. Moreover, suppose {∇ i
−1} → ∇ weakly in H 1,2

loc (AE(M)), and

• ∇ i
t → ∇t in L2

loc(M × [−1, 0]),
• ∂∇i

t

∂t
→ ∂∇t

∂t
weakly in L2

loc(M × [−1, 0]),
• F∇i

t
→ F∇t weakly in L2

loc(M × [−1, 0]).

Then ∇t is gauge equivalent to a weak solution to Yang–Mills flow, and there exists a closed set � of locally finite 
(n − 2)-dimensional parabolic Hausdorff measure such that ∇t is a smooth solution on (M × (−1, 0))\�.

Proof. Set

�i
z0

(r) :=
{

�z0

(
r;∇ i

t

)
r ∈ (

0,
√

1 + t0
)

�z0

(√
1 + t0;∇ i

t

)
otherwise.

Now define the concentration set

� :=
⋂
r>0

{
z ∈ M × [−1,0] | lim inf

k→∞ �k
z (r) ≥ ε0

}
,

where ε0 is the constant of Theorem 3.8. To address the theorem, we divide the proof up into three pieces: Lemma 4.2, 
Lemma 4.3, and Lemma 4.5.

Lemma 4.2. � is closed.

Proof. Let z lie in the closure of � and {zk}k∈N ∈ � with zk → z. By the definition of �,

lim inf
k→∞ lim inf

i→∞ �i
zk

(r) = lim inf
k→∞ lim inf

i→∞

⎡⎢⎣ r4

2

∫
Rn×{tk−r2}

∣∣∣F i
t

∣∣∣2 φ2Gzk
dV

⎤⎥⎦ ≥ ε0.

Note that Gzk
→ Gz on any closed sets not containing z. Moreover, for fixed i the function 

∣∣F i
t

∣∣2 is in L1. Therefore we 
can fix r > 0, apply the dominated convergence theorem and interchange lim inf ordering by an elementary argument 
to conclude

lim inf
i→∞

r4

2

∫
M×{

t−r2
}
∣∣∣F i

t

∣∣∣2 φ2Gz dV = lim inf
i→∞ lim

k→∞
r4

2

∫
M×{t−r2}

∣∣∣F i
t

∣∣∣2 φ2Gzk
dV

= lim inf
i→∞ lim inf

k→∞
r4

2

∫
M×{t−r2}

∣∣∣F i
t

∣∣∣2 φ2Gzk
dV

≥ ε0.

Therefore z ∈ �, so we conclude � is closed. �
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Lemma 4.3. ∇t is gauge equivalent to a smooth solution to Yang–Mills flow on (M × (−1,0])\�.

Proof. Given z ∈ (Rn × (−1,0])\�, by construction there exists r0 > 0 such that

lim inf
k→∞ �k

z(r0) ≤ ε0.

Passing to a subsequence and applying Lemma 3.7, we obtain an ε0 upper bound for �, and by Theorem 3.8, we 
conclude that

sup
Pδr0 (z)

∣∣∣Fk
t

∣∣∣2 ≤ C

(δr0)4 ,

for some universal constant δ > 0. Applying ([22], Theorem 2.2) we conclude uniform estimates on all derivatives of 
curvature on a parabolic ball of radius δr0

2 .
Using the Uhlenbeck gauge-fixing Theorem ([20] Theorem 1.3) and the gauge-patching argument of ([4] Corol-

lary 4.4.8) we can obtain a Coulomb gauge on Bδr0
4

. Moreover, by applying elliptic regularity estimates ([4]

Lemma 2.3.11) and the Sobolev inequality we obtain uniform pointwise estimates for the connection in the Coulomb 
gauge on Bδr0

8
. By applying the Yang–Mills flow PDE directly to this gauge-fixed connection and using the previous 

estimates on the derivatives of curvature we obtain uniform pointwise estimates for the gauge fixed connections on 
Pδr0

8
. Thus for each point z0 we have constructed a radius δr0

8 and a sequence of gauge transformations for which the 

parabolic ball of that radius has uniform control along some subsequence of gauge-fixed connections.
Fix a compact set K such that K ∩ � = ∅. For each z ∈ K there exist arbitrarily large values of k and parabolic 

balls centered at z of the type described above. This collection of parabolic balls covers K , and since K is compact 
we can choose a finite subcover, and also pass to a subsequence of connections all of which have the bounds described 
above. A further application of the gauge-patching result ([4] Corollary 4.4.8) allows us to conclude the existence of 
a single gauge transformation, which, when applied to our sequence, yields a sequence of connections with uniform 
Cl,α bounds. By the Arzela–Ascoli Theorem we obtain a further subsequence converging on K . �
Lemma 4.4. � has locally finite (n − 2)-dimensional parabolic Hausdorff measure.

Proof. Fix a compact set K , and some r0 > 0. By Vitali’s covering lemma there exists some l ∈ N, {zk}lk=1 ⊂ K ∩ �

and {rk}lk=1 ⊂ (0, r0) so that the sets {Prk (zk)}lk=1, are mutually disjoint and K ∩ � is covered by {P5rk (zk)}lk=1. Let 
zk := zk + (

0, r2
k

)
and fix some δ > 0 to be determined later.

The proof requires two different estimates on G on different domains. First, on (M × [
tk − 4δ2r2

k , tk − δ2rk
]
)\

Prk (zk) one has

Gzk
≤ δ−ne−1/(4δ)2

Gzk
.

Also, for points in Brk (x
k) × [tk − 4δ2r2

k , tk − δ2r2
k ] one has

Gzk
≤ Cδr

−n.

We will also employ the estimate of Lemma 3.7, in particular

�z0(R;∇t ) ≤ C�z0(R;∇t ).

Combining the observations above we obtain, for all k, i
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ε0 ≤ �i
zk

(δrk)

≤ C�zk

(
δrk;∇ i

t

)

= Cδ2r2
k

tk−δ2r2
k∫

tk−4δ2r2
k

∫
M\Brk

(xk)

∣∣∣F i
t

∣∣∣2 Gzk
dV dt + Cδ2r2

k

tk−δ2r2
k∫

tk−4δ2r2
k

∫
Brk

(xk)

∣∣∣F i
t

∣∣∣2 Gzk
dV dt

≤ C e−1/(4δ)2

4δn δ2r2
k

tk−δ2r2
k∫

tk−4δ2r2
k

∫
M\Brk

(xk)

∣∣∣F i
t

∣∣∣2 Gzk
dV dt + Cδr

2−n
k

tk−δ2r2
k∫

tk−4δ2r2
k

∫
Brk

(xk)

∣∣∣F i
t

∣∣∣2 dV dt

≤

⎡⎢⎢⎣C e−1/(4δ)2

4δn δ2r2
k

tk−δ2r2
k∫

tk−4δ2r2
k

∫
M

∣∣∣F i
t

∣∣∣2 Gzk
dV dt

⎤⎥⎥⎦
I1

+
⎡⎢⎣Cδr

2−n
k

∫
Prk

(zk)

∣∣∣F i
t

∣∣∣2 dV dt

⎤⎥⎦
I2

.

Observe that we can estimate I1 using Theorem 3.5 via

δ2r2
k

tk−δ2r2
k∫

tk−4δ2r2
k

∫
M

∣∣∣F i
t

∣∣∣2 Gzk
dV dt = δ2r2

k

tk+r2
k −r2

k (1+δ2)∫
tk+r2

k −4r2
k (1+δ2)

∫
M

∣∣∣F i
t

∣∣∣2 Gzk
dV dt

= �zk

(
rk

√
1 + δ2;∇ i

t

)
≤ C�zk

(
r0;∇ i

t

)
+ C((YM (∇−1)))

≤ C (YM (∇−1)) .

Hence, since limδ→0
e−1/(4δ)2

4δn = 0, we can choose δ > 0 sufficiently small so that I1 ≤ ε0
2 , which then implies that 

I2 ≥ ε0
2 , which by elementary manipulations gives

rn−2
k ≤ C

ε0

∫
Prk

(zk))

∣∣∣F i
t

∣∣∣2 dV dt.

Therefore we have

Pn−2
5r0

(PR ∩ �) ≤
l∑

k=1

(5rk)
n−2

≤ C

l∑
k=1

∫
Prk

(zk)

∣∣∣F i
t

∣∣∣2 dV dt

≤ CYM (∇−1) .

Sending r0 → 0 allows us to conclude that Pn−2(� ∩ K) < ∞ for any compact set K . The result follows. �
Lemma 4.5. ∇t is a weak solution to Yang–Mills flow.

Proof. We verify (2.1) by approximating via cutoff functions which excise the singular set �. To construct these 
functions, first consider the coverings constructed in Lemma 4.4. In particular, given any r0 > 0 there is some finite 
cover {Pri (zi)}l of �, for some l ∈N with ri < r0 satisfying
i=1
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l∑
i=1

r−4
i

∣∣Pri (zi)
∣∣ ≈Pn−2

5r0
(K ∩ �) ≤ CYM (∇−1) , (4.1)

where here |·| denotes the Lebesgue measure on Rn ×R.
Let φ ∈ C∞

0 (P2, [0, ∞)) be a standard bump function satisfying 0 ≤ φ ≤ 1 and φ ≡ 1 on P1. For all i ∈N, define

φi(x, t) := φ

(
x−xi

ri
,

t−ti
r2
i

)
.

Let α ∈ C∞([0, T ]; L2(�2(AdE))) and arbitrary and set

η := α inf
i

(1 − φi) ∈ C∞
0

((
R

n × (−1,0)
)\�)

.

Note that by definition, η → α almost everywhere as r0 → 0. Furthermore, observing that suppη ⊂ (Rn × (−1,0))\�, 
it follows from Lemma 4.3 that, setting ϒt = ∇ref − ∇t , we have

0∫
−1

∫
M

〈
ϒ,

∂η
∂t

〉
− 〈F,Dη〉 dV dt = 0.

Using this we can estimate

0∫
−1

∫
M

〈
ϒ, ∂α

∂t

〉− 〈F,Dα〉dV dt

=
∣∣∣∣∣∣

0∫
−1

∫
M

〈
ϒ,

∂(α−η)
∂t

〉
− 〈F,D(α − η)〉 dV dt

∣∣∣∣∣∣
=

∣∣∣∣∣∣
0∫

−1

∫
M

〈
∂ϒ
∂t

, α − η
〉− 〈

F, [1 − inf
i

(1 − φi)]Dα

〉
−

〈
F,α ∧ d(inf

i
(1 − φi))

〉
dV dt

∣∣∣∣∣∣
= |I1 + I2 + I3|

≤
3∑

j=1

∣∣Ij

∣∣ .
First, since we have almost everywhere convergence of α to η and ∂ϒ

∂t
is in L2 we have limr0→0 I1 = 0. Similarly since 

[1 − infi (1 − φi)] goes to zero uniformly one has that limr0→0 I2 = 0. For the final term, we observe using Hölder’s 
inequality and (4.1) that

lim
r0→0

|I3| ≤ C lim
r0→0

||F ||L2(∪iPri
(zi ))

⎡⎣ 0∫
−1

∫
M

∣∣∣∣∇ inf
1≤i≤l

(1 − φi)

∣∣∣∣2 dV dt

⎤⎦
1
2

≤ C lim
r0→0

||F ||L2(∪iPri
(zi ))

[
l∑

i=1

r−2
i

∣∣Pri (zi)
∣∣] 1

2

≤ C lim
r0→0

r0

[
l∑

i=1

r−4
i

∣∣Pri (zi)
∣∣] 1

2

= 0.

The lemma follows. �
Combining the result of Lemma 4.2, Lemma 4.3, and Lemma 4.5, the results of Theorem 4.1 follow. �
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4.2. Structure of limit measures

Assume the setup of Theorem 4.1. Observe that the measures{∣∣∣F∇i
t

∣∣∣2 dV dt

}
and

{∣∣∣ ∂∇i
t

∂t

∣∣∣2 dV dt

}
admit subsequences converging in the sense of Radon measures to some limit measures. We can compare these to the 
measures induced by the weak H 2

1 limit ∇ to define measures μ, ν and η via∣∣∣F∇i
t

∣∣∣2 dV dt → ∣∣F∇∞
t

∣∣2 dV dt + ν ≡ μ,∣∣∣ ∂∇i
t

∂t

∣∣∣2 dV dt →
∣∣∣ ∂∇∞

t

∂t

∣∣∣2 dV dt + η.

The remainder of the section consists of a series of lemmas further refining the nature of these measures.

Lemma 4.6. Fix z = (x, t) ∈ M × [−1, 0] and φ ∈ Bx . Then

�(μ,z) := lim
R→0

R2
∫

TR(z)

φ2(x)Gz(x, t) dμ(x, t)

exists and is upper semicontinuous for all z ∈ M × [0, ∞). Moreover,

� = {z ∈ M × (0,∞) | ε0 ≤ �(μ,z) < ∞} .

Proof. We consider the limit as i → ∞ in the monotonicity inequality (3.2). In particular, for 0 < R ≤ R0, let

f (R,dμ) = eCR

⎡⎢⎣R2

2

∫
TR

φ2Gz dμ + CeCRRYM(∇−1)

⎤⎥⎦ .

We observe that (3.2) implies that

f (R,

∣∣∣F∇i
t

∣∣∣2 dV ) = eCR
[
�z0(R,∇i

t ) + CRYM(∇−1)
]

≤ eCR
[
eC(R0−R)�z0(R,∇i

t ) + C(R0 − R)YM(∇−1) + CRYM(∇−1)
]

= f (R0,

∣∣∣F∇i
t

∣∣∣2 dV ).

Using that 
∣∣∣F∇i

t

∣∣∣2 dV converges to dμ, it follows that f (R, dμ) is monotone nondecreasing as well. It follows that 
limR→0 f (R, dμ) exists, and by elementary arguments the limit defining � also exists, and is upper semicontinu-
ous. �
Lemma 4.7. For Pn−2-almost everywhere z ∈ �, one has

lim
R→0

R2−n

∫
PR(z)

∣∣F∇t

∣∣2 dV dt = 0, �(μ, z) = �(ν, z) ≥ ε0.

Proof. To show the first claim, let

Kj =

⎧⎪⎨⎪⎩z ∈ � | lim sup
R→0

R2−n

∫
PR(z)

|Ft |2 dV dt > j−1

⎫⎪⎬⎪⎭ .
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We will show that the (n − 2)-parabolic Hausdorff measure of Kj is zero for each j , which suffices. Fixing some 
δ > 0 we can apply Vitali’s covering lemma to obtain a covering of Kj by disjoint parabolic balls Prk (zk) with 
zk ∈ Kj , 5rk ≤ δ, such that Kj ⊂ ⋃

P5rk (zk). It follows that there exists C > 0 such that

Pn−2(Kj ) ≤ lim
δ→0

∑
k

(5rk)
n−2

≤ Cj lim
δ→0

∫
Nδ(�)

|Ft |2 dV dt

= 0,

where Nδ(�) indicates the parabolic δ-tubular neighborhood of �, and the last line follows by the dominated conver-
gence theorem. The second claim now follows from the first and the definitions of μ, ν. �
Lemma 4.8. For Pn−2-almost everywhere z ∈ �

lim
r→0

lim
i→∞ r4−n

∫
Pr (z)

∣∣∣ ∂∇i
t

∂t

∣∣∣2 dV dt = 0.

Proof. We will show that for any ε > 0, the set

Cε :=

⎧⎪⎨⎪⎩z ∈ � | lim inf
r→0

lim inf
i→∞ r4−n

∫
Pr (z)

∣∣∣ ∂∇i

∂t

∣∣∣2 dV dt ≥ ε

⎫⎪⎬⎪⎭
satisfies Pn−4(Cε) < ∞. Given this, we can express

�′ :=

⎧⎪⎨⎪⎩z ∈ � | lim inf
r→0

lim inf
i→∞ r4−n

∫
Pr (z)

∣∣∣ ∂∇i

∂t

∣∣∣2 dV dt = 0

⎫⎪⎬⎪⎭ = � \
(⋃

n∈N
C2−n

)
.

In particular, �′ can be obtained from � by removing a countable union of sets of finite Pn−4 measure, which has 
zero Pn−2 measure by a standard argument.

To show Pn−4(Cε) < ∞, fix a δ > 0, and apply Vitali’s covering lemma to obtain a collection {zk}i∈N ⊂ � and rk ∈
(0, δ) satisfying that {Prk (zk)} are mutually disjoint, {P5rk (zk)} cover �, and furthermore there is some subsequence 
{∇i

t } so that for all k, i,

r4−n
k

∫
Prk

(zk)

∣∣∣ ∂∇i

∂t

∣∣∣2 dV dt ≥ ε.

Using this we obtain

Pn−4
5δ (Cε) ≤

∞∑
k=1

(5rk)
n−4

= 5n−4
∞∑

k=1

rn−4
k

≤ 5n−4

ε

∞∑
k=1

∫
Prk

(zk)

∣∣∣ ∂∇i

∂t

∣∣∣2 dV dt

≤ 5n−4

ε

∫
⋃∞ Pr (zk)

∣∣∣ ∂∇i

∂t

∣∣∣2 dV dt
k=1 k
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≤ C(n, ε)

2∫
0

∫
B2

∣∣∣ ∂∇i

∂t

∣∣∣2 dV dt

≤ C(n, ε,YM(∇ i
−1)),

where the last line follows via the Yang–Mills energy monotonicity. Sending δ to zero proves that Pn−4(Cε) < ∞, 
finishing the proof. �
Lemma 4.9. The density function �(μ, x) is Pn−2-approximately continuous at Pn−2-almost every x ∈ �. That is, 
for all Pn−2-a.e. z ∈ � one has that for all ε > 0,

lim
r→0

r2−nPn−2 ({w ∈ Pr(x) ∩ � | |�(μ,w) − �(μ,z)| > ε}) = 0.

Proof. Note that for a given x ∈ �, the density �(μ, x) is upper semicontinuous, so the set

Ac := {z | �(μ,z) < c}
is open. Therefore for any c1, c2 ∈ [0, ∞) with c1 < c2, the set Ac2\Ac1 is a Borel set and thus measurable. Hence

Ei :=
{
z ∈ � | (i−1)ε

2 ≤ �(μ,z) < iε
2

}
= Aiε

2
\A(i−1)ε

2
,

is a Borel set. Note that, by the definition of Ei ,

Pn−2

(
�\

⋃
i

Ei

)
= 0.

For all x ∈ Ei , by applying Theorem 3.5 of [17] to the measure Pn−2 we have that

lim
R→0

R2−nPn−2 ({y ∈ Pr(x) ∩ � | |�(μ,w) − �(μ,z)| > ε})
= lim sup

R→0
R2−nP (Pr(z) ∩ (�\Ei))

= 0.

The result follows. �
Lemma 4.10. One has that 

{∇ i
t

}
does not converge to ∇t strongly in H 1,2

loc if and only if Pn−2(�) > 0 and 
ν (M × [−1,0]) > 0.

Proof. It follows from Lemma 4.7 that if Pn−2(�) > 0 then for Pn−2 almost everywhere z ∈ � one has

�(ν, z) = �(μ,z) ≥ ε0,

hence ν (M × [−1,0]) = ν (�) > 0, and 1
2

∣∣∣F∇i
t

∣∣∣2 dV dt does not converge to 1
2

∣∣F∇t

∣∣2 dV dt . Therefore 
{∇ i

t

}
doesn’t 

converge to ∇t strongly in H 1,2
loc . Conversely, directly from the definition of ν, if ν (M × [−1,0]) > 0 then {∇ i

t } cannot 

converge strongly to ∇ in H 1,2
loc . �

5. Tangent measures and stratification

In this section we establish results on the structure of tangent measures along Yang–Mills flow which will be 
central in the sequel. First we discuss the space Tz (μ) of all tangent measures of μ for z ∈ �. We first show that every 
tangent measure is invariant under parabolic dilations. Building upon this, we will associate to each tangent measure 
a nonnegative integer which is the dimension of the largest parabolic dilation invariant subspace which is a subset 
of the points of maximal density. Using this dimension we can then stratify the set � accordingly. In particular, we 
demonstrate enough structure on the tangent measures to apply a stratification result of White [23], which generalizes 
Federer’s dimension reduction argument [6].
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5.1. Setup

For the following we set

R
n+1+ := R

n × [0,∞), R
n+1− := R

n × (−∞,0].

Definition 5.1. For z0 = (x0, t0) ∈ R
n × R and λ > 0, define parabolic dilation and Euclidean dilation respectively 

by,

Pz0,λ(x, t) :=
(
λ(x − x0), λ

2(t − t0)
)

,

Dx0,λ(x) := λ(x − x0).

We may apply parabolic rescaling to a measure as follows: for all A ⊂R
n ×R, we have

Pz0,λ(μ)(A) := λ2−nμ
(
Pz0,λ(A)

)
,

Dx0,λ (μ) (A) := λ4−nμ
(
Dx0,λA

)
.

We note that this scaling law reflects the scaling properties for Yang–Mills flow densities, and not a pure parabolic 
rescaling of say Euclidean measure.

Definition 5.2. For any z0 ∈ �, the tangent measure cone of μ at z0, Tz0(μ), consists of all nonnegative Radon 
measures on Rn+1 that are given by

Tz0(μ) := {
μ∗ | ∃ri → 0, such that Pz0,ri (μ) → μ∗} .

Fixing z0 ∈ � and μ∗ = μ∗
s ds ∈ Tz0(μ), we set, for any z = (x, t) ∈ R

n+1,

�
(
μ∗, z, r

) := r4
∫

M×{t−r2}
Gz(y, s) dμ∗

s (y).

This is monotonically nondecreasing with respect to r so that the μ∗ density at z, given by

�(μ∗, z) := lim
r→0

�
(
μ∗, z, r

)
,

exists and is upper semicontinuous for z = (x, t) ∈ R
n+1. Moreover, for any z0 ∈ � and μ∗ ∈ Tz0(μ), we set

U
(
�

(
μ∗)) :=

{
z ∈R

n+1 | � (
μ∗, z

) = �
(
μ∗,0

)}
,

V
(
�

(
μ∗)) := U

(
�

(
μ∗))∩ (

R
n × {0}) ,

W
(
�

(
μ∗)) :=

{
(x,0) ∈R

n ×R | ∀(y, s) ∈ R
n+1− ,�

(
μ∗, (y, s)

) = �
(
μ∗, (x + y, s)

)}
.

Definition 5.3. For z0 ∈ � and μ∗ ∈ Tz0(�), let

dim
(
�

(
μ∗)) =

{
dim (V (�(μ∗))) + 2, if U (�(μ∗)) = V (�(μ∗)) ×R,

dim (V (�(μ∗))) otherwise.

5.2. Preliminary results

In this subsection we show various preliminary results on the structure of tangent measures. First we establish the 
existence of at least one tangent measure in Lemma 5.4. We then establish parabolic scaling invariance of tangent 
measures in Lemma 5.6.

Lemma 5.4. Given a weak limit measure μ, z0 ∈ �, and λi → 0 there exists a subsequence {λij } and some nonnega-
tive Radon measure μ∗ on Rn+1 such that Pz0,λi

(μ) → μ∗ as weak convergence of Radon measures on Rn+1.

j
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Proof. We fix some small radius r0 and claim that

sup
(z,r)∈M×[−1,0]×(0,r0)

r2−n μ(Pr(z)) < ∞. (5.1)

In particular, we use a change of variables and Theorem 3.5 to yield

r2−nμ(Pr(z)) = r2−n lim
i→∞

∫
Pr (z)

∣∣F∇i

∣∣2 dV dt

= lim
i→∞ r2−n

r2∫
t=0

∫
S√

t

∣∣F∇i

∣∣2 φ dV dt

= lim
i→∞ r2−n

r∫
s=0

s

∫
Ss

∣∣F∇i

∣∣2 φ dV ds

≤ lim
i→∞Cr−2

r∫
s=0

s�(s) ds

≤ lim
i→∞C(�(r0))r

−2

r∫
s=0

s ds

≤ C.

Hence, using (5.1), for any λi the sequence of dilated measures Pz0,λi
(μ) is uniformly bounded on all Borel sets in 

R
n+1, hence by the weak compactness of families of uniformly bounded Radon measures we obtain the existence of 

the subsequential limiting measure μ. �
Lemma 5.5. For any z0 ∈ �, 0 < r1 < r2 < ∞ a sequence λi → 0 and a blowup sequence ∇i

t one has

lim
i→∞

−r2
2∫

−r2
1

∫
Rn

∣∣∣x F∇i
t

+ 2t∂t∇ i

t

∣∣∣2 Gz0 dx dt = 0.

Proof. First recall that as convergence of Radon measures on Rn we have

1
2

∣∣∣Ft
i
∣∣∣2 dV → μ∗

t for all t ∈ ( − ∞,0].
Hence, for any R > 0, applying a change of variables we obtain

R4
∫

Rn×{−R2}
G(0,0) dμ∗

t dt = lim
i→∞

∫
Rn×{−R2}

R4

2

∣∣∣F i

t

∣∣∣2 G(0,0) dVx dt

= lim
i→∞

∫
Rn×{−R2}

R4λ4
i

2

∣∣∣F i

t0+λ2
i t

(x0 + λix)

∣∣∣2 G(0,0) dVx dt

= lim
i→∞

∫
Rn×{t −R2λ2}

(λiR)4

2λ2
i

∣∣∣F i
t

∣∣∣2 Gz0 dVy ds (5.2)
0 i
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= lim
λi→0

⎡⎢⎣∫
Rn

(λiR)4 μt

∣∣∣∣∣∣
t=t0−R2λ2

i

⎤⎥⎦
= �(μ,z0) ,

where the last line follows from Lemma 3.7. In particular, the � functional is approximately constant in R for the 
connections ∇i

t , and hence using (3.3) we obtain the result. �
For � ⊂R

n ×R we will use μ∗�� to denote the restriction of the tangent measure to �.

Lemma 5.6. For any z0 ∈ � and μ∗ ∈ Tz0(μ), the quantity μ∗�Rn+1− is invariant under all parabolic dilation, i.e.

Pκ

(
μ∗⌊

R
n+1−

)
= μ∗⌊

R
n+1− .

Proof. First we observe that

Pκ

(
μ∗⌊

R
n+1−

)
= Pκ

({(
μ∗

t , t
) | t ∈ (−∞,0]})

=
{(

Dκ(μ∗
t ), κ

2t
)

| t ∈ (−∞,0]
}

=
{(

Dκ

(
μ∗

t
κ2

)
, κ2t

)
| t ∈ (−∞,0]

}
.

Thus, to prove the lemma it suffices to show that for all κ < 0, for all t ∈ (−∞, 0],

Dκ

(
μ∗

t
κ2

)
= μ∗

t .

Since κ is arbitrary this is equivalent to demonstrating this at t = −1. To prove this it suffices to show the result for μ∗
t

multiplied by an arbitrary smooth positive function. We will take advantage of this by inserting a factor of the Greens 
function G = G(0,0), then multiplying by an arbitrary compactly supported positive function. This will allow us to 
take advantage of monotonicity formulae to obtain the result. In particular, we will show that

κn−4
∫
Rn

φ(κx)G(κx,−1) dμ∗
−κ−2 =

∫
Rn

φ(x)G(x,−1) dμ∗−1, (5.3)

for any φ ∈ C1
0(Rn). We attain the claim (5.3) if we can show that

lim
i→∞

d
dκ

⎡⎣ κn−4

2

∫
Rn

φ(κx)G(κx,−1)

∣∣∣F i

−κ−2

∣∣∣2 dx

⎤⎦ = 0. (5.4)

For notational simplicity we will remove both the sequence index i and the bar from the connection. Manipulating the 
integrand by applying the change of coordinates κx = y yields,

κn−4

2

∫
Rn×{−1}

φ(κx)
∣∣F−κ−2 (x)

∣∣2 G(κx,−1) dx

= κn−4

2

∫
Rn×{−1}

φ(y)
∣∣F−κ−2

( y
κ

)∣∣2 G(y,−1) d
(y

κ

)

= κ−4

2

∫
Rn×{−1}

φ(y)
∣∣F−κ−2

( y
κ

)∣∣2 G(y,−1) dy

= [
�
( 1

κ
;∇t

)∣∣
t=−1 .
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Set R(κ) := 1
κ

. Then by a calculation similar to (3.1), where the final term vanishes since the cutoff function φ no 
longer depends on the parameter R, we see that

∂
∂κ

[
�
( 1

κ
;∇t

)] = −1
κ2

∂
∂R

[�(R(κ);∇t )]

= −1
κ5

∫
S

κ−1

|t | ∣∣ x
t

F − 2D∗F
∣∣2 φGdx

+ 4
κ5

∫
S

κ−1

〈(
x F − 2t

(
D∗F

))
,∇φ F

〉
Gdx.

Taking the limit as i → ∞, we have that the first quantity vanishes by Lemma 5.5. For the second we apply weighted 
Hölder’s inequality for an arbitrary ε > 0,

1
κ5

∫
S

κ−1

〈(
x F − 2t

(
D∗F

))
,∇φ F

〉
Gdx

≤ C

εκ5

∫
S

κ−1

∣∣(x F − 2t
(
D∗F

))∣∣2 Gdx + ε

κ5

∫
S

κ−1

|∇φ|2 |F |2 Gdx.

The first factor vanishes with another application of Lemma 5.5. The integrand of the second term is bounded by the 
monotonicity of �, using an argument similar to (5.2). Sending ε → 0 therefore yields (5.4). The result follows. �
5.3. Stratification of tangent measures

Lemma 5.7. For z0 ∈ � and μ∗ ∈ Tz0(μ), the following hold.

(1) For all z ∈R
n+1, �(μ∗, z) ≤ �(μ∗, 0).

(2) If z ∈R
n+1 satisfies � (μ∗, z) = � (μ∗,0), then for all λ > 0 and v ∈R

n+1− ,

�
(
μ∗, z + v

) = �
(
μ∗, z + Pλv

)
.

Proof. For μ∗ ∈ Tz0(μ), there exists some sequence ri → 0 such that Pz0,ri (μ) → μ∗. We first observe how the 
rescaling law for � is reflected in the definition of �. In particular, since we are integrating over a space slice we 
apply the scaling law for Dλ and change variables to yield

�(Pλ(μ), z, r) = r4

2

∫
Sr

GzPλ(μ)

= r4

2

∫
Sr

(
λnP∗

λGPλ(z)

)(
λ4−nP∗

λμ
)

= (λr)4

2

∫
Pλ(Sr )

GPλ(z)μ

= �(μ,Pλ(z), λr).

Using this, for any r > 0, and z = (x, t) ∈ R
n+1,
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�
(
μ∗, z

) ≤ �
(
μ∗, z, r

)
= lim

ri→0
�

(
Pz0,ri (μ), z, r

)
= lim

ri→0
�

(
μ,z0 +

(
rix, r2

i t
)

, rir
)

≤ �(μ,z0)

= �
(
μ∗,0

)
,

(5.5)

where we have applied the upper semicontinuity of �(μ, ·, ·) with respect to the last two variables. Thus claim (1) 
follows.

To prove claim (2), observe that the hypothesis �(μ∗, z) = �(μ∗, 0) implies that the inequalities of (5.5) are 
equalities. This implies that � (μ∗, z, r) = �(μ, z0), namely, it is constant with respect to r . By an argument similar 
to that of Lemma 5.6, we have that � (μ∗, z + v) = � (z + Pλ(v)) for any v ∈R

n+1− and λ > 0. The result follows. �
Proposition 5.8. For z0 ∈ � and μ∗ ∈ Tz0(μ),

V
(
�

(
μ∗, ·)) = W

(
�

(
μ∗, ·)) .

In particular, both V (�(μ∗, ·)) and W (�(μ∗, ·)) are linear subspaces of Rn. Moreover, U (�(μ∗, ·)) is either 
V (�(μ∗, ·)), or V (�(μ∗, ·)) × (−∞, a] for some 0 ≤ a ≤ ∞ and � (μ∗, ·) is time-independent on (−∞, a].

Proof. First we show that W(�(μ∗, ·)) ⊂ V (�(μ∗, ·)). Fix (x, 0) ∈ W (�(μ∗, ·)). Since the second component is 
identically zero it suffices to verify that (x, 0) ∈ U (�(μ∗, ·)). Note that by definition of W (�(μ∗, ·)), choosing 
y = −x as in its definition,

�
(
μ∗, (x,0)

) = �
(
μ∗, (x − x,0)

) = �
(
μ∗,0

)
.

It follows that W (�(μ∗, ·)) ⊂ V (�(μ∗, ·)).
Now we show the containment V (�(μ∗, ·)) ⊂ W (�(μ∗, ·)). First note that V (�(μ∗, ·)) is closed under scalar 

multiplications from Lemma 5.6. Next, for any nonzero x ∈ V (�(μ∗, ·)) we have that for all λ > 0 and all v ∈R
n+1− , 

by applying Lemma 5.7 (2), and using the parabolic scaling invariance of � from Lemma 5.6,

�
(
μ∗, (x,0) + v

) = �
(
μ∗, (x,0) + Pλv

)
= �

(
μ∗,Pλ−1 ((x,0) + Pλv)

)
= �

(
μ∗,Pλ−1 (x,0) + v

)
.

(5.6)

By the upper semicontinuity of �, sending λ → ∞ yields

�(μ∗, (x,0) + v) ≤ �(μ∗, v).

On the other hand, since v − Pλ−1 (x,0) ∈ R
n+1− , we can replace v �→ v − Pλ−1 (x,0) throughout the equalities in (5.6)

and obtain that

�
(
μ∗, (x,0) + v − Pλ−1 (x,0)

) = �
(
μ∗, v

)
.

Again sending λ → ∞ and utilizing the upper semicontinuity of � (μ∗, ·) yields

�(μ∗, (x,0) + v) ≥ �(μ∗, v).

Hence we have � (μ∗, v) = � (μ∗, (x,0) + v), and so we conclude V (�(μ∗, ·)) ⊂ W (�(μ∗, ·)) so that
V (�(μ∗, ·)) = W (�(μ∗, ·)).

Note that by definition of W (�(μ∗, ·)) it is closed under linear combinations since for all (x,0), (v,0) in 
W (�(μ∗, ·)) we have that for all (y, s) ∈ R

n+1− , just iterating its definition twice

�
(
μ∗, ((x + v) + y, s)

) = �
(
μ∗, (x + y, s)

)
= �

(
μ∗, (y, s)

)
.
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Therefore by equality of V (�(μ∗, ·)) to W (�(μ∗, ·)), with the combined scaling invariance and linear combinations 
invariance both are linear subspaces of Rn.

Now we prove the remaining statement of the proposition concerning the structure of U (�(μ∗, ·)). Suppose 
that z := (x, t) ∈ U (�(μ∗, ·)) with t < 0. Then for all w := (y, s) ∈ R

n+1 with s ≤ t and for all λ > 0, using 
Lemma 5.7 (b)

�
(
μ∗,Pλ−1(w)

) = �
(
μ∗,w

)
= �

(
μ∗, z + w − z

)
= �

(
μ∗, z + Pλ−1(w − z)

)
.

(5.7)

In particular, take λ ∈ (0,1), and note that consequently s
λ2 ≤ s ≤ t . So taking (5.7) and replacing w �→ Pλ (w) in 

yields

�
(
μ∗,w

) := �
(
μ∗, z + w − Pλ−1(z)

)
. (5.8)

Taking λ → 0, we see that � (μ∗,w) ≤ � (μ∗, z + w). Taking (5.8) again and instead replacing w �→ w + Pλ−1(z), 
we conclude that

�
(
μ∗,w + Pλ−1 (z)

) = �
(
μ∗, z + w

)
.

Again sending λ → 0 we obtain that

�
(
μ∗, z

) ≤ �
(
μ∗, z + w

)
.

We conclude that for any z := (x, t) ∈ U (�(μ∗, ·)) with t < 0, for all w := (y, s) with s ≤ t ,

�
(
μ∗,w

) = �
(
μ∗, z + w

)
. (5.9)

Then choosing w ≡ z, iterating (5.9), applying the parabolic scaling invariance of � from Lemma 5.6, and the upper 
semicontinuity of � (μ∗, ·), one has

�
(
μ∗,0

) = �(μ∗, z) = �(μ∗, z + z) = · · · = �(μ∗,mz)

= �
(
μ∗, (mx,mt)

)
= �

(
μ∗,P 1

m
(mx,mt)

)
= �

(
μ∗,

(
x, t

m

))
≤ �

(
μ∗, (x,0)

)
.

Combining this with Lemma 5.7 (1) we conclude that (x,0) ∈ V (�(μ∗, ·)) = W (�(μ∗, ·)). Therefore

�
(
μ∗, (0, t)

) = �(μ∗, (x,0) + (0, t)) = �(μ∗,0)

It follows that (0, t) ∈ U (�(μ∗, ·)). It follows that � (μ∗, ·) is actually time independent for t ≤ 0. Therefore for all 
t ≤ 0,

V
(
�

(
μ∗, ·)) := U

(
�

(
μ∗, ·))∩ (

R
n × {t}) .

Lastly, if z = (x, t) ∈ U (�(μ∗, ·)) with t > 0, then we can repeat the argument above to show that � (μ∗, ·) is 
time-independent up to t . We set a to be the value of the maximal time t ≥ 0 for which this time independence exists 
on. Then we have U (�(μ∗, ·)) = V (�(μ∗, ·)) × (−∞, a], which concludes the proof. �

We can now establish Theorem 1.2, which we restate for convenience.

Theorem. For 0 ≤ k ≤ n − 2 let

�k = {
z0 ∈ � | dim

(
�

(
μ∗, ·)) ≤ k,∀μ∗ ∈ Tz0(μ)

}
.

Then dimP (�k) ≤ k and �0 is countable.
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Proof of Theorem 1.2. This is a direct consequence of ([23] Theorem 8.2). To connect directly to the notation of 
that paper, the function f is given by the density function. Hypothesis (1), the subsequential compactness of blowup 
limits, is established in Lemma 5.4. Hypothesis (2) is clear from the construction of blowup limits. Hypothesis (3), 
the parabolic scaling invariance of the limit functions, is established in Lemma 5.6. The theorem thus applies to give 
the claimed statement. �
6. Characterization of strong convergence

In this section we prove Theorem 1.3 (stated more precisely as Theorem 6.1 below), which characterizes when the 
weak convergence in H 1,2 for sequences as in Theorem 4.1 can be improved to strong convergence. In particular, we 
know this means that the defect measure is nontrivial, and we use this to obtain refined estimates on tangent measures, 
eventually leading to a further blowup sequence which yields the required Yang–Mills connection.

Theorem 6.1. Suppose {∇i
t } is a sequence of smooth solutions to Yang–Mills flow on [−1, 0] with

sup
i

∫
M×[−1,0]

(∣∣∣ ∂∇i
t

∂t

∣∣∣2 +
∣∣∣F∇i

t

∣∣∣2)dV dt < ∞.

Furthermore, suppose {∇ i
t } → ∇∞

t weakly in H 1,2
loc . Then exactly one of the following holds:

• There exists a blowup sequence converging to a Yang–Mills connection on S4.
• One has∣∣∣F∇i

t

∣∣∣2 dV dt → ∣∣F∇∞
t

∣∣2 dV dt

as convergence of Radon measures, and hence {∇ i
t } → ∇∞

t strongly in H 1,2
loc . Thus ∇∞

t is a weak solution of 
Yang–Mills flow satisfying Pn−2(�) = 0.

Proof. We adopt the setup of the previous sections in this proof. In particular, we assume we have a particular blowup 
sequence together with a limiting tangent measure μ∗. Moreover, various results from §4.2 were established which 
apply to almost every point in the singular set. We will assume without loss of generality that our tangent measure 
arises from a blowup sequence around one of these points, so that the Lemmas of §4.2 apply. In particular, in the 
discussion below we will refer to a sequence {∇i

t } but this will refer to a blowup sequence, not the original given 
sequence of the statement.

Lemma 6.2. For t ∈ (−4, 0], we have Hn−4
[
�∗

t

]
> 0.

Proof. Suppose to the contrary there is some t0 ∈ (−4, 0] such that Hn−4(�∗
t0
) = 0. Then for all ε > 0, there exists 

some δε > 0 and a covering of �∗
t0

of the form {Brj (xj )}i∈N, with x ∈ �∗
t0

and 0 < rj ≤ δε satisfying

∞∑
j=1

rn−4
j < ε.

Now, because μ∗
t0

[
B1\

(⋃
j∈N Brj (xj )

)]
= 0, then by a diagonalization argument we may choose a subsequence 

{∇ i
t } such that

lim
i→∞

1
2

∫
B1\⋃j∈N Brj

(xj )

∣∣∣F∇i
t0

∣∣∣2 dV = 0. (6.1)

Furthermore we will use (3.3) to estimate the curvature on balls in the cover. We choose a cutoff function φ for a 
ball of radius 1, and further fix some radius R. Note that for the compact set suppφ there is a uniform estimate for the 



C. Kelleher, J. Streets / Ann. I. H. Poincaré – AN 35 (2018) 1655–1686 1679
L2 norm of the Yang–Mills energy. This follows from the argument of Lemma 5.4, which shows that the sequence of 
blowup measures is uniformly locally finite. In particular, there exists K < ∞ such that∫

supp φ

∣∣∣F∇i
t0

∣∣∣2 dV ≤ K.

Hence using (3.3) we estimate for all i, j ∈N,

r4−n
j

2

∫
Brj

(xj )

∣∣∣F∇i
t0

∣∣∣2 dV ≤ 1
2e

r4
j

∫
Brj

(xj )×{(t0+r2
j )−r2

j }

∣∣∣F∇i
t

∣∣∣2 φ2G(xi,t0+r2
j )dV

≤ 1
2e

�
(
∇ i

t ,
(
xj , t0 + r2

j

)
, rj

)
≤ 1

2e
�
(
∇ i

t ,
(
xj , t0 + r2

j

)
,R

)
+ CK

(
R − rj

)
≤ R4−n

2e

∫
Rn×{t0+r2

j −R2}

∣∣∣F∇i
t

∣∣∣2 φ2 dV + CK
(
R − rj

)
≤ C (R,K) .

Therefore we have that

1
2

∫
⋃

j∈N Brj
(xj )

∣∣∣F∇i
t0

∣∣∣2 dV ≤ 1
2

∑
j∈N

∫
Brj

(xj )

∣∣∣F∇i
t0

∣∣∣2 dV

≤ C
∑
j∈N

rn−4
j

≤ Cε.

Choosing ε <
ε0

16C
and combining with (6.1) yields, for i sufficiently large,∫

B1

∣∣∣F∇i
t0

∣∣∣2 dV ≤ ε0

2
. (6.2)

Also, using Lemma 4.8 we have

lim
i→∞

∫
P2

∣∣∣ ∂∇i
t

∂t

∣∣∣2 dV = 0. (6.3)

Using Lemma 3.1 we find that for any φ ∈ C∞
0 (B2) and −4 < t1 < t2 ≤ 0 one has

1
2

∫
B2

(∣∣∣F i
t2

∣∣∣2 −
∣∣∣F i

t1

∣∣∣2)φ dV = −
t2∫

t1

∫
B2

(∣∣∣∂t∇ i
t

∣∣∣2 φ +
〈
∇φ F i

t , ∂t∇ i
t

〉)
dV dt. (6.4)

Combining (6.3)–(6.4) shows that the limiting measure μ∗
t (φ) is independent of time for t ∈ (−4, 0]. Applying (6.2)

again yields

1
2

∫
P1

∣∣∣F i
t

∣∣∣2 dV dt ≤ 1
2 sup

t∈[−1,0]

∫
B1

∣∣∣F i
t

∣∣∣2 dV

≤ 1
2

∫
B1

∣∣∣F i
t0

∣∣∣2 dV + o(i)

≤ ε0
4 .

This is a contradiction to the assumption that (0, 0) ∈ �∗. �
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Proposition 6.3. There is a linear subspace P of dimension (n − 4) such that for all t < 0 one has that supp(μ∗
t ) = P .

Proof. First, by Lemma 4.9, we have that � (ν, z) = � (μ, z) is Pn−2-approximately continuous at z0 for z ∈ � and 
� (μ, z) is upper semicontinuous with respect to z, we conclude that for Pn−2-almost all z ∈ �∗, we have

�
(
μ∗, z

) ≥ �(μ,z0) .

Also, it follows from Lemma 5.7 that

�
(
μ∗, z

) ≤ �
(
μ∗,0

) = �(μ,z0) .

Hence for Pn−2 a.e. z ∈ �∗,

�
(
μ∗, z

) = �
(
μ∗,0

)
. (6.5)

We now show that in fact all points in �∗ have maximal density. In particular, by Proposition 5.8 there is some set 
S ⊂R

n with Hn−4 (S) = 0 and an (n − 4)-dimensional plane P ⊂R
n such that S ∩ P =∅, and

�∗
t = S ∩ P

for all t . We claim that in fact S = ∅. Suppose to the contrary we had some z ∈ S. Note that by construction, it must 
hold that 0 < �(μ∗, z) < �(μ∗, 0). By Lemma 5.7 (2) we have that for all w ∈ P ,

�(μ∗, z) = �(μ∗,w + (z − w)) = �
(
μ∗,w + Pλ(z − w)

)
.

Applying this for w ∈ Bn−4
ε (0) ⊂ P and λ ∈ [1 − ε, 1] yields a set of positive Pn−2-measure in �∗ on which 

�(μ∗, ·) = �(μ∗, z) < �(μ∗, 0), contradicting (6.5). �
Using this characterization of the singular set of the blowup limit, we can refine our estimates on the blowup 

sequence to obtain further structure on the blowup limit. Without loss of generality we can assume that P = R
n−4 ⊂

R
n is the standard embedding in the first n − 4 coordinates, and we express a general point as X = (x, y) where 

x ∈ R
4, y ∈ R

n−4. We first show two lemmas which give improved vanishing results for the time derivative of the 
connection as well as for the curvature in directions along the singular locus.

Lemma 6.4. Given the setup above and 0 < t1 < t2 ≤ 1, one has

lim
i→∞

−t1∫
−t2

∫
Bn

1

⎛⎝∣∣∣ ∂∇i
t

∂t

∣∣∣2 +
n−4∑
j=1

∣∣∣ ∂
∂yj

F∇i
t

∣∣∣2
⎞⎠ dV dt = 0.

Proof. We first observe that by rescaling the result of Lemma 4.8 we observe that

lim
i→∞

−t1∫
−t2

∫
Bn

1

∣∣∣ ∂∇i
t

∂t

∣∣∣2 dV dt = 0. (6.6)

Now let ξj = 2 ∂
∂yj

. Since we know that the limiting density � is a multiple of the Hausdorff measure of the given 

R
n−4 on each time slice, applying the monotonicity formula (3.2) with centers (X0, t0) = (

(
0, ξj

)
, 0) implies that for 

any ρ > 0 we have

0 = lim
i→∞

1∫
ρ

r

∫
M

−r2∫
−4r2

∣∣(X−ξj

)
F i

t +2t∂t∇i
t

∣∣2
|t | φ2G0,ξj

dV dt dr

≥ lim
i→∞Cρ

1∫
ρ

r

∫
B1

−r2∫
−4r2

∣∣(X−ξj

)
F i

t +2t∂t∇i
t

∣∣2
|t | dV dt dr.
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Note that the second equality follows since, for a given ρ, on B1 we have that there is a constant Cρ ∈ (0, ∞)

dependent solely on ρ such that G0,ξj
φ2 ≥ Cρ ∈ (0, ∞).

Next we apply Fubini’s theorem to switch the integration bounds dr dt to dt dr . In that case we have that if we set

Ii(r, t) := Cρr

∫
B1

∣∣∣∣(X−ξj ) F∇i
t
+2t∂t∇i

t

∣∣∣∣2
|t | dV

then applying Fubini’s theorem to the regions corresponding to the variables r and t give that

0 = lim
i→∞

⎡⎢⎢⎢⎣
−ρ2∫

−4ρ2

√−t∫
ρ

Ii(r, t) dr dt +
−4ρ2∫
−1

√−t∫
1
4
√−t

Ii(r, t) dr dt +
−1∫

−4

1∫
1
4
√−t

Ii(r, t) dr dt

⎤⎥⎥⎥⎦ .

Then for 0 < t1 < t2 < 1, if we choose ρ ≤ t1, so that [−t2
2 , −t2

1 ] ⊂ [−1,−ρ2
]

(the unions of the temporal domains of 
the first two integrals) then we can conclude that since the sums are 0 and the arguments of each integral are positive,

0 = lim
i→∞

−t2
1∫

−t2
2

∫
B1

∣∣∣∣(X−ξj ) F∇i
t
+2t∂t∇i

t

∣∣∣∣2
|t | dV dt

≥ lim
i→∞|t1|−1

−t2
1∫

−t2
2

∫
B1

1
2

∣∣∣(X − ξj ) F∇i
t

∣∣∣2 − C

∣∣∣t∂t∇ i
t

∣∣∣2 dV dt

= lim
i→∞|t1|−1

−t2
1∫

−t2
2

∫
B1

1
2

∣∣∣(X − ξj ) F∇i
t

∣∣∣2 dV dt.

The second inequality follows using the Cauchy–Schwarz inequality, and the final line follows from (6.6). Now ob-

serving that ξj = 2 ∂
∂yj

we see that for all X = (x, y) ∈ B1 we have that 
∣∣∣〈(X − ξj ),

∂
∂yj

〉∣∣∣ ≥ 1. The result follows. �
Lemma 6.5. Given the setup above, there exists (y, t) ∈ Bn−4

1/2 × [− 1
2 , − 1

4 ] such that

lim
i→∞ sup

0<r≤1
r4−n

∫
Bn−4

r (y)

∫
B4

1 ×{y}×[−1,0]

∣∣∣ ∂∇i
t

∂t

∣∣∣2 dx dt dy = 0,

lim
i→∞ sup

0<r≤1
r2−n

∫
Bn−4

r (y)×[t−r2,t]

∫
B4

1 ×{y}

n−4∑
j=1

∣∣∣ ∂
∂yj

F∇i
t

∣∣∣2 dx dt dy = 0.

Proof. To begin we show a preliminary statement using maximal functions. Let

fi : Bn−4
1 ⊂R

n−4 → [0,∞), fi(y) =
∫

(
B4

1 ×{y})×[−1,0]

|∂t∇i |2 dx dt

gi : Bn−4
1 × [−1,− 1

8

] → [0,∞), gi(y, t) =
∫

B4
1 ×{y}

n−4∑
j=1

∣∣∣ξj F i
t

∣∣∣2 dx.
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Using these two quantities, we define two local Hardy–Littlewood maximal functions of fi on Bn−4
1 and gi on Bn−4

1 ×[−1,− 1
8

]
by, for y ∈ Bn−4

1 ,

M(fi)(y) = sup
0≤r≤1

r4−n

∫
Bn−4

r (y)

fi dy.

Furthermore for (y, t) ∈ Bn−4
1 × [−1,− 1

8

]
,

M(gi)(y, t) = sup
0<r<1

r2−n

t∫
t−r2

∫
Bn−4

r (y)

gi dy dt.

By applying Lemma 6.4 we can choose a subsequence such that 
∫
Bn−4

1
fidy ≤ 4−i . Combining this with the Hardy–

Littlewood weak L1 estimate we obtain a subsequence such that

μ{y | M(fi) ≥ 2−i} ≤ C
2−i

∫
Bn−4

1

fi dy ≤ C2−i .

In particular, for I chosen sufficiently large we have

μ

⎛⎝⋃
i≥I

{y | M(fi) ≥ 2−i}
⎞⎠ ≤ C2−I < 1

2μ
(
Bn−4

1

)
.

Thus Bn−4
1 \ 

⋃
i≥I {y|M(fi) ≥ 2−i} is nonempty, and any point y in that set satisfies

lim
i→∞M(fi)(y) = 0.

Combining this with an identical argument yields (y, t) ∈ Bn−4
1/2 × [− 1

2 , − 1
4 ] and a further subsequence such that

lim
i→∞M(gi)(y, t) = 0, lim

i→∞M(fi)(y) = 0.

The result follows. �
For the following Lemma we will suppress bundle indices for notational simplicity. Moreover, we will refer to 

coordinate directions ∂
∂xi with unbarred indices, and ∂

∂yi directions with barred indices. For an index which runs over 
both types of vectors we use I and J .

Lemma 6.6. One has

∂
∂yk

⎡⎢⎢⎣
t∫

t−δ2
0

∫
R4

φ2(x)
[
|F∇|2

∣∣∣
(x,y,t)

dx dt

⎤⎥⎥⎦

= 4

t∫
t−δ2

0

∫
R4

(
(∇jφ

2)FIj − φ2 ( ∂∇
∂t

)
I

)
FkI dx dt − 4 ∂

∂yj

⎡⎢⎢⎣
t∫

t−δ2
0

∫
R4

φ2
(
FIjFkI

)
dx dt

⎤⎥⎥⎦ .

Proof. With the notational conventions as described above we have

∇k (FIJ FIJ ) = 2FIJ

(∇kFIJ

)
= −2FIJ

(∇J FkI + ∇IFJk

)
= −4FIJ

(∇J FkI

)
= −4∇J

(
FIJ FkI

)− 4 (∇J FJI )FkI .

(6.7)
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Lastly, we expand out

|F |2 = FIJ FIJ = FijFij + FijFij + FijFij + FijFij . (6.8)

If we differentiate (6.8) and apply (6.7) to the resulting terms then this breaks down into

∇k

[
|F |2

]
= −4∇j

[
FijFki

]− 4∇j

[
FijFki

]
− 4∇j

[
FijFki

]
− 4∇j

[
FijFki

]
− 4

(∇jFji

)
Fki − 4

(
∇jFji

)
Fki − 4

(
∇jFji

)
Fki − 4

(
∇jFji

)
Fki

= −4
(
∇j

[
FijFki + FijFki

]
+ ∇j

[
FijFki + FijFki

])
+ 4D∗

J FJIFkI .

(6.9)

With these pointwise quantities, we integrate (6.9) with a cutoff function φ and obtain

∂
∂yk

⎡⎢⎢⎣
t∫

t−δ2
0

∫
R4

φ2(x)
[
|F∇|2

∣∣∣
(x,y,t)

dx dt

⎤⎥⎥⎦
= −4

t∫
t−δ2

0

∫
R4

φ2∇j

[
FijFki + FijFki

]
dx dt − 4

t∫
t−δ2

0

∫
R4

φ2∇j

[
FijFki + FijFki

]
dx dt

+ 4

t∫
t−δ2

0

∫
R4

φ2 (D∗
J FJI

)
FkI dx dt

= 4

t∫
t−δ2

0

∫
R4

(
∇jφ

2
)(

FijFki + FijFki

)
dx dt − 4 ∂

∂yj

⎡⎢⎢⎣
t∫

t−δ2
0

∫
R4

φ2
(
FijFki + FijFki

)
dx dt

⎤⎥⎥⎦
− 4

t∫
t−δ2

0

∫
R4

φ2 (∂t∇I )FkI dx dt

= 4

t∫
t−δ2

0

∫
R4

(
(∇jφ

2)FIj − φ2 ( ∂∇
∂t

)
I

)
FkI dx dt − 4 ∂

∂yj

⎡⎢⎢⎣
t∫

t−δ2
0

∫
R4

φ2
(
FIjFkI

)
dx dt

⎤⎥⎥⎦ ,

as required. �
We will use this lemma in conjunction with “Allard’s strong constancy lemma,” an effective version of the Diver-

gence Theorem which we restate here for convenience.

Lemma 6.7. ([1] pp. 3) Suppose ψ , f , and Z are smooth on B1 and satisfy

∇ψ = f + divZ

and

||f ||L1(B1)
+ ||Z||L1(B1)

≤ δ.

Then for all δ1 > 0, there is a δ0 > 0, depending on δ1 and ||ψ ||L1(B1)
such that, whenever δ ≤ δ0,∣∣∣∣ψ − ψ

∣∣∣∣
L1(B1)

≤ δ1,

where ψ denotes the average value of ψ on B1.
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Lemma 6.8. Given a (y, t) ∈ Bn−4
1/2 × [− 1

2 , − 1
4 ] as in Lemma 6.5, there exists a universal constant � and sequences 

xi → 0, δi → 0 such that

ε0

�
= δ−2

i

∫
B4

δi
(xi )×[t−δ2

i ,t]

∣∣F∇i

∣∣2 (x, y, t) dx dt

= max

⎧⎪⎪⎨⎪⎪⎩δ−2
i

∫
B4

δi
(̃x)×[t−δ2

i ,t]

∣∣F∇i

∣∣2 (̃x, y, t) dx dt | x̃ ∈ B4
1
2

⎫⎪⎪⎬⎪⎪⎭ .

Proof. Given (y, t), we fix some � > 0, then as each blowup connection ∇i
t is smooth we may first choose a constant 

δi which is the smallest positive number such that

max

⎧⎪⎪⎨⎪⎪⎩δ−2
i

∫
B4

δi
(̃x)×[t−δ2

i ,t]

∣∣∣F i
∣∣∣2 (̃x, y, t) | x̃ ∈ B4

1
2

⎫⎪⎪⎬⎪⎪⎭ = ε0

�
. (6.10)

Choosing xi as some point in realizing the maximum defined above, all that remains to check is that δi → 0, xi → 0. 
First, suppose δi ≥ δ0 > 0. Fix φ ∈ C∞

0 (B4
δ0

, [0, 1]), and let

ψ(y) := δ−2
0

t∫
t−δ2

0

∫
B4

δ0

φ2
∣∣∣F i

∣∣∣2 (x, y, s) dx ds.

Now observe that the result of Lemma 6.6 can be interpreted as ∇ψ = f +divZ, with f and Z defined by the equality. 
It follows from Lemma 6.5 that

lim
i→∞||f ||

L1(Bn−4
δ0

)
+ ||Z||

L1(Bn−4
δ0

)
= 0.

Then we observe using Lemma 6.7 and (6.10) that

lim
i→∞ δ2−n

0

∫
Pδ0 ((0,y),t)

∣∣∣F i
t

∣∣∣2 dV dt = lim
i→∞ψ

= lim
i→∞ δ−4

0

∫
B4

δ0

ψ dx

= lim
i→∞ δ−4

0

∫
B4

δ0

(
ψ − ψ + ψ

)
dx

≤ lim
i→∞

⎡⎣δ−4
0

∣∣∣∣ψ − ψ
∣∣∣∣

L1(R4)
+ sup

B4
δ0

ψ

⎤⎦
≤ ε0

�
.

(6.11)

This contradicts that ((0, y), t) ∈ �∗, hence δi → 0. Now we note that the sequence ((xi, y), t) develops concentration 
of 

∣∣F i
t

∣∣, and hence must limit to a singular point, which forces xi → 0. �
With this sequence we can perform a further rescaling to finally obtain a Yang–Mills connection as blowup limit. 

In particular, define the blowup sequence
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�̃i(x, y, t) = δi�((xi, yi) + (δix, δiy), ti + δ2
i t).

Let us observe some basic properties of this blowup sequence. In particular, by rescaling the estimates of Lemmas 6.5
and 6.8 we obtain

ε0

�
=

∫
B4

1 ×[−1,0]

∣∣∣F̃ i
∣∣∣2 (0,0, t) dx dt = max

⎧⎪⎪⎨⎪⎪⎩
∫

B4
1 (̃x)×[−1,0]

∣∣∣F̃ i
∣∣∣2 (x,0, t) dx dt | x ∈ δ−1

i B4
1
2

⎫⎪⎪⎬⎪⎪⎭ ,

0 = lim
i→∞ sup

r∈(0, 1
4δi

)

r4−n

∫
Bn−4

r (0)

∫
B4

1
2δi

×{0}×[−δ−2
i ,0]

∣∣∣ ∂∇̃i

∂t

∣∣∣2 dx dt dy,

0 = lim
i→∞ sup

r∈(0, 1
4δi

)

r2−n

∫
Bn−4

r (0)×[−r2,0]

∫
B4

1
2δi

×{y}

n−4∑
j=1

∣∣∣ ∂
∂yj

F̃ i
t

∣∣∣2 dx dt dy.

(6.12)

Lemma 6.9. The sequence {∇̃ i
t } converges strongly to a nonflat Yang–Mills connection on S4.

Proof. We use the estimates of (6.12) and argue as in the estimate (6.11) to show an energy estimate of the form∫
P 3

2
((̃x,0),0)

∣∣∣F̃ i
t

∣∣∣2 dV dt ≤ ε0

2
for all x̃ ∈ δ−1

i

(
B4

1
2

)
. (6.13)

Given this, we can complete the proof as follows. There is a local H 1,2 estimate for ∇̃ i
t and hence we can choose a 

subsequence so that ∇̃ i
t → ∇̃∞

t weakly in H 1,2
loc(Rn × ( − ∞, 0]). However, using (6.12) we have that

∫
Rn×(−∞,0]

⎛⎝∣∣∣ ∂∇̃∞
t

∂t

∣∣∣2 +
n−4∑
j=1

∣∣∣ ∂
∂yj

F̃∞
t

∣∣∣2
⎞⎠ dV dt = 0.

Using (6.13) and Theorem 3.8 we obtain convergence of ∇̃ i
t to ∇̃∞

t in Ck,α(K) for any compact set K ⊂ R
n ×

(−∞, 0]. In particular, using (6.12) we obtain

ε0

�
≤

∫
R4

∣∣F̃∞
t

∣∣2 dx < ∞,

hence ∇̃∞
t is not flat. The result follows. �

Lemma 6.9 finishes the proof of the theorem. �
Proof of Corollary 1.4. Without loss of generality by an overall rescaling we assume T ≥ 2. Choose any sequence 
{ti} → T , and observe that the sequence of solutions given by restricting the given solution to [ti − 1, ti] satisfies the 
hypotheses of Theorem 4.1. By hypothesis that T is maximal we know that � �=∅. As shown in Theorem 4.1 the point 
z ∈ � is a point of entropy concentration. Thus we can choose a sequence of radii ri → 0 and rescale the parabolic 
balls Pri (z0) to unit size, to obtain a sequence of solutions with finite, nonzero entropy. It follows easily that the 
hypotheses of Theorem 4.1 hold for this sequence. If the sequence does not converge strongly in H 1,2, Theorem 1.3
yields the further blowup sequence which converges to a Yang–Mills connection on S4. If this sequence does converge 
strongly in H 1,2, as the � functional is becoming constant along the blowup sequence, the second term of the entropy 
monotonicity formula of (3.2) converges to zero, which implies that the blowup limit is a soliton. �
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