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Abstract

We consider the set of partially hyperbolic symplectic diffeomorphisms which are accessible, have 2-dimensional center bundle 
and satisfy some pinching and bunching conditions. In this set, we prove that the non-uniformly hyperbolic maps are Cr open and 
there exists a Cr open and dense subset of continuity points for the center Lyapunov exponents. We also generalize these results to 
volume-preserving systems.
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1. Introduction

Lyapunov exponents play a key role in understanding the ergodic behavior of a dynamical system. For this reason, 
it is important to be able to control how they vary with the dynamics and to avoid zero Lyapunov exponents.

One speaks of non-uniform hyperbolicity when all the Lyapunov exponents are different from zero almost every-
where with respect to some preferred invariant measure (for instance, a volume measure). This theory was initiated by 
Pesin and has many important consequences, most notably: the stable manifold theorem (Pesin [22]), the abundance 
of periodic points and Smale horseshoes (Katok [16]) and the fact that the fractal dimension of invariant measures is 
well defined (Ledrappier and Young [18] and Barreira, Pesin and Schmelling [6]).
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In the context of partially hyperbolic volume-preserving systems we study the following classical problems: open-
ness of the set of non-uniformly hyperbolic diffeomorphisms and continuity of the center Lyapunov exponents for the 
Cr topology with r ≥ 2.

For the C1 topology, Mañé [20] observed that an area-preserving diffeomorphism is a continuity point for the 
Lyapunov exponents only if it is either Anosov or all its Lyapunov exponents are equal to zero almost everywhere. 
His arguments were completed by Bochi [7] and were extended to arbitrary dimension by Bochi and Viana [8,9]. 
In particular, Bochi [8] proved that every partially hyperbolic symplectic diffeomorphism can be C1-approximated 
by partially hyperbolic diffeomorphisms whose center Lyapunov exponents vanish. This implies that the set of non-
uniformly hyperbolic systems is not C1 open. Our first result proves that the situation is different when we consider 
the Cr topology with r ≥ 2.

Let Br
ω(M) denote the subset of partially hyperbolic symplectic systems which are accessible, have 2-dimensional 

center bundle and satisfy some pinching and bunching conditions. (All the keywords will be recalled in the next 
section.) This set has two important properties: it is a C1 open set and every f ∈ Br

ω(M) is ergodic. Moreover, by 
Theorem A in [26], if M = T

2d with d ≥ 2, Br
ω(M) is non-empty.

Theorem A. Let r ≥ 2. The subset of non-uniformly hyperbolic diffeomorphisms in Br
ω(M) is Cr open.

The continuity of Lyapunov exponents has been extensively studied for the case of linear cocycles. Theorem C in 
[7] implies that discontinuity of Lyapunov exponents is typical for continuous SL(2,R)-valued cocycles. However, 
there are some contexts where continuity has been established. Bocker and Viana [10] and Malheiro and Viana [19]
proved continuity of Lyapunov exponents for random products of 2-dimensional matrices in the Bernoulli and in the 
Markov settings. More recently, still for 2-dimensional cocycles, Backes, Brown and Butler [5] proved that continuity 
of Lyapunov exponents holds in the realm of fiber-bunched Hölder cocycles over any hyperbolic systems with local 
product structure. In higher dimension, continuity of the Lyapunov exponents for i.i.d. random products of matrices 
has been announced by Avila, Eskin and Viana [1]. Our second theorem provides a result about continuity of Lyapunov 
exponents for diffeomorphisms.

Theorem B. Let r ≥ 2. There exists a Cr open and dense subset U ⊂ Br
ω(M) such that every g ∈ U is a continuity 

point for the center Lyapunov exponents in the Cr topology.

Moreover, we are able to extend Theorem A and Theorem B for partially hyperbolic volume-preserving systems.

2. Preliminaries and statements

A diffeomorphism f : M → M of a compact manifold M is partially hyperbolic if there exist a nontrivial splitting 
of the tangent bundle

T M = Es ⊕ Ec ⊕ Eu

invariant under the derivative map Df , a Riemannian metric ‖·‖ on M , and positive continuous functions χ , χ̂ , ν, ̂ν, 
γ , γ̂ with

χ < ν < 1 < ν̂ −1 < χ̂ −1 and ν < γ < γ̂ −1 < ν̂ −1,

such that for any unit vector v ∈ TpM ,

χ(p) <
∥∥Dfp(v)

∥∥ < ν(p) if v ∈ Es(p),

γ (p) <
∥∥Dfp(v)

∥∥ < γ̂ (p)−1 if v ∈ Ec(p),

ν̂(p)−1 <
∥∥Dfp(v)

∥∥ < χ̂(p)−1 if v ∈ Eu(p).

(1)

Partial hyperbolicity is a C1 open condition, that is, any diffeomorphism sufficiently C1-close to a partially hyper-
bolic diffeomorphism is itself partially hyperbolic. Moreover, if f : M → M is partially hyperbolic, then the stable 



C. Liang et al. / Ann. I. H. Poincaré – AN 35 (2018) 1687–1706 1689
and unstable bundles Es and Eu are uniquely integrable and their integral manifolds form two transverse (continu-
ous) foliations Ws and Wu, whose leaves are immersed submanifolds of the same class of differentiability as f . These 
foliations are called the strong-stable and strong-unstable foliations. They are invariant under f , in the sense that

f (Ws(x)) = Ws(f (x)) and f (Wu(x)) = Wu(f (x)),

where Ws(x) and Wu(x) denote the leaves of Ws and Wu, respectively, passing through any x ∈ M .
For more information about partially hyperbolic diffeomorphisms we refer the reader to [11,15,25].
Given two points x, y ∈ M , x is accessible from y if there exists a path that connects x to y, which is a concatena-

tion of finitely many subpaths, each of which lies entirely in a single leaf of Wu or a single leaf of Ws . We call this 
type of path, an su-path. This defines an equivalence relation and we say that f is accessible if M is the unique acces-
sibility class. By the results in [4], accessibility is a C1 open condition among partially hyperbolic diffeomorphisms 
with 2-dimensional center bundle. We refer the reader to Section 5 of [21] for a detailed outline of the proof. See also 
Proposition 5.1.

Definition 2.1 (α-pinched). Let f be a partially hyperbolic diffeomorphism and α > 0. We say that f is α-pinched if 
the functions in Equation (1) satisfy,

ν < γ χα and ν̂ < γ̂ χ̂α,

ν < γ χ̂α and ν̂ < γ̂ χα.

Definition 2.2 (α-bunched). Let f be a partially hyperbolic diffeomorphism and α > 0. We say that f is α-bunched 
if the functions in Equation (1) satisfy,

να < γ γ̂ and ν̂α < γ γ̂ .

Notice that both conditions, α-pinched and α-bunched, are C1-open. Moreover, if f is a C2 α-pinched diffeomor-
phism, then Ec is α-Hölder. See Section 4 of [23].

Let M be a symplectic manifold and ω denote the symplectic form. Then, Diff r
ω(M) denotes the set of Cr diffeo-

morphisms preserving ω and PHr
ω(M) the subset of Diff r

ω(M) formed by the partially hyperbolic diffeomorphisms.

Definition 2.3. If r ≥ 2, then Br
ω(M) denotes the subset of PHr

ω(M) where f ∈ Br
ω(M) if f is accessible, α-pinched 

and α-bunched for some α > 0 and its center bundle is 2-dimensional.

Remark 2.4. Observe that Br
ω(M) is a C1 open set. Moreover, the notion of α-bunched defined above implies that the 

diffeomorphism is center bunched in the sense of Theorem 0.1 of [13]. Therefore, every diffeomorphism in Br
ω(M) is 

ergodic.

If f is a volume-preserving C1 diffeomorphism and μ denotes the volume induced by a Riemannian metric, then 
by the Theorem of Oseledets for μ-almost every point x ∈ M , there exist k(x) ∈ N, real numbers ̂λ1(f, x) > · · · >

λ̂k(x)(f, x) and a splitting TxM = E1
x ⊕ · · ·⊕ E

k(x)
x of the tangent bundle at x, all depending measurably on the point, 

such that

lim
n→±∞

1

n
log

∥∥Df n
x (v)

∥∥ = λ̂j (f, x) for all v ∈ E
j
x \ {0}.

The real numbers ̂λj (f, x) are the Lyapunov exponents of f in the point x.
We say that f is non-uniformly hyperbolic if the set of points with non-zero Lyapunov exponents has full measure.
Let λ1(f, x) ≥ λ2(f, x) ≥ · · · ≥ λd(f, x) be the numbers λ̂j (f, x), each repeated with multiplicity dim E

j
x and 

written in non-increasing order. If f is ergodic, then the functions k(x) and λj (f, x) are constants almost everywhere.
For a partially hyperbolic diffeomorphism f , the Lyapunov exponents of Df |Ec are called the center Lyapunov 

exponents of f . If dimEc = 2, we are going to denote them by λc
1(f, x) and λc

2(f, x). Moreover, if f is ergodic and∫
log

∣∣det(Dfx |Ec(x))
∣∣dμ = 0, then λc

1(f ) + λc
2(f ) = 0.

This is always the case for partially hyperbolic symplectic diffeomorphisms, see Lemma 2.5 of [29].



1690 C. Liang et al. / Ann. I. H. Poincaré – AN 35 (2018) 1687–1706
In the following, we give the precise statement of Theorem A and Theorem B.

Theorem A. For every r ≥ 2, the subset of non-uniformly hyperbolic diffeomorphisms in Br
ω(M) is Cr open.

This result together with Theorem A in [21] implies the following:

Corollary 1. Let r ≥ 2 and f ∈ Br
ω(M). If the set of periodic points of f is non-empty, then f can be Cr -approximated 

by Cr open subsets of non-uniformly hyperbolic symplectic diffeomorphisms.

Before enunciating Theorem B, we need to give the definition of continuity points of the center Lyapunov exponents 
in Br

ω(M).

Definition 2.5. We say that a diffeomorphism f ∈ Br
ω(M) is a Cr continuity point for the center Lyapunov exponents 

if for every fk → f in Diff r
ω(M),

λc
1(fk) → λc

1(f ).

Remark 2.6. Observe that since f is a symplectic diffeomorphism, λc
1(fk) → λc

1(f ) if and only if λc
2(fk) → λc

2(f ).

Theorem B. Let r ≥ 2. There exists a Cr open and dense subset U ⊂ Br
ω(M) such that every g ∈ U is a Cr continuity 

point for the center Lyapunov exponents.

Theorem 4.2 and Proposition 4.8 in Section 4 will be used to prove Theorem A and Theorem B but they also imply 
the following corollary.

Definition 2.7. We say that a periodic point p with np = per(p) is a quasi-elliptic periodic point if there exists 
1 ≤ l ≤ dimM/2 such that Df

np
p has 2l non-real eigenvalues of norm one and its remaining eigenvalues have norm 

different from one.

Corollary 2. Let r ≥ 2. Every f ∈ Br
ω(M) having a quasi-elliptic periodic point is a Cr continuity point for the center 

Lyapunov exponents.

Theorem A, Theorem B and Corollary 2 give good evidence about the validity of the following conjecture due to 
Marcelo Viana.

Conjecture 1. If r ≥ 2 and f ∈ Br
ω(M), then f is a Cr continuity point for the center Lyapunov exponents.

2.1. Volume-preserving case

Fix r ≥ 2. Let μ denote a probability measure in the Lebesgue class, Diff r
μ(M) the set of volume-preserving Cr

diffeomorphisms and PHr
μ(M) the subset of Diff r

μ(M) consisting of partially hyperbolic diffeomorphisms.
In order to generalize the results in the symplectic context to the volume-preserving setting, we need to ask for 

extra hypotheses in the diffeomorphisms. The key property that we use in the proof of Theorem A and B is that∫
log

∣∣det(Dfx |Ec(x))
∣∣dμ = 0,

for every symplectic diffeomorphism. Therefore, we could consider the subset of PHr
μ(M) where this condition is 

satisfied. However, since this set is not Cr open, the results are not such relevant.
In the following, we consider a C1 open subset of PHr

μ(M) where it is possible to extend Theorem B.

Definition 2.8. Let f be a partially hyperbolic diffeomorphism with dimEc = 2 and p a periodic point of f with 
np = per(p). We say that p is a pinching hyperbolic periodic point if the eigenvalues of Df

np
p |Ec(p) have different 

norms and both norms are different from one.
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Definition 2.9. Let Pr
μ(M) denote the subset of PHr

μ(M) where f ∈ Pr
μ(M) if f is accessible, α-pinched and 

α-bunched for some α > 0, has a pinching hyperbolic periodic point and its center bundle is 2-dimensional.

Remark 2.10. Similar to Remark 2.4, we have that the set Pr
μ(M) is C1 open and any f ∈ Pr

μ(M) is ergodic.

For the set Pr
μ(M), we can only conclude a version of Theorem A about the simplicity of the center Lyapunov 

exponents.

Theorem C. Let r ≥ 2. The set formed by diffeomorphisms having different center Lyapunov exponents is Cr open 
in Pr

μ(M).

Now, we state the version of Theorem B and Conjecture 1 for this setting.

Definition 2.11. We say that a diffeomorphism f ∈Pr
μ(M) is a Cr continuity point for the center Lyapunov exponents 

if for every fk → f in Diff r
μ(M) and i ∈ {1, 2}, we have

λc
i (fk) → λc

i (f ).

Theorem D. Let r ≥ 2. There exists a Cr open and dense subset U ⊂Pr
μ(M) such that every g ∈ U is a Cr continuity 

point for the center Lyapunov exponents.

Conjecture 2. If r ≥ 2 and f ∈ Pr
μ(M), then f is a Cr continuity point for the center Lyapunov exponents.

2.2. Strategy of the proof

We are going to discuss the ideas of the proof of Theorem A and B. The proof of Theorem C and D is analogous.
In Section 4 we prove that if f is a discontinuity point for the center Lyapunov exponents, then the fiber bundle 

P(Ec) admits two continuous sections, x �→ ax and x �→ bx . If F = Df |Ec, then these sections are invariant by the 
cocycle P(F ) and by the invariant stable and unstable holonomies of P(F ). Observe that Corollary 2 is a consequence 
of this result.

Theorem A will follow from the fact that the diffeomorphisms having zero center Lyapunov exponents form a 
closed subset. In order to see this, we take fk → f with λc

1(fk) = λc
2(fk) = 0 and suppose that λc

1(f ) �= λc
2(f ). 

Then, f is a discontinuity point for the center Lyapunov exponents and we have two continuous sections of P(Ec(f )), 
x �→ ax and x �→ bx , with the properties stated above.

Using the Invariance Principle of Avila and Viana, we prove that for every k big enough, there exists a continuous 
section of P(Ec(fk)), x �→ ak,x , which is invariant by the cocycle P(Fk) and by the invariant stable and unstable 
holonomies of P(Fk). Moreover, ak,x is close to ax or to bx for every x ∈ M . This will imply that λc

1(fk) → λc
1(f ) or 

λc
2(fk) → λc

2(f ). Both options contradict the hypothesis of λc
1(fk) = λc

2(fk) = 0.
In order to prove Theorem B we will find a diffeomorphism g which is arbitrarily close to f and a neighborhood 

of g, V(g), such that any diffeomorphism h ∈ V(g) does not admit continuous sections of P(Ec(h)) which are invariant 
by the cocycle P(H) and by the invariant stable and unstable holonomies of P(H) for H = Dh|Ec(h). We will use the 
same mechanisms than in [21] to achieve this goal. In Section 7 we give more details about the ideas behind the proof 
of this theorem.

Observe that in both cases we are working with sections of P(Ec(f )) and P(Ec(g)) where g is close to f . In order 
to be able to estimate the distance between them, we will consider both fiber bundles as subsets of P(TM).

3. Center derivative cocycle

Let r ≥ 2, ∗ ∈ {μ, ω} and f ∈ PHr∗(M) with dim Ec = 2. Recall that ω denotes a symplectic form and μ denotes 
a probability measure in the Lebesgue class.

We will consider the center derivative cocycle associated to f , that is, the linear cocycle F ′ defined by F′ = Df |Ec. 
Observe that the extremal Lyapunov exponents of F ′, λ±(F′, x) coincide with the center Lyapunov exponents of f .
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From now on we fix the Riemannian metric given by Equation (1).
If η : M → R is defined by η(x) = | det F ′

x |−1/2, then we can consider a new cocycle over f by Fx = η(x) · F′
x. 

Notice that |det Fx | = 1 for every x ∈ M and the extremal Lyapunov exponents of F satisfy the following,

λ±(F, x) = λ±(F′, x) +
∫

log |η(x)| dμ

= λc
1,2(f, x) +

∫
log |η(x)| dμ

(2)

Let π : E → M be a fiber bundle with smooth fibers modeled on some Riemannian manifold N . A smooth cocycle
over f is a continuous transformation F : E → E such that π ◦F = f ◦ π , every Fx : Ex → Ef (x) is a C1 diffeomor-
phism depending continuously on x and the norms of the derivative DFx(ξ) and its inverse are bounded.

The projective cocycle associated to a linear cocycle G : V → V over f is the smooth cocycle P(G) : P(V ) →
P(V ) whose action on the fibers is given by the projectivization of Gx : Vx → Vf (x).

Notice that P(F ) = P(F ′). Since dim Ec = 2, P(F ) is a cocycle of circle diffeomorphisms over f . Moreover, there 
always exists a P(F )-invariant probability measure m that projects down to μ. This is true because the projective 
cocycle P(F ) is continuous and the domain P(Ec) is compact.

The extremal Lyapunov exponents of P(F ) for m exist and satisfy,

λ+(P(F), x, ξ) ≤ λ+(F, x) − λ−(F, x) and

λ−(P(F), x, ξ) ≥ λ−(F, x) − λ+(F, x),
(3)

for every x ∈ M and ξ ∈ P(Ec(x)) where they are defined.

Definition 3.1. Let F : E → E be a smooth cocycle over f . An invariant stable holonomy for F is a family hs of 
homeomorphisms hs

x,y : Ex → Ey , defined for all x and y in the same strong-stable leaf of f and satisfying

(a) hs
y,z ◦ hs

x,y = hs
x,z and hs

x,x = Id ;
(b) Fy ◦ hs

x,y = hs
f (x),f (y) ◦Fx ;

(c) (x, y, ξ) �→ hs
x,y(ξ) is continuous when (x, y) varies in the set of pairs of points in the same local strong-stable 

leaf;
(d) there are C > 0 and β > 0 such that hs

x,y is (C, β)-Hölder continuous for every x and y in the same local 
strong-stable leaf.

An invariant unstable holonomy for F can be defined analogously, for pairs of points in the same strong-unstable leaf.

Condition (c) in Definition 3.1 means that given any ε > 0 and any (x, y, ξ) with y ∈ Ws
loc(x) and ξ ∈ Ex , there 

exists δ > 0 such that

dist (hs
x,y(ξ), hs

x′,y′(ξ ′)) < ε,

for every (x′, y′, ξ ′) with y′ ∈ Ws
loc(x

′), ξ ′ ∈ Ex′ , dist (x, x′) < δ, dist (y, y′) < δ and dist (ξ, ξ ′) < δ. Here to con-
sider the distance between points in different fibers you can think that the fiber bundle has been trivialized in the 
neighborhoods of Ex and Ey .

If f is α-pinched and α-bunched (Definition 2.1 and Definition 2.2), then P(F ) admits invariant stable and invariant 
unstable holonomies. This is a consequence of Section 3 of [2]. Moreover, if x and y are in the same local strong-stable 
leaf, then hs

x,y = P(Hs
x,y) where Hs

x,y : Ec(x) → Ec(y) is a linear isomorphism. Therefore, in the setting we are 
studying the holonomies hs

x,y are Lipschitz for every x and y in the same local strong-stable leaf. This is also true for 
the invariant unstable holonomy.

If π : E → V is a fiber bundle over M and m a probability measure in E with π∗m = μ, then there exists a 
disintegration of m into conditional probabilities {mx : x ∈ M} along the fibers which is essentially unique, that is, a 
measurable family of probability measures such that mx(Ex) = 1 for almost every x ∈ M and

m(U) =
∫

mx(U ∩ Ex)dμ(x),

for every measurable set U ⊂ E . See [24].
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Definition 3.2. Let F be a smooth cocycle over f and hs an invariant stable holonomy for F . We say a disintegration 
{mx : x ∈ M} is s-invariant if

(hs
x,y)∗mx = my for every x and y in the same strong-stable leaf.

One speaks of essential s-invariance if this holds for x and y in some full μ-measure set. The definitions of 
u-invariance and essential u-invariance are analogous. The disintegration is bi-invariant if it is both s-invariant and 
u-invariant and we call it bi-essentially invariant if it is both essentially s-invariant and essentially u-invariant.

Definition 3.3. Let F be a smooth cocycle over f admitting holonomies and m an F -invariant probability measure 
with π∗m = μ. If m admits some essentially s-invariant disintegration, then it is called s-state. The definition of u-state
is analogous and we say that m is an su-state if it is both an s-state and a u-state.

4. Invariance principle and discontinuity points

One of the main tools in the proof of our results is the Invariance Principle, which was first developed by Fursten-
berg [14] and Ledrappier [17] for random matrices and was extended by Bonatti, Gómez-Mont, Viana [12] to linear 
cocycles over hyperbolic systems and by Avila, Viana [3] and Avila, Santamaria, Viana [2] to general (diffeomor-
phisms) cocycles. In [3] the base dynamics is still assumed to be hyperbolic, whereas in [2], it is taken to be partially 
hyperbolic and volume-preserving.

In the following we are going to state two theorems from [2] which are extensions to our setting of the main result 
in [17]. The first one gives sufficient conditions for an F -invariant probability measure to be an s-state or a u-state.

Theorem 4.1 (Theorem 4.1 in [2]). Let f be a C1 partially hyperbolic diffeomorphism, F a smooth cocycle over f , μ
an f -invariant probability measure in the Lebesgue class and m an F -invariant probability measure projecting down 
to μ.

(a) If F admits invariant stable holonomies and λ−(F, x, ξ) ≥ 0 at m-almost every point, then m is an s-state.
(b) If F admits invariant unstable holonomies and λ+(F, x, ξ) ≤ 0 at m-almost every point, then m is a u-state.

The next theorem will allow us to conclude that an su-state is bi-invariant.

Theorem 4.2 (Theorem D in [2]). Let f be a C2 partially hyperbolic center bunched diffeomorphism, F a smooth co-
cycle over f admitting holonomies, μ an f -invariant probability measure in the Lebesgue class and m an F -invariant 
probability measure projecting down to μ. If m is an su-state, then m admits a disintegration {mx : x ∈ M} along the 
fibers such that

(a) the disintegration is bi-invariant over a full measure bi-saturated set MF ⊂ M;
(b) if f is accessible, then MF = M and the conditional probabilities mx depend continuously on the base point 

x ∈ M , relative to the weak∗ topology.

Remark 4.3. Observe that if m is an F -invariant probability measure which admits a continuous disintegration {mx :
x ∈ M}, then (Fx)∗mx = mf (x) for every x ∈ M .

In the last part of this section, we are going to prove some results that will be used for the proof of the theorems in 
both settings, the symplectic and the volume-preserving one. In order to simplify the statements of these results, we 
define the following set:

Definition 4.4. If r ≥ 2 and ∗ ∈ {μ, ω}, then Br∗(M) denotes the subset of PHr∗(M) where f ∈ Br∗(M) if f is accessi-
ble, α-pinched and α-bunched for some α > 0 and its center bundle is 2-dimensional.

Recall that ω denotes a symplectic form and μ denotes a probability measure in the Lebesgue class. Observe that 
this is a C1 open set and every f ∈ Br∗(M) is ergodic. In fact, Definition 4.4 coincides with Definition 2.3 when ∗ = ω
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and the set Pr
μ(M) in Definition 2.9 is the open subset of Br

μ(M) where f ∈ Pr
μ(M) if f has a pinching hyperbolic 

periodic point.
Let f ∈ Br∗(M) and fix the Riemannian metric given by Equation (1). Let η(x) = | det Dfx |Ec(x)|−1/2 for every 

x ∈ M . We consider the linear cocycle F defined by Fx = η(x) · Dfx|Ec(x). The relation between the extremal Lya-
punov exponents of F and the center Lyapunov exponents of f is given in Equation (2). Then, the extremal Lyapunov 
exponents of F are constant almost everywhere and satisfy λ+(F ) + λ−(F ) = 0.

We will study the following two cases separately:

λ+(F ) = λ−(F ) and λ+(F ) �= λ−(F ).

4.1. Zero Lyapunov exponents

From Equation (3), if λ+(F ) = λ−(F ), then for every P(F )-invariant probability measure m projecting down to 
μ, λ±(P(F ), x, ξ) = 0 for m-almost every point. The following theorem is a direct consequence of Theorem 4.1 and 
Theorem 4.2 and will allow us to obtain results for P(F ) in this case.

Invariance Principle (Theorem C in [2]). Let f : M → M be a C2 partially hyperbolic, volume-preserving, center 
bunched diffeomorphism and μ be an invariant probability in the Lebesgue class. Let F be a smooth cocycle over f
admitting holonomies and m be an F -invariant probability measure projecting down to μ. Suppose that λ−(F, x, ξ) =
λ+(F, x, ξ) = 0 at m-almost every point.

Then, m admits a disintegration {mx : x ∈ M} along the fibers such that

(a) the disintegration is bi-invariant over a full measure bi-saturated set MF ⊂ M;
(b) if f is accessible, then MF = M and the conditional probabilities mx depend continuously on the base point 

x ∈ M , relative to the weak∗ topology.

Corollary 4.5. Let r ≥ 2 and ∗ ∈ {μ, ω}. Suppose f ∈ Br∗(M), F = η · Df |Ec and λ+(F ) = λ−(F ). If m is an 
P(F )-invariant probability measure projecting down to μ, then m admits a disintegration {mx : x ∈ M} along the 
fibers which is bi-invariant. Moreover, the conditional probabilities mx depend continuously on the base point x ∈ M , 
relative to the weak∗ topology.

4.2. Non-zero center Lyapunov exponents

Now we study the case λ+(F ) �= λ−(F ). There are classical versions of Proposition 4.6 and Proposition 4.8 for 
cocycles with a fixed base. See for example Section 6 of [3]. Here we extend those standard results to the case where 
the cocycle depends on the base diffeomorphism.

Proposition 4.6. Let r ≥ 2 and ∗ ∈ {μ, ω}. If f ∈ Br∗(M), F = η · Df |Ec and λ+(F ) > 0 > λ−(F ), then there exist 
two P(F )-invariant probability measures projecting down to μ denoted by m+ and m−, which are a u-state and an 
s-state respectively. Moreover, if m is any P(F )-invariant probability measure projecting down to μ, then there exists 
t ∈ [0, 1] such that m = t m+ + (1 − t) m−.

Proof. Since λ+(F ) > 0 > λ−(F ), by Equation (2), λc
1(f ) �= λc

2(f ). Let Ec(x) = E+
x ⊕E−

x denote the decomposition 
given by the Theorem of Oseledets for μ-almost every x ∈ M . Then, we can define two probability measures in P(Ec),

m+ =
∫

δ
P(E+

x ) dμ and m− =
∫

δ
P(E−

x ) dμ.

Notice that m+ and m− are P(F )-invariant probability measures and project down to μ. Moreover, we can calculate 
its Lyapunov exponents and we obtain the following:

λ±(P(F ),m+) = −2λ+(F ) and λ±(P(F ),m−) = −2λ−(F ).

Therefore, by Theorem 4.1 (b) we conclude that m+ is a u-state and by Theorem 4.1 (a) that m− is an s-state.
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The proof of the second part of the proposition is a consequence of the fact that every compact subset of P(Ec)

disjoint from {P(E+), P(E−)} accumulates on P(E+) in the future and on P(E−) in the past. �
For (x, v) ∈ P(Ec), let �(x, v) = log‖Fx(v)‖. The next lemma is a classical result for linear cocycles. We refer 

the reader to Section 6 of [27].

Lemma 4.7. The exponent λ+(F ) coincides with the maximum of 
∫

�(x, v) dm over all P(F )-invariant measures m
projecting down to μ. Moreover, when λ+(F ) > 0 the probability measure m+, defined in Proposition 4.6, realizes 
the maximum.

The following result gives a characterization of the discontinuity points of the center Lyapunov exponents.

Proposition 4.8. Let r ≥ 2 and ∗ ∈ {μ, ω}. Suppose f ∈ Br∗(M) is a Cr discontinuity point for the center Lyapunov 
exponents and F = η · Df |Ec. Then, every P(F )-invariant probability measure m projecting down to μ is an su-state.

Proof. By the hypotheses, there exists a sequence fk → f in Diff r∗(M) such that λc
i (fk) does not converges to λc

i (f )

for some i ∈ {1, 2}.
Since the functions f �→ λc

1(f ) and f �→ λc
2(f ) are upper semi-continuous and lower semi-continuous, respec-

tively, the discontinuity of λc
i (f ) for some i ∈ {1, 2} implies that λc

1(f ) �= λc
2(f ). Therefore, by Equation (2), 

λ+(F ) �= λ−(F ) and since λ+(F ) + λ−(F ) = 0, we have λ+(F ) > 0 > λ−(F ).
Let m+ and m− be given by Proposition 4.6.
Consider now the cocycle Fk = ηk · Dfk|Ec(fk) associated to fk and let mk be an ergodic probability measure for 

P(Fk) which realizes the maximum in Lemma 4.7. Then, λ+(Fk) =
∫

�k(x, v) d mk and λ+(Fk) does not converges 
to λ+(F ). Moreover, by similarity of the Lyapunov exponents, λ−(Fk) does not converges to λ−(F ).

Observe that mk is a u-state for every k ∈ N. Moreover, there exist a subsequence kj and a measure m in P(T M)

such that mkj
→ m in the weak∗ topology. The limit measure m has the following properties:

(a) supp m ⊂ P(Ec(f )),
(b) m projects down to μ,
(c) m is P(F )-invariant,
(d) m is a u-state.

Moreover, since fk → f we have 
∫

�kj
(x, v) d mkj

→ ∫
�(x, v) d m. On the other hand, since λ+(Fk) does not 

converges to λ+(F ),

lim
kj

∫
�kj

(x, v) d mkj
< λ+(F ).

These properties allow us to conclude that m is an P(F )-invariant probability measure projecting down to μ which 
is a u-state and it is different from m+. Therefore, by Proposition 4.6, there exists t �= 1 such that m = t m+ +
(1 − t) m−. Now, we can write m− = m−t m+

(1−t)
. Moreover, we know that m+ is a u-state and m− an s-state. This 

implies, m− is an su-state.
Using an analogous result of Lemma 4.7 for λ−(F ) and repeating the argument, we conclude that m+ is also an 

su-state. �
This proposition together with Theorem 4.2 imply the following corollary which contains Corollary 2.

Corollary 3. Let r ≥ 2 and ∗ ∈ {μ, ω}. Suppose f ∈ Br∗(M), F = η · Df |Ec and one of the following is satisfied:

(a) there exists p ∈ Per(f ) with per(p) = np such that P(F
np
p ) : P(Ec(p)) → P(Ec(p)) has no fixed points, or

(b) there exist x ∈ M and an su-path γ from x to itself such that the holonomy for P(F ) defined by γ , h : P(Ec(x)) →
P(Ec(x)), has no fixed points.

Then, f is a Cr continuity point for the center Lyapunov exponents.
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It is easy to see that Propositions 4.6 and 4.8 are also valid in the context of Section 8 of [2]. Therefore, the next 
corollary follows:

Corollary 4. Let f : M → M be a C2 partially hyperbolic, volume-preserving, center bunched, accessible diffeo-
morphism and μ an invariant probability measure in the Lebesgue class. If Gr,α(V, f ) denotes the set of Cr,α fiber 
bunched linear cocycles F : V → V over f with fiber modeled by R2, then there exists an open and dense subset 
U ⊂ Gr,α(V, f ) such that every F ∈ U is a continuity point for F → λ±(F ).

5. Accessibility and continuity of holonomies

In this section we are going to state some theorems about accessibility which already appear in [4,21]. These results 
will allow us to obtain estimations for the variation of the holonomies associated to the center derivative cocycle of f
when we perturb the diffeomorphism.

We recall the following definitions: Given two points x, y ∈ M , x is accessible from y if there exists a path that 
connects x to y, which is a concatenation of finitely many subpaths, each of which lies entirely in a single leaf of Wu

or a single leaf of Ws . We call this type of path, an su-path. This defines an equivalence relation and we say that f is 
accessible if M is the unique accessibility class.

Given γ an su-path, there exist finitely many points zi which are defined by the extremal points of the finitely 
many subpaths that compose the su-path. That is zi ∈ W ∗(zi+1) for every i ∈ {0, ..., n − 1} and ∗ ∈ {s, u}. The points 
zi are called the nodes of the su-path. We are going to use the following notation: γ = [z0, z1, ..., zn].

If the partially hyperbolic diffeomorphism f has 2-dimensional center bundle, then we can apply the results in [4]
in order to have the following proposition. See also the proof of Corollary 5.8 in [21] for more details about this result 
and its proof.

Proposition 5.1. Let f be a C1 partially hyperbolic accessible diffeomorphism with 2-dimensional center bundle. 
Then, there exist N ∈N and a neighborhood of f in the C1 topology, V(f ), such that for any x, y ∈ M and g ∈ V(f )

there exists an su-path for g joining x to y with at most N nodes and the distance between the nodes bounded by N .

The next results give two refinements of the above proposition. We consider a sequence fk → f in the C1 topology 
and obtain some kind of continuity for su-paths under the variation of the diffeomorphism.

The first one is a simple consequence of the fact that Ws(x, f ) and Wu(x, f ) vary continuously with the point x and 
the diffeomorphism f .

Proposition 5.2. Let f be a C1 partially hyperbolic accessible diffeomorphism with 2-dimensional center bundle. For 
every ε > 0, every x ∈ M , xk → x and every sequence fk → f in the C1 topology, there exists K ∈ N such that for 
every k ≥ K and every su-path for fk given by Proposition 5.1, γk = [z0(fk), ..., zN(fk)], with z0(fk) = xk , there 
exists an su-path for f , γ = [z0, ..., zN ] with z0 = x such that for every i ∈ {0, ..., N}

dist (zi , zi(fk)) < ε.

Notice that in the proposition above the only information that we have about the final node of γ is that it is ε-close 
to the final node of γk . The next proposition deals with the case where we need to fix the initial and final points. In 
this case we also obtain some continuity of the su-path but we need to consider a subsequence of fk. More precisely,

Proposition 5.3 (Proposition 5.7 and Corollary 5.8 in [21]). Let f be a C1 partially hyperbolic accessible diffeomor-
phism with 2-dimensional center bundle. Then, for every x, y ∈ M , xk → x, yk → y and every sequence fk → f in 
the C1 topology, there exist a subsequence kj , su-paths for fkj

denoted by γkj
and an su-path for f denoted by γ

satisfying the following:

(a) γkj
= [z0(fkj

), ..., zn(fkj
)] joins xkj

to ykj
,

(b) γ = [z0, ..., zn] joins x to y and
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(c) for every ε > 0 there exists K ∈N such that for every kj ≥ K ,

dist (zi , zi(fkj
)) < ε

for every i ∈ {0, ..., n}.

Moreover, if N is given by Proposition 5.1, then the su-paths in (a) and (b) have at most N nodes and the distance 
between the nodes of each su-path is bounded by N .

Although the proof of this result in [21] is done for the case of xk = x, it is easy to see that the same proof can be 
extended to the case we need here.

Recall that ω denotes a symplectic form, μ denotes a probability measure in the Lebesgue class and by Defini-
tion 4.4 if r ≥ 2 and ∗ ∈ {μ, ω}, then Br∗(M) denotes the subset of PHr∗(M) where f ∈ Br∗(M) if f is accessible, 
α-pinched and α-bunched for some α > 0 and its center bundle is 2-dimensional.

Let f ∈ Br∗(M) and fix the Riemannian metric given by Equation (1). If η(x) = | det Dfx |Ec(x)|−1/2 for every 
x ∈ M , we consider the linear cocycle F = η · Df |Ec over f and denote P(F ) its projectivization. Then, we have 
invariant stable and unstable holonomies associated to P(F ). More precisely, for every y ∈ Ws(x) there exists an 
homeomorphism hs

x,y : P(Ec(x)) → P(Ec(y)) satisfying the properties in Definition 3.1. Analogously, for every y ∈
Wu(x) we have an homeomorphism hu

x,y .
Given an su-path γ = [z0, z1, ..., zn], we define the holonomy associated to it by hγ = hzn−1 ◦ ... ◦ hz0 where 

hzi
= hs

zi ,zi+1
if zi ∈ Ws(zi+1) and hzi

= hu
zi ,zi+1

if zi ∈ Wu(zi+1).

In Proposition 3.4 and Corollary 3.5 of [21] it is proved that there exist a C2-neighborhood of f , U(f ), in which 
the holonomy for γ varies continuously with the diffeomorphism. This is, if g ∈ U(f ) is C1-close enough to f and 
γg is an su-path for g whose nodes are close enough to the nodes of γ , then the respective holonomies are close. We 
are going to precise this statement in the following two results which are corollaries of the propositions above.

When we refer to the distance between a point a ∈ P(Ec(x, f )) and a point a(g) ∈ P(Ec(y,g)), we are considering 
both as elements in P(TM). The distance between points in different fibers is defined using parallel transport. More 
precisely, for every x, y ∈ M close enough, denote πx,y : TxM −→ TyM the parallel transport along χ , where χ is 
the geodesic satisfying dist (x, y) = length(χ). Then, given two points (x, v) and (y, w) in P(TM) define

d((x, v), (y,w)) = dist (x, y) + � (πx,y(v),w).

From now on we fix the C2 neighborhood U(f ) where Proposition 3.4 and Corollary 3.5 of [21] hold.
The first corollary is a consequence of Proposition 5.2.

Corollary 5.4. Let ∗ ∈ {μ, ω}, r ≥ 2 and f ∈ Br∗(M). There exists C > 0 such that for every x ∈ M , xk → x and every 
sequence fk → f in the C1 topology with fk ∈ U(f ) for every k ∈ N, there exists K ∈ N such that for every k ≥ K

and every su-path for fk given by Proposition 5.1, γk = [z0(fk), ..., zN(fk)], with z0(fk) = xk , the su-path for f , 
γ = [z0, ..., zN ], given by Proposition 5.2 satisfies the following estimation for the holonomies of P(F ) and P(Fk),

d(hγ (c), hγk
(d)) ≤ ψ(k) + C d(c, d) ∀ c ∈ P(Ec(x, f )), d ∈ P(Ec(xk, fk)),

where ψ(k) goes to zero as k goes to ∞.

The second corollary is a consequence of Proposition 5.3.

Corollary 5.5. Let ∗ ∈ {μ, ω}, r ≥ 2 and f ∈ Br∗(M). There exists C > 0 such that for every x, y ∈ M , xk → x, 
yk → y and every sequence fk → f in the C1 topology with fk ∈ U(f ) for every k ∈ N, the su-paths given by 
Proposition 5.3, denoted by γkj

and γ , can be taken to satisfy the following estimation for the holonomies defined by 
them,

d(hγ (c), hγkj
(d)) ≤ ψ(kj ) + C d(c, d) ∀ c ∈ P(Ec(x, f )), d ∈ P(Ec(xkj , fkj)),

where ψ(kj ) goes to zero as kj goes to ∞.
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6. Proof of Theorem A and C

Recall that ω denotes a symplectic form, μ denotes a probability measure in the Lebesgue class and by Defini-
tion 4.4 if r ≥ 2 and ∗ ∈ {μ, ω}, then Br∗(M) denotes the subset of PHr∗(M) where f ∈ Br∗(M) if f is accessible, 
α-pinched and α-bunched for some α > 0 and its center bundle is 2-dimensional. Moreover, by Definition 2.8 we say 
that a periodic point p is a pinching hyperbolic periodic point if the eigenvalues of Df

np
p |Ec(p) have different norms 

and both norms are different from one.
We will prove the following theorem.

Theorem 6.1. Let r ≥ 2 and ∗ ∈ {μ, ω}. Suppose fk → f in Diff r∗(M), f ∈ Br∗(M) and f has a pinching hyperbolic 
periodic point. If λc

1(fk) = λc
2(fk) for every k ∈N, then λc

1(f ) = λc
2(f ).

It is clear that this theorem will imply Theorem C. Moreover, suppose that Theorem A is not true. Therefore, there 
exists f ∈ Br

ω(M) such that f is a non-uniformly hyperbolic diffeomorphism and there exists a sequence fk → f

in Diff r
ω(M) with λc

1(fk) = λc
2(fk) for every k ∈ N. By Theorem 4.2 of [16], there exists a hyperbolic periodic 

point p for f which is in fact a pinching hyperbolic periodic point, because f is a symplectic diffeomorphism. This 
contradicts Theorem 6.1 and therefore Theorem A has to be true.

Proof of Theorem 6.1. Let r ≥ 2 and ∗ ∈ {μ, ω}. Let fk → f in Diff r∗(M) and λc
1(fk) = λc

2(fk) for every k ∈ N. 
Assume that f ∈ Br∗(M), f has a pinching hyperbolic point and λc

1(f ) �= λc
2(f ).

By the hypotheses, f is a Cr discontinuity point for the center Lyapunov exponents. Moreover, if F = η · Df |Ec, 
by Equation (2), λ+(F ) > 0 > λ−(F ). See the argument in the first paragraph of the proof of Proposition 4.8.

We can apply Proposition 4.6 and Proposition 4.8. Then, there exist two P(F )-invariant probability measures 
projecting down to μ, m+ and m−, which are su-states.

By Theorem 4.2 we know that both m+ and m− admit disintegrations which are bi-invariant and their conditional 
probabilities depend continuously on the base point x ∈ M , relative to the weak∗ topology. We are going to denote 
these disintegrations by {m+

x : x ∈ M} and {m−
x : x ∈ M}, respectively. Observe that m+

x = δ
P(E+

x ) and m−
x = δ

P(E−
x )

for μ-almost every x ∈ M .
Define

M+ = supp m+ = {(x, supp m+
x ) : x ∈ M},

M− = supp m− = {(x, supp m−
x ) : x ∈ M}.

Then, M+ ∩ M− = ∅. Since the disintegrations are bi-invariant and f is accessible, if there were some point (x, v) ∈
M+ ∩ M−, it would imply that M+ = M− which is a contradiction.

Since M+ and M− are two disjoint compact sets of P(T M), there exists ε > 0 such that

Bε(M
+) ∩ Bε(M

−) = ∅.

Let p be a pinching hyperbolic periodic point for f and np = per(p). Define a, b ∈ P(Ec(p, f )) as a = P(E1) and 
b = P(E2), where E1 and E2 are the subspaces of Ec(p, f ) associated to the eigenvalues of Df

np
p |Ec(p, f ).

For every k ∈ N, let Fk = ηk · Dfk|Ec(fk) and mk be any ergodic probability measure for P(Fk). By Equation (2), 
λ+(Fk) = λ−(Fk). If k is big enough, fk ∈ Br∗(M) and we can apply Corollary 4.5. This implies that there exists a 
disintegration {mk,x : x ∈ M} which is bi-invariant and mk,x depends continuously on the base point x ∈ M .

Moreover, if k is big enough, there exists a pinching hyperbolic periodic point for fk that we denote p(fk), such 
that p(fk) → p as k → ∞. If a(fk) = P(E1(fk)) and b(fk) = P(E2(fk)) where E1(fk) and E2(fk) are the subspaces 
of Ec(p(fk), fk) associated to the eigenvalues of Df

np

k |Ec(p(fk), fk), then a(fk) → a and b(fk) → b when k → ∞.
Since the measure mk is P(Fk)-invariant, by Remark 4.3, we have

suppmk,p(fk) ⊂ {a(fk), b(fk)}.
We are going to prove that there exists a subsequence kj such that

mkj ,p(fkj
) = δa(fkj

) or mkj ,p(fkj
) = δb(fkj

),

for every j ∈N.
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In order to prove the statement above, suppose there exists K ∈ N such that for every k ≥ K there exists t ∈ (0, 1)

such that mk,p(fk) = tδa(fk) + (1 − t)δb(fk).
Fix x ∈ M . By Proposition 5.1, there exists γk = γ (fk,p(fk), x) an su-path for fk joining p(fk) to x with a uniform 

bound for the number of nodes and the distance between them.
If hγk

denotes the holonomy for P(Fk) associated to γk , then we define

ak,x = hγk
(a(fk)) and bk,x = hγk

(b(fk)).

When k is big enough, we have the following properties for ak,x and bk,x :

(a) For every x ∈ M , ak,x and bk,x do not depend on the su-path γk .
(b) For every x ∈ M , P(Fk,x)(ak,x) = ak,fk(x) and P(Fk,x)(bk,x) = bk,fk(x).
(c) x �→ ak,x and x �→ bk,x vary continuously with the point x ∈ M .

Notice that by Corollary 5.4 applied to fk → f and p(fk) → p, there exist C > 0 and a function ψ depending 
only on k such that for every su-path, γk , given by Proposition 5.1 for fk joining p(fk) to x, there exists an su-path 
for f denoted by γ and joining p to a point y close to x, such that

d(hγ (a),hγk
(a(fk))) ≤ ψ(k) + C d(a, a(fk)),

and

d(hγ (b),hγk
(b(fk))) ≤ ψ(k) + C d(b, b(fk)),

where ψ(k) → 0 as k → ∞.
By Remark 4.3, since m+ and m− are P(F )-invariant probability measures and a, b ∈ P(Ec(p, f )) denote the 

subspaces associated to the eigenvalues of Df
np
p |Ec(p, f ), we have a = suppm+

p and b = suppm−
p . Then, for k big 

enough, we have

d(suppm+
x , hγk

(a(fk))) < ε/2 and d(suppm−
x , hγk

(b(fk))) < ε/2. (4)

Here we are using that the disintegrations for m+ and m− are bi-invariant and m+
x and m−

x depend continuously on 
the base point x ∈ M .

Moreover, the disintegration of mk is also bi-invariant. Therefore,

suppmk,x = {hγk
(a(fk)), hγk

(b(fk))},
for every su-path γk joining p(fk) to x. This is a consequence of the fact that we are assuming mk,p(fk) = tδa(fk) +
(1 − t)δb(fk).

We are going to use the observations above to prove properties (a) to (c).
Proof of (a): Let γk,1 and γk,2 be two su-paths for fk joining p(fk) to x and given by Proposition 5.1. Since the 

disintegration of mk is bi-invariant, hγk,1(a(fk)) = hγk,2(a(fk)) or hγk,1(a(fk)) = hγk,2(b(fk)). Suppose we are in the 
second case, by Equation (4),

d(suppm+
x , hγk,1(a(fk))) < ε/2 and d(suppm−

x , hγk,2(b(fk))) < ε/2,

and we get a contradiction. This is because ε > 0 was chosen to satisfy

Bε(M
+) ∩ Bε(M

−) = ∅,

where M+ = suppm+ and M− = suppm−. Then, hγk,1(a(fk)) = hγk,2(a(fk)) and hγk,1(b(fk)) = hγk,2(b(fk)) as we 
wanted to prove.

Proof of (b): By the definition of ak,x and bk,x and the disintegration of mk being bi-invariant, we have

suppmk,x = {ak,x, bk,x} and suppmk,fk(x) = {ak,fk(x), bk,fk(x)},
for every x ∈ M . Moreover, by Remark 4.3,

P(Fk,x)(ak,x) = ak,fk(x) or P(Fk,x)(ak,x) = bk,fk(x).
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Suppose the second case happens, that is P(Fk,x)(ak,x) = bk,fk(x). Then, by Equation (4),

d(suppm−
fk(x),P(Fk,x)(ak,x)) < ε/4,

if k is big enough. Moreover, since fk → f and m−
x depends continuously on the base point x ∈ M , we can suppose 

that k is big enough such that

d(suppm−
f (x),P(Fk,x)(ak,x)) < ε/2.

On the other hand, again by Equation (4),

d(suppm+
x , ak,x) < ε/4,

and since fk → f , we have

d(suppm+
f (x),P(Fk,x)(ak,x)) = d(P(Fx)(suppm+

x ),P(Fk,x)(ak,x)) < ε/2.

Therefore, P(Fk,x)(ak,x) is ε/2-close to M+ = suppm+ and M− = suppm− which is a contradiction because ε
satisfies Bε(M

+) ∩ Bε(M
−) = ∅. This implies that P(Fk,x)(ak,x) = ak,fk(x) and P(Fk,x)(bk,x) = bk,fk(x) for every 

x ∈ M .
Proof of (c): This is a consequence of mk,x depending continuously on the base point x ∈ M , suppmk,x =

{ak,x, bk,x}, Equation (4) and Bε(M
+) ∩ Bε(M

−) = ∅.
Properties (a) to (c) allow us to define two P(Fk)-invariant probability measures projecting down to μ by

m+
k =

∫
δak,x

dμ and m−
k =

∫
δbk,x

dμ.

Recall that we are assuming there exists K ∈N such that for every k ≥ K there exists t ∈ (0, 1) such that mk,p(fk) =
tδa(fk) + (1 − t)δb(fk). Moreover, by the definition of ak,x and bk,x , we have mk,x = tδak,x

+ (1 − t)δbk,x
. Then, mk

can be written as mk = t m+
k + (1 − t) m−

k . This is a contradiction, since we chose mk to be ergodic. Therefore, there 
exists a subsequence kj such that mkj ,p(fkj

) = δa(fkj
) or mkj ,p(fkj

) = δb(fkj
) for every j ∈ N.

Suppose mkj ,p(fkj
) = δa(fkj

) for every j ∈ N, the other case is analogous. By definition of ak,x , we have mkj ,x =
δakj

,x for every x ∈ M . By Equation (4), for every ε > 0 there exists J ∈ N such that d(akj ,x, suppm+
x ) < ε for every 

j ≥ J and every x ∈ M . Then, mkj
→ m+ when j goes to ∞.

Since fk → f , we have λ+(Fkj
) = ∫

�kj
(x, v) d mkj

→ ∫
�(x, v) d m+ = λ+(F ). However, we were assuming 

that λc
1(fk) = λc

2(fk) for every k ∈ N and λc
1(f ) �= λc

2(f ). By Equation (2), these hypotheses implies λ+(Fk) = 0 for 
every k ∈ N and λ+(F ) > 0. Therefore, the conclusion we obtain, λ+(Fkj

) → λ+(F ) for some subsequence kj , is a 
contradiction. Finally, we conclude λc

1(f ) must be equal to λc
2(f ) as we wanted to prove. �

7. Proof of Theorem B and D

Recall that ω denotes a symplectic form, μ denotes a probability measure in the Lebesgue class and by Defini-
tion 4.4 if r ≥ 2 and ∗ ∈ {μ, ω}, then Br∗(M) denotes the subset of PHr∗(M) where f ∈ Br∗(M) if f is accessible, 
α-pinched and α-bunched for some α > 0 and its center bundle is 2-dimensional. Moreover, by Definition 2.8 we say 
that a periodic point p is a pinching hyperbolic periodic point if the eigenvalues of Df

np
p |Ec(p) have different norms 

and both norms are different from one.
In the proof of Theorem A, we observed that if f ∈ Br

ω(M) is a discontinuity point for the center Lyapunov 
exponents, then f has a pinching hyperbolic periodic point.

We are going to prove the following theorem which implies Theorem B and D.

Theorem 7.1. Let r ≥ 2 and ∗ ∈ {μ, ω}. Suppose f ∈ Br∗(M) and f has a pinching hyperbolic periodic point p. If f

is a Cr discontinuity point for the center Lyapunov exponents, then f can be Cr -approximated by open sets of Cr

continuity points for the center Lyapunov exponents.
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As we mentioned before, the proof of this theorem is a consequence of Proposition 4.8, Theorem 4.2 and the 
arguments in [20].

Let r ≥ 2 and ∗ ∈ {μ, ω}. Assume that f ∈ Br∗(M), f has a pinching hyperbolic point and f is a Cr discontinuity 
point for the center Lyapunov exponents.

Let p be a pinching hyperbolic periodic point for f . Define a, b ∈ P(Ec(p, f )) as a = P(E1) and b = P(E2), where 
E1 and E2 are the subspaces of Ec(p, f ) associated to the eigenvalues of Df

np
p |Ec(p, f ).

If we consider the cocycle over f given by P(F ) where F = η · Df |Ec (see Section 3), then by Proposition 4.8
and Theorem 4.2, the probability measure m+, defined in Proposition 4.6, admits a disintegration {m+

x : x ∈ M}
which is bi-invariant and its conditional probabilities depend continuously on the base point x ∈ M , relative to the 
weak∗-topology.

In the following toy model, we explain the main ideas and steps in the proof of Theorem 7.1. These ideas are 
classical and have already appeared, for example, in [3,28].

7.1. Toy model

Suppose there exists z ∈ M such that z ∈ Wss(p) ∩Wuu(p). Then, the disintegration of m+, {m+
x : x ∈ M} satisfies

(hs
p,z(f ))∗m+

p = m+
z and (hu

p,z(f ))∗m+
p = m+

z .

If suppm+
p = a, we have that there exists c ∈ P(Ec(z)) such that hs

p,z(f )(a) = hu
p,z(f )(a) = c.

Since p is periodic and z has no recurrence, there exists δ > 0 such that f j (z) /∈ Bδ(z) for every j ∈ Z \ {0}
and f j (p) /∈ Bδ(z) for every j ∈ Z. We are going to consider a perturbation of f supported in Bδ(z) That is, a 
diffeomorphism which is Cr -close enough to f and such that g(x) = f (x) if x /∈ Bδ(z). This perturbation is chosen 
in order to have, hs

p,z(g) = Rβ ◦ hs
p,z(f ) and hu

p,z(g) = hu
p,z(f ). Here, Rβ denotes a rotation of angle β > 0. Recall 

P(F ) is a cocycle of circle diffeomorphisms over f and then it makes sense to consider rotations in P(Ec(p, f )).
If g is a Cr discontinuity point for the center Lyapunov exponents, then we have that the measure m+

g , given by 
Proposition 4.6, admits a disintegration which is bi-invariant and its conditional probabilities depend continuously on 
the base point x ∈ M . Since a = suppm+

g,p , then hs
p,z(g)(a) = Rβ(c) and hu

p,z(g)(a) = c. This is a contradiction and 
therefore g has to be a Cr continuity point for the center Lyapunov exponents.

7.2. Strategy of the proof

We will use the same argument than in [21] to generalize the ideas in the toy model.
First we find an su-path from p to itself with a special node z, which is slowly accumulated by the orbits of all the 

nodes including its own. This is done in Proposition 7.2. Next, we construct a sequence of Cr -perturbations denoted 
by fk and supported in Bδk

(z). The details are given in Lemma 7.3.
Then, we study how the su-path and the holonomies change under the variation of the diffeomorphism. The main 

results are Proposition 7.4 and Proposition 7.5. The main observation is that the variation in the holonomies is expo-
nentially small in k, although the size of the perturbations δk is polynomial in k. This will allow us to break the rigidity 
given by the existence of continuous sections which are invariant by P(F ) and by the invariant stable and unstable 
holonomies of P(F ).

We are going to suppose that fk is a Cr discontinuity point for the center Lyapunov exponents for every k ∈ N. 
Therefore, by Proposition 4.8 and Theorem 4.2, for every k ∈ N we have a family of disintegrations {m+

k,x : x ∈ M}
associated to the measure m+

k given by Proposition 4.6. Moreover, m+
k,x depends continuously on the base point 

x ∈ M . In order to conclude the argument we need the functions x �→ m+
k,x to be Hölder continuous. We are not able 

to prove this property, but the problem is solved using the hyperbolicity of p and Proposition 5.3.
Moreover, we prove that for every k ∈ N there exist a neighborhood of fk where all the above are still valid. This 

will allow us to conclude that f can be Cr -approximated by open sets of Cr continuity points for the center Lyapunov 
exponents.

In order to simplify the presentation we state here the results of [21] that we use in the proof of the theorem.

Proof of Theorem 7.1. Let r ≥ 2 and ∗ ∈ {μ, ω}. Assume that f ∈ Br∗(M), f has a pinching hyperbolic point and f
is a Cr discontinuity point for the center Lyapunov exponents.
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Let p be a pinching hyperbolic periodic point for f . Consider the cocycle P(F ) over f given by F = η · Df |Ec and 
the probability measure m+ defined in Proposition 4.6. By Proposition 4.8 and Theorem 4.2, m+ admits a disintegra-
tion which is bi-invariant and its conditional probabilities depend continuously on the base point x ∈ M , relative to 
the weak∗-topology. Suppose a = suppm+

p .
In the toy model we assume there exists z ∈ Wss(p) ∩ Wuu(p), therefore we have an su-path for f given by 

ζ = [p, z, p]. The next proposition will allow us to define an su-path for f from p to itself which will generalize the 
situation we consider in the toy model.

Proposition 7.2 (Proposition 8.2 in [2]). Let f be a C2 partially hyperbolic accessible diffeomorphism. Then, for 
every x ∈ M there exist an su-path, ζ = [z0, ..., zN ] with x = z0 = zN , l ∈ {0, ..., N} and c > 0 such that

dist (f j (zi), zl) ≥ c

1 + j2 ,

for every (j, i) ∈ Z × {0, ..., N} \ (0, l).

Let ζ = [z0, ..., zN ] be the su-path given by Proposition 7.2 for f and p. We are going to find a sequence of 
perturbations supported around zl .

In order to guarantee exponential estimations in Proposition 7.5, Equation (8) and Equation (13) we need to con-
sider a technical constant σ > 0. The value of σ depends only on f and we fix it from now on. More precisely, 
σ = σ(υ, α, np, N), where υ represents the functions in Equation (1) for f , α is the exponent for which f is α-pinched 
and α-bunched, np is the period of p and N the number of nodes in the su-path given by Proposition 7.2.

Define,

δk = c

1 + (σ k)2 , (5)

for every k ≥ 1, where c > 0 is given by Proposition 7.2.

Lemma 7.3 (Lemma 4.4 in [21]). Let r ≥ 2 and ∗ ∈ {μ, ω}. There exist ε0 > 0, k0 ∈ N and C0 > 0 such that for any 
0 < ε < ε0 and k ≥ k0, there exists fk ∈ Br∗(M) which is ε Cr -close to f and such that

(a) fk(x) = f (x) if x /∈ Bδk
(zl),

(b) fk(zl) = f (zl) and
(c) Dfk(zl) = Df (zl) ◦ Aβk

where sin βk = C0 δr−1
k ε and Aβk

is the linear map from T Mzl
to T Mzl

given in coordi-
nates T M = Es ⊕ Ec ⊕ Eu by⎛

⎝Ids 0 0
0 Rβk

0
0 0 Idu

⎞
⎠

with Id∗∗ : E∗∗
z → E∗∗

z being the identity map for ∗∗ ∈ {s, u} and Rβk
the counterclockwise rotation of angle βk

in some (symplectic) base {e1, f1} of Ec(z).

Moreover, if we fix ε > 0 and consider the sequence {fk}k≥k0 , then fk → f in the C1 topology when k → ∞.

The properties of the sequence fk given by Lemma 7.3 allow us to understand how the dynamics is changing. The 
next proposition studies how the su-path ζ given by Proposition 7.2 varies with f .

Proposition 7.4 (Proposition 4.8 in [21]). If ζ = [z0, ..., zN ] is the su-path given by Proposition 7.2 for f and p and 
fk is given by Lemma 7.3 for some ε > 0, then there exist C1 > 0, τ ∈ (0, 1) and k1 ∈ N such that for every k ≥ k1
there exists an su-path for fk , ζ(fk) = [z0(fk), ..., zN(fk)], with z0(fk) = z0 = p and such that

dist (zi , zi(fk)) < C1 τσ1k,

for every i ∈ {1, ..., N}, where σ1 = σ αN .
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Although ζ is a closed su-path, z0 = zN = p, the su-path for fk given by this proposition is not necessarily closed. 
We can have z0(fk) �= zN(fk).

Fix some ε > 0 small enough and let fk be given by Lemma 7.3 for this ε. Then, in the notation of Proposition 7.4, 
define

ζ1 = [z0, ..., zl], ζ2 = [zN , ..., zl],
ζ1(fk) = [p, ..., zl(fk)] and ζ2(fk) = [zN(fk), ..., zl(fk)].

Analogous to Definition 3.1, we can define invariant stable and unstable holonomies for the linear cocycle F ′ =
Df |Ec. If f ∈ Br∗(M), by Section 3 of [2], there exist invariant stable and invariant unstable holonomies associated 
to F ′. We are going to denote these holonomies by Hs

x,y and Hu
x,y . Moreover, if hs

x,y and hu
x,y denote the holonomies 

for P(F ′), then hs
x,y = P(Hs

x,y) and hu
x,y = P(Hu

x,y). Recall P(F ′) = P(F ) if F = η · F ′.
For i ∈ {1, 2}, Hζi

will denote the holonomy for F ′ defined by ζi and Hζi(fk) the holonomy for F ′
k = Dfk|Ec(fk)

defined by ζi(fk). Then,

Hζ1 : Ec(p) → Ec(zl, f ), Hζ2 : Ec(p) → Ec(zl, f ),

Hζ1(fk) : Ec(p) → Ec(zl(fk), fk) and Hζ2(fk) : Ec(zN(fk), fk) → Ec(zl(fk), fk).

We can suppose zl−1 ∈ Ws(zl) and zl ∈ Wu(zl+1).

Proposition 7.5 (Corollary 4.10 in [21]). There exist C > 0, λ ∈ (0, 1) and K ∈ N such that for every k ≥ K , c ∈ Ec(p)

and ck ∈ Ec(zN(fk), fk) we have

d(R−1
βk

◦ Hζ1(c),Hζ1(fk)(c)) ≤ C λk, (6)

and

d(Hζ2(c),Hζ2(fk)(ck)) ≤ C λk + C d(c, ck), (7)

where Rβk
: Ec(zl, f ) → Ec(zl, f ) is the rotation of angle βk > 0 defined by Lemma 7.3.

Here the distance between points in different fibers of T M is defined, as before, using parallel transport. More 
precisely, for every x, y ∈ M close enough, denote πx,y : TxM −→ TyM the parallel transport along χ , where χ is 
the geodesic satisfying dist (x, y) = length(χ). Then, given two points (x, v) and (y, w) in T M define

d((x, v), (y,w)) = dist (x, y) + ∥∥πx,y(v) − w
∥∥ .

Suppose fk is a Cr discontinuity point for the center Lyapunov exponents for every k, then we can define m+
fk

by Proposition 4.6 and it will admit a disintegration which is bi-invariant and its conditional probabilities depend 
continuously on the base point x ∈ M . This is a consequence of Proposition 4.8 and Theorem 4.2.

Let zN(fk) be given by Proposition 7.4 and

qk = f
−npk

k (zN(fk)).

Then, there exists C2 > 1 such that

dist (p, qk) ≤ C
npk

2 dist (p, zN(fk)) ≤ C1 (C
np

2 τσ1)k. (8)

Here C2 depends on the functions in Equation (1) and σ1 = σ αN . The constant σ was chosen in order to have this 
expression going to zero as k → ∞.

Now, we consider the su-paths given by Proposition 5.3 for fk → f , x = y = p, xk = p and yk = qk for every k. 
Therefore, there exist a subsequence, that we will continue to denote k to simplify the notation, su-paths for fk

denoted by γk joining p to qk and an su-path for f denoted by γ joining p to itself.
Moreover, by Corollary 5.5, there exists C > 0 such that

d(hγ (a),hγk
(a)) ≤ ψ(k),
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where ψ(k) → 0 as k → ∞. Since the disintegrations of m+ and m+
fk

are bi-invariant and a = suppm+
p = suppm+

fk,p
, 

we conclude that for every ε > 0 there exists K1 ∈ N such that for every k ≥ K1 we have,

d(suppm+
fk,qk

, a) < ε. (9)

Since p is a pinching hyperbolic periodic point, there exist C3 > 0, θ0 > 0, ρ0 ∈ (0, 1) such that for the subspaces 
E1, E2 of Ec(p) associated to the eigenvalues of Df

np
p |Ec(p) we have:

For every F 1 and F 2 one-dimensional subspaces of Ec(p) with

max{� (E1,F1), � (E2,F2)} < θ0, (10)

then

� (Df npj (E1),Df npj (F 1)) ≤ C3 ρ
j

0 (11)

and

� (Df −npj (E2),Df −npj (F 2)) ≤ C3 ρ
j
0 , (12)

for every j ≥ 0.

Recall qk = f
−npk

k (zN(fk)). Let dk = suppm+
fk,qk

and ck = P(F
np

k (qk))(dk). Then, by Remark 4.3, ck =
suppm+

fk,zN (fk)
and by Equation (9), dist (dk, a) < θ0 if k is big enough.

Therefore, there exists C4 > 0 such that

d(a, ck) = d(P(F npk(p))(a),P(F
npk

k (qk))(dk))

≤ C1 ρk + C1 (C
np

4 τσ1)k.
(13)

In order to obtain the estimations in Equation (13) we use triangular inequality to get two terms: the first one is 
bounded using Equation (11) and the second one using that P(Fk) is Lipschitz. When k is big enough, we can take 
the constant C4 to be uniform for every k, depending only on f . The constant σ was chosen to have the expression 
on the second term going to zero exponentially fast as k → ∞.

Therefore, there exist Ĉ > 0 and ρ ∈ (0, 1) such that for every k big enough,

d(a, suppm+
fk,zN (fk)

) < Ĉ ρk. (14)

Summarizing, by Equation (6), Equation (7) and Equation (14) we have the following estimations.
There exist C > 0, λ ∈ (0, 1) and K ∈N such that the following equations are valid for every k ≥ K :

d(R−1
βk

◦ Hζ1(a),Hζ1(fk)(a)) ≤ C λk, (15)

and

d(Hζ2(a),Hζ2(fk)(ck)) ≤ C λk, (16)

where Rβk
: Ec(zl, f ) → Ec(zl, f ) is the rotation of angle βk > 0 defined by Lemma 7.3, a = suppm+

p = suppm+
fk,p

and ck = suppm+
fk,zN (fk)

.
For i ∈ {1, 2}, let hζi(fk) denote the holonomy for P(Fk) defined by ζi(fk). Then, hζi(fk) = P(Hζi(fk)).

By Equation (5) and Lemma 7.3, λk

sin2 βk
→ 0 when k → ∞. This is true because βk depends polynomially on k. 

This property, together with Equation (15) and Equation (16) imply that for k big enough

hζ1(fk)(suppm+
fk,p

) �= hζ2(fk)(suppm+
fk,zN (fk)

).

This is a contradiction because we were assuming that every fk was a Cr discontinuity point for the center Lya-
punov exponents and therefore there existed a disintegration for every m+

fk
which was bi-invariant. Therefore, we 

have proved that every f ∈ Br∗(M) having a pinching hyperbolic periodic point can be Cr-approximated by diffeo-
morphisms which are Cr continuity points for the center Lyapunov exponents.

In order to conclude the proof of Theorem 7.1, we need to prove that the argument above can be carry in a robust 
way.
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Fix k big enough. If g is a diffeomorphism close enough to fk , then there exist p(g) a pinching hyperbolic periodic 
point of g with np = per(p(g)) which is close to p. Consider a(g), b(g) ∈ P(Ec(p(g),g)) the projectivization of the 
two subspaces of Ec(p(g),g) which are invariant by Dg

np

p(g). We can suppose a(g) is close to a ∈ P(Ec(p, fk)). Recall 
a = suppm+

p .
Let ζk = [z0(fk), ..., zN(fk)] be the su-path for fk given by Proposition 7.4. Then, for every ε > 0 there exists 

a C1 neighborhood of fk , W(fk), such that if g ∈ W(fk), then there exists an su-path for g, denoted by ζ(g) =
[z0(g), ..., zN(g)], with z0(g) = p(g) and such that dist (zi(fk), zi(g)) < ε for every i ∈ {0, ..., N}.

Let

ζ1(g) = [z0(g), ..., zl(g)] and ζ2(g) = [zN(g), ..., zl(g)].
For i ∈ {1, 2} we denote by Hζi(g) the holonomy for G = Dg|Ec(g) defined by ζi(g). Then,

Hζ1(g) : Ec(p(g),g) → Ec(zl(g),g) and Hζ2(g) : Ec(zN(g),g) → Ec(zl(g),g).

If λ ∈ (0, 1) and K ∈ N are given by Proposition 7.5, then for every k ≥ K , we will define a Cr neighborhood of 
fk , Vk(fk) ⊂ Br∗(M).

We say that g ∈ Vk(fk) if it satisfies the following:

(a) distCr (g, fk) < ε,
(b) distC1(g, fk) < λk ,
(c) d(a(g), a) < λk ,
(d) the distance between the nodes of ζ(g) and ζ(fk) is bounded by λk ,
(e) d(Hζ1(g)(c(g)), Hζ1(fk)(c)) ≤ λk + C d(c, ck) for every c ∈ Ec(p, fk) and every c(g) ∈ Ec(p(g),g),
(f) d(Hζ2(g)(ck(g)), Hζ2(fk)(ck)) ≤ λk + C d(c, ck) for every ck ∈ Ec(zN(fk), fk) and every ck(g) ∈ Ec(zN(g),g) and
(g) if q(g) = g−npk(zN(g)), then dist (q(g), qk) < λk .

The existence of a neighborhood of fk where properties (e) and (f) hold is a consequence of Proposition 3.4 and 
Corollary 3.5 of [21].

The proof of Theorem 7.1 will follow if we prove that there exists m ∈ N such that every g ∈ Vm(fm) is a Cr

continuity point for the center Lyapunov exponents. In order to do that, we suppose that for every k ≥ K there exists 
gk ∈ Vk(fk) such that gk is a Cr discontinuity point for the center Lyapunov exponents. The properties (a)–(g) were 
chosen to allow us to extend the same argument that we used above for fk , now for the sequence gk . Therefore, from 
the assumption of gk being a Cr discontinuity point for the center Lyapunov exponents for every k, we arrive to a 
contradiction. This implies that there exists m ∈N such that every g ∈ Vm(fm) is a Cr continuity point for the center 
Lyapunov exponents as we wanted to prove. �
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