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Abstract

This paper is concerned with the existence and multiplicity of positive solutions of the equation −�u+u = up−1, 2 < p < 2∗ =
2N

N−2 , with Dirichlet zero data, in an unbounded smooth domain Ω ⊂ R
N having unbounded boundary. Under the assumptions:

(h1) ∃τ1, τ2, . . . , τk ∈ R
+ \ {0}, 1 � k � N − 2, such that

(x1, x2, . . . , xN ) ∈ Ω ⇐⇒ (x1, . . . , xi−1, xi + τi , . . . , xN ) ∈ Ω, ∀i = 1,2, . . . , k,

(h2) ∃R ∈ R
+ \ {0} such that R

N \ Ω ⊂ {(x1, x2, . . . , xN ) ∈ R
N :

∑N
j=k+1 x2

j
� R2}

the existence of at least k + 1 solutions is proved.
© 2006 Elsevier Masson SAS. All rights reserved.

Résumé

Dans cet article on étudie l’existence et la multiplicité de solutions positives pour l’équation −�u + u = up−1, 2 < p < 2∗ =
2N

N−2 , avec la condition de Dirichlet u = 0 sur ∂Ω . Le domaine Ω ⊂ R
N est non borné et ∂Ω est non borné aussi. En supposant

que les conditions

(h1) ∃τ1, τ2, . . . , τk ∈ R
+ \ {0}, 1 � k � N − 2, tels que

(x1, x2, . . . , xN ) ∈ Ω ⇐⇒ (x1, . . . , xi−1, xi + τi , . . . , xN ) ∈ Ω, ∀i = 1,2, . . . , k,

(h2) ∃R ∈ R
+ \ {0} tel que R

N \ Ω ⊂ {(x1, x2, . . . , xN ) ∈ R
N :

∑N
j=k+1 x2

j
� R2}
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soient vérifiées, on démontre que le problème possède au moins k + 1 solutions.
© 2006
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1. Introduction and statement of the results

In this paper we are concerned with the existence and the multiplicity of solutions to

(P )

⎧⎨⎩−�u + u = up−1 in Ω,

u > 0 in Ω,

u ∈ H 1
0 (Ω)

where 2 < p < 2∗ = 2N/(N − 2) and Ω ⊂ R
N , N � 3, is an unbounded smooth domain with ∂Ω unbounded.

Problem (P ) has a variational structure: its solutions can be found looking for positive functions that are critical
points of the functional

E(u) =
∫
Ω

(|∇u|2 + u2)dx

constrained to lie on the manifold

V = {
u ∈ H 1

0 (Ω): |u|Lp(Ω) = 1
}
.

However, the usual variational techniques (minimization, minimax methods) cannot be applied straightly, because
of the lack of compactness, due to the unboundedness of Ω . Indeed, since the embedding j :H 1

0 (Ω) ↪→ Lp(Ω) is
continuous, but not compact, the manifold V is not closed for the weak H 1

0 -topology and, moreover, the basic Palais–
Smale condition is not satisfied by E at every energy level. Furthermore, as we shall see, the situations, one has to
face, are strongly depending on the shape of the domain in which (P ) is considered, so the corresponding technical
difficulties can be considerably different.

When R
N \ Ω is a ball the existence of a solution to (P ) can be, quite easily, proved (see [13]), by minimizing

E on the manifold Vr = {u ∈ Hr(Ω): |u|Lp(Ω) = 1}, Hr(Ω) being the subspace of H 1
0 (Ω) consisting of spherically

symmetric functions, that, as well known [21], embeds compactly in Lp(Ω). Analogous devices can be used when
R

N \ Ω is bounded and it is “nearly” spherical, in a suitable sense, or enjoys of some other kind of symmetry [10]
and, moreover, when Ω is a “strip-like” domain [12].

The question becomes more difficult when R
N \ Ω has no symmetry properties. Indeed a classical, by now,

result [13] states that, for a very large class of unbounded domains, those satisfying the condition: ∃x̄ ∈ R
N :

(ν(x), x̄) � 0 ∀x ∈ ∂Ω , (ν(x), x̄) �≡ 0, (P ) admits only the trivial solution u ≡ 0. Moreover, even when R
N \ Ω

is bounded, problem (P ) is not easy to handle and cannot be solved by minimization: the infimum of E on V equals
the infimum of ‖u‖2

H 1(RN)
on the manifold {u ∈ H 1(RN): |u|Lp(RN) = 1} and is not achieved [4]. Nevertheless, in

this case, a careful analysis of the Palais–Smale sequences behaviour [4] has made possible an estimate of the en-
ergy levels in which the compactness is saved and to give some answers to the existence and multiplicity questions
for (P ). The existence of a positive nonminimizing solution to (P ) has been proved (see [4,2]) by minimax meth-
ods, and furthermore multiplicity results have been obtained, by using subtle geometric and topological arguments, in
[6–8,19].

When both Ω and R
N \ Ω are unbounded the compactness situation can be even more complex. Indeed, when

R
N \ Ω is bounded, the above mentioned result states that a Palais–Smale sequence either converges strongly to its

weak limit or differs from it by a finite number of sequences that are noting but normalized solutions of the limit
problem

(P∞)

{−�u + u = up−1 in R
N,

u ∈ H 1
(
R

N
)
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“travelling to infinity” and infinitely far away each other. When Ω and R
N \ Ω are unbounded and invariant with

respect to a group of translations, it is not difficult to understand that, besides the above described behaviour, a non-
compact Palais–Smale sequence can also look like a solution of (P ) (normalized in Lp(Ω)) “travelling to infinity”,
of course by means of translations that leave Ω invariant. This happens, for instance, when Ω is the complement of a
cylinder: Ω = R

N \ {(x1, . . . , xN) ∈ R
N :

∑N
j=k+1 x2

j � R2}, where 1 � k � N −2 and R > 0; in fact, if u solves (P ),

then u(x − yi)/|u|Lp(Ω), with yi = (xi
1,0, . . . ,0) and xi

1 −→
i→+∞ + ∞, is a noncompact Palais–Smale sequence at the

same energy level of the critical point, of E on V , u/|u|Lp(Ω). Moreover, we remark that even worse phenomena can
occur, in fact unbounded domains with unbounded boundary exist such that the Palais–Smale condition for the related
energy functional E can fail at every energy level (see [17]).

The question of the existence of solutions of (P ) when Ω is an unbounded domain having unbounded boundary is
still very partially investigated. Most of the known existence results concern domains bounded in some co-ordinates
(strip-like, cylinders) (see [23] and references therein), while only recently some existence results have been proved
under suitable condition at infinity on Ω and on ∂Ω [18,17].

The research, we present here, deals with problem (P ) when Ω is an unbounded “exterior” domain having un-
bounded boundary. Precisely, we suppose that Ω satisfies the following assumptions:

(h1) there exist k positive real numbers τ1, τ2, . . . , τk , 1 � k � N − 2, such that

(x1, x2, . . . , xN) ∈ Ω ⇐⇒ (x1, . . . , xi−1, xi + τi, . . . , xN) ∈ Ω, ∀i = 1,2, . . . , k,

(h2) there exists R ∈ R, R > 0, such that

R
N \ Ω ⊂

{
(x1, x2, . . . , xN) ∈ R

N :
N∑

j=k+1

x2
j � R2

}
.

The main result we obtain is contained in the following

Theorem 1.1. Let Ω be a smooth domain verifying conditions (h1) and (h2). Then problem (P) has at least
(k + 1) solutions, u1, u2, . . . , uk+1, nonequivalent, in the sense that ∀i �= j , i, j = 1, . . . , k + 1, does not exist
(h1, h2, . . . , hk) ∈ Z

k such that ui(x1, . . . , xN) = uj (x1 + h1τ1, x2 + h2τ2, . . . , xk + hkτk, xk+1, . . . , xN).

We stress the fact that, dropping assumption (h1), Theorem 1.1 is not true and moreover (P ) could not have
any solution, as one easily understands considering Ω = {(x1, x2, . . . , xN) ∈ R

N : |(x2, . . . , xN)| > f (x1)}, where
f : R → R is a bounded smooth function such that 0 < infR f < supR f < H , H ∈ R and f ′(t) > 0 ∀t ∈ R. Ω is a
domain satisfying the above mentioned nonexistence condition, our condition (h2), but not condition (h1). Moreover
we point out that if in assumptions (h1), (h2) we have k = N −1 then Theorem 1.1 does not hold, in general. Consider,
for example, D = {(x1, x2, . . . , xN) ∈ R

N : |x1| > R}, R > 0: since no solution exists on half-spaces, problem (P ) has
no solution on D. Indeed, the proof we carry on does not work when k = N − 1, because in such a case Lemma 4.7
is not true, with q = 2.

On the contrary, a simple example of a domain to which Theorem 1.1 applies, giving the existence of at least two so-
lutions, is obtained considering Ω = {x ∈ R

3: dist(x,E) > H }, H ∈ R
+ \ {0}, with E = {(x1, cosx1, sinx1): x1 ∈ R}.

We, also, must observe that, in domains verifying the assumptions of Theorem 1.1, but having richer symmetry
properties (as the complement of a cylinder), solutions nonequivalent in the sense of Theorem 1.1 can be identified
by a different kind of translation. Because of this we explicitly state the following corollary, for which, on the other
hand, we have an independent proof, simpler than that of Theorem 1.1.

Theorem 1.2. Let Ω be a smooth domain verifying conditions (h1) and (h2). Then problem (P ) has at least one
solution.

The paper is organized as follows: Sections 2 and 3 are devoted to build the variational framework for the study,
namely, in Section 2, after some remarks, the necessary equivariant, Ljusternik–Schnirelmann type, theory is exposed,
while in Section 3 the compactness question is studied. Section 4 contains some basic asymptotic estimates and in
Section 5 the proofs of Theorems 1.1 and 1.2 are displayed.
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2. Notations, preliminary remarks, equivariant theory recalls

Throughout the paper we make use of the following notations:

• Lp(D), 1 � p < +∞, D ⊆ R
N , denotes a Lebesgue space; the norm in Lp(D) is denoted by | · |p,D;

• H 1
0 (D), D ⊂ R

N , and H 1(RN) ≡ H 1
0 (RN) denote the Sobolev spaces obtained, respectively, as closure

of C∞
0 (D), and C∞

0 (RN), with respect to the norms

‖u‖D =
[ ∫
D

(|∇u|2 + u2)dx

]1/2

, ‖u‖RN =
[ ∫

RN

(|∇u|2 + u2)dx

]1/2

;

• if D1 ⊂ D2 ⊆ R
N and u ∈ H 1

0 (D1), we denote also by u its extension to D2 obtained setting u ≡ 0 outside D1.
Hence for all u ∈ H 1

0 (Ω)

E(u) =
∫
Ω

(|∇u|2 + u2)dx ≡
∫

RN

(|∇u|2 + u2)dx;

• the generic point x = (x1, x2, . . . , xk, xk+1, . . . , xN) ∈ R
N = R

k × R
N−k is denoted by (x1, x2, . . . , xk, x

′)
where x′ = (xk+1, . . . , xN) ∈ R

N−k , k being the number that appears in assumption (h1), we put also |x′| =
(
∑N

j=k+1 x2
j )1/2;

• B(y, r) denotes the open ball of R
N , having radius r and centred at y.

We set

m := inf
{‖u‖2

RN : u ∈ H 1(
R

N
)
, |u|p,RN = 1

}
. (2.1)

The infimum in (2.1) is achieved (see [21,5]) by a positive function ω, that is unique modulo translation [16] and
radially symmetric about the origin, decreasing when the radial co-ordinate increases and such that

lim|x|→+∞
∣∣Dsω(x)

∣∣|x|(N−1)/2 e|x| = ds > 0, s = 0,1 (2.2)

(see [15] and [5]).
The following proposition shows that, on the contrary, (P ) cannot be solved by minimization.

Proposition 2.1. Setting

mΩ := inf
{
E(u): u ∈ V

}
(2.3)

the relation

mΩ = m (2.4)

holds and the minimization problem (2.3) has no solution.

Proof. Since we may consider H 1
0 (Ω) as a subspace of H 1(RN),

mΩ � m.

To prove that the equality holds, let us consider the sequence (ωyn)n∈N defined by

ωyn(x) := ϕ(x)ω(x − yn)

|ϕ(x)ω(x − yn)|p,Ω

, x ∈ Ω,

where, ∀n ∈ N, yn = ((yn)1, (yn)2, . . . , (yn)k, y
′
n) ∈ Ω , limn→+∞ |y′

n| = +∞, ω is the function realizing (2.1) and
ϕ ∈ C∞(RN, [0,1]) is a cut-off function defined by ϕ(x1, x2, . . . , xk, x

′) = ϕ̃(|x′|), ϕ̃ : R+ → [0,1] being a C∞ non-
decreasing function such that ϕ̃(s) = 0 ∀s � R, ϕ̃(s) = 1 ∀s � R + 1 (where R is the number defined in assump-
tion (h2)). Using (2.2) it is not difficult to verify that{

(a) limn→+∞
∣∣ϕ(x)ω(x − yn) − ω(x − yn)

∣∣
p,RN = 0,

(b) limn→+∞
∥∥ϕ(x)ω(x − yn) − ω(x − yn)

∥∥
N = 0

(2.5)

R
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hence

lim
n→+∞E(ωyn) = m. (2.6)

Let us now assume u∗ ∈ V exists so that E(u∗) = m, then by the uniqueness of the family of functions realizing (2.1)

u∗(x) = ω(x − y∗) for some y∗ ∈ R
N.

This is impossible because ω(x) > 0 ∀x ∈ R
N and R

N \ �Ω �= ∅. �
From the above result we can deduce, also, some useful estimates on the Lp norm of a critical point and a lower

bound for the energy of a changing sign critical point of E on V .

Corollary 2.2. Let ū be a nontrivial solution of

(Pμ)

{−�u + u = μ|u|p−2u in D,

u ∈ H 1
0 (D)

with either D = Ω or D = R
N . Then

|ū|p,D �
(

m

μ

)1/(p−2)

. (2.7)

Proof. By (2.1), (2.3) and (2.4) we have

m|ū|2p,D � ‖ū‖2
D,

and being ū solution of (Pμ)

‖ū‖2
D = μ|ū|p

p,D.

Thus

|ū|p−2
p,D � m

μ

and (2.7) follows. �
Corollary 2.3. Let ū be a critical point of E on V . If E(ū) ∈ (m,21−2/pm) then ū does not change sign.

Proof. Let us assume E(ū) = μ, |ū|p,Ω = 1, ū = ū+ − ū− and ū+ �≡ 0, ū− �≡ 0. Then, taking into account that ū

solves (Pμ) in Ω and using (2.3),(2.4), we obtain

m
∣∣ū±∣∣2

p,Ω
�

∥∥ū±∥∥2
Ω

= μ
∣∣ū±∣∣p

p,Ω

hence

1 = |ū|pp,Ω = ∣∣ū+∣∣p
p,Ω

+ ∣∣ū−∣∣p
p,Ω

� 2

(
m

μ

)p/(p−2)

that implies

μ � 21−2/pm. �
Remark 2.4. Obviously, the same conclusion holds true for every changing sign critical point of ‖u‖2

RN on

{u ∈ H 1(RN): |u|p,RN = 1} and every normalized changing sign solution of (Pμ) in Ω or in R
N .

We recall, now, some facts about equivariant critical points theory, that is the needful topological framework for
our research.

Let X be a normed space and G a topological group. The action of G on X is a continuous map

G × X
[ ]−→ X, [g,u] �→ gu

verifying the conditions
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(i) 1 · u = u,
(ii) (gh)u = g(hu),

(iii) u �→ gu is linear.

The action of G on X is said isometric if

‖gu‖ = ‖u‖ ∀g ∈ G ∀u ∈ X.

A set A ⊆ X is G-invariant if gA = A for all g ∈ G.
Two elements w,z ∈ X are G-equivalent if g(w) = z for some g ∈ G. We denote by [w] the orbit of w, i.e. the

subspace {gw: g ∈ G}, and by X/G the orbit space, i.e. the quotient space obtained by identifying each orbit to a
point.

Two sequences (wn)n∈N, (zn)n∈N, wn, zn ∈ X are G-equivalent if, for all n ∈ N, wn is G-equivalent to zn, in other
words, a sequence (gn)n∈N exists so that gn ∈ G and gnwn = zn.

A map f :Y → T , Y ⊆ X G-invariant set, T normed space, is G-invariant if

f ◦ g(y) = f (y) ∀g ∈ G ∀y ∈ Y.

A map f :Y → X, Y ⊆ X G-invariant set, is G-equivariant if

g ◦ f = f ◦ g ∀g ∈ G.

Definition 2.5. Let A,B,Y , B ⊂ A ⊆ Y be closed G-invariant subsets of a normed space X on which a topological
group G acts. The G-equivariant category of A in Y , relative to B , denoted by catGY (A,B), is the least integer l such
that there exist (l + 1) closed G-invariant subsets of Y , C0,C1, . . . ,Cl and (l + 1) maps hj ∈ C(Cj × [0,1], Y ), such
that

(a) A ⊆
l⋃

j=0

Cj , B ⊆ C0;

(b)

⎧⎪⎨⎪⎩
(i) hj (·, t) is G-equivariant ∀t ∈ [0,1], j = 0,1, . . . , l;

(ii) hj (c,0) = c ∀c ∈ Cj , j = 0,1, . . . , l;
(iii) h0(c,1) ∈ B ∀c ∈ C0; h0(B, t) ⊂ B ∀t ∈ [0,1];
(iv) ∀j = 1,2, . . . , l ∃wj ∈ Y such that hj (c,1) ∈ [wj ] ∀c ∈ Cj .

If such a number does not exist, we say that the G-equivariant category of A in Y relative to B is +∞.

Definition 2.6. Let M be a C1, G-invariant manifold embedded in an Hilbert space H on which the topological group
G acts isometrically. Let F ∈ C1(M,R) a G-invariant functional. The functional F satisfies the G-Palais–Smale
condition, briefly (PS)G, at the level c if for every sequence (un)n, un ∈ M , such that

F(un) −→
n→+∞c, ∇F(un) −→

n→+∞0

there exists a sequence (vn)n, G-equivalent to (un)n, relatively compact.

The following Ljusternik–Schnirelmann type theorem provides a lower bound for the number of critical points of
an invariant functional in suitable ranges of its values.

Theorem 2.7. Let H be an Hilbert space on which the topological group G acts isometrically. Let be M ⊆ H a
G-invariant C1,1- manifold and F ∈ C1,1(M,R) a G-invariant functional. Put for any c ∈ R

Fc = {
u ∈ M: F(u) � c

}
,

Kc = {u ∈ M: F(u) = c, (∇F)(u) = 0
}
.

Consider −∞ < a < b < +∞, and assume Ka = ∅ = Kb and that F satisfies the (PS)G for all c ∈ [a, b]. Then F

has at least catG
Fb(F

b,F a) critical points that are not G-equivalent and to which there correspond critical levels lying
in (a, b).
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Proof. Since F is G-invariant, we have for all u ∈ M, ∀g ∈ G

F ′(gu)[v] = lim
t→0

F(u + tg−1v) − F(u)

t

= F ′(u)[g−1v].
Thus, being the action of G isometric, we obtain(∇F(gu), v

) = (∇F(u), g−1v
) = (

g∇F(u), v
) ∀g ∈ G, ∀u ∈ M

and we deduce that ∇F :M → H is an equivariant map. Furthermore, because of the (PS)G condition, if F has not
critical values in the interval [α,β] ⊆ [a, b], there exists a positive number δ > 0 for which∥∥∇F(u)

∥∥ > δ ∀u ∈ F−1([α,β]). (2.8)

Indeed, if (2.8) were false, a sequence (un)n, un ∈ M , would exist so that

F(un) −→
n→+∞c ∈ [α,β],

∇F(un) −→
n→+∞0.

Thus, a sequence (gn)n, gn ∈ G, would exist so that, passing eventually to a subsequence, gnun −→
n→+∞v ∈ M . Hence

we infer

F(v) = lim
n→+∞F(gnun) = lim

n→+∞F(un) = c,∥∥∇F(v)
∥∥ = lim

n→+∞
∥∥∇F(gnun)

∥∥ = lim
n→+∞

∥∥gn∇F(un)
∥∥ = lim

n→+∞
∥∥∇F(un)

∥∥ = 0

contradicting the nonexistence of critical values in [α,β].
Therefore, using well known methods (see e.g. [24] Lemmas 1.14 and 3.1), a number ε > 0 and a continuous

deformation η ∈ C([0,1] × M,M) can be constructed so that

(i) η(t, ·) ∀t ∈ [0,1] is a G-equivariant homeomorphism of M;
(ii) η(0, u) = u, ∀u ∈ M;

(iii) η(t, u) = u, ∀t ∈ [0,1] if u /∈ F−1[α − ε,β + ε];
(iv) η(1,F β) ⊂ Fα;
(v) F

(
η(·, u)

)
is nonincreasing ∀u ∈ M.

Then, the conclusion follows, by applying classical arguments of the generalized Ljusternik–Schnirelmann theory
(see [24] Theorem 5.19). �
Remark 2.8. The same result could be also proved supposing H Banach, instead of Hilbert, space and under weaker
regularity assumptions on F .

We end this section pointing out that, in our setting, a noncompact group of translations, G, acting on R
N and, in

turn, on H 1(RN) and H 1
0 (Ω) is considered. Namely, for all h ≡ (h1, h2, . . . , hk) ∈ Z

k , we define Th : RN → R
N , by

Th(x) = Th(x1, x2, . . . , xk, x
′) := (x1 + τ1h1, x2 + τ2h2, . . . , xk + τkhk, x

′)
hence we say that x, y ∈ R

N are equivalent if and only if there exists (h1, h2, . . . , hk) ∈ Z
k such that y = (x1 +

τ1h1, x2 + τ2h2, . . . , xk + τkhk, x
′).

Clearly Ω is invariant under the action of G.
Analogously, for all h ≡ (h1, h2, . . . , hk) ∈ Z

k , we define Th :H 1(RN) → H 1(RN), by

Th(u)(x) := u
(
Th(x)

) = u(x1 + τ1h1, x2 + τ2h2, . . . , xk + τkhk, x
′)

and we say that u,v ∈ H 1(RN) are equivalent if and only if there exists (h1, h2, . . . , hk) ∈ Z
k such that

v(x1, x2, . . . , xk, x
′) = u(x1 + τ1h1, x2 + τ2h2, . . . , xk + τkhk, x

′).
We remark that the action on H 1(RN) of the group G := {Th: h ∈ Z

k} is isometric, that H 1
0 (Ω) can be seen as an

invariant subspace of H 1(RN), V is an invariant manifold in H 1(Ω) and the functional E is invariant.
0
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3. A compactness result

The purpose of this section is to show that there exists an energy interval in which the compactness of the functional
E is saved.

The result we prove is stated in the following

Proposition 3.1. The functional E satisfies the G-Palais–Smale condition on V at every level c ∈ (m,21−2/pm).

Proof. Let (un)n be a Palais–Smale sequence for E constrained on V , e.g.⎧⎨⎩
(a) |un|p,Ω = 1,

(b) limn→+∞ E(un) = c,

(c) limn→+∞ ∇E|V (un) = 0
(3.1)

and assume

c ∈ (
m,21−2/pm

)
. (3.2)

By definition of E, (3.1)(b) implies that (un)n is bounded in H 1
0 (Ω), so there exists u0 ∈ H 1

0 (Ω) such that, up to a
subsequence,{

(a) un ⇀ u0 weakly in H 1
0 (Ω) and in Lp(Ω),

(b) un(x) → u0(x) a.e. in Ω.
(3.3)

By (3.1)(c), there exists a sequence (μn)n, μn ∈ R, such that(∇E|V (un),w
) =

∫
Ω

[
(∇un,∇w) + unw

]
dx − μn

∫
Ω

|un|p−2unw = o(1)‖w‖Ω ∀w ∈ H 1
0 (Ω) (3.4)

and, in view of (3.1)(a), (b), setting in (3.4) w = un, we deduce

lim
n→+∞μn = c. (3.5)

Hence u0 solves{−�u + u = c|u|p−2u in Ω,

u ∈ H 1
0 (Ω).

(3.6)

Set now

vn(x) =
{

(un − u0)(x), x ∈ Ω,

0, x ∈ R
N \ Ω.

Then, by (3.3)(a),

vn ⇀ 0 weakly in H 1(
R

N
)

and Lp
(
R

N
)

(3.7)

and

‖vn‖2
RN = ‖un‖2

Ω − ‖u0‖2
Ω + o(1). (3.8)

Furthermore, by (3.3)(b), the Brezis–Lieb theorem can be applied and it gives

|vn|pp,RN = |un|pp,Ω − |u0|pp,Ω + o(1). (3.9)

Let us suppose, now, ‖vn‖RN �→ 0 strongly (otherwise we are done). So, up to a subsequence, ‖vn‖RN � k0 > 0
∀n ∈ N, for some k0 ∈ R. Then, using (3.4), (3.6), (3.8), (3.9), we deduce that k1 ∈ R exists such that |vn|pp,RN �
k1 > 0.

Let us decompose, now, R
N into N -dimensional hypercubes Ql , having unitary sides and vertices with integer

co-ordinates, and put for all n ∈ N

dn = max|vn|p,Ql
.

l∈N
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We claim that γ ∈ R, γ > 0, exists such that (up to a subsequence)

dn � γ > 0 ∀n ∈ N. (3.10)

Indeed

0 < k1 � |vn|pp,RN =
∑
l∈N

|vn|pp,Ql

� max
l∈N

|vn|p−2
p,Ql

∑
l∈N

|vn|2p,Ql

� d
p−2
n k2

∑
l∈N

‖vn‖2
Ql

� d
p−2
n k2‖vn‖2

RN ,

k2 ∈ R
+ \ {0} independent of i. Thus, in view of (3.1) and (3.8), (3.10) follows.

Let us call, for all n ∈ N, yn the centre of an hypercube Qn in which |vn|p,Qn = dn.
If (yn)n were bounded, then, passing eventually to a subsequence, we could assume that the yn, for all n, belong

to the same cube Q̂, and, hence, that they coincide. Thus, in Q̂ we would have, for all n, |vn|p,Q̂ � γ > 0 and, on
the other hand, ‖vn‖Q̂ � ‖vn‖RN � k3; as a consequence, by the Rellich Theorem, (vn)n would converge strongly in
Lp(Q̂) to a nonzero function, contradicting (3.7). Therefore

|yn| −→
n→+∞ + ∞.

Let us, now, call ṽ0 the weak limit, in H 1(RN), of the sequence ṽn(x) := vn(x + yn). Arguing as before in the
hypercube Q̃ centred at the origin and having unitary sides, we conclude that ṽ0 �≡ 0. Moreover, as a consequence
of (3.4), (3.5), ṽ0 is a weak solution, on its domain D, of −�u + u = c|u|p−2u and, since |yn| → +∞ and Ω satis-
fies (h2), we deduce D = R

N , when dist(yn,R
N \Ω) −→

n→+∞ +∞, D = Ω (up to a translation) when dist(yn,R
N \Ω)

is bounded.
Now, we claim that⎧⎨⎩

(a) u0 = 0,

(b) ṽ0 does not change sign,
(c) ṽn −→

n→+∞ṽ0 strongly in H 1
0 (D).

(3.11)

Equality (3.11)(a) follows by observing that (3.8) implies

‖un‖2
Ω � ‖u0‖2

Ω + ‖ṽ0‖2
D + o(1), (3.12)

thus, if u0 were not zero, taking into account that ṽ0 �≡ 0 and that Corollary 2.2 applies to both u0 and ṽ0, we would
infer

E(un) = ‖un‖2
Ω � 2m ·

(
m

c

)2/(p−2)

+ o(1)

and, then

c � 21−2/pm

contradicting (3.2).
Assertion (3.11)(b) is a direct consequence of Remark 2.4 and of the arguments of Corollary 2.3.
Let us prove, then, (3.11)(c). Let us assume, by contradiction, that ṽn � ṽ0 strongly. Then, setting wn(x) := (ṽn −

ṽ0)(x), wn(x) ⇀ 0 weakly in H 1(RN) and in Lp(RN), and wn(x) � 0 strongly in H 1(RN). So, we can repeat step
by step the argument before applied to (vn)n, concluding that a sequence of points (zn)n, zn ∈ R

N , |zn| −→
n→+∞ + ∞,

and a nonzero function, w̃0, exist such that

w̃n(x) := wn(x + zn) ⇀ w̃0(x) weakly in H 1
0

(
D̂

)
,

D̂ being either R
N or Ω , and w̃0 being a solution of −�u + u = c|u|p−2u in D̂. Furthermore the inequality

‖w̃n‖2
N = ‖wn‖2

N = ‖un‖2
Ω − ‖ṽ0‖2 + o(1)
R R D
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holds, thus

‖un‖2
Ω � ‖ṽ0‖2

D + ‖w̃0‖2
D̂ + o(1)

and, then,

c � 21−2/pm

follows, contradicting (3.2) and giving (3.11)(c). Now, (3.11) and (3.9) imply |ṽ0|p,D = 1 and, by (3.11)(b), we can
suppose ṽ0 � 0 on D. Hence, if D = R

N , the uniqueness of the positive regular solutions to −�u + u = c|u|p−2u

in R
N implies c = E(ṽ0) = m, contradicting (3.2). Therefore, D = Ω and 0 < dist(yn,R

N \ Ω) < H for some
H ∈ R

+ \ {0}. Let us consider the sequence (hn)n = (hn,1, hn,2, . . . , hn,k) ∈ Z
k such that

τihn,i � yn,i < τi(hn,i + 1), i = 1,2, . . . , k, n ∈ N,

and define

u∗
n(x1, x2, . . . , xk, x

′) := un(x1 + τ1hn,1, . . . , xk + τkhn,k, x
′).

The sequence (u∗
n)n is G-equivalent to (un)n and converges strongly in H 1

0 (Ω) to a function u∗ that is a nontrivial
critical point of E on V . �
4. Useful tools and basic estimates

For what follows we need to introduce a barycenter type function. For all u ∈ Lp(RN) we set

ũ(x) = 1

|B(x,1)|
∫

B(x,1)

∣∣u(y)
∣∣dy ∀x ∈ R

N,

|B(x,1)| denoting the Lebesgue measure of B(x,1), and

û(x) =
[
ũ(x) − 1

2
max
RN

ũ(x)

]+
∀x ∈ R

N ;

we, then, define β :Lp(RN) \ {0} → R
N by

β(u) = 1

|û|p
p,RN

∫
RN

x
(
û(x)

)p dx. (4.1)

We point out that β is well defined for all u ∈ Lp(RN) \ {0}, because û �≡ 0 and has compact support, that β is
continuous and{

(a) β
(
u(x − y)

) = β
(
u(x)

) + y ∀u ∈ Lp
(
R

N
) \ {0}, ∀y ∈ R

n,

(b) β
(
ω(x)

) = 0.
(4.2)

Remark 4.1. We stress the fact that the above barycenter map has been introduced some years ago by the first and the
third author ([9], pages 265–266).

This map has been useful in many situations; in fact, it has been used also in [6,17,18] and recently, with a very
slight modification, in [3] (actually, in [3] the definition of barycenter map is introduced as a new one and the definition
given in [9] is not quoted).

We set, for all r ∈ R
+,

Dr := {
(x1, x2, . . . , xk, x

′) ∈ R
N : |x′| < r

}
and

Br := inf
{
E(u): u ∈ V, β(u) ∈ Dr

}
, (4.3)

so, in particular,

D0 := {
(x1, x2, . . . , xk, x

′) ∈ R
N : x′ = 0

}
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and

B0 := inf
{
E(u): u ∈ V,

(
β(u)

)′ = (
(β(u)

)
k+1,

(
β(u)

)
k+2, . . . ,

(
β(u)

)
N

) = 0
}
. (4.4)

We remark that

B0 � Br ∀r > 0. (4.5)

In what follows, for every y = (y1, y2, . . . , yk, y
′) ∈ R

N , we set

zy = (y1, y2, . . . , yk,1,0, . . . ,0) ∈ R
N

and we denote by S, Σ and Λ, respectively, the sets

S := {
(x1, x2, . . . , xk, x

′) ∈ R
N : |x′| = 2

}
, (4.6)

Σ := S + z0, (4.7)

Λ := {
σy + (1 − σ)zy : y ∈ Σ, σ ∈ [0,1]}. (4.8)

For every ρ > 0 we define the operator

Ψρ :Σ × [0,1] −→ V

by

Ψρ[y,σ ](x) = ϕ(x)[(1 − σ)ω(x − ρy) + σω(x − ρzy)]
|ϕ(x)[(1 − σ)ω(x − ρy) + σω(x − ρzy)]|p,Ω

, (4.9)

where ϕ ∈ C∞(RN, [0,1]) is the cut-off function introduced in Proposition 2.1.
We note that

Ψρ[y,0](x) = ϕ(x)ω(x − ρy)

|ϕ(x)ω(x − ρy)|p,Ω

= ωρy(x). (4.10)

For every ρ > 0 we consider, also, the map

ξρ :Σ × [0,1] −→ ρΛ

defined by

ξρ[y,σ ] = ρ
(
(1 − σ)y + σzy

)
. (4.11)

Proposition 4.2. Let Br be the numbers defined in (4.3). Then for all r ∈ R
+, there exists μr ∈ R, such that

Br � μr > m. (4.12)

Proof. Clearly, for all r � 0, Br � m; to prove (4.12) we argue by contradiction and we assume that Br̂ = m for some
r̂ � 0. Hence, a sequence (un)n must exist such that un ∈ V and{

(i) β(un) ∈ Dr̂ ∀n ∈ N,

(ii) limn→+∞ E(un) = m.
(4.13)

Then, by the uniqueness of the minimizers family of (2.1), a sequence of points (yn)n, yn ∈ R
N , and a sequence of

functions (χn)n, χn ∈ H 1(RN) exist so that, passing eventually to a subsequence, still denoted by (un)n,{
(i) un(x) = ω(x − yn) + χn(x) ∀x ∈ R

N,

(ii) limn→+∞ χn(x) = 0 in H 1
(
R

N
)

and in Lp
(
R

N
) (4.14)

(see also [4] Lemma 3.1). Therefore, by (4.2), (4.14) (i) and the continuity of β , the relation∣∣β(un) − yn

∣∣ −→
n→+∞0

holds and, together with (4.13)(i), implies that the sequence (y′
n)n is bounded. Hence, either the sequence (yn)n is

bounded, or it is unbounded, but, in view of the assumption (h1), it can be replaced by an equivalent sequence, still
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denoted by (yn)n, contained in a bounded set; so, passing eventually to a subsequence, we conclude that yn −→
n→+∞ȳ.

Thus, either (un)n or a G-equivalent sequence, still denoted by (un)n, satisfies

lim
n→+∞un(x) = ω(x − ȳ).

Then, by (4.13)(ii),

m = lim
n→+∞E(un) =

∫
Ω

[∣∣∇ω(x − ȳ)
∣∣2 + (

ω(x − ȳ)
)2]dx

that is impossible, because ω(x) realizes (2.1), ω > 0 in R
N and R

N \ �Ω �= ∅, so the statement follows. �
Lemma 4.3. Let Σ,Ψρ,B0 be as defined, respectively, in (4.7), (4.9), (4.4). Then there exists ρ̃ ∈ R such that for all
ρ � ρ̃

B0 � max
Σ×[0,1]

E
(
Ψρ[y,σ ]). (4.15)

Proof. Taking into account (2.2), (4.2), (4.10), (2.5)(a), it is not difficult to verify that

lim
ρ→+∞

∣∣β ◦ Ψρ[y,0] − ρy
∣∣
RN = 0 ∀y ∈ Σ. (4.16)

Thus, for ρ large enough, β ◦ Ψρ(Σ × {0}) is homotopically equivalent in R
N \ D0 to ρΣ and, then, there exists

(ŷ, σ̂ ) ∈ Σ × [0,1] such that (β ◦ Ψρ)[ŷ, σ̂ ] ∈ D0, so

B0 � E
(
Ψρ[ŷ, σ̂ ]) � max

Σ×[0,1]
E

(
Ψρ[y,σ ]),

as desired. �
Corollary 4.4. Let Σ,Ψρ and ρ̃ as in Lemma 4.3. Let Br , r ∈ R

+, as defined (4.3). Then for all ρ � ρ̃

Br � max
Σ×[0,1]

E
(
Ψρ[y,σ ]). (4.17)

Proof. Inequality (4.17) is an immediate consequence of (4.15) and (4.5). �
Next step is to establish some, crucial, asymptotic estimates on the energy of Ψρ(Σ × {0}) and of Ψρ(Σ × [0,1]).

To this end, we need, first, to recall some known results:

Lemma 4.5. For all a, b ∈ R
+, for all p � 2, the relation

(a + b)p � ap + bp + (p − 1)
(
ap−1b + abp−1)

holds true.

Lemma 4.6. Let g ∈ C(RN) ∩ L∞(RN) and h ∈ C(RN) be radially symmetric functions satisfying for some α � 0,
b � 0, γ ∈ R

lim|x|→+∞g(x) exp
(
α|x|)|x|b = γ,∫

RN

∣∣h(x)
∣∣ exp

(
α|x|)(1 + |x|b)dx < +∞.

Then

lim|y|→+∞

( ∫
RN

g(x + y)h(x)dx

)
exp

(
α|y|)|y|b = γ

∫
RN

h(x) exp(−αx1)dx

holds.
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The proof of Lemma 4.5 can be found in [8], while the proof of Lemma 4.6 is in [1].
Now, we state, in the following lemma, a basic, preliminary, asymptotic relation.

Lemma 4.7. Let be k ∈ N, 1 � k � N − 2 and h ∈ C(RN,R) such that h(x1, x2, . . . , xk, x
′) = h̃(x′) with h̃ ∈

C0(R
N−k,R), then the relation

lim
ρ→+∞ sup

Σ×[0,1]

[ ∫
RN

h(x)
[
(1 − σ)ω(x − ρy) + σω(x − ρzy)

]q dx

]
· ρ(N−1)/2 exp(2ρ) = 0 (4.18)

holds for all q � 2.

Proof. Since h̃ has compact support, there exists R̂ > 0 such that supp h̃ ⊂ {w ∈ R
N−k: |w| < R̂} = BN−k(0, R̂), so

h(x) = 0 if x′ > R̂, furthermore maxRN h = maxRN−k h̃ < +∞.
In what follows we can, also, suppose ρ > max(1, R̂), hence, observing that, for all y ∈ Σ , |y| � 1 and that ω is

radially decreasing when the radial co-ordinate increases, we deduce that ∀x ∈ R
N , for which |x′| < R̂, ω(x −ρ

y
|y| ) �

ω(x − ρy).
Thus we have∣∣∣∣ ∫

RN

h(x)
[
(1 − σ)ω(x − ρy) + σω(x − ρzy)

]q dx

∣∣∣∣
� c1 max

RN
|h|

∫
{x∈RN : |x′|<R̂}

([
ω

(
x − ρ

y

|y|
)]q

+ [
ω(x − ρzy)

]q)
dx,

c1 ∈ R
+ \ {0}. So we must show

lim
ρ→+∞

[ ∫
Rk

( ∫
BN−k(0,R̂)

(
ω(x − ρv)

)q dxk+1 · · ·dxN

)
dx1 · · ·dxk

]
· ρ(N−1)/2 exp(2ρ) = 0 (4.19)

with both v = y
|y| , y ∈ Σ and v = zy , y ∈ Σ .

Let us evaluate (4.19) when v = y
|y| , y ∈ Σ .

Without any loss of generality, we can assume v = (0,0, . . . ,0, v′), |v′| = 1. Taking, again, advantage of the
behaviour of ω and of its asymptotic decay, we infer, for large values of ρ,∫

Rk

( ∫
BN−k(0,R̂)

(
ω(x − ρv)

)q dxk+1 · · ·dxN

)
dx1 · · ·dxk

� c2

∫
Rk

(
ω

(
x1, x2, . . . , xk,

(
R̂ − ρ

)
v′))qdx1 · · ·dxk

� c3

∫
Rk

[
1

[((ρ − R̂)2 + ∑k
i=1 x2

i )1/2](N−1)/2
· 1

e[(ρ−R̂)2+∑k
i=1 x2

i ]1/2

]q

dx1 · · ·dxk,

c2, c3 ∈ R
+ \ {0}.

So, setting x̂ = (x1, x2, . . . , xk), to obtain (4.19), we have to show that, for all q � 2

lim
ρ→+∞

∫
Rk

(
ρ

[(ρ − R̂)2 + |x̂|2]q/2

)(N−1)/2

· 1

eq[(ρ−R̂)2+|x̂|2]1/2−2ρ
dx̂ = 0. (4.20)

When q > 2, (4.20) follows at once because(
ρ̂ 2 2 q/2

)(N−1)/2

· 1
q[(ρ−R̂)2+|x̂|2]1/2−2ρ

� c4
1

c [ρ2+|x̂|2]1/2 , c4, c5 ∈ R
+ \ {0}.
[(ρ − R) + |x̂| ] e e 5
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Let us, then, consider the case q = 2. Clearly, being R̂ fixed, (4.20) easily comes once we show that

lim
ρ→+∞

∫
Rk

(
ρ

ρ2 + |x̂|2
)(N−1)/2

· e2ρ

e2(ρ2+|x̂|2)1/2 dx̂ = 0. (4.21)

Now∫
Rk

(
ρ

ρ2 + |x̂|2
)(N−1)/2

· e2ρ

e2(ρ2+|x̂|2)1/2 dx̂ = 1

ρ(N−1)/2

∫
Rk

(
1

1 + |x̂/ρ|2
)(N−1)/2

· 1

e2ρ[(1+|x̂/ρ|2)1/2−1] dx̂

=
∫
Rk

(
1

1 + |x̃|2
)(N−1)/2

· ρ(2k+1−N)/2

e2ρ[(1+|x̃|2)1/2−1] dx̃

and for all x̃ �= 0

lim
ρ→+∞

(
1

1 + |x̃|2
)(N−1)/2

· ρ(2k+1−N)/2

e2ρ[(1+|x̃|2)1/2−1] = 0.

Furthermore, when k � N−1
2(

1

1 + |x̃|2
)(N−1)/2

· ρ(2k+1−N)/2

e2ρ[(1+|x̃|2)1/2−1] <

(
1

1 + |x̃|2
)(N−1)/2

(4.22)

for large ρ, while, when k > N−1
2 , taking into account that

max
t∈R+

tα

ect
=

(
α

e

)α 1

cα
, α > 0,

we deduce(
1

1 + |x̃|2
)(N−1)/2

· ρ(2k+1−N)/2

e2ρ[(1+|x̃|2)1/2−1]

�
(

2k + 1 − N

4e

)(2k+1−N)/2( 1

(1 + |x̃|2)1/2 − 1

)(2k+1−N)/2( 1

1 + |x̃|2
)(N−1)/2

(4.23)

and, since k � N − 2, the right-hand sides of (4.22) and (4.23) belong to L1(Rk). Thus, by the Lebesgue Theorem,
(4.21) is true. As a consequence, (4.19) holds true when v = y

|y| , y ∈ Σ . The argument when v = zy , y ∈ Σ is quite
analogous, so the statement is proved. �

We are, now, ready to state and prove the main energy asymptotic estimates.

Proposition 4.8. The relations

lim
ρ→+∞ max

Σ
E

(
Ψρ[y,0]) = m, (4.24)

max
Σ×[0,1]

E
(
Ψρ[y,σ ]) < 21−2/pm for ρ large enough (4.25)

hold.

Proof. In view of (4.7) and of the fact that, ∀y ∈ Σ , limρ→+∞ |ρy′| = +∞, arguing as for proving (2.6) in Proposi-
tion 2.1, it is easy to show that

lim
ρ→+∞E

(
Ψρ[y,0]) = m ∀y ∈ Σ,

so (4.24) follows.
In order to prove (4.25), let us put
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Nρ[y,σ ] = ∥∥ϕ(x)
[
(1 − σ)ω(x − ρy) + σω(x − ρzy)

]∥∥2
RN

Dρ[y,σ ] = ∣∣ϕ(x)
[
(1 − σ)ω(x − ρy) + σω(x − ρzy)

]∣∣p
p,RN

for all ρ > 0, for all (y, σ ) ∈ Σ × [0,1].
We have

Nρ[y,σ ] =
∫

RN

(
ϕ(x)

)2[∣∣∇(
(1 − σ)ω(x − ρy) + σω(x − ρzy)

)∣∣2

+ (
(1 − σ)ω(x − ρy) + σω(x − ρzy)

)2]dx

+
∫

RN

∣∣∇ϕ(x)
∣∣2[

(1 − σ)ω(x − ρy) + σω(x − ρzy)
]2 dx

+ 1

2

∫
RN

(∇(
ϕ(x)

)2
,∇(

(1 − σ)ω(x − ρy) + σω(x − ρzy)
)2)

dx

�
∫

RN

[∣∣∇(
(1 − σ)ω(x − ρy) + σω(x − ρzy)

)∣∣2 + (
(1 − σ)ω(x − ρy) + σω(x − ρzy)

)2]dx

+
∫

RN

(∣∣∇ϕ(x)
∣∣2 − 1

2
�

(
ϕ(x)

)2
)[

(1 − σ)ω(x − ρy) + σω(x − ρzy)
]2 dx

= [
(1 − σ)2 + σ 2] ∫

RN

[∣∣∇ω(x)
∣∣2 + (

ω(x)
)2]dx + 2mσ(1 − σ)

∫
RN

[
ω(x − ρy)

]p−1
ω(x − ρzy)dx

−
∫

RN

(ϕ�ϕ)
[
(1 − σ)ω(x − ρy) + σω(x − ρzy)

]2 dx. (4.26)

Now, setting

ερ :=
∫

RN

[
ω(x − ρy)

]p−1
ω(x − ρzy)dx =

∫
RN

ω(x − ρy)
[
ω(x − ρzy)

]p−1 dx, (4.27)

in view of (2.2), by applying Lemma 4.6, we get

lim
ρ→+∞ ερ

[
(2ρ)(N−1)/2 exp(2ρ)

] = c̃ > 0. (4.28)

Therefore, using Lemma 4.7, we obtain

Nρ[y,σ ] �
[
(1 − σ)2 + σ 2]m + 2σ(1 − σ)mερ + o(ερ).

On the other hand, using Lemmas 4.5 and 4.7, we deduce

Dρ[y,σ ] =
∫

RN

[
(1 − σ)ω(x − ρy) + σω(x − ρzy)

]p dx

+
∫

RN

(
ϕp − 1

)[
(1 − σ)ω(x − ρy) + σω(x − ρzy)

]p dx

�
[
(1 − σ)p + σp

]|ω|p
p,RN + (p − 1)

[
(1 − σ)p−1σ + σp−1(1 − σ)

]
ερ + o(ερ)

where ερ is defined in (4.27).
Hence
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E
(
Ψρ[y,σ ]) = Nρ(y,σ )

[Dρ(y,σ )]2/p

� [(1 − σ)2 + σ 2]m + 2σ(1 − σ)mερ + o(ερ)

([(1 − σ)p + σp] + (p − 1)[(1 − σ)p−1σ + σp−1(1 − σ)]ερ + o(ερ))2/p

� (1 − σ)2 + σ 2

((1 − σ)p + σp)2/p
m + 2mγ (σ)ερ + o(ερ),

where

γ (σ ) = (1 − σ)σ

[(1 − σ)p + σp]2/p

{
1 − p − 1

p

(1 − σ)2 + σ 2

(1 − σ)p + σp

[
(1 − σ)p−2 + σp−2]}.

Since γ (1/2) < 0, denoting by I (1/2) a neighbourhood of 1/2 in which γ (σ ) < c < 0, for all σ , and taking into
account (4.28), we obtain, for large ρ,

sup
Σ×I (1/2)

E
(
Ψρ[y,σ ]) < 21−2/pm.

On the other hand

lim
ρ→+∞ sup

Σ×([0,1]\I (1/2))

E
(
Ψρ[y,σ ]) � m · sup

[0,1]\I (1/2)

(1 − σ)2 + σ 2

[(1 − σ)p + σp]2/p
< 21−2/pm,

completing the proof of (4.25). �
5. Proof of the results

In what follows for all c ∈ R we set

Ec = {
u ∈ V : E(u) � c

}
,(

Ec
)+ = {

u ∈ Ec: u � 0 a.e. in Ω
}
,(

Ec
)− = {

u ∈ Ec: u � 0 a.e. in Ω
}
.

We, first, give the proof of Theorem 1.2. Clearly, it can be obtained as a straight corollary of Theorem 1.1, nevertheless
we believe interesting to exhibit the following independent argument, because it is considerably simpler than that of
Theorem 1.1 and it need neither strong tools of G-equivariant Ljusternik–Schnirelmann generalized theory, neither
delicate topological invariants.

Proof of Theorem 1.2. By Propositions 4.2, 4.8, and Lemma 4.3, a ρ̂ > 0 exists such that for all ρ > ρ̂ the inequalities

m < max
Σ

E
(
Ψρ[y,0]) < B0 � max

Σ×[0,1]
E

(
Ψρ[y,σ ]) < 21−2/pm (5.1)

hold and, moreover, β ◦ Ψρ[Σ × {0}] is homotopically equivalent in R
N \ D0 to ρΣ . So let us fix ρ > ρ̂ and set

A := max
Σ

E
(
Ψρ[y,0]),

L := max
Σ×[0,1]

E
(
Ψρ[y,σ ]).

We claim that there exists a critical level c∗ ∈ [B0,L]. Arguing by contradiction, let us assume{
u ∈ V : E(u) ∈ [B0,L], ∇E|V (u) = 0

} = ∅.

Then, by Proposition 3.1, using standard arguments (as displayed in Theorem 2.7), a positive number δ ∈ (0,B0 −A)

and a continuous function

η :EL −→ EB0−δ (5.2)

can be found so that

η(u) = u ∀u ∈ EB0−δ. (5.3)



G. Cerami et al. / Ann. I. H. Poincaré – AN 24 (2007) 41–60 57
Now, let us define H :Σ × [0,1] → R
N by

H
([y,σ ]) := β ◦ η

(
Ψρ[y,σ ]).

By (5.3) and the choice of δ, H([y,0]) = β(Ψρ[y,0]), thus, by the choice of ρ > ρ̂, H([Σ × {0}]) is homotopi-
cally equivalent in R

N \ D0 to ρΣ ; moreover H is continuous, so a point (ȳ, σ̄ ) ∈ Σ × [0,1] must exist so that
β ◦ η(Ψρ[ȳ, σ̄ ]) ∈ D0.

This is impossible, because, by (5.2)

H
(
Σ × [0,1]) ∩ D0 = ∅.

Therefore, the claim is proved and there exists a critical point u∗, of E on V , such that E(u∗) = c∗. By Corollary 2.3
we can assume u∗ � 0, so v∗ = (c∗)1/(p−2)u∗ � 0 solves (P ) and, by the maximum principle v∗ > 0. �
Proof of Theorem 1.1. By Propositions 4.2, 4.8, Corollary 4.4 and (4.16) of Lemma 4.3, a ρ̄ ∈ R, ρ̄ > 0, exists such
that for all ρ > ρ̄

m < max
Σ

E
(
Ψρ[y,0]) < B3R � max

Σ×[0,1]
E

(
Ψρ[y,σ ]) < 21−2/pm, (5.4)

R being as in assumption (h2), and∣∣β ◦ Ψρ(y,0)
∣∣ >

ρ

2
∀y ∈ Σ. (5.5)

So, let us fix ρ > max(ρ̄,6R) and set

A := max
Σ

E
(
Ψρ[y,0]),

L := max
Σ×[0,1]

E
(
Ψρ[y,σ ]).

Let us choose then Â ∈ [A,B3R) and L̂ ∈ [L,21−2/pm) such that{
u ∈ V : E(u) = Â, ∇E|V (u) = 0

} = ∅,{
u ∈ V : E(u) = L̂, ∇E|V (u) = 0

} = ∅.

Let us remark that, if one of this choices were not possible, we would be done, because the functional E constrained
on V would have infinitely many critical values, to which there would correspond infinitely many solutions of (P ).

Now, taking into account Proposition 3.1, we can apply Theorem 2.7 to the functional E, on V , subject to the

action of the group G. So, we deduce that E possesses at least catG
EL̂(EL̂,EÂ) not G-equivalent critical points, to

which there correspond critical values lying in (Â, L̂).
Now, to conclude the proof, we just need to show that

catG
EL̂

(
EL̂,EÂ)

� 2 catGρΛ(ρΛ,ρΣ). (5.6)

Indeed, being true (5.6), we can infer the existence of at least 2 catGρΛ(ρΛ,ρΣ) not G-equivalent critical points of E

on V , ui , that, since E(ui) ∈ (Â, L̂) ⊂ (m,21−2/pm), by Corollary 2.3, do not change sign. Hence, in view of the
maximum principle, the existence of at least catGρΛ(ρΛ,ρΣ) positive not G-equivalent solutions of (P ) follows. The
argument is, then, completed by observing that, by applying Corollary 7.6(ii) in [11] (see also [14]), we obtain

catGρΛ(ρΛ,ρΣ) = k + 1 (5.7)

(for the reader’s convenience, a proof of (5.7) is given in Appendix A).
Let us prove now (5.6). To this end, we show that⎧⎨⎩ (a) catG

(EL̂)+
((

EL̂)+
,
(
EÂ)+)

� catGρΛ(ρΛ,ρΣ),

(b) catG L̂ −
((

EL̂)−
,
(
EÂ)−)

� catGρΛ(ρΛ,ρΣ),
(5.8)
(E )
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we remark, in fact, that (EL̂)+ and (EL̂)− belong to disjoint connected components of EL̂, because EL̂ < 21−2/pm.

Obviously (5.8)(a) is true when catG
(EL̂)+

((EL̂)+, (EÂ)+) = +∞, hence let us assume

catG
(EL̂)+

((
EL̂)+

,
(
EÂ)+) = l ∈ N;

this means l is the least number for which there exist (l + 1) closed G-invariant sets Ti ⊂ (EL̂)+, i = 0,1, . . . , l,

(l + 1) continuous maps θi :Ti × [0,1] → (EL̂)+, i = 0,1, . . . , l, and l points wi ∈ (EL̂)+, i = 1,2, . . . , l, such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
EL̂)+ = ⋃l

i=0 Ti ,
(
EÂ)+ ⊆ T0,

θi(·, t) is G-equivariant ∀t ∈ [0,1], i = 0,1, . . . , l,

θi(u,0) = u ∀u ∈ Ti , i = 0,1, . . . , l,

θi(u,1) ∈ [wi] ∀u ∈ Ti , i = 1, . . . , l,

θ0(u,1) ∈ (
EÂ)+ ∀u ∈ T0,

θ0(u, t) ∈ (
EÂ)+ ∀u ∈ (

EÂ)+
, ∀t ∈ [0,1].

(5.9)

Now, we consider

Ki := (
ξρ ◦ Ψ −1

ρ

)
(Ti ), i = 0,1, . . . , l,

Ψρ and ξρ being the maps defined in (4.10) and (4.11) respectively. We remark that Ki are G-invariant subsets of R
N

and, by (5.4) and (5.9),

Ki ⊂ ρΛ,

l⋃
i=0

Ki = ρΛ, ρΣ ⊂K0. (5.10)

Let us denote for all x ∈ R
N \D0, x = (x1, x2, . . . , xk, x

′), by Π(x) the unique point belonging to ρΣ and to the
half line containing x and having origin at (x1, x2, . . . , xk,0).

We define, then, for i = 1,2, . . . , l

λi :Ki × [0,1] −→ ρΛ

by

λi(x, t) =
{

(1 − 2t)x + 2th ◦ β
(
Ψρ ◦ ξ−1

ρ (x)
)
, 0 � t � 1

2 ,

h ◦ β ◦ θi

(
Ψρ ◦ ξ−1

ρ (x),2t − 1
)
, 1

2 � t � 1,

where

h(x1, x2, . . . , xk, x
′) =

{
(x1, x2, . . . , xk, x

′) if |x′| � ∣∣(Π(x)
)′∣∣ or x′ = 0

Π(x) if |x′| � ∣∣(Π(x)
)′∣∣

and we define

λ0 :K0 × [0,1] −→ ρΛ

by

λ0(x, t) =

⎧⎪⎨⎪⎩
(1 − 3t)x + 3t h̃(x), 0 � t � 1

3 ,

h̃
(
3tx + (3t − 1)β

(
Ψρ ◦ ξ−1

ρ (x)
))

, 1
3 � t � 2

3 ,

h̃ ◦ β ◦ θ0
(
Ψρ ◦ ξ−1

ρ (x),3t − 2
)
, 2

3 � t � 1,

where h̃ : RN → R
N is the map defined by

h̃(x1, . . . , xk, x
′) =

⎧⎪⎪⎨⎪⎪⎩
(x1, . . . , xk, x

′) if |x′| � R,(
x1, . . . , xk,

[
R + |(Π(x))′| − R

R

(|x′| − R
)] x′

|x′|
)

if R � |x ′| � 2R,

′
Π(x) if |x | � 2R.
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We remark that the maps λi , i = 0,1, . . . , l, are well defined: indeed, even if ξ−1
ρ can contain more than one

element, Ψρ ◦ ξ−1
ρ (x) is uniquely determined; moreover the λi , i = 0,1, . . . , l, turn out to be continuous maps having

the following properties⎧⎪⎪⎪⎨⎪⎪⎪⎩
λi(·, t) is G-equivariant ∀t ∈ [0,1], i = 0,1, . . . , l,

λi(x,0) = x ∀x ∈ Ki , i = 0,1, . . . , l,

λi(x,1) ∈ [
h ◦ β(wi)

] ∀x ∈ Ki , i = 1,2, . . . , l,

λ0(x,1) ∈ ρΣ ∀x ∈K0,

λ0(x, t) ∈ ρΣ ∀x ∈ ρΣ, ∀t ∈ [0,1].

(5.11)

Relations (5.10) and (5.11) imply

catGρΛ(ρΛ,ρΣ) � l,

so (5.8)(a) is proved. An analogous argument gives (5.8)(b), completing the proof. �
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Appendix A

Proposition A.1. Let Σ and Λ as in (4.7) and (4.8), respectively. Then, for every ρ > 0,

catGρΛ(ρΛ,ρΣ) = k + 1. (A.1)

Proof. If we set B = (S1)k × DN−k and S = (S1)k × SN−k−1, then (A.1) is equivalent to cat(B,S) = k + 1.
It is well known that cat(B) = k + 1 (see [20] or [22]), so, by definition of category, cat(B,S) � cat(B) = k + 1

follows.
In order to show that the reverse inequality holds, let us observe that the cohomology algebra H ∗(B) is an exterior

algebra on k one-dimensional generators and, moreover, the relative cohomology algebra H ∗(B,S) is a free H ∗(B)-
module on a (N − k)-dimensional generator. Thus,( �H ∗(B)

)k
H ∗(B,S) �= 0,

where �H ∗(B) is the reduced cohomology, ( �H ∗(B))k stands for the n-th power and the product is the cup product. As
a consequence, by using Corollary 7.6(ii) in [11] (see, also, [14]) cat(B,S) � k + 1 follows. �
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