
Ann. I. H. Poincaré – AN 24 (2007) 17–39
www.elsevier.com/locate/anihpc

A Gamma-convergence argument for the blow-up of a non-local
semilinear parabolic equation with Neumann boundary conditions

A. El Soufi a,∗, M. Jazar b,1, R. Monneau c

a Laboratoire de Mathématiques et Physique Théorique, UMR 6083 du CNRS, Université de Tours, Parc de Grandmont, 37200 Tours, France
b Mathematics department, Lebanese University, P.O. Box 155-012, Beirut, Lebanon

c CERMICS – Ecole Nationale des Ponts et Chaussées, 6 et 8 avenue Blaise Pascal Cité Descartes, Champs sur Marne,
77455 Marne la Vallée cedex 2, France

Received 15 March 2005; received in revised form 4 August 2005; accepted 14 September 2005

Available online 9 February 2006

Abstract

In this paper we study a simple non-local semilinear parabolic equation in a bounded domain with Neumann boundary conditions.
We obtain a global existence result for initial data whose L∞-norm is less than a constant depending explicitly on the geometry
of the domain. A natural energy is associated to the equation and we establish a relationship between the finite-time blow up of
solutions and the negativity of their energy. The proof of this result is based on a Gamma-convergence technique.
© 2006

Résumé

Cet article est consacré à l’étude d’un modèle simple d’équation semi-linéaire parabolique non locale dans un domaine borné
sous la condition de Neumann au bord. Nous obtenons un résultat d’existence globale pour les données initiales dont la norme
infinie est majorée par une constante explicite qui dépend de la géométrie du domaine. En outre, nous associons une énergie
naturelle à l’équation et établissons un lien entre l’explosion en temps fini des solutions et la négativité de leur énergie. La preuve
de ce résultat est fondée sur une technique de Gamma-convergence.
© 2006
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1. Introduction

1.1. Setting of the problem

In this paper, we consider a bounded regular (of class C2) domain Ω in R
N , and study the solutions u(x, t) of the

following equation for some p > 1 (denoting the mean value 1
|Ω|

∫
Ω

f by
∫−

Ω
f for a general function f ):
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ut − �u = |u|p −
∫
−
Ω

|u|p on Ω,

∂u

∂n
= 0 on ∂Ω

(1.1)

with the initial condition⎧⎪⎨
⎪⎩

u(x,0) = u0(x) on Ω,

with
∫
−
Ω

u0 = 0. (1.2)

It is immediate to check that the integral (or the mean value) of u is conserved (at least once you precise the meaning
of the solution).

Stationary solutions of Eq. (1.1) are in fact critical points of the energy functional

E(u) =
∫
Ω

[
1

2
|∇u|2 − 1

p + 1
u|u|p

]

under the constraint that
∫−

Ω
u is equal to a given constant.

Without loss of generality, we can assume that |Ω| = 1. Indeed, if u is a solution of (1.1), (1.2) in Ω and λ > 0,
then v(t, x) := λ2/(p−1)(λ2t, λx) is a solution in λ−1Ω . Throughout the paper, we assume |Ω| = 1, except when the
volume |Ω| is explicitly mentioned to show the dependence of the constants.

1.2. Motivation of the problem

A lot of work has been done on scalar semilinear parabolic equations whose the most famous example is

ut − �u = up

and the problem of global existence or blow-up is quite well understood (see for instance [13,4] for an energy criterion
for blow-up, [15] for a study of self-similar blow-ups; see also [38,32] and the numerous references therein). Of course,
the Maximum Principle plays a fundamental role in the establishment of results in this setting. However, concerning
the problem of describing the blow-up set, very few results are known. For instance, in dimension 2, the question of
whether there exists a solution whose blow-up set is an ellipse is still unanswered. Recently, Zaag [39] established
the first regularity results for the blow-up set, based on global estimates independent of the blow-up point obtained by
Merle and Zaag [24] through the proof of a Liouville theorem.

In the case of parabolic systems or non-local scalar parabolic equations, even if some Maximum Principles may
hold, it is often necessary to introduce new techniques. One of the most famous examples is the Navier–Stokes
equation (see [20]), which can be written on the vorticity ω = curlu (with u the velocity and e = 1

2 (∇u + t∇u) the
deformation velocity):

ωt − ν�ω = −(u · ∇)ω + e · ω,

where the right-hand side is non-local and quadratic in ω. If we consider this equation on Ω = R
3\Z

3, the following
quantity is conserved by the equation∫

Ω

ω(t, x)dx.

One of the simplest examples of non-local and quadratic equation is

ut − �u = u2 − 1

|Ω|
∫
Ω

u2

with Neumann boundary condition on ∂Ω so that the quantity
∫
Ω

u(t, x)dx is conserved. This equation is also related
to Navier–Stokes equations on an infinite slab for other reasons explained in [6]. Problem (1.1), (1.2) is a natural
generalization of this latter for which we provide a global existence result for small initial data as well as a new
blow-up criterion based on partial Maximum Principles and on a Gamma-convergence argument.
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1.3. Main results

In this subsection, we present our main results: local existence, global existence for small initial data, energetic
criterion for blow-up of solutions based on an optimization result of independent interest that we prove by a Gamma-
convergence technique. Furthermore we give a global existence result in the case p = 2, explicating the constants as
a function of the geometry of the domain.

First, let us mention that the classical semigroup theory enables us to prove, more or less directly:

• local existence and uniqueness of solutions of (1.1), (1.2) for any initial data u0 ∈ C( �Ω) (see the next section),
• global existence and exponential decay of solutions of (1.1), (1.2) for small initial data u0 ∈ C( �Ω). That is,

there exists some (implicit) constant ρ > 0 depending on the geometry of Ω , so that ‖u0‖L∞ < ρ implies global
existence and exponential decay of u: ‖u(t)‖L∞ � C e−αt for some positive constants C and α.

To prove results of this kind it suffices for instance to follow the arguments of the proof of [8, Proposition 5.3.9].
See also [5] for a 1-dimensional result in this direction.

Our main purpose is to give a natural sufficient condition for the blow-up in finite time of solutions of (1.1), (1.2)
in the case 1 < p � 2. Our proof relies on the same main idea introduced by Levine [21] and Ball [4] in the sense that
the blow-up will follow from a nonlinear differential inequality that we show to be satisfied by the L2-norm of the
solution.

First, it is quite easy to see that, ∀p > 1, the energy

E(u) =
∫
Ω

1

2
|∇u|2 − 1

p + 1
u|u|p (1.3)

of a solution u of (1.1), (1.2) is non-increasing in time (see Proposition 3.1). Our main result in this direction is the
following

Theorem 1.1 (Sufficient condition for blow-up, case 1 < p � 2). Let us assume that p ∈ (1,2] and let u be a solution
of (1.1), (1.2) with u0 ∈ C( �Ω), u0 	≡ 0. If the energy of u0 is nonpositive, that is E(u0) � 0, then the solution does not
exist in L∞((0, T );L2(Ω)) for all T > 0.

Remark 1.2. Note that Theorem 1.1 does not imply that the L2-norm of u(t) blows-up in finite time. Indeed, the
solution may simply not exist till time T .

Recall that, for the semilinear heat equation ut = �u + up on a bounded domain, the generic blow-up profile is
given by (see [18] for details)

u(x, t) → u∗(x) as t → T ,

with

u∗(x) ∼ C(p)

[ |log |x‖
|x|2

]1/(p−1)

as |x| → 0

C(p) being a constant. Hence, the L2-norm stays generically bounded whenever p > 1 + 4
N

, and blows-up when
p < 1 + 4

N
.

The condition of nonpositivity of the energy in Theorem 1.1 is also necessary in the sense that, if the L2-norm of
u(t) blows-up at a time T > 0, then the energy E(u(t)) needs to be negative at some time t < T . The situation is
even worse: the energy E(u(t)) needs to blow-up to −∞ at a time T ′ � T . Moreover, this property is valid for any
p ∈ (1,+∞). Indeed, we have the following

Theorem 1.3 (L2 bound on u for bounded from below energy, p ∈ (1,+∞)). Let p be any real number in (1,+∞)

and let u be a solution of (1.1), (1.2) with u0 ∈ C( �Ω). If there exists a constant C0 > 0 and a time T0 > 0 such that
the solution u exists on [0, T0) and satisfies

E(t) � −C0 for t ∈ [0, T0),



20 A. El Soufi et al. / Ann. I. H. Poincaré – AN 24 (2007) 17–39
then there exists a constant C > 0 such that∥∥u(t)
∥∥

L2(Ω)
� C for t ∈ [0, T0).

The case p > 2 is still not completely understood for us, however, we believe that the blow-up phenomenon of
Theorem 1.1 occurs for any p in (1,+∞) and formulate the following conjecture:

Conjecture (Sufficient condition for blow-up, case p > 2). For p > 2, we conjecture that if u is a solution of (1.1),
(1.2) with E(u0) � 0 and u0 	≡ 0, then u(t) blows-up in finite time.

The proof of Theorem 1.1 is based, on one hand, on the use of maximum principles, and, on the other hand, on the
following estimate of independent interest, proved by gamma-convergence:

Theorem 1.4 (Optimization under a L2 constraint). For p > 1, there exist θ0 > 0 and C > 0 such that

inf
v∈A

∫
Ω

v|v|p + θ |∇v|2 � C
√

θ (1.4)

for all θ ∈ [0, θ0], where

A :=
{
v ∈ Lp+1(Ω)

∣∣∣ ∫
Ω

v = 0,

∫
Ω

v2 = 1 and v � −1 on Ω

}
.

Let us mention that the profile of blowing-up solutions for this equation seems to us an open problem in general.
Besides an example given in [5] of a profile of a blowing-up solution whose the positive part concentrates at one point
in the one-dimensional case, we do not know if it is possible to build blowing-up solutions with different profiles.

Our next purpose is to focus on global existence results in the case p = 2. As mentioned previously, in usual global
existence results, the constant ρ that determines the smallness of the initial data should depend on the geometry of the
domain Ω . It is interesting to understand this dependence. That is precisely the aim of our Theorem 1.5. In particular,
we relax here the assumption |Ω| = 1 to show the dependence on the volume |Ω|. We need first to introduce the
following two invariants:

• the first positive eigenvalue λ1(Ω) of the Laplacian in Ω under Neumann boundary conditions. Recall that we
have the following isoperimetric-type inequality due to Szegö [34] and Weinberger [37]:

λ1(Ω)|Ω|2/N � λ∗
1(N), (1.5)

where λ∗
1(N) is the first positive Neumann eigenvalue of the N -dimensional Euclidean ball of volume 1.

• the constant H(Ω) defined as the supremum over (0,+∞) × Ω of the function tN/2[K(t, x, x) − 1
|Ω| ] where

K(t, x, y) is the heat kernel associated to the Laplacian in Ω with Neumann boundary conditions (see [10] and
Section 2.2 for the precise definition of K and the existence of H(Ω)). Notice that one has (see Remark 5.2)

H(Ω) � (4π)−N/2.

It is also well known that the constant H(Ω) is closely related to the so-called Neumann Sobolev constant C(Ω)

defined as the best constant in the inequality: ∀f ∈ H 1(Ω) such that
∫
Ω

f = 0, we have ‖f ‖2
2N

N−2
� C(Ω)‖∇f ‖2

2 (see,

for instance, [35, Section 3] for results about this relationship).
Let us first remark that we have the following property for p = 2

if ‖u0‖L∞(Ω) � 3

2
λ1(Ω), then E(u0) � 0,

which may indicate (from Theorem 1.1) that the corresponding solutions may not necessary blow-up in finite time.
This shows in particular that it is natural to compare ‖u0‖L∞(Ω) with the first eigenvalue λ1(Ω) as it can also be seen
from the scaling of the equation for p = 2.
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The following theorem gives a global existence result under an explicit smallness condition on the initial data,
depending on λ1(Ω) on the one hand and on N , and H(Ω) on the other hand. For simplicity, we state it only for
p = 2 although a general version is possible.

Theorem 1.5 (Global existence for small initial data with explicit constants, case p = 2). Let ρ(Ω) be the constant
given by

ρ(Ω)

λ1(Ω)
= 1

2N
· exp

(−γN λ∗
1(N)

(
H(Ω)

)2/N )
,

where

γN = 27

N
.

For every u0 ∈ C( �Ω) satisfying
∫
Ω

u0 = 0 and

‖u0‖L∞(Ω) � ρ(Ω), (1.6)

the (unique) solution of the problem (1.1), (1.2) is defined for all t and tends to zero as t → ∞.

Remark 1.6. We also provide an exponential decay (see Theorem 5.1).

Note that H(Ω) is invariant by dilation of the domain Ω , and, then, ρ(λΩ) = λ−2ρ(Ω) < ρ(Ω) for λ > 1, but
there is no reason in general to get ρ(Ω) � ρ(Ω ′) if Ω ′ ⊂ Ω .

Remark 1.7. Actually, the volume of Ω being fixed, one could reasonably expect that the constant ρ(Ω) is maximal
when Ω is a ball.

1.4. Brief review of the literature

Parabolic problems involving non local terms have been recently studied extensively in the literature (see for
instance [12,14,29]). For local existence and continuation results for general semilinear equations under the Neumann
boundary condition setting, one can see for example [2] and [33]. In [30, Appendix A] Souplet gives very general local
existence results for a large class of non local problems in time and in space but in the Dirichlet boundary condition
setting. The problem treated in the present work has been first considered by Budd, Dold and Stuart [5] for p = 2
and in the one-dimensional case. They obtained a theorem like our Theorem 1.5 as well as a blow-up type result for
solutions whose Fourier coefficients of the initial data satisfy an infinite number of conditions.

Hu and Yin [19] considered slightly different problems. They showed in particular blow-up result (see [19, The-
orem 2.1]), based on energy criteria, considering u|u|p−1 instead of |u|p . They showed also (see [19, Theorems 3.1
and 3.2]) global existence for positive solutions and p not too large. A radial blowing-up solution for p large is also
given.

Wang and Wang [36] considered a more general problem of the form

ut − �u = kup −
∫

uq (1.7)

with Neumann or Dirichlet boundary conditions and positive initial data. They showed global existence and expo-
nential decay in the case where p = q , |Ω| � k and Neumann boundary condition. They also obtain a blow-up result
under the assumption that the initial data is bigger than some “Gaussian function” in the case where |Ω| > k.

Finally, in [31, Theorem 2.2], Souplet determines exact behavior of the blow-up rate for equations of the form (1.7)
with k = 1 and p 	= q .

1.5. Organization of the article

Our paper is organized as follows. In the second section we first set the space under which problem (1.1), (1.2)
admits a unique local solution. Section 3 is devoted to the proof of Theorems 1.1 and 1.3. In Section 4 we give the
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proof of the optimization result (Theorem 1.4) which is based on a result of Gamma-convergence of Modica [26].
For the convenience of the reader we provide in Appendix A a self-contained proof of the corresponding Gamma-
convergence-like result. In Section 5, we give the proof of Theorem 1.5.

2. Local existence result

We recall that Ω is bounded. The basic space to be considered in this paper is the space C( �Ω) of continuous
functions. Following the notations2 of Stewart [33] denote for q > N by

Dq :=
{
u ∈ C

( �Ω ); u ∈ W 2,q (Ω), �u ∈ C
( �Ω )

, and
∂u

∂n
= 0 on ∂Ω

}
.

Set

D :=
⋃

N<q<+∞
Dq.

Then we have as a direct application of [33, Theorem 2]:

Theorem 2.1. The operator −� with domain D generates an analytic semigroup in the space C( �Ω) with the supre-
mum norm.

See Lunardi [23] for the definition of analytic semigroups.
Then we have

Theorem 2.2 (Local existence result, 1 < p < +∞). For every u0 ∈ C( �Ω) there is a 0 < tmax � ∞ such that the
problem (1.1), (1.2) has a unique mild solution, i.e. a unique solution

u ∈ C
([0, tmax);C

( �Ω )) ∩ C1((0, tmax);C
( �Ω )) ∩ C

(
(0, tmax);D

)
of the following integral equation

u(t) = et�u0 +
t∫

0

e(t−s)�f
(
u(s)

)
ds

on [0, tmax), with

f
(
u(s)

) = ∣∣u(s)
∣∣p −

∫
−
Ω

∣∣u(s)
∣∣p.

Moreover, we have∫
Ω

u(t) = 0 for all t ∈ [0, tmax) (2.8)

and if tmax < ∞ then

lim
t↑tmax

‖u(t)‖L∞(Ω) = ∞.

Proof of Theorem 2.2. First let us remark that the non linearity in (1.1): u ∈ C( �Ω) �→ f (u) = |u|p −∫−
Ω

|u|p ∈ C( �Ω)

satisfies the hypothesis of [28, Theorem 6.1.4], namely, f is locally Lipschitz in u, uniformly in t on bounded intervals
of time.

2 Since Ω is bounded and ∂Ω ∈ C2, we can easily check that Dq is dense in C( �Ω).
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Then a standard semigroups result [28, Theorem 6.1.4] gives the local existence result. Reminder to show (2.8).
This comes from the simple computation for t ∈ (0, tmax):

d

dt

(∫
Ω

u

)
=

∫
Ω

ut =
∫
Ω

�u +
∫
Ω

f (u) = 0

because of the definition of f , the integration by part on �u, and the Neumann boundary condition ∂u
∂n

= 0. �
From this result, we see that the solution is a classical solution of Eq. (1.1) on (0, tmax) × Ω with initial condi-

tion (1.2), and then from the standard parabolic estimates (see Lieberman [22]) and classical bootstrap arguments, we
get

u ∈ C∞(
(0, tmax) × Ω

)
.

3. Blow-up: proof of Theorems 1.1 and 1.3

As mentioned in the introduction, we follow the energetic method introduced by Levine [21] and Ball [4]. The
main idea is to show that the L2-norm of the solution satisfies some super-linear differential inequality which implies
the finite time blow-up.

All along this section, we denote by u a solution of (1.1), (1.2) whose initial data u0 satisfies
∫
Ω

u0 = 0. Also, we
will assume, without lack of generality, that |Ω| = 1 so that we have, in particular,

∫−
Ω

u2 = ∫
Ω

u2.
Let us recall the expression of the energy of the problem

E(u) :=
∫

1

2
|∇u|2 − 1

p + 1
u|u|p.

Proposition 3.1 (Energy decay). The energy E(t) := E(u(t)) is a non increasing function of t in (0,∞).

Proof of Proposition 3.1. A direct computation using (1.1), (1.2) and the fact that
∫
Ω

ut = 0 yields

d

dt
E(u(t)) =

∫
Ω

(−�u − |u|p)
ut = −

∫
Ω

(ut )
2 � 0. �

Lemma 3.2 (L2 bound from below). Let us define

F(t) =
∫
Ω

u2(t).

Then we have, ∀p > 1,

1

2
F ′(t) = −(p + 1)E(t) + p − 1

2

∫
Ω

|∇u|2.

In particular, we get

1

2
F ′(t) � −(p + 1)E(0) + p − 1

2
λ1(Ω)F(t).

Consequently, if E(0) � 0, then

F(t) � F(0) e(p−1)λ1(Ω)t .

Proof of Lemma 3.2. The lemma is a consequence of the following computation

1

2
F ′(t) =

∫
Ω

uut =
∫
Ω

u
(
�u + |u|p) =

∫
Ω

−|∇u|2 + u|u|p = −(p + 1)E(t) + p − 1

2

∫
Ω

|∇u|2. �
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Lemma 3.3 (L2 bound from below when infx u(t) � −‖u‖L2(Ω)). Let 0 < t1 < t2 < ∞, p > 1 and assume that

inf
x

u(t) � −‖u‖L2(Ω) for all t ∈ (t1, t2).

Then for all β ∈ (2,p + 1), there exist two constants Cβ > 0 and λβ > 0 such that if∥∥u(t)
∥∥

L2(Ω)
� λβ, for all t ∈ (t1, t2)

then

1

2
F ′(t) � −βE(t) + CβF(t)(p+3)/4 for all t ∈ (t1, t2).

Proof of Lemma 3.3. Let us consider a parameter β ∈ (2,p + 1). We have

1

2
F ′(t) =

∫
Ω

−|∇u|2 + u|u|p

= −β

(∫
Ω

1

2
|∇u|2 − 1

p + 1
u|u|p

)
+ β − 2

2

∫
Ω

|∇u|2 +
(

1 − β

p + 1

)∫
Ω

u|u|p

= −βE(t) + p + 1 − β

p + 1

(∫
Ω

u|u|p + γ |∇u|2
)

with

γ = β − 2

2
× p + 1

p + 1 − β
.

Here we will use Theorem 1.4. To this end, we define

λ = ‖u‖L2, v = u

λ
.

Then Theorem 1.4 claims that∫
Ω

v|v|p + θ |∇v|2 � C
√

θ, if 0 � θ � θ0.

Then we get

1

2
F ′(t) = −βE(t) + p + 1 − β

p + 1
λp+1

[∫
Ω

v|v|p + γ λ1−p|∇v|2
]

� −βE(t) + p + 1 − β

p + 1
Cγ 1/2λ(p+3)/2

if γ λ1−p � θ0. �
Lemma 3.4 (L∞ bound from below for 1 < p � 2). Let p ∈ (1,2], and let u be a solution of the problem (1.1), (1.2)
with the initial data u(t = 0) = u0 satisfying the condition

u0 � −‖u0‖L2(Ω),

and

E(u0) � 0 and u0 	≡ 0.

Then for all t > 0 (where the solution exists), we have

u(t) > −∥∥u(t)
∥∥

L2(Ω)
.
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Proof of Lemma 3.4. Let us define the set for every T > 0

ΣT = {
(x, t) ∈ Ω × (0, T ), u(x, t) < −‖u(t)‖L2(Ω)

}
,

and the function

v(x, t) = −∥∥u(t)
∥∥

L2(Ω)
.

If ΣT 	= ∅, then the functions u and v satisfy (using the condition p � 2)⎧⎨
⎩

�u − ut = ‖u‖p

Lp(Ω) − |u|p < ‖u‖p

Lp(Ω) − ‖u‖p

L2(Ω)
� 0

�v − vt = F ′(t)
2
√

F(t)
� 0

∣∣∣∣∣∣ on ΣT

where we have used the fact that F ′ � 0 if E(u0) � 0 (see Lemma 3.2). Consequently we have for w = u − v:{
�w − wt < 0 on ΣT ,

w = 0 on (∂ΣT )\{t = T }.
The maximum principle implies w � 0 on ΣT which gives a contradiction with the definition of ΣT . Therefore
ΣT = ∅ for every T > 0, and then w satisfies

w � 0 on Ω × (0,+∞).

From Lemma 3.2, if E(0) � 0 and u0 	≡ 0, then

F ′(t)
2
√

F(t)
�

√
F(0)

(p − 1)λ1(Ω)

2
e

(p−1)λ1(Ω)

2 t > 0.

Then, if there is a point P = (x0, t0) ∈ �Ω × (0,+∞) such that w(P ) = 0, we have �w(P ) − wt(P ) =
−F ′(t0)/(2

√
F(t0) ) < 0, and then there is a connected open neighborhood σP of P in Ω × (0,+∞) such that⎧⎪⎨

⎪⎩
�w − wt < 0 on σP ,

w � 0 on σP ,

w(P ) = 0.

(3.9)

As a consequence of the strong maximum principle, we get that w = 0 on σP which does not satisfies the parabolic
equation (3.9). Contradiction. We conclude that

w > 0 on Ω × (0,+∞). �
Lemma 3.5 (Monotonicity of the infimum of u for p ∈ (1,+∞)). Let us consider p ∈ (1,+∞). We assume that there
exists 0 � t1 < t2, such that

inf
x

u(t) < −∥∥u(t)
∥∥

Lp(Ω)
for all t ∈ (t1, t2) (3.10)

and u ∈ L∞
loc((0, t2);Lp(Ω)). Then the infimum

m(t) = inf
x

u(t)

is nondecreasing on (t1, t2).

Proof of Lemma 3.5. For every t0 ∈ (t1, t2), let us consider the solution gt0 = g of the following ODE:{
g′(t) = |g|p − ∥∥u(t)

∥∥p

Lp(Ω)
on (t0, t2),

g(t0) = m(t0),

and the set

Σ = {
(x, t) ∈ Ω × (t0, t2), u(x, t) < gt0(t)

}
.
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If Σ 	= ∅, then u satisfies{
�u − ut �

∥∥u(t)
∥∥p

Lp − ∣∣gt0
∣∣p = �gt0 − (

gt0
)
t

on Σ,

u = gt0 on ∂Σ.

Therefore the maximum principle implies that u � gt0 on Σ , which gives a contradiction with the definition of Σ .
Thus Σ 	= ∅ and u � gt0 on Ω × (t0, t2), which implies

m(t) � gt0(t) for all t ∈ (t0, t2).

Now using (3.10), we get(
gt0

)′
(t) = ∣∣gt0(t)

∣∣p − ∥∥u(t)
∥∥p

Lp(Ω)
�

∣∣m(t)
∣∣p − ∥∥u(t)

∥∥p

Lp(Ω)
� 0 (3.11)

and then for t ′0 satisfying t1 < t0 < t ′0 < t2, we get

m
(
t ′0

)
� gt0

(
t ′0

)
� gt0(t0) = m(t0). � (3.12)

Proof of Theorem 1.3. We assume that E(t) � −C0 on (0, T0). Then we compute

1

2
F ′(t) =

∫
Ω

uut � 1

2

(∫
Ω

u2 + u2
t

)
= 1

2

(
F(t) − E′(t)

)
.

We deduce

(F + E + C0)
′(t) � F(t) � (F + E)(t) + C0.

Consequently for t ∈ (0, T0) we get

F(t) � (F + E)(t) + C0 �
(
F(0) + E(0) + C0

)
et

which proves that F(t) is bounded on [0, T0). In particular F cannot blow up at time T0. �
Proof of Theorem 1.1. We assume that E(u0) � 0 and u0 	≡ 0.

First case: u0 � −‖u0‖L2(Ω). Then by Lemma 3.4, we get u(t) � −‖u(t)‖L2(Ω) for all t > 0. For some β ∈ (2,3),
let us consider the real λβ given by Lemma 3.3. Then by Lemma 3.2, there exists a time tβ � 0, such that
‖u(t)‖L2(Ω) � λβ > 0 for every t � tβ . Using Lemma 3.3 (and the monotonicity of the energy E given by Propo-
sition 3.1), we get for t � tβ

F ′(t) � 2CβF (p+3)/4(t)

which blows up in finite time T > 0.
Second case: infx u0 < −‖u0‖L2(Ω). We know by Lemma 3.5 that m(t) = infx u(t) is nondecreasing as long as

inf
x

u(t) < −∥∥u(t)
∥∥

L2(Ω)
� −∥∥u(t)

∥∥
Lp(Ω)

because we have

p � 2.

Then

m(0) � m(t) � −∥∥u(t)
∥∥2

L2(Ω)
.

Lemma 3.2 proves that there is necessarily one time t0 such that infx u(t0) = −‖u(t0)‖2
L2(Ω)

. We can then apply the
first case with initial time t0. �

Let us conclude this section with a partial result in the case p > 2:
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Proposition 3.6 (L∞ bound from below for p ∈ (1,+∞)). Let p ∈ (1,+∞), and let u be a solution of the prob-
lem (1.1), (1.2) with the initial data u(t = 0) = u0 satisfying

u0 � −‖u0‖Lp(Ω),

and

E(u0) � 0 and u0 	≡ 0.

Then for all t > 0 (where the solution exists), we have

u(t) > − sup
s∈[0,t]

∥∥u(s)
∥∥

Lp(Ω)
.

Proof of Proposition 3.6. The proof is similar to the proof of Proposition 3.4, where we use the function v(x, t) =
− sups∈[0,t] ‖u(s)‖Lp(Ω), which satisfies

�v − vt � 0 on Ω × (0,+∞).

In the last part of the proof, we remark that w = 0 on σP , and by connexity of Ω × (0,+∞), we get w = 0 on
Ω × (0,+∞). The equation on u implies u(x, t) = constant on Ω × (0,+∞) which is in contradiction with the fact
that

∫
Ω

u(t) = 0 and u0 	≡ 0. �
4. Optimization by a Gamma-convergence technique: proof of Theorem 1.4

In this whole section we assume that Ω is a bounded domain.
To prove Theorem 1.4, we first need to rewrite an integral as follows:

Lemma 4.1 (Rewrite
∫
Ω

v|v|p as the integral of nonnegative function, for p > 1). Let us denote

A :=
{
v ∈ Lp+1(Ω);

∫
Ω

v = 0;
∫
Ω

v2 = 1; v � −1 on Ω

}
.

Then there exists a function f ∈ C2([−1,+∞)) which satisfies

f > 0 on (−1,1) ∪ (1,+∞), and f (−1) = f (1) = 0

such that for every v ∈ A we have∫
Ω

v|v|p =
∫
Ω

f (v) � 0.

Proof of Lemma 4.1. Here we use the function

f (v) = v|v|p − v + p

2

(
1 − v2)

and use the fact that
∫
Ω

v = ∫
Ω

(1 − v2) = 0. The properties of this function can be easily checked, computing

f ′(v) = (p + 1)|v|p − pv − 1, f ′′(v) = p(p + 1)v|v|p−2 − p. �
Proof of Theorem 1.4. To prove Theorem 1.4, we simply observe that for θ = ε2, and v ∈ A, we can write∫

Ω

v|v|p + θ |∇v|2 = εJ ε(v)

with

J ε(v) =

⎧⎪⎨
⎪⎩

∫
Ω

ε|∇v|2 + 1

ε
f (v) if v ∈ A ∩ H 1(Ω),

+∞ if v /∈ A ∩ H 1(Ω).
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As ε goes to zero, the minimizers of J ε will concentrate on the minima of the function f , namely on the values
v = −1 or v = 1. We see formally that at the limit, we will get discontinuous functions. To perform rigorously the
analysis, we need to introduce the space BV(Ω) of functions of bounded variations on Ω .

For a function v ∈ L1(Ω), we define the total variation of v as

|∇v|(Ω) = sup

{∫
Ω

−
n∑

i=1

v
∂φi

∂xi

, φ = (φ1, . . . , φn) ∈ (
C1( �Ω ))n

,

n∑
i=1

φ2
i � 1 on Ω

}
.

Then the norm in BV(Ω) is defined by

‖v‖BV(Ω) :=
∫
Ω

|v|dx + |∇v|(Ω)

and the space BV(Ω) is naturally defined by

BV(Ω) = {
v ∈ L1(Ω), ‖v‖BV (Ω) < +∞}

.

It is known that BV(Ω) is a Banach space. �
Then Theorem 1.4 is a consequence of the following result:

Proposition 4.2 (Limit inf of the energy). Assume that Ω is a bounded domain and ε > 0. Then the energy

I ε = inf
u∈A

J ε(u)

satisfies

lim inf
ε→0

I ε � I 0 > 0

where I 0 is a constant.

We give the sketch of the proof of Proposition 4.2 below, based on a Gamma-convergence technique, but for the
convenience of the reader, we provide in the appendix a self-contained proof (see Proposition A.1 and its proof).

Proof of Proposition 4.2. We remark that

inf
u∈A

J ε(u) � inf
u∈A0

J ε(u)

where

A ⊂ A0 :=
{
v ∈ L1(Ω);

∫
Ω

v = 0; v � −2 on Ω

}

with the function f extended on [−2,−1] by f (v) = |v + 1|. Now we apply the result of Modica [26, Theorem I,
page 132, Proposition 3, page 138], with W(t) = f (t − 2), α = 1, β = 3,m = 2, |Ω| = 1, k = p + 1. It is easy to see
that there exists a constant I0 > 0 as stated in Proposition 4.2. �

See also the overview of Alberti [1], where the full Gamma-convergence result is stated. The concept of Gamma-
convergence has been introduced by De Giorgi [11], and one of the first illustration of this concept was the work of
Modica, Mortola [27]. For an introduction to Gamma-convergence and many references, we refer the reader to the
book of Dal Maso [9].

5. Explicit global existence for p = 2 and proof of Theorem 1.5

In this section, in order to make clear the dependence on the volume |Ω|, we do not assume |Ω| = 1.
Theorem 1.5 is actually a special case of the following more general result:
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Theorem 5.1 (Global existence for small initial data with explicit constants, case p = 2). Let r be any real number
satisfying r > N

2 and r � 2. Let ρr(Ω) be the constant given by

ρr(Ω) = λ1(Ω)

4r
· exp

(−(
γN,r

(
λ1(Ω)

)N/2|Ω|H(Ω)
)2/N )

,

where

γN,r =
(

1 + e−1

2(1 − N/2r)

)r

2r−1r−N/2.

For every u0 ∈ C( �Ω) satisfying
∫
Ω

u0 = 0 and

‖u0‖L∞(Ω) � ρr(Ω), (5.13)

the (unique) solution of the problem (1.1), (1.2) is defined for all t . Moreover for all t � 1 the solution satisfies:∥∥u(t)
∥∥

L∞(Ω)
� C(r)‖u0‖L∞ e−(λ1(Ω)/r)t ,

where

C(r) := 2(r−1)/r |Ω|1/rH(Ω)1/r

[
1 + 2‖u0‖L∞

1 − N/(2r)

]
.

To deduce Theorem 1.5, we simply apply Theorem 5.1 with r = 2N , and use the fact that (γN,2N)2/N � γN and
the inequality (1.5).

Proof of Theorem 5.1. Let us denote by K(t, x, y) the heat kernel associated to the Laplacian in Ω with Neumann
boundary conditions.3 That is⎧⎪⎨

⎪⎩
∂
∂t

K(t, x, y) − �xK(t, x, y) = 0, ∀x, y ∈ Ω, t > 0,

∂
∂nx

K(t, x, y) = 0, ∀x ∈ ∂Ω, y ∈ Ω, t > 0,

K(t, x, y) → δy(x) in D′(Ω) as t → 0+, ∀y ∈ Ω.

This function is related to the eigenvalues and eigenfunctions of the Neumann Laplacian −� in Ω by the following
identity:

K(t, x, y) =
∑
k�0

e−λk(Ω)tfk(x)fk(y) = 1

|Ω| +
∑
k�1

e−λk(Ω)tfk(x)fk(y), (5.14)

where {λk(Ω); k � 0} are the eigenvalues of −� and {fk; k � 0} is an L2-orthonormal family of corresponding
eigenfunctions (recall that λ0(Ω) = 0 and f0 = 1

|Ω|1/2 ). Let us set K0(t, x, x) := K(t, x, x) − 1
|Ω| . From the classical

results on heat kernels (see for instance [10, Theorem 2.4.4]) we know that the function tN/2K(t, x, x) is bounded on
(0,1] × Ω , and then the same is true for tN/2K0(t, x, x). On the other hand, it follows immediately from (5.14) that
eλ1(Ω)(t−1)K0(t, x, x) is decreasing on [1,+∞) and then, for any t � 1,

K0(t, x, x) � e−λ1(Ω)(t−1)K0(1, x, x) � C1 e−λ1(Ω)(t−1) � C2t
−N/2

for some constants C1 and C2. Hence, tN/2K0(t, x, x) is bounded on (0,+∞) × Ω and we denote by H(Ω) its
supremum. Since for all t > 0, K(t, x, y) achieves its supremum on the diagonal of Ω × Ω , the constant H(Ω) is
actually the best constant in the following inequality

K(t, x, y) � 1

|Ω| + H(Ω)t−N/2

valid in (0,+∞) × Ω × Ω . Notice that, in contrast to the Dirichlet boundary condition case, there is no universal
upper bound to H(Ω) (even for domains of fixed volume). Indeed, it is rather easy to see that, in the Dirichlet case,
the heat kernel is bounded above by (4πt)−N/2 whatever the domain is.

3 In fact for this section it suffices to consider a domain Ω satisfying the extension property (see [10, Section 1.7]).
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Remark 5.2. Notice that

H(Ω) � tN/2

|Ω|
[(∫

Ω

K(t, x, x)

)
− 1

]
= tN/2

|Ω|
[
tr et� − 1

]
with

tr et� = (4πt)−N/2
[
|Ω| +

√
π

2

(
HN−1(∂Ω)

)
t1/2 + o(t)

]
as t → 0+,

see [16], see also [3], [7] and [25] for the dependence of λ1(Ω) on the geometry of Ω . This implies

H(Ω) � (4π)−N/2.

The following property seems to be a standard one, we give it for completeness.

Lemma 5.3 (Lp-Lq -estimate for the linear heat equation). Let v0 ∈ C( �Ω) be such that
∫
Ω

v0 = 0 and let

v(t, x) = (
et�v0

)
(x) =

∫
Ω

K(t, x, y)v0(y)dy

be the solution of the heat equation with Neumann boundary condition and v0 as initial data. For any positive t and
all 1 < p � q � +∞, we have∥∥v(t)

∥∥
Lq �

[
2p−1H(Ω)t−N/2]1/p−1/q‖v0‖Lp . (5.15)

Proof. Since
∫
Ω

v0 = 0 we have, for any p > 1 and any (t, x) ∈ (0,+∞) × Ω ,

∣∣v(t, x)
∣∣ =

∣∣∣∣
∫
Ω

K0(t, x, y)v0(y)dy

∣∣∣∣ � ‖v0‖Lp

∥∥K0(t, x, ·)∥∥
Lp′

with 1
p

+ 1
p′ = 1. Now,

∥∥K0(t, x, ·)∥∥p′
Lp′ =

∫
Ω

∣∣K0(t, x, y)
∣∣p′

dy �
[
H(Ω)t−N/2]p′−1∥∥K0(t, x, ·)∥∥

L1

with ∥∥K0(t, x, ·)∥∥
L1 =

∫
Ω

∣∣∣∣K(t, x, y) − 1

|Ω|
∣∣∣∣dy �

∫
Ω

(
K(t, x, y) + 1

|Ω|
)

dy = 2,

since K(t, x, y) � 0 and
∫
Ω

K(t, x, y)dy = 1. Hence, ‖K0(t, x, ·)‖p′
Lp′ � 2[H(Ω)t−N/2]p′−1 and then,∥∥v(t)

∥∥
L∞ � 21/p′ ‖v0‖Lp

[
H(Ω)t−N/2](p′−1)/p′ = ‖v0‖Lp

[
2p−1H(Ω)t−N/2]1/p

.

Now let us remark that∥∥v(t)
∥∥q

Lq =
∫
Ω

∣∣v(t)
∣∣q−p∣∣v(t)

∣∣p �
∥∥v(t)

∥∥q−p

L∞
∥∥v(t)

∥∥p

Lp � ‖v0‖q−p
Lp

[
2p−1H(Ω)t−N/2](q−p)/p∥∥v(t)

∥∥p

Lp .

We get finally the Lp-Lq estimate of the lemma, using the contraction property of the Heat equation with Neumann
boundary condition (see [23, Section 3.1.1]): ‖v(t)‖Lp � ‖v0‖Lp . �

The following elementary property will also be useful

Lemma 5.4. Let α,β � 1. For all f ∈ Lα+β(Ω), we have(∫
Ω

|f |α
)

·
(∫

Ω

|f |β
)

� |Ω|
∫
Ω

|f |α+β.
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Proof. Using Hölder inequality, the following holds

∫
Ω

|f |α �
[∫

Ω

|f |α+β

]α/(α+β)

× |Ω|β/(α+β),

∫
Ω

|f |β �
[∫

Ω

|f |α+β

]β/(α+β)

× |Ω|α/(α+β).

Thus ∫
Ω

|f |α ×
∫
Ω

|f |β � |Ω|
∫
Ω

|f |α+β. �

From now on, we denote by u a solution of (1.1), (1.2) for p = 2 whose initial data u0 satisfies
∫
Ω

u0 = 0. The
proof of Theorem 1.5 is based on the following a priori estimate:

Lemma 5.5 (A priori estimate). Let r > N
2 satisfying r � 2, 0 < K < λ1

2r
, and assume that there exists a positive T

such that ‖u(t)‖L∞ � K for all t ∈ [0, T ]. Then, for any β ∈ (0,1), we have∥∥u(T )
∥∥

L∞ � ‖u0‖∞21−1/rH(Ω)1/r |Ω|1/r [βT ]−N/(2r)

×
[

e−2[λ1/r−K](1−β)T + β e−1‖u0‖L∞

(1 − β)[λ1/r − 2K](1 − N/(2r))

]
. (5.16)

Proof of the lemma. For simplicity we will write λ1 and H for λ1(Ω) and H(Ω). Let q � 2 be an even integer.
For all t ∈ [0, T ], we have |u|q+1 � Kuq and then, setting Fq(t) := 1

q

∫
uq(t)dx � 0,

∫ |u|q+1 � qKFq(t). Using
Lemma 5.4 we also have∣∣∣∣

(∫
uq−1

)(∫
−u2

)∣∣∣∣ �
(∫

|u|q−1
)(∫

−u2
)

�
∫

|u|q+1 � qKFq(t).

Therefore,∣∣∣∣
∫

uq+1 −
(∫

uq−1
)(∫

−u2
)∣∣∣∣ � 2qKFq(t).

Multiplying Eq. (1.1) (with p = 2) by uq−1 and integrating over Ω we get, after integrating by parts,∫
uq−1ut + 4

q − 1

q2

∫ ∣∣∇uq/2
∣∣2 � 2qKFq(t). (5.17)

This implies that F ′
q(t) − 2qKFq(t) � 0. Hence, for all t ∈ [0, T ], we have Fq(t) � Fq(0) e2qKt , or equivalently∥∥u(t)

∥∥
Lq �

∥∥u(0)
∥∥

Lq e2Kt .

Making q → ∞, one can deduce that∥∥u(t)
∥∥

L∞ � ‖u0‖L∞ e2Kt . (5.18)

On the other hand, we clearly have
∫

u(t) = 0 for all t . Poincaré’s inequality gives, for all t ∈ (0, T ], ∫ |∇u|2 �
λ1

∫
u2. Taking q = 2 in (5.17) we then get, for all t ∈ [0, T ],∥∥u(t)

∥∥
L2 � ‖u0‖L2 e−(λ1−2K)t � ‖u0‖L∞|Ω|1/2 e−(λ1−2K)t . (5.19)

By L2-L∞ interpolation, we obtain, since 2 � r < +∞∥∥u(t)
∥∥

r � |Ω|1/r‖u0‖L∞ e−2[λ1/r−K]t . (5.20)

L
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Now, Eq. (1.1) leads to the following integral equation

u(t + t0) = et0�u(t) +
t0∫

0

e(t0−s)�f
(
u(t + s)

)
ds,

with f (u) := u2 − ∫−u2. Taking t0 := βT and t = t1 := (1 − β)T and using the Lr -L∞ estimates (5.15) we get

∥∥u(T )
∥∥

L∞ = ∥∥u(t1 + t0)
∥∥

L∞ �
∥∥et0�u(t1)

∥∥
L∞ +

t0∫
0

∥∥e(t0−s)�f
(
u(t1 + s)

)∥∥
L∞ ds

� 21−1/rH 1/r t
−N/(2r)

0

∥∥u(t1)
∥∥

Lr +
t0∫

0

21−1/rH 1/r (t0 − s)−N/(2r)
∥∥f

(
u(t1 + s)

)∥∥
Lr ds.

Using Hölder inequality for the first line and (5.20) for the second, we get∥∥f
(
u(t)

)∥∥
Lr � 2

∥∥u(t)
∥∥2

L2r � 2|Ω|1/r‖u0‖2
L∞ e−2[λ1/r−2K]t . (5.21)

Setting α1 := 2[λ1
r

− K] > 0 and α2 := 2[λ1
r

− 2K] > 0 we obtain using (5.20) and (5.21):

‖u(T )‖L∞

(21−1/rH 1/r )
� t

−N/(2r)

0

∥∥u(t1)
∥∥

Lr +
t0∫

0

(t0 − s)−N/(2r)
∥∥f

(
u(t1 + s)

)∥∥
Lr ds

� |Ω|1/r‖u0‖L∞ t
−N/(2r)

0 e−α1t1 + 2|Ω|1/r‖u0‖2
L∞

t0∫
0

(t0 − s)−N/(2r) e−α2(t1+s) ds

� |Ω|1/r‖u0‖L∞ t
−N/(2r)

0 e−α1t1 + 2|Ω|1/r‖u0‖2
L∞ e−α2t1

t0∫
0

(t0 − s)−N/(2r) ds

= |Ω|1/r‖u0‖L∞ t
−N/(2r)

0

[
e−α1t1 + 2‖u0‖L∞

t0 e−α2t1

1 − N/(2r)

]

� |Ω|1/r‖u0‖L∞ t
−N/(2r)

0

[
e−α1(1−β)T + 2‖u0‖L∞βT e−α2(1−β)T

1 − N/(2r)

]

� |Ω|1/r‖u0‖L∞ t
−N/(2r)

0

[
e−α1(1−β)T + 2β‖u0‖L∞

1 − N/(2r)
sup
T >0

(
T e−α2(1−β)T

)]

� |Ω|1/r‖u0‖L∞(βT )−N/(2r)

[
e−α1(1−β)T + 2β e−1‖u0‖L∞

1 − N/(2r)
· 1

α2(1 − β)

]
. �

End of the proof of Theorem 5.1. First step: Global existence.
Let u be a solution of (1.1), (1.2) whose initial data u0 satisfies (5.13). Let us suppose, for a contradiction, that the

maximal time of existence Tmax of u is finite. Put K = λ1
4r

in the last lemma. Let T be the maximal time such that
‖u(t)‖L∞ � K in [0, T ]. Hence (see (5.18))

K = ∥∥u(T )
∥∥

L∞ � ‖u0‖L∞ e2KT . (5.22)

From the assumption (5.13), we have ‖u0‖L∞ � α λ1
4r

= αK , with

α = exp
(−(

γN,r H |Ω|λN/2
1

)2/N )
< 1.

After replacing into (5.22), this gives

T � − lnα
. (5.23)
2K
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Applying Lemma 5.5 with β = 1
2 , we get:

∥∥u(T )
∥∥

L∞ � 2(r−1)/rH 1/r |Ω|1/r

(
T

2

)−N/(2r)

‖u0‖L∞
[

e−(3λ1/(4r))T + 2 e−1‖u0‖L∞

λ1/r(1 − N/(2r))

]
.

Since ‖u0‖L∞ � α λ1
4r

= αK , it follows that

‖u(T )‖L∞

K
� 2(r−1)/rH 1/r |Ω|1/r (T /2)−N/(2r)α

[
e−(3λ1/(4r))T + e−1α

2(1 − N/(2r))

]

< 2(r−1)/rH 1/r |Ω|1/r

(
T

2

)−N/(2r)[
1 + e−1

2(1 − N/(2r))

]

� 2(r−1)/rH 1/r |Ω|1/r

(
(− lnα)

λ1/r

)−N/(2r)[
1 + e−1

2(1 − N/(2r))

]

= (
γN,rH |Ω|λN/2

1 (− lnα)−N/2)1/r = 1

which shows that∥∥u(T )
∥∥

L∞ < K.

This contradicts the definition of T .
Second step: Exponential decay.
Note that, since K = λ1

4r
, estimate (5.20) becomes∥∥u(t)

∥∥
Lr � |Ω|1/r‖u0‖L∞ e−(3λ1/(2r))t

for all t ∈ [0,+∞[. Using again the integral equation, we have

u(t + 1) = e�u(t) +
1∫

0

e(1−s)�f
(
u(t + s)

)
ds.

Using the same computation as in the proof of Lemma 5.5, we obtain for all t > 0

(
2(r−1)/rH 1/r

)−1∥∥u(t + 1)
∥∥

L∞ �
∥∥u(t)

∥∥
Lr +

1∫
0

(1 − s)−N/(2r)
∥∥f

(
u(t + s)

)∥∥
Lr ds

� |Ω|1/r‖u0‖L∞e−(λ1/r)t

[
1 + 2‖u0‖L∞

1∫
0

(1 − s)−N/(2r)

]
ds

�
(
2(r−1)/rH 1/r

)−1
C(r)‖u0‖L∞ e−(λ1/r)t . �
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Appendix A. Proof of a Gamma-convergence-like result

We give here the following result which is more precise than Proposition 4.2, and propose a self-contained proof.

Proposition A.1 (Limits of the energy of the minimizers). Assume that Ω is a bounded domain. Then for every ε > 0,
there exists at least one minimizer uε of the following problem

I ε = inf J ε(u)

u∈A
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and

lim inf
ε→0

I ε � J 0(u0) � I 0 > 0.

More precisely, there exists a subsequence (uε′
)ε′ such that

uε′ −→ u0 in L1(Ω)

and u0 ∈ B , where

B :=
{
u ∈ BV(Ω); u = ±1 a.e. in Ω;

∫
Ω

u = 0

}

and

I 0 = inf
u∈B

J 0(u)

where

J 0(u) = c|∇u|(Ω) with c =
1∫

−1

√
f (s)ds.

To prove Proposition A.1, we will use the following classical compactness result in BV(Ω).

Proposition A.2 (Compactness in BV(Ω), [17]). Let Ω be a bounded domain. For every sequence (vn)n, bounded in
BV(Ω), there exists a subsequence (vn′

)n′ and v∞ ∈ BV (Ω) such that

vn′ −→ v∞ in L1(Ω)

and

lim inf
n′→+∞

∣∣∇vn′ ∣∣(Ω) � |∇v∞|(Ω).

Proof of Proposition A.1. The proof of this proposition is done in the following steps.
Step 1: there exists a minimizer uε . It is easy to see that there exists a constant C > 0 such that

|v|p+1 + C � f (v) � |v|p+1 − C for v � −1. (A.24)

Therefore, for ε > 0 fixed, every minimizing sequence of J ε in A is bounded in H 1(Ω) ∩ Lp+1(Ω). From the
compactness of the injection H 1(Ω) → L2(Ω), it is classical to get the existence of a minimizer uε ∈ A of J ε .

Step 2: there exists C0 > 0 such that J ε(uε) � C0 for ε small enough. Here for ε small enough we will build a
function wε ∈ A such that J ε(wε) � C0.

Let us consider the direction x1 and assume that the hyperplane {x1 = 0} separates Ω in two equal volumes:∣∣Ω ∩ {x1 < 0}∣∣ = ∣∣Ω ∩ {x1 > 0}∣∣.
For δ > 0, we define the function

vδ(x1) =

⎧⎪⎪⎨
⎪⎪⎩

−1 if x1 < −ε,
x1

ε
if − ε � x1 � ε(1 + δ),

1 + δ if x1 > ε(1 + δ).

Next we define the translation of vδ , for a small parameter a ∈ R:

vδ
a(x1) = vδ(x1 − a).

Then for a close enough to zero and fixed, there is a unique δ = δ(a) > 0 such that∫ ∣∣vδ(a)
a

∣∣2 = 1.
Ω
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In particular, this implies that∫
Ω∩{x1>a+ε}

(|vδ(a)
a |2 − 1

) =
∫

Ω∩{a−ε<x1<a+ε}

(
1 − |vδ(a)

a |2)

and then
1

2
|Ω|(1 − o

(|a| + ε(1 + δ)
))(

(1 + δ)2 − 1
)
� 2ε

(
diam(Ω)

)N−1

i.e. for a close enough to zero, there exists a constant C > 0 such that

δ(a) � Cε � 1 for ε small enough.

Then we consider the map

a �−→ Φ(a) =
∫
Ω

vδ(a)
a .

We have Φ(−2ε) > 0. On the other hand, because the open set Ω is connected, there exists a constant C2 > 0
such that |Ω ∩ {0 < x1 < η}| � C2η for η > 0 small enough. Therefore Φ(a) � |Ω|/2δ(a) − C2(a − ε) and then
Φ(ε(1 + C|Ω|/C2)) < 0. Using the continuity of the map Φ , we deduce that

∃a ∈ (−2ε,
(
1 + C|Ω|/C2

)
ε
) ∫

Ω

vδ(a)
a = 0.

We set wε = v
δ(a)
a ∈ A and estimate J ε(wε) as follows∫

Ω

ε|∇wε|2 �
(
2 + δ(a)

)(
diam(Ω)

)N−1
,

∫
Ω

1

ε
f (wε) �

(
sup

[−1,1]
f

)
2
(
diam(Ω)

)N−1 + |Ω|1

ε
sup

[1,1+δ(a)]
f.

We then remark that

sup
[1,1+δ]

f � 1

2
f ′′(1)(δ)2 + o

(
δ2)

because f (1) = f ′(1) = 0. We deduce that

1

ε
sup

[1,1+δ(a)]
f � 1

2
f ′′(1)C2ε + o(ε).

Putting all together we get the existence of a constant C0 > 0 such that for ε small enough we get

J ε(wε) � C0.

Because wε ∈ A, and uε is a minimizer of J ε on A, we deduce that

J ε(uε) � J ε(wε) � C0.

This ends the proof of Step 2.
Step 3: there exists C1 > 0 such that ‖vε‖BV (Ω) � C1 for ε small enough. We define

G(s) =

⎧⎪⎪⎨
⎪⎪⎩

s∫
−1

√
f (t)dt if s � −1,

0 if s < −1

and

vε = G(uε).
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From (A.24), we get for t � −1

f (t) � |t |p+1 + C

and then there exists some constants C,C′ > 0 such that (using p > 1)

G(s) � C
(|s|(p+3)/2 + |s| + 1

)
� C′(|s|p+1 + |s| + 1

)
. (A.25)

To estimate ‖vε‖L1(Ω), we will first estimate ‖uε‖L1(Ω) and ‖uε‖Lp+1(Ω). Because
∫
Ω

uε = 0, we remark that∫
Ω

(uε)+ = ∫
Ω

(uε)− � |Ω| and then

‖uε‖L1(Ω) � 2|Ω|.
From Step 2, we have J ε(uε) � C0, and then because of (A.24), we get∫

Ω

|uε|p+1 − C|Ω| � C0ε

which gives

‖uε‖Lp+1(Ω) �
(
C|Ω| + C0ε

)1/(p+1)
.

Putting all together we deduce from (A.25):

‖vε‖L1(Ω) = ∥∥G(uε)
∥∥

L1(Ω)
� C′(‖uε‖p+1

Lp+1(Ω)
+ ‖uε‖L1(Ω) + |Ω|).

To estimate the whole norm in BV(Ω) we only need to estimate |∇vε|(Ω). This is done, using the following classical
trick of Modica [26] for every u ∈ A ∩ H 1(Ω) (and a2 + b2 � 2ab)

J ε(u) =
∫
Ω

ε|∇uε|2 + 1

ε
f (u) �

∫
Ω

2|∇u|√f (u) =
∫
Ω

2
∣∣∇G(u)

∣∣. (A.26)

Applied to vε , we get∫
Ω

|∇vε| =
∫
Ω

∣∣∇G(uε)
∣∣ � 1

2
J ε(uε) � 1

2
C0.

This proves the expected inequality and ends Step 3.
Step 4: II 0 � 2|∇v0|(Ω). Let us define

II 0 = lim inf
ε→0

J ε(uε).

Then we extract a subsequence (uε′
)ε′ such that

J ε′(
uε′) −→ II 0.

From (A.26), we have

J ε′(
uε′) �

∫
Ω

2
∣∣∇G

(
uε′)∣∣ =

∫
Ω

2
∣∣∇vε′ ∣∣ = 2

∣∣∇vε′ ∣∣(Ω).

From Step 3 and the compactness result in BV (Proposition A.2), up to extract a new subsequence, we can assume
that there exists v0 ∈ BV (Ω) such that

vε′ −→ v0 in L1(Ω) (A.27)

and

lim inf
ε′→0

∣∣∇vε′ ∣∣(Ω) �
∣∣∇v0

∣∣(Ω)

so that

II 0 � 2
∣∣∇v0

∣∣(Ω).
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Moreover from (A.27), and the converse Lebesgue theorem, up to extraction of a subsequence, we can assume that

vε′
(x) −→ v0(x) for a.e. x ∈ Ω. (A.28)

Step 5. uε′′ → u0 in Lp+1(Ω) and u0 = ±1 a.e. in Ω . From Step 2, we have∫
Ω

f (uε) � εJ ε(uε) � Cε

and then

f (uε) −→ 0 in L1(Ω).

Then from the converse Lebesgue theorem, there exists a function h ∈ L1(Ω), that we can always choose satisfying
h � 1, such that there exists a subsequence (uε′′

)ε′′ with

f
(
uε′′

(x)
)
� h(x) for a.e. x ∈ Ω

and

f
(
uε′′

(x)
) −→ 0 for a.e. x ∈ Ω. (A.29)

Our goal is now to prove that there exists a subsequence of (uε′′
)ε′′ which is convergent to some u0 in Lp+1(Ω), and

u0 = ±1 a.e. in Ω .
We remark that from (A.24), we have for v � 1, f −1(|v|p+1 − C) � v, and then setting h = |v|p+1 − C, we get

f −1(h) � |h + C|1/(p+1).

This proves that f −1(h) ∈ Lp+1(Ω), and∣∣uε′′ ∣∣ � 1 + f −1(h) ∈ Lp+1(Ω). (A.30)

Now from (A.28) and the continuity of G−1 on (0,+∞), we have

uε′′ = G−1(vε′′) −→ G−1(v0) =: u0 for a.e. x ∈ Ω.

Moreover from (A.30), we deduce that u0 ∈ Lp+1(Ω) and

uε′′ −→ u0 in Lp+1(Ω). (A.31)

Consequently from (A.29), we deduce

f
(
uε′′

(x)
) −→ 0 = f

(
u0(x)

)
for a.e. x ∈ Ω

and then

u0(x) = ±1 for a.e. x ∈ Ω.

This ends the proof of Step 5.
Step 6:

∫
Ω

u0 = 0, u0 ∈ BV(Ω) and |∇v0|(Ω) = G(1)
2 |∇u0|(Ω).

(i) From (A.31), we get in particular that uε′′ → u0 in L1(Ω), and then 0 = ∫
Ω

uε → ∫
Ω

u0 which proves that∫
Ω

u0 = 0.

(ii) We have v0 = G(u0) ∈ BV (Ω) and u0 = ±1 a.e. in Ω . Therefore v0 = G(±1) a.e. in Ω . Moreover, because
each of these two functions only takes two values, we can express u0 as a function of v0, i.e. (using G(−1) = 0)

u0 = 2

G(1)
v0 − 1.

Thus u0 ∈ BV(Ω) and |∇u0|(Ω) = 2
G(1)

|∇v0|(Ω). This ends the proof of Step 6. Consequently we get

II 0 � J 0(u0) with u0 ∈ B.
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Step 7: infw∈B J 0(w) > 0. First notice that I 0 = infw∈B J 0(w) < +∞, because J 0(u0) � II 0 � C0 < +∞.
Let us assume that I 0 = 0. Then we can consider a minimizing sequence wk ∈ B such that J 0(wk) → 0. By

definition of the BV-norm, of B and of J 0, we see that the sequence (wk)k is bounded in BV(Ω):∥∥wk
∥∥

BV(Ω)
�

∥∥wk
∥∥

L1(Ω)
+ ∥∥∇wk

∥∥
L1(Ω)

= |Ω| + 1

c
J 0(wk

)
� |Ω| + C0

c
.

From the compactness result for BV (Proposition A.2), up to extract a subsequence, we get the existence of a function
w∞ ∈ BV(Ω), such that

wk −→ w∞ in L1(Ω) (A.32)

and

0 = lim inf
k→+∞

∣∣∇wk
∣∣(Ω) �

∣∣∇w∞∣∣(Ω).

Therefore w∞ is constant on Ω , and because of (A.32) and
∫
Ω

wk = 0, we have∫
Ω

w∞ = 0

and then w∞ ≡ 0 on Ω .
On the other hand, because of (A.32), up to extract a subsequence, we have

wk(x) −→ w∞(x) a.e. in Ω

and then w∞(x) = ±1 a.e. in Ω . Contradiction.
Then infw∈B J 0(w) > 0. This ends the proof of Proposition A.1. �
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