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Abstract

In this paper we study the questions of existence and uniqueness of weak and entropy solutions for equations of type
−div a(x,Du) + γ (u) � φ, posed in an open bounded subset Ω of R

N , with nonlinear boundary conditions of the form a(x,Du) ·
η + β(u) � ψ . The nonlinear elliptic operator div a(x,Du) is modeled on the p-Laplacian operator �p(u) = div(|Du|p−2Du),
with p > 1, γ and β are maximal monotone graphs in R

2 such that 0 ∈ γ (0) and 0 ∈ β(0), and the data φ ∈ L1(Ω) and
ψ ∈ L1(∂Ω).
© 2006

Résumé

Dans ce papier nous étudions les questions d’existence et d’unicité de solution faibles et entropiques pour des équations ellip-
tiques de la forme −div a(x,Du) + γ (u) � φ, dans un domaine borné Ω ⊂ R

N , avec des conditions au bord générales de la forme
a(x,Du) · η + β(u) � ψ . L’opérateur div a(x,Du) généralise l’opérateur p-Laplacien �p(u) = div(|Du|p−2Du), avec p > 1, γ

et β sont des graphes maximaux monotones dans R
2 tels que 0 ∈ γ (0) ∩ β(0), et les données φ et ψ sont des fonctions L1.
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1. Introduction

Let Ω be a bounded domain in R
N with smooth boundary ∂Ω and p > 1, and let a :Ω × R

N → R
N be a

Carathéodory function satisfying
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(H1) there exists λ > 0 such that a(x, ξ) · ξ � λ|ξ |p for a.e. x ∈ Ω and for all ξ ∈ R
N ,

(H2) there exists σ > 0 and θ ∈ Lp′
(Ω) such that |a(x, ξ)| � σ(θ(x) + |ξ |p−1) for a.e. x ∈ Ω and for all ξ ∈ R

N ,
where p′ = p

p−1 ,

(H3) (a(x, ξ1) − a(x, ξ2)) · (ξ1 − ξ2) > 0 for a.e. x ∈ Ω and for all ξ1, ξ2 ∈ R
N , ξ1 	= ξ2.

The hypotheses (H1)–(H3) are classical in the study of nonlinear operators in divergence form (cf. [23] or [5]).
The model example of function a satisfying these hypotheses is a(x, ξ) = |ξ |p−2ξ . The corresponding operator is the
p-Laplacian operator �p(u) = div(|Du|p−2Du).

We are interested in the study of existence and uniqueness of weak and entropy solutions for the elliptic problem

(S
γ,β
φ,ψ )

{−div a(x,Du) + γ (u) � φ in Ω,

a(x,Du) · η + β(u) � ψ on ∂Ω,

where η is the unit outward normal on ∂Ω , ψ ∈ L1(∂Ω) and φ ∈ L1(Ω). The nonlinearities γ and β are maximal
monotone graphs in R

2 (see, e.g. [12]) such that 0 ∈ γ (0) and 0 ∈ β(0). In particular, they may be multivalued and
this allows to include the Dirichlet condition (taking β to be the monotone graph D defined by D(0) = R) and the
Neumann condition (taking β to be the monotone graph N defined by N(r) = 0 for all r ∈ R) as well as many other
nonlinear fluxes on the boundary that occur in some problems in Mechanic and Physics (see, e.g., [16] or [11]). Note
also that, since γ may be multivalued, problems of type (S

γ,β
φ,ψ) appears in various phenomena with changes of state

like multiphase Stefan problem (cf. [14]) and in the weak formulation of the mathematical model of the so called
Hele–Shaw problem (cf. [15] and [17]).

Particular instances of problem (S
γ,β
φ,ψ) have been studied in [9,5,3] and [1]. Let us describe their results in some

detail. The work of Bénilan, Crandall and Sacks [9] was pioneer in this kind of problems. They study problem (S
γ,β

φ,0 )

for any γ and β maximal monotone graphs in R
2 such that 0 ∈ γ (0) and 0 ∈ β(0), for the Laplacian operator, i.e., for

a(x, ξ) = ξ , and prove, between other results, that, for any φ ∈ L1(Ω) satisfying the range condition

inf
{
Ran(γ )

}
meas(Ω) + inf

{
Ran(β)

}
meas(∂Ω) <

∫
Ω

φ < sup
{
Ran(γ )

}
meas(Ω) + sup

{
Ran(β)

}
meas(∂Ω),

there exists a unique, up to a constant for u, named weak solution, [u, z,w] ∈ W 1,1(Ω) × L1(Ω) × L1(∂Ω), z(x) ∈
γ (u(x)) a.e. in Ω , w(x) ∈ β(u(x)) a.e. in ∂Ω , such that∫

Ω

Du · Dv +
∫
Ω

zv +
∫

∂Ω

wv =
∫
Ω

φv,

for all v ∈ W 1,∞(Ω). For nonhomogeneous boundary condition, i.e. ψ 	≡ 0, one can see [18] for ψ ∈ Ran(β), and
[19,20] for some particular situations of β and γ .

Another important work in the L1-theory for p-Laplacian type equations is [5], where problem

(D
γ
φ )

{−div a(x,Du) + γ (u) � φ in Ω,

u = 0 on ∂Ω

is studied for any γ maximal monotone graph in R
2 such that 0 ∈ γ (0). It is proved that, for any φ ∈ L1(Ω), there

exists a unique, named entropy solution, [u, z] ∈ T 1,p

0 (Ω) × L1(Ω), z(x) ∈ γ (u(x)) a.e. in Ω , such that∫
Ω

a(· ,Du) · DTk(u − v) +
∫
Ω

zTk(u − v) �
∫
Ω

φTk(u − v) ∀k > 0, (1)

for all v ∈ L∞(Ω) ∩ W
1,p

0 (Ω) (see Section 2 for the definition of T 1,p

0 (Ω)). Following [5], problems (S
id,β

φ,0 ) and

(S
id,β
φ,ψ ), where id(r) = r for all r ∈ R, are studied in [3] and [1] respectively, for any β maximal monotone graph in R

2

with closed domain such that 0 ∈ β(0). It is proved that, for any φ ∈ L1(Ω) and ψ ∈ L1(∂Ω), there exists a unique
u ∈ T 1,p

tr (Ω), and there exists w ∈ L1(∂Ω), w(x) ∈ β(u(x)) a.e. in ∂Ω , such that
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∫
Ω

a(· ,Du) · DTk(u − v) +
∫
Ω

uTk(u − v) +
∫

∂Ω

wTk(u − v) �
∫

∂Ω

ψTk(u − v) +
∫
Ω

φTk(u − v) ∀k > 0,

for all v ∈ L∞(Ω) ∩ W 1,p(Ω), v(x) ∈ β(u(x)) a.e. in ∂Ω .
Our aim is to prove existence and uniqueness of weak and entropy solutions for the general elliptic problem

(S
γ,β
φ,ψ). The main interest in our work is that we are dealing with general nonlinear operators −div a(x,Du) with

nonhomogeneous boundary conditions and general nonlinearities β and γ . As in [9], a range condition relating the
average of φ and ψ to the range of β and γ is necessary for existence of weak solution and entropy solution (see
Remark 3.3). However, in contrast to the smooth homogeneous case, a smooth and ψ = 0, for the nonhomogeneous
case this range condition is not sufficient for the existence of weak solution. Indeed, in general, the intersection of
the domains of β and γ seems to create some obstruction phenomena for the existence of these solutions. In general,
even if D(β) = R, it does not exist weak solution, as the following example shows. Let γ be such that D(γ ) = [0,1],
β = R × {0}, and let φ ∈ L1(Ω), φ � 0 a.e. in Ω , and ψ ∈ L1(∂Ω), ψ � 0 a.e. in ∂Ω . If there exists [u, z,w] weak
solution of problem (S

γ,β
φ,ψ) (see Definition 3.1), then z ∈ γ (u), therefore 0 � u � 1 a.e. in Ω , w = 0, and it holds that

for any v ∈ W 1,p(Ω) ∩ L∞(Ω),∫
Ω

a(x,Du)Dv +
∫
Ω

zv =
∫

∂Ω

ψv +
∫
Ω

φv.

Taking v = u, as u � 0, we get

0 �
∫
Ω

a(x,Du)Du +
∫
Ω

zu =
∫

∂Ω

ψu +
∫
Ω

φu � 0.

Therefore, we obtain that
∫
Ω

|Du|p = 0, so u is constant and∫
Ω

zv =
∫

∂Ω

ψv +
∫
Ω

φv,

for any v ∈ W 1,p(Ω) ∩ L∞(Ω), and in particular, for any v ∈ W
1,p

0 (Ω) ∩ L∞(Ω). Consequently, φ = z a.e. in Ω ,
and ψ must be 0 a.e. in ∂Ω .

The main applications we have in mind is the study of doubly nonlinear evolution problems of elliptic-parabolic
type and degenerate parabolic problems of Stefan or Hele–Shaw type, with nonhomogeneous boundary conditions
and/or dynamical boundary conditions (see [2]). Notice that in all these applications one has D(γ ) = R, which is
sufficiently covered in this paper.

The results we obtain have an interpretation in terms of accretive operators. Indeed, we can define the (possibly
multivalued) operator Bγ,β in X := L1(Ω) × L1(∂Ω) as

Bγ,β := {(
(v,w), (v̂, ŵ)

) ∈ X × X: ∃u ∈ T 1,p
tr (Ω), with [u,v,w] an entropy solution of (S

γ,β

v+v̂,w+ŵ
)
}
.

Then, under certain assumptions, Bγ,β is an m-T-accretive operator in X. Therefore, by the theory of evolution
equations governed by accretive operators (see, [4,8] or [13]), for any (v0,w0) ∈ D(Bγ,β)X and any (f, g) ∈
L1(0, T ;L1(Ω)) × L1(0, T ;L1(∂Ω)), there exists a unique mild-solution of the problem

V ′ +Bγ,β(V ) � (f, g), V (0) = (v0,w0),

which rewrites, as an abstract Cauchy problem in X, the following degenerate elliptic-parabolic problem with nonlin-
ear dynamical boundary conditions

DP(γ,β)

{
vt − div a(x,Du) = f, v ∈ γ (u), in Ω × (0, T ),

wt + a(x,Du) · η = g, w ∈ β(u), on ∂Ω × (0, T ),

v(0) = v0 in Ω, w(0) = w0 in ∂Ω.

In principle, it is not clear how these mild solutions have to be interpreted respect to the problem DP(γ,β). In a next
paper [2] we characterize these mild solutions.
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Let us briefly summarize the contents of the paper. In Section 2 we fix the notation and give some preliminaries.
In Section 3 we give the definitions of the different concepts of solution we use and state the main results. The next
section is devoted to prove the uniqueness results. In the last section we prove the existence results. First, we study
the existence of solutions of approximated problems, next we prove the existence of weak solutions for data in Lp′

and finally the existence of entropy solutions for data in L1.

2. Preliminaries

For 1 � p < +∞, Lp(Ω) and W 1,p(Ω) denote respectively the standard Lebesgue space and Sobolev space, and
W

1,p

0 (Ω) is the closure of D(Ω) in W 1,p(Ω). For u ∈ W 1,p(Ω), we denote by u or τ(u) the trace of u on ∂Ω in the

usual sense and by W 1/p′,p(∂Ω) the set τ(W 1,p(Ω)). Recall that Ker(τ ) = W
1,p

0 (Ω).
In [5], the authors introduce the set

T 1,p(Ω) = {
u: Ω → R measurable such that Tk(u) ∈ W 1,p(Ω) ∀k > 0

}
,

where Tk(s) = sup(−k, inf(s, k)). They also prove that given u ∈ T 1,p(Ω), there exists a unique measurable function
v :Ω → R

N such that

DTk(u) = vχ{|v|<k} ∀k > 0.

This function v will be denoted by Du. It is clear that if u ∈ W 1,p(Ω), then v ∈ Lp(Ω) and v = Du in the usual
sense.

As in [3], T 1,p
tr (Ω) denotes the set of functions u in T 1,p(Ω) satisfying the following conditions, there exists a

sequence un in W 1,p(Ω) such that

(a) un converges to u a.e. in Ω ,
(b) DTk(un) converges to DTk(u) in L1(Ω) for all k > 0,
(c) there exists a measurable function v on ∂Ω , such that un converges to v a.e. in ∂Ω .

The function v is the trace of u in the generalized sense introduced in [3]. In the sequel, the trace of u ∈ T 1,p
tr (Ω)

on ∂Ω will be denoted by tr(u) or u. Let us recall that in the case where u ∈ W 1,p(Ω), tr(u) coincides with the trace
of u, τ(u), in the usual sense, and the space T 1,p

0 (Ω), introduced in [5] to study (D
γ
φ ), is equal to Ker(tr). Moreover,

for every u ∈ T 1,p
tr (Ω) and every k > 0, τ(Tk(u)) = Tk(tr(u)), and, if φ ∈ W 1,p(Ω)∩L∞(Ω), then u−φ ∈ T 1,p

tr (Ω)

and tr(u − φ) = tr(u) − τ(φ).
We denote

V 1,p(Ω) :=
{
φ ∈ L1(Ω): ∃M > 0 such that

∫
Ω

|φv| � M‖v‖W 1,p(Ω) ∀v ∈ W 1,p(Ω)

}
and

V 1,p(∂Ω) :=
{
ψ ∈ L1(∂Ω): ∃M > 0 such that

∫
∂Ω

|ψv| � M‖v‖W 1,p(Ω) ∀v ∈ W 1,p(Ω)

}
.

V 1,p(Ω) is a Banach space endowed with the norm

‖φ‖V 1,p(Ω) := inf

{
M > 0:

∫
Ω

|φv| � M‖v‖W 1,p(Ω) ∀v ∈ W 1,p(Ω)

}
,

and V 1,p(∂Ω) is a Banach space endowed with the norm

‖ψ‖V 1,p(∂Ω) := inf

{
M > 0:

∫
∂Ω

|ψv| � M‖v‖W 1,p(Ω) ∀v ∈ W 1,p(Ω)

}
.

Observe that, Sobolev embeddings and trace theorems imply, for 1 � p < N ,

Lp′
(Ω) ⊂ L(Np/(N−p))′(Ω) ⊂ V 1,p(Ω)
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and

Lp′
(∂Ω) ⊂ L((N−1)p/(N−p))′(∂Ω) ⊂ V 1,p(∂Ω).

Also,

V 1,p(Ω) = L1(Ω) and V 1,p(∂Ω) = L1(∂Ω) when p > N,

Lq(Ω) ⊂ V 1,N (Ω) and Lq(∂Ω) ⊂ V 1,N (∂Ω) for any q > 1.

We say that a is smooth (see [3]) when, for any φ ∈ L∞(Ω) such that there exists a bounded weak solution u of
the homogeneous Dirichlet problem

(D)

{−div a(x,Du) = φ in Ω,

u = 0 on ∂Ω,

there exists ψ ∈ L1(∂Ω) such that u is also a weak solution of the Neumann problem

(N)

{−div a(x,Du) = φ in Ω,

a(x,Du) · η = ψ on ∂Ω.

Functions a corresponding to linear operators with smooth coefficients and p-Laplacian type operators are smooth
(see [11] and [22]). The smoothness of the Laplacian operator is even stronger than this, in fact, there is a bounded
linear mapping T :L1(Ω) → L1(∂Ω), such that the weak solution of (D) for φ ∈ L1(Ω) is also a weak solution of (N)
for ψ = T (φ) (see [9]).

For a maximal monotone graph γ in R × R and r ∈ N we denote by γr the Yosida approximation of γ , given by
γr = r(I − (I + 1

r
γ )−1). The function γr is maximal monotone and Lipschitz. We recall the definition of the main

section γ 0 of γ

γ 0(s) :=
{ the element of minimal absolute value of γ (s) if γ (s) 	= ∅,

+∞ if [s,+∞) ∩ D(γ ) = ∅,

−∞ if (−∞, s] ∩ D(γ ) = ∅.

If s ∈ D(γ ), |γr(s)| � |γ 0(s)| and γr(s) → γ 0(s) as r → +∞, and if s /∈ D(γ ), |γr(s)| → +∞ as r → +∞.
We will denote by P0 the following set of functions,

P0 = {
q ∈ C∞(R): 0 � q ′ � 1, supp(q ′) is compact, and 0 /∈ supp(q)

}
.

In [7] the following relation for u,v ∈ L1(Ω) is defined,

u � v if
∫
Ω

(u − k)+ �
∫
Ω

(v − k)+ and
∫
Ω

(u + k)− �
∫
Ω

(v + k)− for any k > 0,

and the following facts are proved.

Proposition 2.1. Let Ω be a bounded domain in R
N .

(i) For any u,v ∈ L1(Ω), if
∫
Ω

uq(u) �
∫
Ω

vq(u) for all q ∈ P0, then u � v.
(ii) If u,v ∈ L1(Ω) and u � v, then ‖u‖p � ‖v‖p for any p ∈ [1,+∞].

(iii) If v ∈ L1(Ω), then {u ∈ L1(Ω): u � v} is a weakly compact subset of L1(Ω).

3. The main results

In this section we give the different concepts of solutions we use and state the main results.

Definition 3.1. Let φ ∈ L1(Ω) and ψ ∈ L1(∂Ω). A triple of functions [u, z,w] ∈ W 1,p(Ω) × L1(Ω) × L1(∂Ω) is a
weak solution of problem (S

γ,β
φ,ψ) if z(x) ∈ γ (u(x)) a.e. in Ω , w(x) ∈ β(u(x)) a.e. in ∂Ω , and∫

Ω

a(x,Du) · Dv +
∫
Ω

zv +
∫

∂Ω

wv =
∫

∂Ω

ψv +
∫
Ω

φv, (2)

for all v ∈ L∞(Ω) ∩ W 1,p(Ω).
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In general, as it is remarked in [5], for 1 < p � 2 − 1
N

, there exists f ∈ L1(Ω) such that the problem

u ∈ W
1,1
loc (Ω), u − �p(u) = f in D′(Ω),

has no solution. In [5], to overcome this difficulty and to get uniqueness, it was introduced a new concept of solution,
named entropy solution. As in [3] or [1], following these ideas, we introduce the following concept of solution.

Definition 3.2. Let φ ∈ L1(Ω) and ψ ∈ L1(∂Ω). A triple of functions [u, z,w] ∈ T 1,p
tr (Ω) × L1(Ω) × L1(∂Ω) is an

entropy solution of problem (S
γ,β
φ,ψ) if z(x) ∈ γ (u(x)) a.e. in Ω , w(x) ∈ β(u(x)) a.e. in ∂Ω and∫

Ω

a(x,Du) · DTk(u − v) +
∫
Ω

zTk(u − v) +
∫

∂Ω

wTk(u − v) �
∫

∂Ω

ψTk(u − v) +
∫
Ω

φTk(u − v) ∀k > 0, (3)

for all v ∈ L∞(Ω) ∩ W 1,p(Ω).

Obviously, every weak solution is an entropy solution and an entropy solution with u ∈ W 1,p(Ω) is a weak solution.

Remark 3.3. If we take v = Th(u) ± 1 as test functions in (3) and let h go to +∞, we get that∫
Ω

z +
∫

∂Ω

w =
∫

∂Ω

ψ +
∫
Ω

φ.

Then necessarily φ and ψ must satisfy

R−
γ,β �

∫
∂Ω

ψ +
∫
Ω

φ �R+
γ,β,

where

R+
γ,β := sup

{
Ran(γ )

}
meas(Ω) + sup

{
Ran(β)

}
meas(∂Ω)

and

R−
γ,β := inf

{
Ran(γ )

}
meas(Ω) + inf

{
Ran(β)

}
meas(∂Ω).

We will write Rγ,β := ]R−
γ,β,R+

γ,β [ when R−
γ,β <R+

γ,β .

Remark 3.4. Let φ ∈ V 1,p(Ω) and ψ ∈ V 1,p(∂Ω). Then, if [u, z,w] is a weak solution of problem (S
γ,β
φ,ψ), it is easy

to see that∫
Ω

a(x,Du) · Du +
∫
Ω

zu +
∫

∂Ω

wu =
∫

∂Ω

ψu +
∫
Ω

φu.

Moreover, if D(γ ) 	= {0} and D(β) 	= {0}, it follows that z ∈ V 1,p(Ω), w ∈ V 1,p(∂Ω) and∫
Ω

a(x,Du) · Dv +
∫
Ω

zv +
∫

∂Ω

wv =
∫

∂Ω

ψv +
∫
Ω

φv,

for any v ∈ W 1,p(Ω).
In fact, let v ∈ W 1,p(Ω) and take Tk(|v|) 1

r
Tr (u) as test function in (2). Then, letting r go to 0, there exists M1 > 0

such that ∫
{x∈Ω: u(x) 	=0}

|z|Tk

(|v|) +
∫

{x∈∂Ω: u(x) 	=0}
|w|Tk

(|v|) � M1‖v‖W 1,p(Ω).

Letting now k go to +∞, applying Fatou’s Lemma, we get∫
|z||v| +

∫
|w||v| � M1‖v‖W 1,p(Ω).
{x∈Ω: u(x) 	=0} {x∈∂Ω: u(x) 	=0}



F. Andreu et al. / Ann. I. H. Poincaré – AN 24 (2007) 61–89 67
If β(0) is bounded, there exists M2 > 0 such that∫
{x∈∂Ω: u(x)=0}

|w||v| � M2‖v‖W 1,p(Ω).

In the case β(0) is unbounded from above (a similar argument can be done in the case of being unbounded from
below) let us take Tk(|v|)Sr (u) as test function in (2), where Sr(s) := s+r

r
χ[−r,0](s) + χ[0,+∞[(s), then, letting r go

to 0, there exists M2 > 0 such that∫
{x∈∂Ω: u(x)=0}

wTk

(|v|) � M2‖v‖W 1,p(Ω),

and consequently, since β(0) must be bounded from below (because D(β) 	= {0}), there exists M3 > 0 such that∫
{x∈∂Ω: u(x)=0}

|w|Tk

(|v|) � M3‖v‖W 1,p(Ω).

Letting now k go to +∞, applying Fatou’s Lemma, we get∫
{x∈∂Ω: u(x)=0}

|w||v| � M4‖v‖W 1,p(Ω).

Similarly, there exists M5 > 0 such that∫
{x∈Ω: u(x)=0}

|z||v| � M5‖v‖W 1,p(Ω).

We shall state now the uniqueness result of entropy solutions. Since every weak solution is an entropy solution of
problem (S

γ,β
φ,ψ), the same result is true for weak solutions.

Theorem 3.5. Let φ ∈ L1(Ω) and ψ ∈ L1(∂Ω), and let [u1, z1,w1] and [u2, z2,w2] be entropy solutions of problem
(S

γ,β
φ,ψ). Then, there exists a constant c ∈ R such that

u1 − u2 = c a.e. in Ω,

z1 − z2 = 0 a.e. in Ω.

w1 − w2 = 0 a.e. in ∂Ω.

Moreover, if c 	= 0, there exists a constant k ∈ R such that z1 = z2 = k.

Respect to the existence of weak solutions we obtain the following results.

Theorem 3.6. Assume D(γ ) = R and R−
γ,β <R+

γ,β . Let D(β) = R or a smooth.

(i) For any φ ∈ V 1,p(Ω) and ψ ∈ V 1,p(∂Ω) with∫
Ω

φ +
∫

∂Ω

ψ ∈Rγ,β, (4)

there exists a weak solution [u, z,w] of problem (S
γ,β
φ,ψ).

(ii) For any [u1, z1,w1] weak solution of problem (S
γ,β
φ1,ψ1

), φ1 ∈ V 1,p(Ω) and ψ1 ∈ V 1,p(∂Ω) satisfying (4), and

any [u2, z2,w2] weak solution of problem (S
γ,β
φ2,ψ2

), φ2 ∈ V 1,p(Ω) and ψ2 ∈ V 1,p(∂Ω) satisfying (4), we have
that ∫

Ω

(z1 − z2)
+ +

∫
∂Ω

(w1 − w2)
+ �

∫
∂Ω

(ψ1 − ψ2)
+ +

∫
Ω

(φ1 − φ2)
+.
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In the case R−
γ,β =R+

γ,β , that is, when γ (r) = β(r) = 0 for any r ∈ R, existence and uniqueness of weak solutions
are also obtained.

Theorem 3.7. For any φ ∈ V 1,p(Ω) and ψ ∈ V 1,p(∂Ω) with∫
Ω

φ +
∫

∂Ω

ψ = 0, (5)

there exists a unique (up to a constant) weak solution u ∈ W 1,p(Ω) of the problem{−div a(x,Du) = φ in Ω,

a(x,Du) · η = ψ on ∂Ω

in the sense that∫
Ω

a(x,Du) · Dv =
∫

∂Ω

ψv +
∫
Ω

φv,

for all v ∈ W 1,p(Ω).

In the line of Proposition C(iv) of [9] given for the Laplacian operator, as a consequence of Theorem 3.6 we have
the following result.

Corollary 3.8. a is smooth if and only if for any φ ∈ V 1,p(Ω) there exists T (φ) ∈ V 1,p(∂Ω) such that the weak
solution u of{−div a(x,Du) = φ in Ω,

u = 0 on ∂Ω,

is a weak solution of{−div a(x,Du) = φ in Ω,

a(x,Du) · η = T (φ) on ∂Ω.

Moreover, the map T :V 1,p(Ω) → V 1.p(∂Ω) satisfies∫
Ω

(
T (φ1) − T (φ2)

)+ �
∫
Ω

(φ1 − φ2)
+,

for all φ1, φ2 ∈ V 1,p(Ω).

In the case ψ = 0 we have the following result without imposing any condition on γ , in the same line to the one
obtained by Bénilan, Crandall and Sack in [9] for the Laplacian operator and L1-data.

Theorem 3.9. Assume D(β) = R or a smooth. Let R−
γ,β <R+

γ,β .

(i) For any φ ∈ V 1,p(Ω) such that
∫
Ω

φ ∈ Rγ,β , there exists a weak solution [u, z,w] of problem (S
γ,β

φ,0 ), with z � φ.

(ii) For any [u1, z1,w1] weak solution of problem (S
γ,β

φ1,0
), φ1 ∈ V 1,p(Ω),

∫
Ω

φ1 ∈ Rγ,β , and any [u2, z2,w2] weak

solution of problem (S
γ,β

φ2,0
), φ2 ∈ V 1,p(Ω),

∫
Ω

φ2 ∈Rγ,β , we have that∫
Ω

(z1 − z2)
+ +

∫
∂Ω

(w1 − w2)
+ �

∫
Ω

(φ1 − φ2)
+.

For Dirichlet boundary condition we have the following result.
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Theorem 3.10. Assume D(β) = {0}. For any φ ∈ V 1,p(Ω), there exists a unique [u, z] = [uφ,ψ , zφ,ψ ] ∈ W
1,p

0 (Ω) ×
V 1,p(Ω), z ∈ γ (u) a.e. in Ω , such that∫

Ω

a(x,Du) · Dv +
∫
Ω

zv =
∫
Ω

φv,

for all v ∈ W
1,p

0 (Ω).
Moreover, if φ1, φ2 ∈ V 1,p(Ω), then∫

Ω

(zφ1,ψ1 − zφ2,ψ2)
+ �

∫
Ω

(φ1 − φ2)
+. (6)

Let us now state the existence results of entropy solutions for data in L1.

Theorem 3.11. Assume D(γ ) = R, and D(β) = R or a smooth. Let also assume that, if [0,+∞[ ⊂ D(β),

lim
k→+∞γ 0(k) = +∞ and lim

k→+∞β0(k) = +∞, (7)

and if ]−∞,0] ⊂ D(β),

lim
k→−∞γ 0(k) = −∞ and lim

k→−∞β0(k) = −∞. (8)

Then,

(i) for any φ ∈ L1(Ω) and ψ ∈ L1(∂Ω), there exists an entropy solution [u, z,w] of problem (S
γ,β
φ,ψ).

(ii) For any [u1, z1,w1] entropy solution of problem (S
γ,β
φ1,ψ1

), φ1 ∈ L1(Ω), ψ1 ∈ L1(∂Ω), and any [u2, z2,w2] en-

tropy solution of problem (S
γ,β
φ2,ψ2

), φ2 ∈ L1(Ω), ψ2 ∈ L1(∂Ω), we have that∫
Ω

(z1 − z2)
+ +

∫
∂Ω

(w1 − w2)
+ �

∫
∂Ω

(ψ1 − ψ2)
+ +

∫
Ω

(φ1 − φ2)
+.

Taking into account Theorem 3.11 and Corollary 3.8 we have the following result.

Corollary 3.12. a is smooth if and only if for any φ ∈ L1(Ω) there exists T (φ) ∈ L1(∂Ω) such that the entropy
solution u of{−div a(x,Du) = φ in Ω,

u = 0 on ∂Ω,

is an entropy solution of{−div a(x,Du) = φ in Ω,

a(x,Du) · η = T (φ) on ∂Ω.

Moreover, the map T :L1(Ω) → L1(∂Ω) satisfies∫
Ω

(
T (φ1) − T (φ2)

)+ �
∫
Ω

(φ1 − φ2)
+,

for all φ1, φ2 ∈ L1(Ω), and T (V 1,p(Ω)) ⊂ V 1,p(∂Ω).

In the homogeneous case without any condition on γ we also obtain the following result.

Theorem 3.13. Assume D(β) = R or a is smooth. Let also assume that, if [0,+∞[ ⊂ D(γ )∩D(β) the assumption (7)
holds, and, if ]−∞,0] ⊂ D(γ ) ∩ D(β) the assumption (8) holds. Then,
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(i) for any φ ∈ L1(Ω), there exists an entropy solution [u, z,w] of problem (S
γ,β

φ,0 ), with z � φ.

(ii) For any [u1, z1,w1] entropy solution of problem (S
γ,β

φ1,0
), φ1 ∈ L1(Ω), and any [u2, z2,w2] entropy solution of

problem (S
γ,β

φ2,0
), φ2 ∈ L1(Ω), we have that∫

Ω

(z1 − z2)
+ +

∫
∂Ω

(w1 − w2)
+ �

∫
Ω

(φ1 − φ2)
+.

As we mention in Remark 5.9, different conditions to (7) and (8) can be used in order to get Theorems 3.11
and 3.13.

We also obtain the following result given by Bénilan et al. in [5] for Dirichlet boundary condition.

Theorem 3.14. Assume D(β) = {0}. For any φ ∈ L1(Ω), there exists a unique entropy solution [u, z] of{−div a(x,Du) + γ (u) � φ in Ω,

u = 0 on ∂Ω,

in the sense given by Bénilan et al. in [5] (see (1) in the Introduction).

4. Proof of the uniqueness result

This section deals with the proof of the uniqueness result Theorem 3.5. We firstly need the following lemma.

Lemma 4.1. Let [u, z,w] be an entropy solution of problem (S
γ,β
φ,ψ). Then, for all h > 0,

λ

∫
{h<|u|<h+k}

|Du|p � k

∫
∂Ω∩{|u|�h}

|ψ | + k

∫
Ω∩{|u|�h}

|φ|.

Proof. Taking Th(u) as test function in (3), we have∫
Ω

a(x,Du) · DTk

(
u − Th(u)

) +
∫
Ω

zTk

(
u − Th(u)

) +
∫

∂Ω

wTk

(
u − Th(u)

)
�

∫
∂Ω

ψTk

(
u − Th(u)

) +
∫
Ω

φTk

(
u − Th(u)

)
.

Now, using (H1) and the positivity of the second and third terms, it follows that

λ

∫
{h<|u|<h+k}

|Du|p � k

∫
∂Ω∩{|u|�h}

|ψ | + k

∫
Ω∩{|u|�h}

|φ|. �

Proof of Theorem 3.5. Let [u1, z1,w1] and [u2, z2,w2] be entropy solutions of problem (S
γ,β
φ,ψ). For every h > 0, we

have that∫
Ω

a(x,Du1) · DTk

(
u1 − Th(u2)

) +
∫
Ω

z1Tk

(
u1 − Th(u2)

) +
∫

∂Ω

w1Tk

(
u1 − Th(u2)

)
�

∫
∂Ω

ψTk

(
u1 − Th(u2)

) +
∫
Ω

φTk

(
u1 − Th(u2)

)
and
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∫
Ω

a(x,Du2) · DTk

(
u2 − Th(u1)

) +
∫
Ω

z2Tk

(
u2 − Th(u1)

) +
∫

∂Ω

w2Tk

(
u2 − Th(u1)

)
�

∫
∂Ω

ψTk

(
u2 − Th(u1)

) +
∫
Ω

φTk

(
u2 − Th(u1)

)
.

Adding both inequalities and taking limits when h goes to ∞, on account of the monotonicity of γ and β , if

Ih,k :=
∫
Ω

a(x,Du1) · DTk

(
u1 − Th(u2)

) +
∫
Ω

a(x,Du2) · DTk

(
u2 − Th(u1)

)
,

we get

lim sup
h→∞

Ih,k � −
∫
Ω

(z1 − z2)Tk(u1 − u2) −
∫

∂Ω

(w1 − w2)Tk(u1 − u2) � 0. (9)

Let us see that

lim inf
h→∞ Ih,k � 0 for any k. (10)

To prove this, we split

Ih,k = I 1
h,k + I 2

h,k + I 3
h,k + I 4

h,k,

where

I 1
h,k :=

∫
{|u1|<h, |u2|<h}

(
a(x,Du1) − a(x,Du2)

) · DTk(u1 − u2),

I 2
h,k :=

∫
{|u1|<h, |u2|�h}

a(x,Du1) · DTk

(
u1 − h sign(u2)

) +
∫

{|u1|<h, |u2|�h}
a(x,Du2) · DTk(u2 − u1)

�
∫

{|u1|<h, |u2|�h}
a(x,Du2) · DTk(u2 − u1),

I 3
h,k :=

∫
{|u1|�h, |u2|<h}

a(x,Du1) · DTk(u1 − u2) +
∫

{|u1|�h, |u2|<h}
a(x,Du2) · DTk

(
u2 − h sign(u1)

)
�

∫
{|u1|�h, |u2|<h}

a(x,Du1) · DTk(u1 − u2)

and

I 4
h,k :=

∫
{|u1|�h, |u2|�h}

a(x,Du1) · DTk

(
u1 − h sign(u2)

)
+

∫
{|u1|�h, |u2|�h}

a(x,Du2) · DTk

(
u2 − h sign(u1)

)
� 0.

Combining the above estimates we get

Ih,k � I 1
h,k + L1

h,k + L2
h,k, (11)

where

L1
h,k :=

∫
{|u1|<h, |u2|�h}

a(x,Du2) · DTk(u2 − u1),

L2
h,k :=

∫
a(x,Du1) · DTk(u1 − u2)
{|u1|�h, |u2|<h}
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and I 1
h,k is nonnegative and nondecreasing in h. Now, if we set

C(h, k) := {
h < |u1| < k + h

} ∩ {
h − k < |u2| < h

}
,

we have∣∣L2
h,k

∣∣ �
∫

{|u1−u2|<k, |u1|�h, |u2|<h}

∣∣a(x,Du1) · (Du1 − Du2)
∣∣

�
∫

C(h,k)

∣∣a(x,Du1) · Du1
∣∣ +

∫
C(h,k)

∣∣a(x,Du1) · Du2
∣∣.

Then, by Hölder’s inequality, we get

∣∣L2
h,k

∣∣ �
( ∫

C(h,k)

∣∣a(x,Du1)
∣∣p′

)1/p′(( ∫
C(h,k)

|Du1|p
)1/p

+
( ∫

C(h,k)

|Du2|p
)1/p)

.

Now, by (H2),( ∫
C(h,k)

∣∣a(x,Du1)
∣∣p′

)1/p′

�
( ∫

C(h,k)

σp′(
θ(x) + |Du1|p−1)p′

)1/p′

� σ21/p

(
‖θ‖p′

p′ +
∫

{h<|u1|<k+h}
|Du1|p

)1/p′

.

On the other hand, by Lemma 4.1, we obtain∫
{h<|u1|<k+h}

|Du1|p � k

λ

( ∫
{|u1|�h}

|ψ | +
∫

{|u1|�h}
|φ|

)

and ∫
{h−k<|u2|<h}

|Du2|p � k

λ

( ∫
{|u2|�h−k}

|ψ | +
∫

{|u2|�h−k}
|φ|

)
.

Then, since φ ∈ L1(Ω), ψ ∈ L1(∂Ω) and having in mind that

lim
r→+∞ meas

{
x ∈ Ω:

∣∣ui(x)
∣∣ � r

} = 0

and

lim
r→+∞ meas

{
x ∈ ∂Ω:

∣∣ui(x)
∣∣ � r

} = 0,

since ui ∈ T 1,p
tr (Ω), we obtain that

lim
h→∞L2

h,k = 0.

Similarly, limh→∞ L1
h,k = 0. Therefore by (11), (10) holds. Now, from (10), (9) and (11), we have that

lim
h→+∞

∫
{|u1|<h, |u2|<h}

(
a(x,Du1) − a(x,Du2)

) · DTk(u1 − u2) = 0.

Therefore, for any h > 0, DTh(u1) = DTh(u2) a.e. in Ω . Consequently, there exists a constant c such that

u1 − u2 = c a.e. in Ω.
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Moreover, by (9) and (10), we have∫
Ω

(z1 − z2)Tk(u1 − u2) +
∫

∂Ω

(w1 − w2)Tk(u1 − u2) = 0 ∀k > 0, (12)

from where it follows that

(w1 − w2)χ{u1−u2 	=0} = 0 a.e. in ∂Ω,

and

(z1 − z2)χ{u1−u2 	=0} = 0 a.e. in Ω.

Then, if c 	= 0 it follows that w1 = w2, and z1 = z2.
In order to see that z1 = z2 in the case c = 0, we take Th(u1) − ϕ and Th(u1) + ϕ, ϕ ∈ D(Ω), as test functions

in (3) for the solution [u1, z1,w1] and [u1, z2,w2], respectively, adding these inequalities and letting h go to +∞, if
k > ‖ϕ‖∞, we get

lim
h→∞Jh,k +

∫
Ω

(z1 − z2)ϕ � 0,

where

Jh,k =
∫
Ω

a(x,Du1) · [DTk

(
u1 − Th(u1) + ϕ

) + DTk

(
u1 − Th(u1) − ϕ

)]
=

∫
{|u1|>h}

a(x,Du1) · [DTk

(
u1 − Th(u1) + ϕ

) + DTk

(
u1 − Th(u1) − ϕ

)]
.

Then, using Hölder’s inequality and Lemma 4.1, we obtain that

lim
h→∞Jh,k = 0.

Hence∫
Ω

z1ϕ �
∫
Ω

z2ϕ.

Similarly,∫
Ω

z2ϕ �
∫
Ω

z1ϕ.

Therefore z1 = z2.
If c 	= 0, following the arguments of Lemma 3.5 of [6], we have that z1 = z2 is constant. In fact, let j (r) =∫ r

0 γ 0(s)ds, therefore, γ = ∂j , the subdifferential of j . Now, z1(x) ∈ γ (u1(x)) ∩ γ (u1(x) + c) a.e. x ∈ Ω , con-
sequently, j (u1(x) + c) − j (u1(x)) = cz1(x) a.e. in Ω . Moreover, if γ (R) is bounded, j is Lipschitz continuous,
j (Tk(u1)+ c), j (Tk(u1)) ∈ W 1,p(Ω) and ∇(j (Tk(u1)+ c)− j (Tk(u1))) = 0 a.e. in Ω . The above identity is obvious
when |u1| � k, and in the case |u1| < k, we have ∇(j (u1 + c) − j (u1)) = 0. Therefore j (Tk(u1) + c) − j (Tk(u1)) is
constant (this constant, in fact, does not depend on k) and consequently cz1 is constant. As c 	= 0, z1 is constant. In
the case γ is not bounded, we work, again as in Lemma 3.5 of [6], truncating γ .

Finally, in order to see that w1 = w2, we use the fact that we can take as test function in (3), for the corresponding
(S

γ,β
φ,ψ), v = Th(ui) ± ϕ, for any ϕ ∈ W 1,p(Ω) ∩ L∞(Ω). Then, since u1 = u2 + c and z1 = z2, we get∫

∂Ω

w1ϕ =
∫

∂Ω

w2ϕ.

Therefore w1 = w2. �
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5. Proofs of the existence results

In this section we give the proofs of the existence results. In order to get the existence of weak solutions, the main
idea is to consider the approximated problem

(S
γm,n,βm,n

φm,n,ψm,n
)

{−div a(x,Du) + γm,n(u) � φm,n in Ω,

a(x,Du) · η + βm,n(u) � ψm,n on ∂Ω,

where γm,n and βm,n are approximations of γ and β given by

γm,n(r) = γ (r) + 1

m
r+ − 1

n
r−

and

βm,n(r) = β(r) + 1

m
r+ − 1

n
r−

respectively, m,n ∈ N, and we are approximating φ and ψ by

φm,n = sup
{
inf{m,φ},−n

}
and

ψm,n = sup
{
inf{m,ψ},−n

}
respectively, m,n ∈ N. For these approximated problems we obtain existence of weak solutions with appropriated
estimates and monotone properties, which allow us to pass to the limit.

5.1. Approximated problems

Proposition 5.1. Assume D(γ ) = D(β) = R. Let m,n ∈ N, m � n. Then, the following hold.

(i) For φ ∈ L∞(Ω) and ψ ∈ L∞(∂Ω), there exist u = uφ,ψ,m,n ∈ W 1,p(Ω) ∩ L∞(Ω), z = zφ,ψ,m,n ∈ L∞(Ω),
z(x) ∈ γ (u(x)) a.e. in Ω , and w = wφ,ψ,m,n ∈ L∞(∂Ω), w(x) ∈ β(u(x)) a.e. in ∂Ω , such that [u, z + 1

m
u+ −

1
n
u−,w + 1

m
u+ − 1

n
u−] is a weak solution of (S

γm,n,βm,n

φ,ψ ).
Moreover, if M := ‖φ‖∞ + ‖ψ‖∞,

−nM � u � nM,

−γ 0(−nM) � z � γ 0(nM),

and there exists c(Ω,N,p) > 0 such that

‖Du‖p−1
Lp(Ω) � c(Ω,N,p)

λ

(‖φ‖V 1,p(Ω) + ‖ψ‖V 1,p(∂Ω)

)
.

(ii) If m1 � m2 � n2 � n1, φ1, φ2 ∈ L∞(Ω), ψ1,ψ2 ∈ L∞(∂Ω) then∫
Ω

(zφ1,ψ1,m1,n1 − zφ2,ψ2,m2,n2)
+ +

∫
∂Ω

(wφ1,ψ1,m1,n1 − wφ2,ψ2,m2,n2)
+ �

∫
∂Ω

(ψ1 − ψ2)
+ +

∫
Ω

(φ1 − φ2)
+.

Proof. Observe that 1
m

s+ − 1
n
s− = 1

m
s + ( 1

m
− 1

n
)s− = ( 1

m
− 1

n
)s+ + 1

n
s.

Let us take

cr > sup
{
nM,γr(nM),−γr(−nM),βr(nM),−βr(−nM)

}
,

where γr and βr are the Yosida approximations of γ and β , respectively. For r ∈ N, it is easy to see that the operator
Br :W 1,p(Ω) → (W 1,p(Ω))′ defined by
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〈Bru, v〉 =
∫
Ω

a(x,Du) · Dv +
∫
Ω

Tcr

(
γr(u)

)
v + 1

r

∫
Ω

|u|p−2uv + 1

m

∫
Ω

Tcr (u
+)v − 1

n

∫
Ω

Tcr (u
−)v

+
∫

∂Ω

Tcr

(
βr(u)

)
v + 1

m

∫
∂Ω

Tcr (u
+)v − 1

n

∫
∂Ω

Tcr (u
−)v −

∫
∂Ω

ψv −
∫
Ω

φv,

is bounded, coercive, monotone and hemicontinuous. Then, by a classical result of Browder [21], there exists ur =
uφ,ψ,m,n,r ∈ W 1,p(Ω), such that∫

Ω

a(x,Dur) · Dv +
∫
Ω

Tcr

(
γr(ur)

)
v + 1

r

∫
Ω

|ur |p−2urv + 1

m

∫
Ω

Tcr

(
(ur)

+)
v − 1

n

∫
Ω

Tcr

(
(ur)

−)
v

+
∫

∂Ω

Tcr

(
βr(ur)

)
v + 1

m

∫
∂Ω

Tcr

(
(ur)

+)
v − 1

n

∫
∂Ω

Tcr

(
(ur)

−)
v =

∫
∂Ω

ψv +
∫
Ω

φv, (13)

for all v ∈ W 1,p(Ω).
Taking v = Tk((ur −mM)+) in (13), misleading nonnegative terms, dividing by k, and taking limits as k goes to 0,

we get

1

m

∫
Ω

Tcr (ur) sign+(ur − mM) + 1

m

∫
∂Ω

Tcr (ur) sign+(ur − mM)

�
∫

∂Ω

ψ sign+(ur − mM) +
∫
Ω

φ sign+(ur − mM).

Consequently∫
Ω

(
Tcr (ur ) − mM

)
sign+(ur − mM) +

∫
∂Ω

(
Tcr (ur) − mM

)
sign+(ur − mM)

�
∫

∂Ω

(mψ − mM) sign+(ur − mM) +
∫
Ω

(mφ − mM) sign+(ur − mM) � 0.

Therefore, since m � n,

ur(x) � nM a.e. in Ω.

Similarly, taking v = Tk((ur + nM)−) in (13), we get

ur(x) � −nM a.e. in Ω.

Consequently,

‖ur‖∞ � nM, (14)

and (13) yields∫
Ω

a(x,Dur) · Dv +
∫
Ω

γr(ur)v + 1

r

∫
Ω

|ur |p−2urv + 1

m

∫
Ω

u+
r v − 1

n

∫
Ω

u−
r v

+
∫

∂Ω

βr(ur)v + 1

m

∫
∂Ω

u+
r v − 1

n

∫
∂Ω

u−
r v =

∫
∂Ω

ψv +
∫
Ω

φv, (15)

for all v ∈ W 1,p(Ω).
Taking v = Tk((ur)

+) in (15), disregarding some positive terms, dividing by k and letting k go to ∞ we get that

1

m

∫
u+

r +
∫

γr(ur)
+ +

∫
βr(ur)

+ �
∫

φ+ +
∫

ψ+, (16)
Ω Ω ∂Ω Ω ∂Ω
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and, similarly, taking Tk((ur)
−) we get

1

n

∫
Ω

u−
r +

∫
Ω

γr(ur)
− +

∫
∂Ω

βr(ur)
− �

∫
Ω

φ− +
∫

∂Ω

ψ−. (17)

Taking v = ur − 1
meas(∂Ω)

∫
∂Ω

ur as test function in (15) and having in mind that∫
∂Ω

βr(ur)

(
ur − 1

meas(∂Ω)

∫
∂Ω

ur

)
=

∫
∂Ω

(
βr(ur) − βr

(
1

meas(∂Ω)

∫
∂Ω

ur

))(
ur − 1

meas(∂Ω)

∫
∂Ω

ur

)
� 0;

∫
Ω

γr(ur)

(
ur − 1

meas(∂Ω)

∫
∂Ω

ur

)
=

∫
Ω

(
γr(ur) − γr

(
1

meas(Ω)

∫
Ω

ur

))(
ur − 1

meas(Ω)

∫
Ω

ur

)

−
∫
Ω

γr(ur)

(
1

meas(∂Ω)

∫
∂Ω

ur − 1

meas(Ω)

∫
Ω

ur

)

� −
∫
Ω

γr(ur)

(
1

meas(∂Ω)

∫
∂Ω

ur − 1

meas(Ω)

∫
Ω

ur

)
and working similarly with the other terms, we get

λ

∫
Ω

|Dur |p �
∫
Ω

φ

(
ur − 1

meas(∂Ω)

∫
∂Ω

ur

)
+

∫
∂Ω

ψ

(
ur − 1

meas(∂Ω)

∫
∂Ω

ur

)

−
∫
Ω

γr(ur)

(
1

meas(Ω)

∫
Ω

ur − 1

meas(∂Ω)

∫
∂Ω

ur

)

− 1

m

∫
Ω

u+
r

(
1

meas(Ω)

∫
Ω

ur − 1

meas(∂Ω)

∫
∂Ω

ur

)

+ 1

n

∫
Ω

u−
r

(
1

meas(Ω)

∫
Ω

ur − 1

meas(∂Ω)

∫
∂Ω

ur

)
.

Now, by Poincaré’s inequality and the trace theorem, there exists c1 = c1(Ω,N,p) > 0 such that∫
Ω

φ

(
ur − 1

meas(∂Ω)

∫
∂Ω

ur

)
� c1‖φ‖V 1,p(Ω)‖Dur‖Lp(Ω),

and ∫
∂Ω

ψ

(
ur − 1

meas(∂Ω)

∫
∂Ω

ur

)
� c1‖ψ‖V 1,p(∂Ω)‖Dur‖Lp(Ω).

On the other hand, by (16) and (17),

−
∫
Ω

γr(ur)

(
1

meas(Ω)

∫
Ω

ur − 1

meas(∂Ω)

∫
∂Ω

ur

)
− 1

m

∫
Ω

u+
r

(
1

meas(Ω)

∫
Ω

ur − 1

meas(∂Ω)

∫
∂Ω

ur

)

+ 1

n

∫
Ω

u−
r

(
1

meas(Ω)

∫
Ω

ur − 1

meas(∂Ω)

∫
∂Ω

ur

)

� 2

(∫
∂Ω

|ψ | +
∫
Ω

|φ|
)∣∣∣∣ 1

meas(Ω)

∫
Ω

ur − 1

meas(∂Ω)

∫
∂Ω

ur

∣∣∣∣.
Moreover, applying again the generalized Poincaré inequality, there exists c2 = c2(Ω,N,p) > 0 such that
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∣∣∣∣ 1

meas(Ω)

∫
Ω

ur − 1

meas(∂Ω)

∫
∂Ω

ur

∣∣∣∣
� 1

meas(Ω)1/p

(∥∥∥∥ur − 1

meas(Ω)

∫
Ω

ur

∥∥∥∥
Lp(Ω)

+
∥∥∥∥ur − 1

meas(∂Ω)

∫
∂Ω

ur

∥∥∥∥
Lp(Ω)

)
� c2‖Dur‖Lp(Ω).

Therefore, there exists c3 = c3(Ω,N,p) > 0, such that

‖Dur‖p−1
Lp(Ω) � c3

λ

(‖φ‖V 1,p(Ω) + ‖ψ‖V 1,p(∂Ω)

)
. (18)

As a consequence of (14) and (18) we can suppose that there exists a subsequence, still denoted ur , such that

ur converges weakly in W 1,p(Ω) to u ∈ W 1,p(Ω),

ur converges in Lq(Ω) and a.e. in Ω to u, for any q � 1,

ur converges in Lp(∂Ω) and a.e. to u,

with

−nM � u � nM. (19)

Taking into account (19), we get that |γr(ur)| is uniformly bounded. Consequently, we can assume that γr(ur) →
z ∈ L∞(Ω) weakly∗, moreover

−γ 0(−nM) � z � γ 0(nM).

Since ur → u in L1(Ω), applying [9, Lemma G], it follows that z(x) ∈ γ (u(x)) a.e. on Ω .
On the other hand, since βr(ur) is also uniformly bounded, we can assume that βr(ur) → w ∈ L∞(∂Ω) weakly∗.

Again, applying [9, Lemma G], it follows that w(x) ∈ β(u(x)) a.e. in ∂Ω .
Let us see now that {Dur} converges in measure to Du. We follow the technique used in [10] (see also [3]). Since

Dur converges to Du weakly in Lp(Ω), it is enough to show that {Dur} is a Cauchy sequence in measure. Let t and
ε > 0. For some A > 1, we set

C(x,A, t) := inf
{(

a(x, ξ) − a(x, η)
) · (ξ − η): |ξ | � A, |η| � A, |ξ − η| � t

}
.

Having in mind that the function ψ → a(x,ψ) is continuous for almost all x ∈ Ω and the set {(ξ, η): |ξ | � A, |η| � A,
|ξ − η| � t} is compact, the infimum in the definition of C(x,A, t) is a minimum. Hence, by (H3), it follows that

C(x,A, t) > 0 for almost all x ∈ Ω. (20)

Now, for r, s ∈ N and any k > 0, the following inclusion holds{|Dur − Dus | > t
} ⊂ {|Dur | � A

} ∪ {|Dus | � A
} ∪ {|ur − us | � k2} ∪ {

C(x,A, t) � k
} ∪ G, (21)

where

G = {|ur − us | � k2, C(x,A, t) � k, |Dur | � A, |Dus | � A, |Dur − Dus | > t
}
.

Since the sequence Dur is bounded in Lp(Ω) we can choose A large enough in order to have

meas
({|Dur | � A

} ∪ {|Dus | � A
})

� ε

4
for all r, s ∈ N. (22)

By (20), we can choose k small enough in order to have

meas
({

C(x,A, t) � k
})

� ε

4
. (23)

On the other hand, if we use Tk(ur −us) and Tk(ur −us) as test functions in (15) for ur and us respectively, we obtain
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∫
Ω

a(x,Dur) · DTk(ur − us) +
∫
Ω

γr(ur)Tk(ur − us) + 1

r

∫
Ω

|ur |p−2urTk(ur − us) + 1

m

∫
Ω

u+
r Tk(ur − us)

− 1

n

∫
Ω

u−
r Tk(ur − us) +

∫
∂Ω

βr(ur)Tk(ur − us) + 1

m

∫
∂Ω

u+
r Tk(ur − us) − 1

n

∫
∂Ω

u−
r Tk(ur − us)

=
∫

∂Ω

ψTk(ur − us) +
∫
Ω

φTk(ur − us), (24)

and

−
∫
Ω

a(x,Dus) · DTk(ur − us) −
∫
Ω

γs(us)Tk(ur − us) − 1

s

∫
Ω

|us |p−2usTk(ur − us) − 1

m

∫
Ω

u+
s Tk(ur − us)

+ 1

n

∫
Ω

u−
s Tk(ur − us) −

∫
∂Ω

βs(us)Tk(ur − us) − 1

m

∫
∂Ω

u+
s Tk(ur − us) + 1

n

∫
∂Ω

u−
s Tk(ur − us)

= −
∫

∂Ω

ψTk(ur − us) −
∫
Ω

φTk(ur − us). (25)

Adding (24) and (25) and disregarding some positive terms, we get∫
Ω

(
a(x,Dur) − a(x,Dus)

) · DTk(ur − us) � −
∫
Ω

(
γr(ur) − γs(us)

)
Tk(ur − us)

−
∫
Ω

(
1

r
|ur |p−2ur − 1

s
|us |p−2us

)
Tk(ur − us) −

∫
∂Ω

(
βr(ur) − βs(us)

)
Tk(ur − us).

Consequently, there exists a constant M̂ independent of r and s such that∫
Ω

(
a(x,Dur) − a(x,Dus)

) · DTk(ur − us) � kM̂.

Hence

meas(G) � meas
({|ur − us | � k2,

(
a(x,Dur) − a(x,Dus)

) · D(ur − us) � k
})

� 1

k

∫
{|ur−us |<k2}

(
a(x,Dur) − a(x,Dus)

) · D(ur − us)

= 1

k

∫
Ω

(
a(x,Dur) − a(x,Dus)

) · DTk2(ur − us) � 1

k
k2M̂ � ε

4
(26)

for k small enough.
Since A and k have been already chosen, if r0 is large enough we have for r, s � r0 the estimate meas({|ur − us | �

k2}) � ε
4 . From here, using (21)–(23) and (26), we can conclude that

meas
({|Dur − Dus | � t

})
� ε for r, s � r0.

From here, up to extraction of a subsequence, we also have a(· ,Dur) converges in measure and a.e. to a(· ,Du).
Now, by (H2) and (18),

a(· ,Dur) converges weakly in Lp′
(Ω)N to a(· ,Du).

Finally, letting r → +∞ in (15), we prove (i).
In order to prove (ii), we write u1,r = uφ1,ψ1,m1,n1,r and u2,r = uφ2,ψ2,m2,n2,r . Taking Tk((u1,r − u2,r )

+), with r

large enough, as test function in (15) for u1,r , m = m1 and n = n1, we get
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∫
Ω

a(x,Du1,r ) · DTk

(
(u1,r − u2,r )

+) +
∫
Ω

γr(u1,r )Tk

(
(u1,r − u2,r )

+) + 1

r

∫
Ω

|u1,r |p−2u1,rTk

(
(u1,r − u2,r )

+)
+ 1

m1

∫
Ω

u+
1,rTk

(
(u1,r − u2,r )

+) − 1

n1

∫
Ω

u−
1,rTk

(
(u1,r − u2,r )

+) +
∫

∂Ω

βr(u1,r )Tk

(
(u1,r − u2,r )

+)
+ 1

m1

∫
∂Ω

u+
1,rTk

(
(u1,r − u2,r )

+) − 1

n1

∫
∂Ω

u−
1,rTk

(
(u1,r − u2,r )

+)
=

∫
∂Ω

ψ1Tk

(
(u1,r − u2,r )

+) +
∫
Ω

φ1Tk

(
(u1,r − u2,r )

+)
,

and taking Tk(u1,r − u2,r )
+ as test function in (15) for u2,r , m = m2 and n = n2, we get

−
∫
Ω

a(x,Du2,r ) · DTk

(
(u1,r − u2,r )

+) −
∫
Ω

γr(u2,r )Tk

(
(u1,r − u2,r )

+)
− 1

r

∫
Ω

|u2,r |p−2u2,rTk

(
(u1,r − u2,r )

+) − 1

m2

∫
Ω

u+
2,rTk

(
(u1,r − u2,r )

+) + 1

n2

∫
Ω

u−
2,rTk

(
(u1,r − u2,r )

+)
−

∫
∂Ω

βr(u2,r )Tk

(
(u1,r − u2,r )

+) − 1

m2

∫
∂Ω

u+
2,rTk

(
(u1,r − u2,r )

+) + 1

n2

∫
∂Ω

u−
2,rTk

(
(u1,r − u2,r )

+)
= −

∫
∂Ω

ψ2Tk

(
(u1,r − u2,r )

+) −
∫
Ω

φ2Tk

(
(u1,r − u2,r )

+)
.

Adding these two inequalities, misleading some nonnegative terms, dividing by k, and letting k → 0, we get∫
Ω

(
γr(u1,r ) − γr(u2,r )

)+ +
∫

∂Ω

(
βr(u1,r ) − βr(u2,r )

)+ �
∫

∂Ω

(ψ1 − ψ2)
+ +

∫
Ω

(φ1 − φ2)
+. (27)

Therefore, taking into account the above convergence, (ii) is obtained. �
In the homogeneous case without any condition on γ we obtain the following result.

Proposition 5.2. Assume D(β) = R. Let m,n ∈ N, m � n. Then, the following hold.

(i) For φ ∈ L∞(Ω), there exist u = uφ,m,n ∈ W 1,p(Ω) ∩ L∞(Ω), z = zφ,m,n ∈ L∞(Ω), z(x) ∈ γ (u(x)) a.e. in Ω ,
and w = wφ,m,n ∈ L∞(∂Ω), w(x) ∈ β(u(x)) a.e. in ∂Ω , such that [u, z + 1

m
u+ − 1

n
u−,w + 1

m
u+ − 1

n
u−] is a

weak solution of problem (S
γm,n,βm,n

φ,0 ), and z � φ.
(ii) If m1 � m2 � n2 � n1, φ1, φ2 ∈ L∞(Ω), then∫

Ω

(zφ1,m1,n1 − zφ2,m2,n2)
+ +

∫
∂Ω

(wφ1,m1,n1 − wφ2,m2,n2)
+ �

∫
Ω

(φ1 − φ2)
+.

Proof. Following the proof of Proposition 5.1 there exists ur = uφ,m,n,r ∈ W 1,p(Ω), such that

‖ur‖∞ � n‖φ‖∞,

and ∫
Ω

a(x,Dur) · Dv + 1

r

∫
Ω

|ur |p−2urv +
∫
Ω

γr(ur)v + 1

m

∫
Ω

u+
r (ur − v) − 1

n

∫
Ω

u−
r v

+
∫

∂Ω

βr(ur)v + 1

m

∫
∂Ω

u+
r v − 1

n

∫
∂Ω

u−
r v =

∫
Ω

φv, (28)

for all v ∈ W 1,p(Ω).
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We can finish the proof as in Propositions 5.1 if we prove that γr(ur) is weakly convergent in L1(Ω). Taking
v = q(γr(ur)), q ∈ P0, as test function in (28) we have that, after misleading nonnegative terms,∫

Ω

γr(ur)q
(
γr(ur)

)
�

∫
Ω

φq
(
γr(ur)

)
,

which implies, γr(ur) � φ. In particular, see Proposition 2.1, ‖γr(ur)‖∞ � ‖φ‖∞ and γr(ur) → z ∈ L∞(Ω) weakly
in L1(Ω), with z � φ. �
Remark 5.3. Observe that if D(β) = {0}, for any γ , if we rewrite the proof of Proposition 5.2, using W

1,p

0 (Ω) instead

of W 1,p(Ω), we find u = uφ,m,n ∈ W
1,p

0 (Ω) ∩ L∞(Ω), z = zφ,m,n ∈ L∞(Ω), z(x) ∈ γ (u(x)) a.e. in Ω , such that∫
Ω

a(x,Du) · Dv +
∫
Ω

zv + 1

m

∫
Ω

u+v − 1

n

∫
Ω

u−v =
∫
Ω

φv,

for all v ∈ W
1,p

0 (Ω). Moreover, if m1 � m2 � n2 � n1, φ1, φ2 ∈ L∞(Ω), then∫
Ω

(zφ1,ψ1,m1,n1 − zφ2,ψ2,m2,n2)
+ �

∫
Ω

(φ1 − φ2)
+.

Proposition 5.4. Assume D(γ ) = R and a smooth. Let m,n ∈ N, m � n. Then, the following hold.

(i) For φ ∈ L∞(Ω) and ψ ∈ L∞(∂Ω), there exist u = uφ,ψ,m,n ∈ W 1,p(Ω) ∩ L∞(Ω), z = zφ,ψ,m,n ∈ L∞(Ω),
z(x) ∈ γ (u(x)) a.e. in Ω , and w = wφ,ψ,m,n ∈ L1(∂Ω), w(x) ∈ β(u(x)) a.e. in ∂Ω , such that [u, z + 1

m
u+ −

1
n
u−,w + 1

m
u+ − 1

n
u−] is a weak solution of (S

γm,n,βm,n

φ,ψ ).
Moreover, there exists c(Ω,N,p) > 0 such that

‖Du‖p−1
Lp(Ω) � c(Ω,N,p)

λ

(‖φ‖V 1,p(Ω) + ‖ψ‖V 1,p(∂Ω)

)
.

(ii) If m1 � m2 � n2 � n1, φ1, φ2 ∈ L∞(Ω), ψ1,ψ2 ∈ L∞(∂Ω) then∫
Ω

(zφ1,ψ1,m1,n1 − zφ2,ψ2,m2,n2)
+ +

∫
∂Ω

(wφ1,ψ1,m1,n1 − wφ2,ψ2,m2,n2)
+ �

∫
∂Ω

(ψ1 − ψ2)
+ +

∫
Ω

(φ1 − φ2)
+.

Proof. Applying Proposition 5.1 to βr , the Yosida approximation of β , there exists ur = uφ,ψ,m,n,r ∈ W 1,p(Ω) ∩
L∞(Ω) and zr = zφ,ψ,m,n,r ∈ L∞(Ω), zr ∈ γ (ur) a.e. in Ω , such that∫

Ω

a(x,Dur) · Dv +
∫
Ω

zrv +
∫

∂Ω

βr(ur)v + 1

m

∫
Ω

u+
r v − 1

n

∫
Ω

u−
r v + 1

m

∫
∂Ω

u+
r v − 1

n

∫
∂Ω

u−
r v

=
∫

∂Ω

ψv +
∫
Ω

φv, (29)

for all v ∈ W 1,p(Ω). Moreover, |ur | is uniformly bounded by nM , M := ‖φ‖∞ + ‖ψ‖∞,

−γ 0(−nM) � zr � γ 0(nM),

and ∫
Ω

z±
r +

∫
∂Ω

w±
r �

∫
∂Ω

ψ± +
∫
Ω

φ±.

Let now û ∈ L∞(Ω) and ẑ ∈ γ (û), ẑ ∈ L∞(Ω), be such that û is solution of the Dirichlet problem (see Remark 5.3){
−div a(x,Dû) + ẑ + 1

m
û+ − 1

n
û− = φ in Ω,
û = 0 on ∂Ω.
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Since a is smooth, there exists ψ̂ ∈ L1(∂Ω) such that∫
Ω

a(x,Dû) · Dv +
∫
Ω

ẑv + 1

m

∫
Ω

û+v − 1

n

∫
Ω

û−v =
∫

∂Ω

ψ̂v +
∫
Ω

φv, (30)

for any v ∈ W 1,p(Ω) ∩ L∞(Ω).
Taking v = q(βr(ur − û)), q ∈ P0, as test function in (29), and q(βr(ur − û)) as test function in (30), and adding

both equalities we get, after misleading nonnegative terms, that∫
∂Ω

βr(ur)q
(
βr(ur)

)
�

∫
∂Ω

(ψ − ψ̂)q
(
βr(ur)

)
,

i.e., βr(ur) � ψ − ψ̂ , which implies (see Proposition 2.1) that

βr(ur) → w ∈ L1(∂Ω) weakly in L1(∂Ω).

Now, arguing as in the proof of Proposition 5.1, we obtain (i).
To prove (ii), Proposition 5.1 implies, denoting ui,r = uφi,ψi ,mi ,ni ,r and zi,r = zφi ,ψi ,mi ,ni ,r , i = 1,2,∫

Ω

(z1,r − z2,r )
+ +

∫
∂Ω

(
βr(u1,r ) − βr(u2,r )

)+ �
∫

∂Ω

(ψ1 − ψ2)
+ +

∫
Ω

(φ1 − φ2)
+. (31)

Taking limits in (31) when r goes to +∞, (ii) holds. �
In the case ψ = 0, we have the following result.

Proposition 5.5. Assume a smooth. Let m,n ∈ N, m � n. Then, the following hold.

(i) For φ ∈ L∞(Ω), there exist u = uφ,m,n ∈ W 1,p(Ω) ∩ L∞(Ω), z = zφ,m,n ∈ L∞(Ω), z(x) ∈ γ (u(x)) a.e. in Ω ,
and w = wφ,m,n ∈ L1(∂Ω), w(x) ∈ β(u(x)) a.e. in ∂Ω , such that [u, z + 1

m
u+ − 1

n
u−,w + 1

m
u+ − 1

n
u−] is a

weak solution of problem (S
γm,n,βm,n

φ,0 ), with z � φ.
(ii) If m1 � m2 � n2 � n1, φ1, φ2 ∈ L∞(Ω), then∫

Ω

(zφ1,m1,n1 − zφ2,m2,n2)
+ +

∫
∂Ω

(wφ1,m1,n1 − wφ2,m2,n2)
+ �

∫
Ω

(φ1 − φ2)
+.

5.2. Existence of weak solutions

Proof of Theorem 3.6. We approximate φ and ψ by

φm,n = sup
{
inf{m,φ},−n

}
and

ψm,n = sup
{
inf{m,ψ},−n

}
,

respectively. We have, φm,n ∈ L∞(Ω), ψm,n ∈ L∞(∂Ω), are nondecreasing in m, nonincreasing in n, ‖φm,n‖Lp′
(Ω)

�
‖φ‖

Lp′
(Ω)

and ‖ψm,n‖Lp′
(∂Ω)

� ‖ψ‖
Lp′

(∂Ω)
. Then, if m � n, by Propositions 5.1 or 5.4, there exist um,n ∈ W 1,p(Ω)∩

L∞(Ω), zm,n ∈ L∞(Ω), zm,n(x) ∈ γ (um,n(x)) a.e. in Ω and wm,n ∈ L1(∂Ω), wm,n(x) ∈ β(um,n(x)) a.e. on ∂Ω ,
such that∫

Ω

a(x,Dum,n) · Dv +
∫
Ω

zm,nv +
∫

∂Ω

wm,nv + 1

m

∫
Ω

u+
m,nv − 1

n

∫
Ω

u−
m,nv + 1

m

∫
∂Ω

u+
m,nv − 1

n

∫
∂Ω

u−
m,nv

=
∫

ψm,nv +
∫

φm,nv, (32)
∂Ω Ω
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for any v ∈ W 1,p(Ω). Moreover,∫
Ω

z±
m,n +

∫
∂Ω

w±
m,n �

∫
Ω

φ± +
∫

∂Ω

ψ± (33)

and

‖Dum,n‖p−1
Lp(Ω)

� c(Ω,N,p)

λ

(‖φ‖V 1,p(Ω) + ‖ψ‖V 1,p(∂Ω)

)
. (34)

Fixed m ∈ N, by Propositions 5.1 or 5.4 (ii), {zm,n}∞n=m and {wm,n}∞n=m are monotone nonincreasing. Then, by (33)
and the Monotone Convergence Theorem, there exists ẑm ∈ L1(Ω), ŵm ∈ L1(∂Ω) and a subsequence n(m), such that

‖zm,n(m) − ẑm‖1 � 1

m

and

‖wm,n(m) − ŵm‖1 � 1

m
.

Thanks again to Proposition 5.1 or 5.4(ii), ẑm and ŵm are nondecreasing in m. Now, by (33), we have that
∫
Ω

|ẑm| and∫
∂Ω

|ŵm| are bounded. Using again the Monotone Convergence Theorem, there exist z ∈ L1(Ω) and w ∈ L1(∂Ω)

such that

ẑm converges a.e. and in L1(Ω) to z

and

ŵm converges a.e. and in L1(∂Ω) to w.

Consequently,

zm := zm,n(m) converges to z a.e. and in L1(Ω) (35)

and

wm := wm,n(m) converges to w a.e. and in L1(∂Ω). (36)

If we set um := um,n(m), φm := φm,n(m) and ψm := ψm,n(m), then we have∫
Ω

a(x,Dum) · Dv +
∫
Ω

zmv +
∫

∂Ω

wmv + 1

m

∫
Ω

u+
mv − 1

n(m)

∫
Ω

u−
mv + 1

m

∫
∂Ω

u+
mv − 1

n(m)

∫
∂Ω

u−
mv

=
∫

∂Ω

ψmv +
∫
Ω

φmv, (37)

for any v ∈ W 1,p(Ω).
As a consequence of (34),{

um − 1

meas(∂Ω)

∫
∂Ω

um

}
m

is bounded in W 1,p(Ω). (38)

Let us see that{
1

meas(∂Ω)

∫
∂Ω

um: m ∈ N

}
is a bounded sequence. (39)

If (39) does not hold, then, extracting a subsequence if necessary, we can suppose that
∫
∂Ω

um converges to +∞
(or −∞, respectively). Suppose first that

∫
∂Ω

um converges to +∞. Hence, by (38) we have

um converges to + ∞ a.e. in Ω, and a.e. in ∂Ω.
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Moreover, since for m large enough

u−
m �

(
um − 1

meas(∂Ω)

∫
∂Ω

um

)−
+

(
1

meas(∂Ω)

∫
∂Ω

um

)−
=

(
um − 1

meas(∂Ω)

∫
∂Ω

um

)−
,

by (38), we get{ ∫
∂Ω

u−
m

}
m∈N

is bounded

and, similarly,{∫
Ω

u−
m

}
m∈N

is bounded.

In the case
∫
∂Ω

um converges to −∞, we similarly obtain that

um converges to − ∞ a.e. in Ω, and a.e. in ∂Ω,

and { ∫
∂Ω

u+
m

}
m∈N

and

{∫
Ω

u+
m

}
m∈N

are bounded.

Therefore, we have z = sup{Ran(γ )} (z = inf{Ran(γ )}, respectively) and w = sup{Ran(β)} (w = inf{Ran(β)}, re-
spectively). Now, taking v = 1 as test function in (37), we get

1

m

∫
Ω

u+
m − 1

n(m)

∫
Ω

u−
m + 1

m

∫
∂Ω

u+
m − 1

n(m)

∫
∂Ω

u−
m =

∫
Ω

φm +
∫

∂Ω

ψm −
∫
Ω

zm −
∫

∂Ω

wm,

and we get a contradiction with (4). Hence, (39) is true. By (38) and (39), we have {‖um‖W 1,p(Ω)}m is bounded.
Therefore, there exists a subsequence, that we denote equal, such that

um → u weakly in W 1,p(Ω),

um → u in Lp(Ω) and a.e. in Ω,

um → u in Lp(∂Ω) and a.e. in ∂Ω.

Moreover, arguing as in Proposition 5.1, it is not difficult to see that {Dum} is a Cauchy sequence in measure. Then,
up to extraction of a subsequence, Dum converges to Du a.e. in Ω . Consequently, we obtain that

a(· ,Dum) converges weakly in Lp′
(Ω)N and a.e. in Ω to a(· ,Du).

From these convergences, we finish the proof of existence.
The proof of (ii) is a consequence of the existence result, Propositions 5.1(ii) or 5.4(ii), and the uniqueness re-

sult. �
Remark 5.6. For positive data φ and ψ , it is not necessary the assumption D(γ ) = D(β) = R, that is, we can improve
the above result in the following way. Assume [0,+∞[ ⊂ D(γ ) and R+

γ,β > 0. Let [0,+∞[ ⊂ D(β) or a smooth.

For any 0 � φ ∈ V 1,pΩ) and 0 � ψ ∈ V 1,p(∂Ω) with
∫
Ω

φ + ∫
∂Ω

ψ <R+
γ,β , there exists a weak solution of problem

(S
γ,β
φ,ψ). A similar result holds for nonpositive data.

Proof of Theorem 3.7. Let us approximate φ by φm = Tm(φ) − 1
meas(Ω)

αm and ψ by ψm = Tm(ψ), where αm =∫
Ω

Tm(φ) + ∫
∂Ω

Tm(ψ). Observe that

lim αm = 0 (40)

m→+∞
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and ∫
Ω

φm +
∫

∂Ω

ψm = 0. (41)

By Proposition 5.1, there exist um ∈ W 1,p(Ω) ∩ L∞(Ω) such that∫
Ω

a(x,Dum) · Dv + 1

m

∫
Ω

umv + 1

m

∫
∂Ω

umv =
∫

∂Ω

ψmv +
∫
Ω

φmv, (42)

for any v ∈ W 1,p(Ω).
Taking v = um as test function in (42), using (40) and the Poincaré inequality, it is easy to see that{

um − 1

meas(∂Ω)

∫
∂Ω

um

}
m

is bounded in W 1,p(Ω). (43)

Let us also see that{
1

meas(∂Ω)

∫
∂Ω

um: m ∈ N

}
is a bounded sequence. (44)

If (44) does not hold, then, extracting a subsequence if necessary, we can suppose that
∫
∂Ω

um converges to +∞ (or
−∞, respectively). Suppose first that

∫
∂Ω

um converges to +∞. Hence, as in the proof of Theorem 3.6, we have{∫
Ω

u−
m

}
m∈N

is bounded.

Now, taking v = m in (42) and using (41), it follows that

lim
m→+∞

∫
Ω

u−
m = +∞,

which is a contradiction. Similarly, we get a contradiction in the case
∫
∂Ω

um converging to −∞. Hence, (44) is true.
By (43) and (44), we have {‖um‖W 1,p(Ω)}m is bounded, and we can finish as in the proof of Theorem 3.6. �
Remark 5.7. Taking into account the arguments used in Remark 3.4, we get that [u, z,w] in the above results (includ-
ing also the case β = D) satisfies∫

Ω

|zv| +
∫

∂Ω

|wv| �
∫
Ω

|φv| +
∫

∂Ω

|ψv| + σ
(‖g‖

Lp′
(Ω)

+ ‖Du‖p−1
Lp(Ω)

)‖Dv‖Lp(Ω)

for all v ∈ W 1,p(Ω), and

‖Du‖p−1
Lp(Ω) � c(Ω,N,p)

λ

(‖φ‖V 1,p(Ω) + ‖ψ‖V 1,p(∂Ω)

)
,

for some c(Ω,N,p) > 0.

Taking β = D, γ (r) = 0 for all r ∈ R, and a smooth in Theorem 3.6, by Remark 5.7, it follows Corollary 3.8.
The proof of Theorem 3.9 follows in a similar way to the proof of Theorem 3.6 taking into account Propositions 5.2
and 5.5. Finally, on account of Remark 5.3, it follows Theorem 3.10.

5.3. Existence of entropy solutions

Proof of Theorem 3.11. Observe that, under the assumptions of the theorem, we have Rγ,β = R. We divide the proof
in several steps.
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Step 1. Let us approximate φ by φm := Tm(φ) and ψ by ψm := Tm(ψ). Then, by Theorem 3.6, there exist um ∈
W 1,p(Ω), zm ∈ V 1,p(Ω), zm(x) ∈ γ (um(x)) a.e. in Ω , and wm ∈ V 1,p(∂Ω), wm(x) ∈ β(um(x)) a.e. on ∂Ω , such
that ∫

Ω

a(x,Dum) · Dv +
∫
Ω

zmv +
∫

∂Ω

wmv =
∫

∂Ω

ψmv +
∫
Ω

φmv, (45)

for any v ∈ W 1,p(Ω).
Moreover,∫

Ω

z±
m +

∫
∂Ω

w±
m �

∫
∂Ω

ψ±
m +

∫
Ω

φ±
m (46)

and ∫
Ω

|zn − zm| +
∫

∂Ω

|wn − wm| �
∫

∂Ω

|ψn − ψm| +
∫
Ω

|φn − φm|.

Consequently

zm → z in L1(Ω),

wm → w in L1(∂Ω). (47)

Taking v = Tk(um) in (45), we obtain

λ

∫
Ω

∣∣DTk(um)
∣∣p � k

(‖φ‖1 + ‖ψ‖1
)
, ∀k ∈ N. (48)

By (48), we have {Tk(um)} is bounded in W 1,p(Ω). Then, we can suppose that there exists σk ∈ W 1,p(Ω) such that

Tk(um) converges to σk weakly in W 1,p(Ω),

Tk(um) converges to σk in Lp(Ω) and a.e. in Ω

and

Tk(um) converges to σk in Lp(∂Ω) and a.e. in ∂Ω.

Step 2. Let us see that um converges almost every where in Ω .
If D(β) is bounded from above by r1, using the Poincaré inequality and (48),

meas
{
x ∈ Ω: σ+

k (x) = k
}

�
∫
Ω

(σ+
k )p

∗

kp∗ � lim inf
m

∫
Ω

(Tk((um)+))p
∗

kp∗

� C1

kp∗ lim inf
m

( ∫
∂Ω

Tk

(
(um)+

) +
(∫

Ω

∣∣DTk

(
(um)+

)∣∣p)1/p)p∗

� C1

kp∗

(
r1 meas(∂Ω) +

(‖φ‖1 + ‖ψ‖1

λ
k

)1/p)p∗

∀k > 0,

where p∗ = Np
N−p

and C1 is independent of k and m.

If D(β) is unbounded from above, then, we are supposing limk→+∞ γ 0(k) = +∞. Therefore, for k > 0 large
enough (in order to have γ 0(k) > 0), by (46) we have

meas
{
x ∈ Ω: σ+

k (x) = k
} =

∫
{x∈Ω: σ+

k (x)=k}}

γ 0(σ+
k (x))

γ 0(k)
� 1

γ 0(k)
lim inf

m

∫
Ω

γ 0(Tk

(
(um)+

))

� 1
0

(‖φ‖1 + ‖ψ‖1
)
.

γ (k)
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Consequently, in any case, there exists g(k) > 0, limk→+∞ g(k) = 0, such that

meas
{
x ∈ Ω: σ+

k (x) = k
}

� g(k) ∀k > 0. (49)

Similarly, if D(β) is bounded from below or assumption (8) holds, we can prove that there exists g(k) as above
such that

meas
{
x ∈ Ω: σ−

k (x) = k
}

� g(k) ∀k > 0. (50)

Note that we have proved (49) and (50) in any case. Consequently, there exists g(k) > 0 with limk→+∞ g(k) = 0,
such that

meas
{
x ∈ Ω:

∣∣σk(x)
∣∣ = k

}
� g(k) ∀k > 0.

Therefore, if we define u(x) = σk(x) on {x ∈ Ω: |σk(x)| < k}, then

um converges to u a.e. in Ω, (51)

and we have that

Tk(um) converges weakly in W 1,p(Ω) to Tk(u),

Tk(um) converges in Lp(Ω) and a.e. in Ω to Tk(u)

and

Tk(um) converges in Lp(∂Ω) and a.e. in ∂Ω to Tk(u).

Consequently, u ∈ T 1,p(Ω).
Arguing as in Proposition 5.1, it is not difficult to see that {Dum} is a Cauchy sequence in measure. Similarly, we

can prove that DTk(um) converges in measure to DTk(u). Then, up to extraction of a subsequence, Dum converges
to Du a.e. in Ω . Consequently, we obtain that

a
(· ,DTk(um)

)
converges weakly in Lp′

(Ω)N and a.e. in Ω to a
(· ,DTk(u)

)
. (52)

Step 3. Let us see now that u ∈ T 1,p
tr (Ω). On the one hand we have that um → u a.e. in Ω . On the other hand,

since DTk(um) is bounded in Lp(Ω) and DTk(um) → DTk(u) in measure, it follows from [5, Lemma 6.1] that
DTk(um) → DTk(u) in L1(Ω). Next, let us see that um converges a.e. in ∂Ω . Let suppose first that D(β) is bounded
from above by r1, then, by (48), there exists a constant C3 such that

meas
{
x ∈ ∂Ω: σ+

k (x) = k
}

�
∫

∂Ω

σ+
k

k
� lim inf

m

∫
∂Ω

Tk((um)+)

k
� r1 meas(∂Ω)

k
∀k > 0.

If D(β) is unbounded from above, then, we are supposing limk→+∞ β0(k) = +∞. Therefore, for k > 0 large
enough (in order to have β0(k) > 0), by (46) we have

meas
{
x ∈ ∂Ω: σ+

k (x) = k
} =

∫
{x∈∂Ω: σ+

k (x)=k}}

β0(σ+
k (x))

β0(k)
� 1

β0(k)
lim inf

m

∫
∂Ω

β0(Tk((um)+)
)

� 1

β0(k)

(‖φ‖1 + ‖ψ‖1
)
.

We work similarly if D(β) is bounded from below or assumption (8) holds, and, in any case, there exists ĝ(k) > 0,
limk→+∞ ĝ(k) = 0, such that

meas
{
x ∈ ∂Ω:

∣∣σk(x)
∣∣ = k

}
� ĝ(k) ∀k > 0.

Hence, if we define v(x) = Tk(u)(x) on {x ∈ ∂Ω: |Tk(u)(x)| < k}, then

um converges to v a.e. in ∂Ω. (53)

Consequently, u ∈ T 1,p
tr (Ω).
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Since zm(x) ∈ γ (um(x)) a.e. in Ω and wm(x) ∈ β(um(x)) a.e. in ∂Ω , from (47), (51), (53) and from the maximal
monotonicity of γ and β , we deduce that z(x) ∈ γ (u(x)) a.e. in Ω and w(x) ∈ β(u(x)) a.e. in ∂Ω .

Step 4. Finally, let us prove that [u, z,w] is an entropy solution relative to D(β) of (S
γ,β
φ,ψ). To do that, we introduce

the class F of functions S ∈ C2(R) ∩ L∞(R) satisfying

S(0) = 0, 0 � S ′ � 1, S′(s) = 0 for s large enough,

S(−s) = −S(s), and S′′(s) � 0 for s � 0.

Let v ∈ W 1,p(Ω) ∩ L∞(Ω), v(x) ∈ D(β) a.e. in ∂Ω , and S ∈F . Taking S(um − v) as test function in (45), we get∫
Ω

a(x,Dum) · DS(um − v) +
∫
Ω

zmS(um − v) +
∫

∂Ω

wmS(um − v)

=
∫

∂Ω

ψmS(um − v) +
∫
Ω

φmS(um − v). (54)

We can write the first term of (54) as∫
Ω

a(x,Dum) · DumS′(um − v) −
∫
Ω

a(x,Dum) · DvS′(um − v). (55)

Since um → u and Dum → Du a.e., Fatou’s Lemma yields∫
Ω

a(x,Du) · DuS′(u − v) � lim inf
m→∞

∫
Ω

a(x,Dum) · DumS′(um − v).

The second term of (55) is estimated as follows. Let r := ‖v‖∞ + ‖S‖∞. By (52)

a(x,DTrum) → a(x,DTru) weakly in Lp′
(Ω). (56)

On the other hand,∣∣DvS′(um − v)
∣∣ � |Dv| ∈ Lp(Ω).

Then, by the Dominated Convergence Theorem, we have

DvS′(um − v) → DvS′(u − v) in Lp(Ω)N . (57)

Hence, by (56) and (57), it follows that

lim
m→∞

∫
Ω

a(x,Dum) · DvS′(um − v) =
∫
Ω

a(x,Du) · DvS′(u − v).

Therefore, applying again the Dominated Convergence Theorem in the other terms of (54), we obtain∫
Ω

a(x,Du) · DS(u − v) +
∫
Ω

zS(u − v) +
∫

∂Ω

wS(u − v) �
∫

∂Ω

ψS(u − v) +
∫
Ω

φS(u − v).

From here, to conclude, we only need to apply the technique used in the proof of [5, Lemma 3.2].
The proof of (ii) is a consequence of the existence result, Theorem 3.6(ii), and the uniqueness result. �
Theorems 3.13 and 3.14 follows in a similar way taking into account Theorems 3.9 and 3.10 respectively.

Remark 5.8. In Theorem 3.11, if the data φ and ψ are nonnegative (nonpositive, respectively), then assumption (8)
((7), respectively) is not necessary. That is, only assuming [0,+∞[ ⊂ D(γ ), [0,+∞[ ⊂ D(β) or a smooth, and
assumption (7) if [0,+∞[ ⊂ D(β), for any 0 � φ ∈ L1(Ω) and 0 � ψ ∈ L1(∂Ω), there exists an entropy solution of
problem (S

γ,β
φ,ψ). A similar result holds for nonpositive data.
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Remark 5.9. In Theorems 3.11 and 3.13, it is not difficult to see that (7) can be substituted by one of the following
assumptions,

(7′) ∃0 < α � 1, r0 > 0: γ 0(r) � rα ∀r � r0,
(7′′) ∃0 < α � 1, r0 > 0: β0(r) � rα ∀r � r0;

and (8) can be substituted by one of the following assumptions,

(8′) ∃0 < α � 1, r0 > 0: γ 0(r) � −(−r)α ∀r � −r0,
(8′′) ∃0 < α � 1, r0 > 0: β0(r) � −(−r)α ∀r � −r0.

5.4. Some extensions

Following the ideas developed in this work, it is possible to find a larger class of entropy solutions when β is only
assumed to have closed domain.

Definition 5.10. Let φ ∈ L1(Ω) and ψ ∈ L1(∂Ω). A triple of functions [u, z,w] ∈ T 1,p
tr (Ω) × L1(Ω) × L1(∂Ω) is

an entropy solution relative to D(β) of problem (S
γ,β
φ,ψ ) if z(x) ∈ γ (u(x)) a.e. in Ω , w(x) ∈ β(u(x)) a.e. in ∂Ω and∫

Ω

a(x,Du) · DTk(u − v) +
∫
Ω

zTk(u − v) +
∫

∂Ω

wTk(u − v)

�
∫

∂Ω

ψTk(u − v) +
∫
Ω

φTk(u − v) ∀k > 0, (58)

for all v ∈ L∞(Ω) ∩ W 1,p(Ω), v(x) ∈ D(β) a.e. in ∂Ω .

For this concept of solution we can prove the following result.

Theorem 5.11. Assume D(β) is closed and D(β) ⊂ D(γ ). Let also assume that if [0,+∞[ ⊂ D(β) the assump-
tion (7) holds, and if ]−∞,0] ⊂ D(β) the assumption (8) holds. Then,

(i) for any φ ∈ L1(Ω) and ψ ∈ L1(∂Ω) there exists an entropy solution [u, z,w] = [uφ,ψ , zφ,ψ ,wφ,ψ ] relative

to D(β) of problem (S
γ,β
φ,ψ). Moreover,

β0(infD(β)
)
� w � β0(supD(β)

)
and ∫

Ω

z± +
∫

∂Ω

w± �
∫

∂Ω

ψ± +
∫
Ω

φ±.

(ii) Given φ1, φ2 ∈ L1(Ω) and ψ1,ψ2 ∈ L1(∂Ω),∫
Ω

(zφ1,ψ1 − zφ2,ψ2)
+ +

∫
∂Ω

(wφ1,ψ2 − wφ2,ψ2)
+ �

∫
∂Ω

(ψ1 − ψ2)
+ +

∫
Ω

(φ1 − φ2)
+.

(iii) For any [u1, z1,w1] entropy solution relative to D(β) of problem (S
γ,β
φ1,ψ1

), φ1 ∈ L1(Ω), ψ1 ∈ L1(∂Ω), and any

[u2, z2,w2] entropy solution relative to D(β) of problem (S
γ,β
φ2,ψ2

), φ2 ∈ L1(Ω), ψ2 ∈ L1(∂Ω), we have that∫
Ω

(z1 − z2)
+ �

∫
∂Ω

(ψ1 − ψ2)
+ +

∫
Ω

(φ1 − φ2)
+.
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Remark 5.12. In general, for this concept of solution we have not uniqueness of w, as the following example shows.
Let γ and β be such that γ (0) = [0,1] and β(0) = ]−∞,0] and let 0 < φ < 1 and ψ � 0. Then, for any w such that
ψ � w � 0, [0, φ,w] is an entropy solution relative to D(β).
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