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Abstract

The integral representation problem on BV(Ω) for the L1(Ω)-lower semicontinuous envelope �F of the functional F :u ∈
W1,∞(Ω) �→ ∫

Ω f (∇u)dx is approached when f is a Borel function, not necessarily convex, with values in [0,+∞]. The pres-
ence of the value +∞ in the image of f involves a pointwise gradient constraint on the admissible configurations, since those
generating the relaxation process must satisfy the condition ∇u(x) ∈ domf for a.e. x ∈ Ω . The main novelty relies in the absence
of any convexity assumption on the domain of f . For every convex bounded open set Ω , �F is represented on the whole BV(Ω)

as an integral of the calculus of variations by means of the convex lower semicontinuous envelope of f . Due to the lack of the
convexity properties of domf , the classical integral representation techniques, based on measure theoretic arguments, seem not to
work properly, thus an alternative approach is proposed. Applications are given to the relaxation of Dirichlet variational problems
and to first order differential inclusions.
© 2006

Résumé

Le problème de représentation intégrale sur BV(Ω) pour l’enveloppe L1(Ω)-semi-continue inférieurement �F de la fonction-
nelle F :u ∈ W1,∞(Ω) �→ ∫

Ω f (∇u)dx est considéré dans le cas où f est Borelienne non nécessairement convexe, à valeurs dans
[0,+∞]. La présence de la valeur +∞ dans l’image de f implique une contrainte ponctuelle sur le gradient des configurations
admissibles, puisque celles qui jouent un rôle dans le processus de relaxation doivent satisfaire la condition ∇u(x) ∈ domf p.p.
dans Ω . La nouveauté principale consiste en l’absence d’hypothèses de convexité sur le domaine de f . Pour tout ensemble ouvert
borné et convexe Ω , �F admet une représentation sur BV(Ω) tout entier comme une intégrale du calcul des variations au moyen
de l’enveloppe convexe et semi-continue inférieurement de f . En raison du manque des propriétés de convexité de domf , les
techniques classiques de représentation intégrale, basées sur des arguments de théorie de la mesure, semblent ne pas fonction-
ner convenablement, donc une approche alternative est proposée. Des applications sont données à la relaxation des problèmes
variationnels de type Dirichlet et aux inclusions différentielles du premier ordre.
© 2006
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0. Introduction

Let U be a set, and let F :U → [0,+∞]. Then the approach to the minimization problem for F on U by means of
the direct methods of the calculus of variations naturally leads to the introduction of a topology τ on U enjoying good
compactness properties, and to the study of the τ -lower semicontinuity of F . If F is not τ -lower semicontinuous, one
is naturally led to introduce the τ -relaxed functional �F of F , defined on the τ -closure �U of U as the greatest τ -lower
semicontinuous functional on �U less than or equal to F on U . Indeed, �F turns out to be τ -lower semicontinuous, the
minimum of �F on �U exists provided F satisfies suitable coerciveness conditions, and

min
u∈�U

�F(u) = inf
u∈U

F(u).

When f : Rn → [0,+∞[ is Borel, Ω is a smooth bounded open subset of R
n, U ⊆ W 1.1(Ω), and F is the integral

energy defined by (here and in the following Ln denotes the Lebesgue measure on R
n)

F :u ∈ U �→
∫
Ω

f (∇u)dLn, (0.1)

the above described relaxation process has been widely developed in the last decades for various choices of U , each
one determining a particular variational problem (Neumann, Dirichlet, mixed, etc.), and under different assumptions
on f . We refer to the books [1,2,8,11,14,20,31] for complete references on the subject, also in more general frame-
works.

By choosing τ equal to the L1(Ω)-topology, and under convexity assumptions on f , in [23] and in [10] the case of
the Neumann problem has been treated when U is a Sobolev space, or a space of smooth functions. In these papers,
integral representation results for �F have been proved on the space BV(Ω) of the functions with bounded variation
in Ω . In the same framework, in [22] and [16] the case of the Dirichlet problem has been treated by imposing a
boundary trace condition on the elements of U , and again proving integral representation results for �F on BV(Ω).

When f is not convex, relaxation processes have been carried out in both the cases of Neumann and Dirichlet
problems when U is a Sobolev space, or a space of smooth functions, and τ is either the sequential weak-W 1,p(Ω)

topology, with p depending on the choice of U , or the L1(Ω) one (cf. for example [2,9,14,20,30] and the refer-
ences quoted therein). In these papers integral representation results for �F have been proved in Sobolev spaces also
in more general settings, for example by allowing a dependence of f also on the space variable x, under additional
coerciveness and growth assumptions. It has been shown that the relaxation process produces a density convexifi-
cation. For example, when U = W 1,∞(Ω) and τ agrees with the sequential weak*-W 1,∞(Ω)-topology, it turns out
that

�F(u) =
∫
Ω

f ∗∗(∇u)dLn for every u ∈ W 1,∞(Ω), (0.2)

where f ∗∗ is the convex envelope of f , i.e. the greatest convex function less than or equal to f .
We point out that results in the same spirit hold also in different settings. For example, when f is defined on the

set of the n × m matrices and the elements of U are R
m-valued, (0.2) still holds provided f ∗∗ is replaced by the

quasiconvex envelope of f (cf. for example [2,11,31]).
In the above results the gradients of the elements of U are allowed to lie in the whole of R

n without any restriction.
When this does not occur, namely when a condition like (unless differently specified, a.e. means Ln-a.e.)

∇u(x) ∈ E for a.e. x ∈ Ω,

must be fulfilled by the elements of U for some given subset E of R
n, the corresponding relaxation processes become

pointwise gradient constrained. The treatment of this case can be handled by allowing the value +∞ in the target
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space of f . Indeed, in this case the only elements of U that play a role are those that satisfy the following pointwise
gradient constraint

∇u(x) ∈ domf for a.e. x ∈ Ω, (0.3)

where domf = {z ∈ R
n: f (z) < +∞}.

Several situations in applications, for example in elastic-plastic torsion theory, in nonlinear elastomers modeling,
and in optimal control problems, lead to classes of variational inequalities and of relaxation problems on sets of
admissible configurations subject to pointwise gradient constraints of the above type (cf. for example [8,19,27,28,34,
35] and the references quoted therein).

It is clear that, in general, (0.3) can be a very restrictive condition, entailing serious technical difficulties and
hindering the development of a wide range of results like those described in the unconstrained case. Indeed, few results
exist in literature on pointwise gradient constrained relaxation. We quote [20,30,5–7], and the monograph [8] in which
additional gradient constrained variational problems are considered as well. In particular, we quote [4,18], and [3] for
the treatment of the corresponding homogenization processes. In these papers, under various sets of assumptions on f ,
and with different choices of U and τ , again formulas similar to (0.2) have been proved, where now, since f takes its
values in [0,+∞], f ∗∗ is the convex lower semicontinuous envelope of f . In particular, in [5] and [6] these formulas
have been extended to BV spaces as well, and some cases in which domf has empty interior have been treated. In
spite of this, it must be emphasized that all these papers assume the structure condition

domf is convex, (0.4)

that however forestalls the approach in this context to the cases in which the gradients of the admissible configurations
lie in disconnected or finite sets.

Finally, we point out that recently, in [15] and [17], gradient constrained relaxation processes for Neumann prob-
lems have been investigated by allowing a true dependence on the space variable x in f , either under continuity or
just measurability assumptions on the multifunction

x �→ domf (x, ·), (0.5)

but assuming that for a.e. x, domf (x, ·) is convex, uniformly bounded, and with nonempty interior. In these papers a
formula like

�F(u) =
∫
Ω

f ∗∗(x,∇u)dLn for every u ∈ W 1,∞(Ω), (0.6)

where for a.e. x, f ∗∗(x, ·) is the convex lower semicontinuous envelope of f (x, ·), has been proved under continuity
type assumptions on the multifunction in (0.5), but has been shown to fail under just measurability ones. Nevertheless,
in this last case, it must be pointed out that �F still has an integral form as in (0.6), but with f ∗∗ replaced by a suitable
integrand f̄ = f̄ (x, z) convex and lower semicontinuous in the z variable.

In the present paper we study pointwise gradient constrained relaxation processes for functionals as in (0.1) when
assumption (0.4) is dropped.

Actually, very little is known on this problem, and the measure theoretic techniques developed in the above men-
tioned papers seem not to be well suited for this case. Consequently, we propose an approach based on a new technique,
that allows us to treat both the cases of Neumann and Dirichlet problems. More precisely, if f : Rn → [0,+∞] is Borel
and Ω is a convex bounded open subset of R

n, we prove, in the case of Neumann problems with U = W 1,∞(Ω) and
τ equal to the L1(Ω)-topology, that (cf. Theorem 3.10)

�F(u) =
∫
Ω

f ∗∗(∇u)dLn +
∫
Ω

(
f ∗∗)∞

(
dDsu

d|Dsu|
)

d
∣∣Dsu

∣∣ for every u ∈ BV(Ω),

where (f ∗∗)∞ is the recession function of f ∗∗ (cf. Section 1 for the definition), and, for every u ∈ BV(Ω), ∇u is
the density of the Ln-absolutely continuous part of the R

n-valued measure gradient of u, Dsu is the Ln-singular part
of the gradient of u, |Dsu| is its total variation, and dDsu

d|Dsu| is the Radon–Nikodym derivative of Dsu with respect
to |Dsu|.
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Of course, the above formula agrees with the above recalled one established under (0.4), but we emphasize that
here we do not need to assume any topological or geometrical condition on domf .

We also observe explicitly that the constraint condition involved in the relaxed problem, at least on Sobolev func-
tions, is given by

∇u(x) ∈ co(domf ) for a.e. x ∈ Ω,

where co(domf ) is the convex envelope of domf .
In the case of Dirichlet problems, we first remark that the only nontrivial results occur when co(domf ) has

nonempty interior (cf. Proposition 4.1). Then we take z0 ∈ int(co(domf )), and consider the case in which U =
uz0 + W

1,∞
0 (Ω) and τ is again the L1(Ω)-topology, where uz0 is the linear function whose gradient is z0 and

W
1,∞
0 (Ω) the set of the Lipschitz functions on Ω whose (unique) extension on Ω is equal to 0 on ∂Ω . We prove

that (cf. Theorem 4.5)

�F(u) =
∫
Ω

f ∗∗(∇u)dLn +
∫
Ω

(
f ∗∗)∞

(
dDsu

d|Dsu|
)

d
∣∣Dsu

∣∣ +
∫

∂Ω

(
f ∗∗)∞(

(uz0 − u)nΩ

)
dHn−1

for every u ∈ BV(Ω),

where nΩ is the unit outward normal to ∂Ω and Hn−1 the (n − 1)-dimensional Hausdorff measure.
To prove the above results, in both the cases for U , we proceed by means of successive representations of �F on

wider and wider function classes, starting from the one of affine configurations. The main novelty of the paper is just
in the techniques introduced to represent �F on such space and on the one of piecewise affine functions. By improving
an idea from [24], we are able to approximate every linear function uz by means of a sequence of functions {uh} whose
gradients take only a finite number of values in domf and such that limh→+∞

∫
Ω

f (∇uh)dLn � f ∗∗(z)Ln(Ω) (cf.
Proposition 3.5). A refinement of this result also provides a tool to replace the boundary datum of a function with a
prescribed linear one without perturbing too much the corresponding energy, thus allowing the treatment of Dirichlet
problems. It also generalizes the so called zig–zag lemma (cf. [14]) to the case of convex combinations of more than
two vectors. The representation of �F on piecewise affine functions is then deduced by means of a structure result
establishing that every piecewise affine function u = ∑

j (uzj
+ sj )χPj

can be expressed at each point of a convex
open set Ω as a maximum of minima of some of its components uzj

+ sj whose corresponding Pj have a nonempty
intersection with Ω (cf. Theorem 2.1). Finally, the representation on BV spaces is achieved by means of suitable
approximation processes, and of a general inner regularity result for abstract functionals (cf. Proposition 1.7).

We point out that pointwise gradient constrained relaxation problems are related to first order differential inclusions
and Hamilton–Jacobi equations (cf. [29,13], and also [12] where existence results of a.e. solutions of differential
inclusions are proved without assuming convexity hypotheses on the inclusion sets). In fact (for simplicity we discuss
only the particular case of Sobolev functions), when applied to f = IE , where E is a Borel subset of R

n and IE is
its indicator function defined as IE(z) = 0 if z ∈ E and IE(z) = +∞ if z ∈ R

n \ E, our results imply that for every
u ∈ W 1,1(Ω) satisfying ∇u(x) ∈ co(E) for a.e. x ∈ Ω , there exists {uh} in W 1,∞(Ω) such that uh → u in L1(Ω),
and ∇uh(x) ∈ E for every h ∈ N and a.e. x ∈ Ω (cf. Corollary 3.12). In addition, if int(co(E)) 
= ∅, z0 ∈ int(co(E)),
and the u above is in uz0 + W

1,1
0 (Ω), then {uh} can be taken in uz0 + W

1,∞
0 (Ω) (cf. Corollary 4.7).

In both these results {uh} can be any sequence of solutions of the differential inclusion ∇v ∈ E a.e. in Ω , possi-
bly satisfying a boundary condition. Conversely, we emphasize that, when f is not merely an indicator function,
if u ∈ W 1,1(Ω) satisfies

∫
Ω

f ∗∗(∇u)dLn < +∞, an additional difficulty occurs in the selection of the optimal
sequences {uh}, converging to u in L1(Ω), provided by Theorem 3.10. Indeed, beside the differential inclusion
∇uh(x) ∈ domf for every h ∈ N and a.e. x ∈ Ω , they must satisfy also the additional minimality condition ex-
pressed by the convergence of {∫

Ω
f (∇uh)dLn} to

∫
Ω

f ∗∗(∇u)dLn. Analogous remarks hold in the case of Dirichlet
problems and Theorem 4.5 as well.

Eventually, we observe that our results are connected to those of the recent papers [25] and [26], where a relaxation
phenomenon for Hamilton–Jacobi equations is pointed out by showing that the pointwise supremum of certain a.e.
subsolutions of a Hamilton–Jacobi equation yields a viscosity solution of the corresponding convexified equation.
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1. Recalls and preliminary results

In the present section we recall some notions, and prove some preliminary result, needed in the paper. Eventually,
we establish some notations on the relaxed functionals we will be concerned with.

1.1. Recalls of convex analysis

We recall here some basics of convex analysis. We refer to [32] and [33] for a more complete exposition of the
matter.

For a given S ⊆ R
n we denote by aff(S) the affine hull of S, defined as the intersection of all the affine sets

containing S. It is clear that aff(S) is the smallest affine set containing S.
For every S ⊆ R

n we denote by co(S) the convex hull of S, i.e. the intersection of all the convex subsets of R
n

containing S. It is clear that co(S) is the smallest convex set containing S.
If C ⊆ R

n is convex, we denote by ri(C) the relative interior of C, i.e. the set of the interior points of C, in
the topology of aff(C), once we regard it as a subspace of aff(C). We recall that ri(C) 
= ∅ provided C 
= ∅. When
aff(C) = R

n we write as usual ri(C) = int(C). Moreover, we also recall that

tz + (1 − t)z0 ∈ ri(C) whenever z0 ∈ ri(C), z ∈ �C, and t ∈ [0,1[. (1.1)

For ν ∈ {0, . . . , n} and z0, . . . , zν ∈ R
n, we say that z0, . . . , zν are affinely independent if the dimension of

aff({z0, . . . , zν}) is ν. We recall that if z0, . . . , zν are affinely independent, then the expression of each element of
co({z0, . . . , zν}) as a convex combination of z0, . . . , zν is unique. In addition, if ν = n, then int(co({z0, . . . , zn})) 
= ∅
and

int
(
co

({z0, . . . , zn}
)) =

{
n∑

j=0

tj zj : tj ∈ ]0,1[ for every j ∈ {0, . . . , n},
n∑

j=0

tj = 1

}
. (1.2)

A subset P of R
n is said to be a polyhedral set if it is the intersection of a finite family of closed half-spaces.

Clearly, a polyhedral set is closed and convex. Moreover, a bounded polyhedral set turns out to be the convex envelope
of finitely many of its points.

For every C ⊆ R
n with 0 ∈ C, the polar C◦ of C is defined by

C◦ = {
x ∈ R

n: z · x � 1 for every z ∈ C
}
.

It is clear that polar sets are closed and convex. The result below describes some of their additional properties (cf.
11.20 Exercise in [33]).

Proposition 1.1. Let C ⊆ R
n be closed, convex, and with 0 ∈ C. Then

C is bounded if and only if 0 ∈ int
(
C◦),

C◦ is bounded if and only if 0 ∈ int(C),

and

C is a polyhedral set if and only if so is C◦.

Eventually, we recall that for every C ⊆ R
n, the support function σC of C is defined by

σC :x ∈ R
n �→ sup{z · x: z ∈ C}.

It is clear that support functions are convex, lower semicontinuous, and positively 1-homogeneous. Moreover,
if C ⊆ R

n satisfies 0 ∈ C, it is easy to verify that

0 � σC(x) � 1 for every x ∈ C◦, (1.3)

and, by using Proposition 1.1, that

σC(x) = 1 for every x ∈ ∂C◦, provided C is compact and convex. (1.4)
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Let f : Rn → [0,+∞] be convex. Then it is well known that domf is convex, that f is lower semicontinuous
in ri(domf ), and that the restriction of f to ri(domf ) is continuous. In particular, if int(domf ) 
= ∅, then f is
continuous in int(domf ).

For every f : Rn → [0,+∞] we denote by cof the convex envelope of f , i.e. the function

cof : z ∈ R
n �→ sup

{
φ(z): φ : Rn → [0,+∞] convex, φ(ζ ) � f (ζ ) for every ζ ∈ R

n
}
.

Clearly, cof is convex, and cof (z) � f (z) for every z ∈ R
n. Consequently, cof turns out to be the greatest convex

function on R
n less than or equal to f . The representation result below comes from Carathéodory Theorem (cf.

Corollary 17.1.3 in [32]).

Theorem 1.2. Let f : Rn → [0,+∞]. Then, for every z ∈ R
n,

cof (z) = inf
ν∑

j=0

tj f (zj ),

where the infimum is taken over all the ν ∈ {0, . . . , n}, z0, . . . , zν ∈ R
n, and t0, . . . , tν ∈ ]0,1] such that z0, . . . , zν are

affinely independent,
∑ν

j=0 tj = 1, and
∑ν

j=0 tj zj = z.

For every f : Rn → [0,+∞] we denote by f ∗∗ the convex lower semicontinuous envelope of f , i.e. the function
defined by

f ∗∗ : z ∈ R
n �→ sup

{
φ(z): φ : Rn → [0,+∞] convex and lower semicontinuous, φ(ζ ) � f (ζ )

for every ζ ∈ R
n
}
.

Clearly, f ∗∗ is convex and lower semicontinuous, and f ∗∗(z) � f (z) for every z ∈ R
n. Consequently, f ∗∗ turns out

to be the greatest convex lower semicontinuous function on R
n less than or equal to f .

Proposition 1.3. Let f : Rn → [0,+∞]. Then ri(domf ∗∗) = ri(dom(cof )) = ri(co(domf ), and

f ∗∗(z) = cof (z) for every z ∈ ri
(
co(domf )

) ∪ (
R

n \ co(domf )
)
.

We now define recession functions. To do it properly, we recall that for a given f : Rn → [0,+∞] convex, and
z0 ∈ domf , the limit limt→+∞ (f (z0 + tz) − f (z0))/t exists for every z ∈ R

n. Therefore we define the recession
function of f by

f ∞ : z ∈ R
n �→ lim

t→+∞
f (z0 + tz) − f (z0)

t
.

It is well known that f ∞ is positively 1-homogeneous, and that, if in addition f is also lower semicontinuous, then
the definition of f ∞ does not depend on z0 when it varies in domf .

1.2. Lower semicontinuity results in BV spaces

Let Ω be an open subset of R
n. By BV(Ω) we denote the set of the functions in L1(Ω) having distributional

partial derivatives that are Borel measures with bounded total variation in Ω . BV(Ω) is a Banach space with the norm
u ∈ BV(Ω) �→ ‖u‖L1(Ω) + |Du|(Ω), where, for every u ∈ BV(Ω), Du denotes the R

n-valued measure gradient of u,
and |Du| its total variation. We refer, for example, to [36] for a complete treatment of BV spaces.

If Ω has Lipschitz boundary, then functions in BV(Ω) have traces on ∂Ω in the sense that for every u ∈ BV(Ω)

there exists an element in L1(∂Ω), still denoted by u, such that∫
Ω

udivϕ dLn = −
∫
Ω

ϕ · dDu +
∫

∂Ω

ϕ · nΩudHn−1 for every ϕ ∈ (
C1(

R
n
))n

.

We also recall that, if Ω ′ is another open subset of R
n such that Ω ⊆ Ω ′, and v ∈ BV(Ω ′ \ Ω), then the function w,

defined a.e. in Ω ′ by w = u in Ω and w = v in Ω ′ \ Ω , is in BV(Ω ′), and
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Dw(E) =
∫
E

(v − u)nΩ dHn−1 for every Borel set E ⊆ ∂Ω. (1.5)

By BV loc(R
n) we denote the set of the functions in L1

loc(R
n) that are in BV(Ω) for every bounded open set Ω . We

recall that BV loc(R
n) is a Fréchet space.

By A0(R
n) we denote the set of the bounded open subsets of R

n.
If f : Rn → [0,+∞] is convex and lower semicontinuous, we define the functional Ff as

Ff : (Ω,u) ∈A0
(
R

n
) × BV loc

(
R

n
) �→

∫
Ω

f (∇u)dLn +
∫
Ω

f ∞
(

dDsu

d|Dsu|
)

d
∣∣Dsu

∣∣. (1.6)

It is clear that

Ff (Ω,u) =
∫
Ω

f (∇u)dLn for every (Ω,u) ∈A0
(
R

n
) × W

1,1
loc

(
R

n
)
. (1.7)

The following lower semicontinuity property holds (cf. for example Theorem 7.4.6 in [8]).

Proposition 1.4. Let f : Rn → [0,+∞] be convex and lower semicontinuous, and let Ff be defined in (1.6). Then,
for every Ω ∈A0(R

n), Ff (Ω, ·) is L1
loc(Ω)-lower semicontinuous.

Analogously, if f is a s above, z0 ∈ domf , and Ω ∈A0(R
n) has Lipschitz boundary, we define Ff (uz0 ,Ω, ·) as

Ff (uz0 ,Ω, ·) :u ∈ BV loc
(
R

n
)

�→
∫
Ω

f (∇u)dLn +
∫
Ω

f ∞
(

dDsu

d|Dsu|
)

d
∣∣Dsu

∣∣ +
∫

∂Ω

f ∞(
(uz0 − u)nΩ

)
dHn−1. (1.8)

It is clear that

Ff (uz0Ω,u) =
∫
Ω

f (∇u)dLn for every Ω ∈ A0
(
R

n
)

with Lipschitz boundary, u ∈ uz0 + W
1,1
0 (Ω). (1.9)

Since (1.5), and the 1-homogeneity of f ∞ imply

Ff (uz0Ω,u) = Ff (Ω ′, u) − f (z0)Ln(Ω ′ \ Ω) whenever z0 ∈ domf, Ω ∈A0
(
R

n
)

has Lipschitz boundary,

Ω ′ ∈A0
(
R

n
)

satisfies Ω ⊆ Ω ′, and u ∈ BV(Ω ′) is such that u = uz0 a.e. in Ω ′ \ Ω,

the lower semicontinuity result below follows from Proposition 1.4.

Proposition 1.5. Let f : Rn → [0,+∞] be convex and lower semicontinuous, and let z0 ∈ domf . Let Ω ∈ A0(R
n)

have Lipschitz boundary, and let Ff (uz0 ,Ω, ·) be defined in (1.8). Then Ff (uz0 ,Ω, ·) is L1(Ω)-lower semicontinu-
ous.

Let B1 be the unit open ball of R
n centred in 0, and let α be a symmetric mollifier, namely a nonnegative function

in C∞
0 (B1), symmetric with respect to 0, and such that

∫
B1

α dLn = 1. For every u ∈ L1
loc(R

n), η > 0, and x ∈ R
n, let

us denote by uη(x) the regularization of u at x defined by

uη(x) = 1

ηn

∫
Rn

α

(
x − y

η

)
u(y)dy.

It is well known that for every η > 0, uη ∈ C∞(Rn), and that uη → u in L1
loc(R

n) as η → 0.
The following approximation in energy result for Ff holds (cf. Lemma 7.4.4 in [8]). In it and in the following, for

every Ω ∈A0(R
n) and η > 0, we set Ω−

η = {x ∈ Ω: dist(x, ∂Ω) > η}.
Proposition 1.6. Let f : Rn → [0,+∞] be convex and lower semicontinuous, and let Ff be defined in (1.6). Then

Ff

(
Ω−

η , uη

)
� Ff (Ω,u) for every Ω ∈A0

(
R

n
)
, u ∈ BV loc

(
R

n
)
, and η > 0.
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1.3. Measure theoretic preliminaries

Let ϑ :A0(R
n) → [0,+∞]. We say that ϑ is increasing if

ϑ(Ω1) � ϑ(Ω2) for every Ω1,Ω2 ∈ A0
(
R

n
)

such that Ω1 ⊆ Ω2.

We denote by ϑ− the inner regular envelope of ϑ defined by

ϑ− :Ω ∈A0
(
R

n
) �→ sup

{
ϑ(A): A ∈A0

(
R

n
)
, A ⊆ Ω

}
,

and say that ϑ is inner regular in Ω ∈A0(R
n) if

ϑ(Ω) = ϑ−(Ω).

It is clear that ϑ− is increasing, and that it is inner regular in Ω for every Ω ∈A0(R
n).

Hereafter, if U is a set, Φ :A0(R
n) × U → [0,+∞], and u ∈ U , we denote by Φ−(·, u) the inner regular envelope

of Φ(·, u), namely the function defined, for every Ω ∈A0(R
n), by Φ−(Ω,u) = Φ(·, u)−(Ω).

For every S ⊆ R
n, every function u on S, x0 ∈ R

n, and t > 0, we define ux0,t as

ux0,t :x ∈ x0 + 1

t
(S − x0) �→ 1

t
u
(
x0 + t (x − x0)

)
. (1.10)

The following inner regularity criterion is proved, also in a more general setting, in Proposition 2.7.4 of [8].

Proposition 1.7. Let Φ :A0(R
n)×BV loc(R

n) → [0,+∞] be such that for every u ∈ BV loc(R
n), Φ(·, u) is increasing.

Let Ω ∈A0(R
n) be convex, u ∈ BV loc(R

n), x0 ∈ Ω , and assume that

lim inf
t→1− Φ(Ω,ux0,t ) � Φ(Ω,u),

lim sup
t→1+

Φ−
(
x0 + t (Ω − x0), ux0,1/t

)
� Φ−(Ω,u).

Then

Φ(Ω,u) = Φ−(Ω,u).

The following paving result comes from the Vitali Covering Theorem.

Proposition 1.8. Let Ω ⊆ R
n be open, and let K be a compact subset of R

n such that 0 ∈ K and Ln(K) > 0. Then
there exist {xh} ⊆ Ω and {th} ⊆ ]0,1] such that the sets {xh + thK: h ∈ N} are contained in Ω , pairwise disjoint, and

Ln

(
Ω

∖ ⋃
h∈N

(xh + thK)

)
= 0.

Proof. The Vitali Covering Theorem (cf. for example Corollary 2 at page 28 of [21]) provides a sequence {Ch} of
pairwise disjoint closed balls in Ω with radius less than or equal to diam(K), and Ln(Ω \⋃

h∈N
Ch) = 0. Let {Bh} the

sequence of the corresponding open balls, then it is easy to verify that also Ln(Ω \ ⋃
h∈N

Bh) = 0. Let B be an open
ball centred in 0 and with radius strictly greater than diam(K). Then, if for every h ∈ N, x1

h is the centre of Bh and r1
h

is its radius divided by the radius of B , we deduce that {r1
h} ⊆ ]0,1], and, since 0 ∈ K , that x1

h + r1
hK ⊆ x1

h + r1
hB = Bh

for every h ∈ N. Because of this, the sets {x1
h + r1

hK: h ∈ N} too are pairwise disjoint, and

Ln

(
Ω

∖ ⋃
h∈N

(
x1
h + r1

hK
)) = Ln

(( ⋃
h∈N

Bh

) ∖ ( ⋃
h∈N

(
x1
h + r1

hK
)))

=
∑
h∈N

Ln
((

x1
h + r1

hB
) ∖ (

x1
h + r1

hK
))

= Ln(B \ K)

Ln(B)

∑
h∈N

(
r1
h

)nLn(B) = Ln(B \ K)

Ln(B)
Ln(Ω).

Now, let us set Ω1 = (
⋃

h∈N
Bh) \ ⋃

h∈N
(x1

h + r1
hK). Then, since Ω1 = ⋃

h∈N
(Bh \ (x1

h + r1
hK)), Ω1 turns out to

be open. Consequently, we can repeat the above argument starting from Ω1 in place of Ω , thus getting {x2
h} ⊆ Ω1 and

{r2} ⊆ ]0,1] such that the sets {xi + ri K: i ∈ {1,2}, h ∈ N} are pairwise disjoint,
h h h
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Ln

(
Ω1

∖ ⋃
h∈N

(
x2
h + r2

hK
)) = Ln(B \ K)

Ln(B)
Ln(Ω1) = Ln(B \ K)

Ln(B)
Ln

(( ⋃
h∈N

Bh

) ∖ ⋃
h∈N

(
x1
h + r1

hK
))

= Ln(B \ K)

Ln(B)
Ln

(
Ω

∖ ⋃
h∈N

(
x1
h + r1

hK
)) =

(Ln(B \ K)

Ln(B)

)2

Ln(Ω),

and

Ln

(
Ω

∖ ⋃
i∈{1,2}

⋃
h∈N

(
xi
h + ri

hK
)) = Ln

(
Ω1

∖ ⋃
h∈N

(
x2
h + r2

hK
)) =

(Ln(B \ K)

Ln(B)

)2

Ln(Ω).

By iterating the above argument, we obtain that for every m ∈ N there exist {xm
h } ⊆ Ω and {rm

h } ⊆ ]0,1] such that
the sets {xi

h + ri
hK: i ∈ {1, . . . ,m}, h ∈ N} are pairwise disjoint, and

Ln

(
Ω

∖ ⋃
i∈{1,...,m}

⋃
h∈N

(
xi
h + ri

hK
)) =

(Ln(B \ K)

Ln(B)

)m

Ln(Ω).

Because of this, we conclude that the sets {xi
h + ri

hK: i ∈ N, h ∈ N} satisfy the properties required in the proposi-
tion. �
1.4. Relaxed functionals

Here we define the relaxed functionals that we will consider in this the paper.
For every f : Rn → [0,+∞] Borel, Ω ∈A0(R

n), and u0 ∈ W 1,∞(Ω), we define

�F(Ω, ·) :u ∈ L1(Ω) �→ min

{
lim inf
h→+∞

∫
Ω

f (∇uh)dLn: {uh} ⊆ W 1,∞(Ω), uh → u in L1(Ω)

}
(1.11)

and, in order to analyze Dirichlet type problems,

�F(u0,Ω, ·) :u ∈ L1(Ω) �→ min

{
lim inf
h→+∞

∫
Ω

f (∇uh)dLn: {uh} ⊆ u0 + W
1,∞
0 (Ω), uh → u in L1(Ω)

}
, (1.12)

where the minima are trivially attained, since the L1(Ω)-topology is metric.
For technical reasons, and to deduce sharper estimates as well, we need to introduce the two additional relaxed

functionals below, analogous to the above ones, but in the uniform convergence topology. To this aim, when no
confusion occurs, we denote, for every Ω ∈ A0(R

n), by C0(Ω) both the space of the continuous functions on Ω and
the usual topology of the uniform convergence on Ω . We define

�G(Ω, ·) :u ∈ C0(Ω ) �→ min

{
lim inf
h→+∞

∫
Ω

f (∇uh)dLn: {uh} ⊆ W 1,∞(Ω), uh → u in C0(Ω )}
(1.13)

and

�G(u0,Ω, ·) :u ∈ C0(Ω ) �→ min

{
lim inf
h→+∞

∫
Ω

f (∇uh)dLn: {uh} ⊆ u0 + W
1,∞
0 (Ω), uh → u in C0(Ω )}

. (1.14)

We recall that, for every Ω ∈ A0(R
n) and u0 ∈ W 1,∞(Ω), �F(Ω, ·) and �F(u0,Ω, ·) are L1(Ω)-lower semicontin-

uous, and that �G(Ω, ·) and �G(u0,Ω, ·) are C0(Ω)-lower semicontinuous. Obviously,

�F(Ω,u) � �G(Ω,u), �F(u0,Ω,u) � �G(u0,Ω,u) for every u ∈ C0(Ω )
. (1.15)

Finally, we observe that (1.7) and Proposition 1.4 provide∫
f ∗∗(∇u)dLn +

∫ (
f ∗∗)∞

(
dDsu

d|Dsu|
)

d
∣∣Dsu

∣∣ � �F(Ω,u) for every Ω ∈ A0
(
R

n
)
, u ∈ BV(Ω), (1.16)
Ω Ω
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whilst (1.9) and Proposition 1.5 imply∫
Ω

f ∗∗(∇u)dLn +
∫
Ω

(
f ∗∗)∞

(
dDsu

d|Dsu|
)

d
∣∣Dsu

∣∣ +
∫

∂Ω

(
f ∗∗)∞(

(uz0 − u)nΩ

)
dHn−1 � �F(uz0 ,Ω,u)

for every Ω ∈ A0
(
R

n
)

with Lipschitz boundary, u ∈ BV(Ω). (1.17)

2. A representation result for piecewise affine functions

For every E ⊆ R
n, we denote by χE the characteristic function of E defined as χE(x) = 1 if x ∈ E and χE(z) = 0

if x ∈ R
n \ E.

Let u be a continuous function on R
n. We say that u is piecewise affine if

u(x) =
m∑

j=1

(
uzj

(x) + sj
)
χPj

(x) for a.e. x ∈ R
n. (2.1)

for some m ∈ N, z1, . . . , zm ∈ R
n, s1, . . . , sm ∈ R, and some polyhedral sets P1, . . . ,Pm with nonempty pairwise

disjoint open interiors such that
⋃m

j=1 Pj = R
n. We observe explicitly that the presence of the a.e. requirement in

(2.1) is simply due to the closedness of polyhedral sets. Actually (2.1) holds for every x in
⋃m

j=1 int(Pj ).
We denote by PA(Rn) the set of the piecewise affine functions.
In the theorem below we prove that every piecewise affine function u as in (2.1) can be represented on a convex

open set Ω as a maximum of minima of some of its components uzj
+ sj for which int(Pj ) ∩ Ω 
= ∅. The result

has been already proved in [4] in the framework of homogenization problems. Here we propose a more direct and
elementary proof.

Given x1, x2 ∈ R
n, we set [x1, x2] = {tx1 + (1 − t)x2: t ∈ [0,1]}, and so on for ]x1, x2], [x1, x2[, ]x1, x2[.

Theorem 2.1. Let u = ∑m
j=1(uzj

+ sj )χPj
be in PA(Rn), and let Ω be a convex open subset of R

n. Then there exist
k ∈ N and N1, . . . ,Nk ⊆ {j ∈ {1, . . . ,m}: int(Pj ) ∩ Ω 
= ∅} such that

u(x) = max
i∈{1,...,k}

min
j∈Ni

(
uzj

(x) + sj
)

for every x ∈ Ω.

Proof. For simplicity, let us assume that for some mΩ ∈ {1, . . . ,m}, int(Pj ) ∩ Ω 
= ∅ if and only if j ∈ {1, . . . ,mΩ}.
Let us denote by I the set of the indexes in {1, . . . ,mΩ } corresponding to the truly different components of u living
in Ω , namely I = {1} ∪ {j ∈ {2, . . . ,mΩ}: zj 
= zi or sj 
= si for every i ∈ {1, . . . , j − 1}}, and let A be the subset
of Ω where such components are different, i.e. A = Ω \ {x ∈ Ω: there exist i, j ∈ I with i 
= j and uzi

(x) + si =
uzj

(x)+ sj }. It is clear that A is open, dense in Ω , and that it possesses a finite number of connected components, say
A1, . . . ,Ak . We observe that for every i ∈ {1, . . . , k}, Ai is open, that u turns out to be affine in Ai , and that

for every p, q ∈ I with p 
= q it results that uzp (x) + sp > uzq (x) + sq for every x ∈ Ai,

or that uzp (x) + sp < uzq (x) + sq for every x ∈ Ai. (2.2)

Let us prove that for every i ∈ {1, . . . , k} there exists Ni ⊆ I such that, if

vi :x ∈ R
n �→ min

j∈Ni

(
uzj

(x) + sj
)
,

then

vi(x) = u(x) for every x ∈ Ai, (2.3)

and

vi(x) � u(x) for every x ∈ Ω. (2.4)

To do this, let i ∈ {1, . . . , k}, and let us define

Ni = {
j ∈ I : uz (x) + sj � u(x) for every x ∈ Ai

}
.

j
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Then, since u is affine in Ai , it is clear that (2.3) holds.
To prove (2.4), we take for the moment x ∈ A \ Ai , and fix x0 ∈ Ai . Then (2.3) implies that {y ∈ [x0, x]: vi � u

in [x0, y]} is nonempty, so that it possesses a point that is the farthest from x0. Call x1 such point, and observe that,
by the continuity of vi and of u,

vi(x1) = u(x1).

Moreover, by (2.3), x1 /∈ Ai and, in particular, x1 
= x0. If

vi(x) > u(x), (2.5)

x1 turns out to be different from x, hence there exists x2 ∈ ]x1, x[ such that

vi(x2) > u(x2).

Now, we observe that the convexity of Ω implies [x0, x] ⊆ Ω , so that x2 ∈ Ω . Moreover, since x ∈ A and Ω \ A is
made up by the intersection of a finite numbers of hyperplanes with Ω , x2 too can be taken in A and so close to x1 to
belong to the same connected component of A whose closure contains x1. In such connected component, u = uzl

+ sl
for some l ∈ I , thus we have that vi(x1) = uzl

(x1) + sl and vi(x2) > uzl
(x2) + sl . Consequently, the concavity of vi

implies that vi < uzl
+ sl in [x0, x1[, and, since x1 
= x0, that

vi(x0) < uzl
(x0) + sl .

Once we recall that u is affine in Ai , (2.2), the previous inequality, and (2.3) imply that u < uzl
+ sl in Ai , and hence,

by the definition of vi , that

vi(x2) � uzl
(x2) + sl = u(x2).

This yields a contradiction, since vi(x2) > u(x2). Consequently, (2.5) cannot hold, and, by using also (2.3), we con-
clude that vi(x) � u(x) for every x ∈ A. Because of this, and of the continuity of vi and of u, we deduce (2.4).

By (2.3) and (2.4), the theorem follows. �
We conclude this section by recalling that Example 2.2 in [4] shows that, in general, in Theorem 2.1 the convexity

assumption on Ω cannot be dropped, and not even replaced by a connectedness one.

3. Relaxation of gradient constrained Neumann problems

Let f : Rn → [0,+∞] be Borel. In this section we prove the representation result for the functional �F in (1.11).
We start with some preparatory convex analysis lemmas. Since the first two need to be established in an

R
ν -space, with ν not necessarily equal to n, the symbol ∇ and the expression a.e. used there will be referred to

the R
ν -environment and to Lν respectively.

Lemma 3.1. Let ν ∈ N, let ζ0, . . . , ζν ∈ R
ν be affinely independent, let t0, . . . , tν ∈ ]0,1[ be such that

∑ν
j=0 tj = 1

and
∑ν

j=0 tj ζj = 0, and let ω ∈ A0(R
ν). Then there exists v ∈ W

1,∞
0 (ω) such that −1 � v(x) < 0 and ∇v(x) ∈

{ζ0, . . . , ζν} for a.e. x ∈ ω, and Lν({x ∈ ω: ∇v(x) = ζj }) = tjLν(ω) for every j ∈ {0, . . . , ν}.

Proof. Let us set C = co({ζ0, . . . , ζν}). Then C is a bounded polyhedral set. Moreover, by (1.2), 0 ∈ int(C), and, by
Proposition 1.1, C◦ turns out to be polyhedral, compact, and 0 ∈ int(C◦).

By Proposition 1.8 applied to n = ν, Ω = ω, and K = C◦, there exist {xk} ⊆ ω and {tk} ⊆ ]0,1] such that the sets
{xk + tkC

◦: k ∈ N} are contained in ω, pairwise disjoint, and Lν(ω \ ⋃
k∈N

(xk + tkC
◦)) = 0.

Let σC be the support function of C. Then it is easy to verify that

σC(x) = max
{
uζj

(x): j ∈ {0, . . . , ν}} for every x ∈ R
ν,

from which it follows that σC ∈ PA(Rν).
For every k ∈ N and x ∈ xk + tkC

◦, we now define

wk(x) = tkσC

(
x − xk

)
− tk.
tk
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Then, by (1.3) and (1.4), we deduce that −tk � wk(x) < 0 for every k ∈ N and x ∈ int(xk + tkC
◦), and that wk(x) = 0

for every k ∈ N and x ∈ ∂(xk + tkC
◦). Consequently, if we define for every x ∈ ω,

v(x) =
{

wk(x) if k is the only integer such that x ∈ int
(
xk + tkC

◦),
0 if x /∈ ⋃

k∈N
int

(
xk + tkC

◦),
it turns out that v ∈ W

1,∞
0 (ω), and that −1 � v(x) < 0 and ∇v(x) ∈ {ζ0, . . . , ζk} for a.e. x ∈ ω.

Eventually, by the divergence theorem, we have that

0 =
∫
ω

∇v(x)dLν =
ν∑

j=0

Lν
({

x ∈ ω : ∇v(x) = ζj

})
ζj .

Because of this, since ζ0, . . . , ζν are affinely independent and hence 0 can be uniquely expressed as a convex combi-
nation of ζ0, . . . , ζν , we also obtain that

Lν
({

x ∈ ω: ∇v(x) = ζj

}) = tjLν(ω) for every j ∈ {0, . . . , ν}.
This completes the proof of the lemma. �

Hereafter, given {uh} ⊆ L∞
loc(R

n) and u ∈ L∞
loc(R

n), we say that uh → u in weak*-L∞
loc(R

n) if uh → u in weak*-

L∞(A) for every A ∈A0(R
n). Analogously, if {uh} ⊆ W

1,∞
loc (Rn) and u ∈ W

1,∞
loc (Rn), we say that uh → u in weak*-

W
1,∞
loc (Rn) if uh → u in weak*-W 1,∞(A) for every A ∈A0(R

n).

Lemma 3.2. Let ν ∈ N, let ζ0, . . . , ζν ∈ R
ν be affinely independent, and let t0, . . . , tν ∈ ]0,1[ be such that

∑ν
j=0 tj = 1

and
∑ν

j=0 tj ζj = 0. Then there exists {vh} ⊆ W
1,∞
loc (Rν), with vh → 0 in weak*-W 1,∞

loc (Rν), such that − 1
h

� vh(x) < 0
and ∇vh(x) ∈ {ζ0, . . . , ζν} for every h ∈ N and a.e. x ∈ R

ν . In particular, χ{x∈Rν : ∇vh(x)=ζj } → tj in weak*-L∞
loc(R

ν)

for every j ∈ {0, . . . , ν}.

Proof. An application of Lemma 3.1 with ω = ]0,1[ν provides v ∈ W
1,∞
0 (]0,1[ν) such that −1 � v(x) < 0 and

∇v(x) ∈ {ζ0, . . . , ζν} for a.e. x ∈ ]0,1[ν , and

Lν
({

x ∈ ]0,1[ν : ∇v(x) = ζj

}) = tj for every j ∈ {0, . . . , ν}. (3.1)

Since v is equal to 0 on ∂]0,1[ν , we can extend it by periodicity to the whole R
ν . Call again v such extension. For

every h ∈ N and every x ∈ R
ν , now we set vh(x) = 1

h
v(hx). Then {vh} satisfies the required properties. In particular,

if A ∈A0(R
ν), j ∈ {0, . . . , ν} and ψ ∈ L1(A), by the ]0,1[ν -periodicity of χ{x∈Rν :∇v(x)=ζj } and (3.1), we have that

lim
h→+∞

∫
A

χ{x∈Rν : ∇vh(x)=ζj }(y)ψ(y)dLν = lim
h→+∞

∫
A

χ{x∈Rν : ∇v(x)=ζj }(hy)ψ(y)dLν = tj

∫
A

ψ(y)dLν,

from which also the last part of the lemma follows. �
Lemma 3.3. Let n ∈ N and ν ∈ {0, . . . , n}, let z0, . . . , zν ∈ R

n be affinely independent, and let t0, . . . , tν ∈ ]0,1]
be such that

∑ν
j=0 tj = 1 and

∑ν
j=0 tj zj = 0. Then there exists {vh} ⊆ W

1,∞
loc (Rn), with vh → 0 in weak*-

W
1,∞
loc (Rn), such that − 1

h
� vh(x) < 0 and ∇vh(x) ∈ {z0, . . . , zν} for every h ∈ N and a.e. x ∈ R

n. In particular,
χ{x∈Rn: ∇vh(x)=zj } → tj in weak*-L∞

loc(R
n) for every j ∈ {0, . . . , ν}.

Proof. If ν = 0, then z0 = 0 and t0 = 1. Then the lemma follows by considering {vh} with vh(x) = − 1
h

for every
h ∈ N and every x ∈ R

n.
If ν = n the lemma follows from Lemma 3.2.
If ν ∈ {1, . . . , n − 1}, we observe that 0 ∈ aff({z0, . . . , zν}), and consider an orthogonal matrix R : Rn → R

n such
that

R
(
R

ν × {0n−ν}
) = aff

({z0, . . . , zν}
)
,



R. De Arcangelis / Ann. I. H. Poincaré – AN 24 (2007) 113–137 125
where 0n−ν is the origin of R
n−ν . Let us set ζ0 = Prν(R−1z0), . . . , ζν = Prν(R−1zν), where Prν is the projection oper-

ator from R
n to R

ν . Then ζ0, . . . , ζν turn out to be affinely independent, and
∑ν

j=0 tj ζj = Prν(R−1(
∑ν

j=0 tj zj )) = 0ν .

Let {wh} ⊆ W
1,∞
loc (Rν) be given by Lemma 3.2 applied to the above ζ0, . . . , ζν . For every h ∈ N, y = (y1, . . . , yn) ∈

R
n, and x ∈ R

n, we set ṽh(y) = wh(y1, . . . , yν) and vh(x) = ṽh(R
−1x). Then vh → 0 in weak*-W 1,∞

loc (Rn), and
− 1

h
� vh(x) < 0 for every h ∈ N and a.e. x ∈ R

n. Moreover, since R−1 = RT (the transpose of R), we have(∇xvh(x)
)T = ∇y ṽh

(
R−1x

)
R−1 = ∇y ṽh

(
R−1x

)
RT = (

R∇y ṽh

(
R−1x

))T for every h ∈ N and a.e. x ∈ R
n,

from which, once we recall that ∇y ṽh(y) ∈ {(ζ0,0n−ν), . . . , (ζν,0n−ν)} = {R−1z0, . . . ,R
−1zν} for every h ∈ N and

a.e. y ∈ R
n, we conclude that

∇xvh(x) ∈ {z0, . . . , zν} for every h ∈ N and a.e. x ∈ R
n.

Now, we fix j ∈ {0, . . . , ν}, and set for every h ∈ N,

Aj,h = {
x ∈ R

n: ∇vh(x) = zj

}
, Bj,h = {

y ∈ R
ν : ∇wh(y) = ζj

}
.

Then

Aj,h = R
(
Bj,h × R

n−ν
)

for every h ∈ N. (3.2)

By (3.2), for every h ∈ N, A ∈ A0(R
n), and ψ ∈ L1(A), we have that∫

A

χAj,h
(x)ψ(x)dLn =

∫
Aj,h

χA(x)ψ(x)dLn =
∫

R(Bj,h×Rn−ν )

χA(x)ψ(x)dLn =
∫

Bj,h×Rn−ν

χA(Ry)ψ(Ry)dLn

=
∫

Rn−ν

( ∫
Bj,h

χA(Ry)ψ(Ry)dy1 · · ·dyν

)
dyν+1 · · · dyn

=
∫

Rn−ν

( ∫
Rν

χBj,h
(y)χA(Ry)ψ(Ry)dy1 · · · dyν

)
dyν+1 · · · dyn,

from which, again by Lemma 3.2 and Lebesgue Dominated Convergence Theorem, we deduce that

lim
h→+∞

∫
A

χAj,h
(x)ψ(x)dLn = tj

∫
Rn−ν

( ∫
Rν

χA(Ry)ψ(Ry)dy1 · · · dyν

)
dyν+1 · · · dyn

= tj

∫
Rn

χA(Ry)ψ(Ry)dLn = tj

∫
A

ψ(x)dLn

for every A ∈ A0
(
R

n
)

and ψ ∈ L1(A).

Because of this, we have that χ{x∈Rn: ∇vh(x)=zj } → tj in weak*-L∞
loc(R

n), and the lemma follows also in this case. �
The above lemmas allow us to prove the basic inequality below, that is the starting point for the proof of the

representation result.

Lemma 3.4. Let f : Rn → [0,+∞] be Borel. Then

inf

{
lim inf
h→+∞

∫
Ω

f (∇uh)dLn: {uh} ⊆ W 1,∞(Ω), uh → uz in weak*-W 1,∞(Ω)

}
� cof (z)Ln(Ω)

for every Ω ∈A0
(
R

n
)
, z ∈ R

n.

Proof. Let Ω , z be as above. Let us assume that cof (z) < +∞, and take ε > 0. Then Theorem 1.2 provides
ν ∈ {0, . . . , n}, z0, . . . , zν ∈ R

n, and t0, . . . , tν ∈ ]0,1] such that z0, . . . , zν are affinely independent,
∑ν

j=0 tj = 1,∑ν
tj zj = z, and
j=0



126 R. De Arcangelis / Ann. I. H. Poincaré – AN 24 (2007) 113–137
ν∑
j=0

tj f (zj ) � cof (z) + ε. (3.3)

Because of this, the vectors z0 − z, . . . , zν − z turn out to be affinely independent, and
∑ν

j=0 tj (zj − z) = 0. Let

{vh} ⊆ W
1,∞
loc (Rn) be given by Lemma 3.3 applied to z0 − z, . . . , zν − z. Then uz + vh → uz in weak*-W 1,∞(Ω), and

χ{x∈Rn: z+∇vh(x)=zj } → tj in weak*-L∞(Ω) for every j ∈ {0, . . . , ν}. (3.4)

Consequently, by (3.4) and (3.3), we obtain

inf

{
lim inf
h→+∞

∫
Ω

f (∇uh)dLn: {uh} ⊆ W 1,∞(Ω), uh → uz in weak*-W 1,∞(Ω)

}

� lim inf
h→+∞

∫
Ω

f (z + ∇vh)dLn = lim inf
h→+∞

ν∑
j=0

Ln
({

x ∈ Ω: z + ∇vh(x) = zj

})
f (zj )

=
ν∑

j=0

tjLn(Ω)f (zj ) �
(
cof (z) + ε

)
Ln(Ω) for every ε > 0.

As ε → 0, the lemma follows. �
In the results below we establish some inequalities for �G in (1.13). These will provide the representation result

for �F in (1.11).

Proposition 3.5. Let f : Rn → [0,+∞] be Borel, and let �G be given by (1.13). Then

�G(Ω,uz) � f ∗∗(z)Ln(Ω) for every Ω ∈ A0
(
R

n
)
, z ∈ R

n.

Proof. Let Ω , z be as above, and take t ∈ [0,1[. Let us assume that f ∗∗(z) < +∞, and take z0 ∈ ri(domf ∗∗).
Then (1.1) and Proposition 1.3 yield tz + (1 − t)z0 ∈ ri(domf ∗∗) and f ∗∗(tz + (1 − t)z0) = cof (tz + (1 − t)z0).
Consequently, Lemma 3.4 and the convexity of f ∗∗ provide

�G(Ω,utz+(1−t)z0) � inf

{
lim inf
h→+∞

∫
Ω

f (∇uh)dLn: {uh} ⊆ W 1,∞(Ω), uh → utz+(1−t)z0 in weak*-W 1,∞(Ω)

}
� cof

(
tz + (1 − t)z0

)
Ln(Ω) = f ∗∗(tz + (1 − t)z0

)
Ln(Ω) �

(
tf ∗∗(z) + (1 − t)f ∗∗(z0)

)
Ln(Ω).

Because of this, and of the C0(Ω)-lower semicontinuity of �G(Ω, ·), we conclude as t → 1− that

�G(Ω,uz) � lim inf
t→1−

�G(Ω,utz+(1−t)z0) � f ∗∗(z)Ln(Ω),

from which the proposition follows. �
In order to extend Proposition 3.5 to piecewise affine functions, we need the preparatory lemma below.

Lemma 3.6. Let f : Rn → [0,+∞] be Borel, and let �G be given by (1.13). Let Ω ∈ A0(R
n), and let U ⊆ W 1,1(Ω) ∩

C0(Ω ) be such that

�G(Ω,u) �
∫
Ω

f ∗∗(∇u)dLn < +∞ for every u ∈ U. (3.5)

Then, for every m ∈ N and every u1, . . . , um ∈ U , it results that

�G(
Ω,min{u1, . . . , um}) �

∫
f ∗∗(∇ min{u1, . . . , um})dLn < +∞ (3.6)m
Ω
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and

�G(
Ω,max{u1, . . . , um}) �

∫
Ω

f ∗∗(∇ max{u1, . . . , um})dLn < +∞. (3.7)m

Proof. Let us prove the inequalities in (3.6), the proof for those in (3.7) being similar.
We argue by induction on m.
If m = 1, (3.5) clearly implies (3.6)1.
Let now m ∈ N, and prove that (3.6)m implies (3.6)m+1. To do this, let u1, . . . , um+1 ∈ U , and set u =

min{u1, . . . , um+1} and v = min{u1, . . . , um}. Then, by (3.5) and (3.6)m, there exist {um+1
h } and {vh} in W 1,∞(Ω)

such that um+1
h → um+1 in C0(Ω), vh → v in C0(Ω), and⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

lim sup
h→+∞

∫
Ω

f
(∇um+1

h

)
dLn �

∫
Ω

f ∗∗(∇um+1)dLn < +∞,

lim sup
h→+∞

∫
Ω

f (∇vh)dLn �
∫
Ω

f ∗∗(∇v)dLn < +∞.

(3.8)

Now, we observe that min{vh,u
m+1
h } → u, and max{vh,u

m+1
h } → max{v,um+1} in C0(Ω), and that

f
(∇ min

{
vh,u

m+1
h

}
(x)

) = f
(∇vh(x)

) + f
(∇um+1

h (x)
) − f

(∇ max
{
vh,u

m+1
h

}
(x)

)
for every h ∈ N and a.e. x ∈ Ω. (3.9)

Therefore, since clearly (3.8) implies

lim sup
h→+∞

∫
Ω

f
(∇ max

{
vh,u

m+1
h

})
dLn � lim sup

h→+∞

∫
Ω

f (∇vh)dLn + lim sup
h→+∞

∫
Ω

f
(∇um+1

h

)
dLn < +∞,

by (3.8), (3.9), (1.15), and (1.16), we have

�G(Ω,u) � lim inf
h→+∞

∫
Ω

f
(∇ min

{
vh,u

m+1
h

})
dLn

� lim sup
h→+∞

∫
Ω

f (∇vh)dLn + lim sup
h→+∞

∫
Ω

f
(∇um+1

h

)
dLn − lim inf

h→+∞

∫
Ω

f
(∇ max

{
vh,u

m+1
h

})
dLn

�
∫
Ω

f ∗∗(∇um+1)dLn +
∫
Ω

f ∗∗(∇v)dLn − �G(
Ω,max{v,um+1}

)
�

∫
Ω

f ∗∗(∇um+1)dLn +
∫
Ω

f ∗∗(∇v)dLn −
∫
Ω

f ∗∗(∇ max{v,um+1}
)

dLn < +∞. (3.10)

By (3.10), inequality (3.6)m+1 and the lemma follow once we observe that, since

f ∗∗(∇um+1(x)
) + f ∗∗(∇v(x)

) − f ∗∗(∇ max{v,um+1}(x)
) = f ∗∗(∇u(x)

)
for a.e. x ∈ Ω

and ∫
Ω

f ∗∗(∇ max{v,um+1}
)

dLn �
∫
Ω

f ∗∗(∇v)dLn +
∫
Ω

f ∗∗(∇um+1)dLn < +∞,

the last line of (3.10) is equal to
∫
Ω

f ∗∗(∇u)dLn. �
Proposition 3.7. Let f : Rn → [0,+∞] be Borel, and let �G be given by (1.13). Then

�G(Ω,u) �
∫
Ω

f ∗∗(∇u)dLn for every Ω ∈A0
(
R

n
)

convex, u ∈ PA
(
R

n
)
.
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Proof. Let Ω , u = ∑m
j=1(uzj

+ sj )χPj
be as above. Then, by Theorem 2.1, we obtain the existence of k ∈ N and of

N1, . . . ,Nk ⊆ {j ∈ {1, . . . ,m}: int(Pj ) ∩ Ω 
= ∅} such that

u(x) = max
i∈{1,...,k}

min
j∈Ni

(
uzj

(x) + sj
)

for every x ∈ Ω.

Let us observe that it is not restrictive to assume that
∫
Ω

f ∗∗(∇u)dLn < +∞, that is

f ∗∗(zj ) < +∞ for every j ∈ {1, . . . ,m} such that int(Pj ) ∩ Ω 
= ∅. (3.11)

Let i ∈ {1, . . . , k}, mi be the cardinality of Ni , and vi = minj∈Ni
(uzj

+ sj ). Then, by Proposition 3.5, (3.11), and
(3.6)mi

of Lemma 3.6 applied with U = {uzj
+ sj : j ∈ Ni}, we obtain

�G(Ω,vi) �
∫
Ω

f ∗∗(∇vi)dLn < +∞ for every i ∈ {1, . . . , k}. (3.12)

At this point, by (3.12) and (3.7)k of Lemma 3.6 applied with U = {vi : i ∈ {1, . . . , k}}, we deduce the proposi-
tion. �
Lemma 3.8. Let f : Rn → [0,+∞] be Borel, and let �G be given by (1.13). Then

�G−(Ω,u) �
∫
Ω

f ∗∗(∇u)dLn for every Ω ∈ A0
(
R

n
)

convex, u ∈ C1(
R

n
)
.

Proof. Let Ω , u be as above. Obviously, we can assume that ∇u(x) ∈ domf ∗∗ for every x ∈ Ω . If domf ∗∗ contains
only a single point then the thesis follows by Proposition 3.5, therefore it is not restrictive to assume that the dimension
ν of aff(domf ∗∗) is bigger than zero.

We first consider the case in which

0 ∈ ri
(
domf ∗∗). (3.13)

If ν = n, let R be the identity matrix on R
n. If ν < n, let R be an orthogonal matrix such that

R
(
aff

(
domf ∗∗)) = R

ν × {0n−ν}. (3.14)

In both cases, let us define the function ũ by

ũ :y ∈ R
n �→ u

(
R−1y

)
,

then, as in the proof of Lemma 3.3, we have that

∇yũ(y) = R∇xu
(
R−1y

)
for every y ∈ R

n. (3.15)

Since ∇u(x) ∈ domf ∗∗ for every x ∈ Ω , by (3.15) and (3.14) we infer that, when ν < n, ∇ũ(y) has the last n − ν

entries equal to zero for every y ∈ RΩ . Hence, by taking into account the convexity of RΩ , it turns out that ũ depends
only on (y1, . . . , yν) when y = (y1, . . . , yn) varies in RΩ . Because of this, we can define û by

û : (y1, . . . , yν) ∈ R
ν �→

{
ũ(y1, . . . , yn) if ν = n,

ũ
(
y1, . . . , yν, β(y1, . . . , yν)

)
if ν < n,

where, if ν < n, β : Rν → R
n−ν is any function such that (y1, . . . , yν, β(y1, . . . , yν)) ∈ RΩ for every (y1, . . . , yν) ∈

Prν(RΩ). Then û ∈ C1(Prν(RΩ)) and, since ∇u(x) ∈ domf ∗∗ for every x ∈ Ω , we obtain that ∇û(y) ∈
Prν(R(domf ∗∗)) for every y ∈ Prν(RΩ).

Let us fix s ∈ [0,1[. Then, by (3.13), there exists a compact subset H of ri(Prν(R(domf ∗∗))) such that

s∇û(y) ∈ H for every y ∈ Prν(RΩ). (3.16)

Let A ∈ A0(R
n) be convex and such that A ⊆ Ω . Then obviously Prν(RA) ⊆ Prν(RΩ). Let {ûh} ⊆ PA(Rν) be such

that ûh → sû in W 1,∞(Prν(RA)). Then, by (3.16), we obtain that

∇ûh(y) ∈ K̂ for every h ∈ N large enough and a.e y ∈ Prν(RA), (3.17)

K̂ being a suitable compact subset of ri(Prν(R(domf ∗∗))).
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For every h ∈ N let us now define the functions ũh and uh by

ũh : (y1, . . . , yn) ∈ R
n �→ ûh(y1, . . . , yν)

and

uh :x ∈ R
n �→ ũh(Rx).

Then obviously {uh} ⊆ PA(Rn), and

uh → su in W 1,∞(A). (3.18)

Moreover, by (3.17) we deduce the existence of a compact subset K of ri(domf ∗∗) such that

∇uh(x) ∈ K for every h ∈ N large enough and a.e. x ∈ A. (3.19)

At this point, by the convexity of A and Proposition 3.7, we obtain

�G(A,uh) �
∫
A

f ∗∗(∇uh)dLn for every h ∈ N, (3.20)

whilst, by (3.18), (3.19), and the local Lipschitz continuity of f ∗∗ in ri(domf ∗∗), we have

lim
h→+∞

∫
A

f ∗∗(∇uh)dLn =
∫
A

f ∗∗(s∇u)dLn. (3.21)

Therefore, by (3.18), the C0(A)-lower semicontinuity of �G(A, ·), (3.20), (3.21), and the convexity of f ∗∗, we obtain

�G(A, su) � lim inf
h→+∞

�G(A,uh) �
∫
Ω

f ∗∗(∇u)dLn + (1 − s)Ln(Ω)f ∗∗(0)

for every s ∈ [0,1[ and every A ∈A0(R
n) convex with A ⊆ Ω. (3.22)

Now, we observe that the convexity of Ω yields

sup
{�G(A,u): A ∈ A0

(
R

n
)
, A convex, A ⊆ Ω

} = �G−(Ω,u). (3.23)

Therefore, taking the limits in (3.22) first as s tends to 1 and then as A increases to Ω , by (3.13), (3.22), again the
C0(A)-lower semicontinuity of �G(A, ·), and (3.23), the lemma follows if (3.13) holds.

In the general case, if (3.13) does not hold, we only have to take z0 ∈ ri(domf ∗∗) and consider the function f0
defined by f0 : z ∈ R

n �→ f (z0 + z). We have, with the obvious meaning for the symbols adopted,

f ∗∗
0 (z) = f ∗∗(z0 + z) for every z ∈ R

n, (3.24)

G0(A,v) = �G(A,uz0 + v) for every A ∈A0
(
R

n
)

and v ∈ C0(A), (3.25)

and

0 ∈ ri
(
domf ∗∗

0

)
. (3.26)

Therefore, by (3.25), (3.26), the previously treated case applied to f0, and (3.24), we obtain that

�G−(Ω,u) �
∫
Ω

f ∗∗
0 (∇u − z0)dLn =

∫
Ω

f ∗∗(∇u)dLn,

from which the lemma follows also in the general case. �
Lemma 3.9. Let f : Rn → [0,+∞] be Borel, and let �F be given by (1.11). Then

�F−(Ω,u) �
∫
Ω

f ∗∗(∇u)dLn +
∫
Ω

(f ∗∗)∞
(

dDsu

d|Dsu|
)

d
∣∣Dsu

∣∣ for every Ω ∈A0
(
R

n
)

convex, u ∈ BV(Ω).
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Proof. Let Ω , u be as above. Since convex open sets have Lipschitz boundary, the zero extension of u from Ω to R
n

is in BV(Rn). Call again u such extension.
Let A ∈ A0(R

n) with A ⊆ Ω , A being also convex, and take η > 0 so small that A ⊆ Ω−
η . Then, by (1.15), the

convexity of A, Lemma 3.8, and Proposition 1.6, we infer

�F−(A,uη) �
∫
A

f ∗∗(∇uη)dLn �
∫

Ω−
η

f ∗∗(∇uη)dLn

�
∫
Ω

f ∗∗(∇u)dLn +
∫
Ω

(
f ∗∗)∞

(
dDsu

d|Dsu|
)

d
∣∣Dsu

∣∣ for every η > 0 small enough.

Taking the limits first as η tends to 0 and then as A increases to Ω in the above inequalities, by the L1(A)-lower
semicontinuity of �F−(A, ·), and the inner regularity of �F−, we deduce the lemma. �

We are now able to prove the representation result.

Theorem 3.10. Let f : Rn → [0,+∞] be Borel, and let �F be given by (1.11). Then

�F(Ω,u) =
∫
Ω

f ∗∗(∇u)dLn +
∫
Ω

(
f ∗∗)∞

(
dDsu

d|Dsu|
)

d
∣∣Dsu

∣∣ for every Ω ∈A0(R
n) convex, u ∈ BV(Ω).

Proof. By (1.16) and Lemma 3.9, the theorem follows if we prove that

�F(Ω,u) = �F−(Ω,u) for every Ω ∈A0(R
n) convex, u ∈ BV(Ω).

To do this, we exploit Proposition 1.7 with Φ equal to the restriction of �F to A0(R
n) × BV loc(R

n).
It is clear that for every u ∈ BV loc(R

n), �F(·, u) is increasing.
Let Ω ∈ A0(R

n) be convex, and let u ∈ BV(Ω). As in the proof of Lemma 3.9, it is not restrictive to assume
that u ∈ BV(Rn). Let x0 ∈ Ω , t ∈ ]0,1], and let ux0,t be defined in (1.10). Then the L1(Ω)-lower semicontinuity of
�F(Ω, ·) implies that

lim inf
t→1−

�F(Ω,ux0,t ) � �F(Ω,u).

Moreover, since by means of a change of variables it is easy to verify that

lim sup
t→1+

�F−
(
x0 + t (Ω − x0), ux0,1/t

)
� �F−(Ω,u),

also the last requirement of Proposition 1.7 is fulfilled by Φ . Consequently, Proposition 1.7 applies, and the theorem
follows. �

From Theorem 3.10 we deduce the following corollary, in which the constraint condition is emphasized.

Corollary 3.11. Let g : Rn → [0,+∞[ be Borel, and let E be a Borel subset of R
n. Then

inf

{
lim inf
h→+∞

∫
Ω

g(∇uh)dLn: {uh} ⊆ W 1,∞(Ω), ∇uh(x) ∈ E for every h ∈ N and a.e. x ∈ Ω,

uh → u in L1(Ω)

}
=

∫
Ω

(g + IE)∗∗(∇u)dLn +
∫
Ω

(
(g + IE)∗∗)∞

(
dDsu

d|Dsu|
)

d
∣∣Dsu

∣∣
for every Ω ∈A0

(
R

n
)

convex, u ∈ BV(Ω).

Proof. Follows from Theorem 3.10 applied to f = g + IE . �
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Eventually, Theorem 3.10 provides information on the structure of the set of the solutions of first order differential
inclusions.

Corollary 3.12. Let E ⊆ R
n be Borel. Then, for every Ω ∈ A0(R

n) convex, and u ∈ W 1,1(Ω) such that ∇u(x) ∈
co(E) for a.e. x ∈ Ω , there exists {uh} in W 1,∞(Ω) such that uh → u in L1(Ω), and ∇uh(x) ∈ E for every h ∈ N

and a.e. x ∈ Ω .

Proof. Follows from Corollary 3.11 applied with g = 0, once we recall that (IE)∗∗ = Ico(E). �
4. Relaxation of gradient constrained Dirichlet problems

Let f : Rn → [0,+∞] be Borel. In the present section we exploit the previous results to represent the functional
defined in (1.12).

First of all, we point out that, when dealing with gradient constrained Dirichlet problems, a condition like

int
(
co(domf )

) 
= ∅ (4.1)

turns out to be necessary in order to avoid trivial cases, as shown in the result below (cf. also Lemma 3.6 in [6]).

Proposition 4.1. Let f : Rn → [0,+∞] be Borel with int(co(domf )) = ∅. Let Ω ∈ A0(R
n), u0 ∈ W

1,∞
loc (Rn) satisfy

∇u0(x) ∈ aff(domf ) for a.e. x ∈ Ω , and let �F(u0,Ω, ·) be given by (1.12). Then

�F(u0,Ω,u) =
{∫

Ω
f (∇u)dLn if u = u0 a.e. in Ω,

+∞ otherwise
for every u ∈ L1(Ω).

Proof. It is clear that

�F(u0,Ω,u) �
{∫

Ω
f (∇u)dLn if u = u0 a.e. in Ω,

+∞ otherwise
for every u ∈ L1(Ω). (4.2)

To prove the reverse inequality, we show that if v ∈ u0 +W
1,∞
0 (Ω) is such that

∫
Ω

f (∇v)dLn < +∞, then v = u0.
Clearly, this holds if domf = {0}.
If this is not the case, let v be as above, and let us assume for the moment that

aff(domf ) = R
ν × {0n−ν} for some ν ∈ {1, . . . , n − 1}. (4.3)

Then, since ∇v(x) ∈ domf for a.e. x ∈ Ω and ∇u0 ∈ aff(domf ) for a.e. x ∈ Ω , by (4.3) we infer that v − u0 ∈
W

1,∞
0 (Ω) and that ∇ν+1(v − u0) = · · · = ∇n(v − u0) = 0 a.e. in Ω . Because of this, we get that v = u0.
When (4.3) is dropped, let us observe that int(co(domf )) = ∅ implies aff(domf ) 
= R

n. Let ν ∈ {1, . . . , n − 1} be
the dimension of aff(domf ), and let

A :y ∈ R
n �→ MAy + b ∈ R

n

be an affine transformation such that detMA = 1, and A(aff(domf )) = R
ν × {0n−ν}. Let us set

fA : z ∈ R
n �→ f

(
A−1(z)

)
, uA

0 :y ∈ R
n �→ u0

(
A(y)

) + b · y, vA :y ∈ R
n �→ v

(
A(y)

) + b · y.

Then fA is Borel and satisfies (4.3) with fA in place of f , ∇uA
0 (y) ∈ aff(domfA) for a.e. y ∈ A−1(Ω), vA ∈

uA
0 + W

1,∞
0 (A−1(Ω)), and

∫
A−1(Ω)

fA(∇vA)dLn = ∫
Ω

f (∇v)dLn < +∞. Therefore, by the particular case above

considered, we conclude that vA = uA
0 , that is v = u0.

The above considerations imply the reverse inequality of (4.2), that completes the proof of the proposition. �
The lemma below allows us to compare the functionals in (1.13) and (1.14), and is the key lemma to recover the

results of Section 3 for the treatment of the relaxation of Dirichlet problems.

Lemma 4.2. Let f : Rn → [0,+∞] be Borel and satisfy (4.1). Assume that 0 ∈ int(co(domf )), and let �G and
�G(0, ·, ·) be given by (1.13) and (1.14) with u0 = 0. Then

�G(0,Ω,u) � �G(Ω,u) for every Ω ∈ A0
(
R

n
)
, u ∈ PA

(
R

n
)

with compact support in Ω.
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Proof. Let Ω , u be as above.
Clearly, we can assume that �G(Ω,u) is finite, so that, if Ω0 is the open set defined by Ω0 = {x ∈ Ω: u(x) 
= 0}, so

is also �G(Ω0, u). Consequently, there exists {uh} ⊆ W 1,∞(Ω0) such that uh → u in C0(Ω0), and

�G(Ω0, u) = lim
h→+∞

∫
Ω0

f (∇uh)dLn (4.4)

(note that this holds also if Ω0 = ∅).
Since 0 ∈ int(co(domf )), by Proposition 1.3 it follows that f ∗∗(0) < +∞. Let ε > 0. Then, again by Proposi-

tion 1.3 and by Theorem 1.2, there exist ν ∈ {0, . . . , n}, ξ0, . . . , ξν ∈ domf affinely independent, and t0, . . . , tν ∈ ]0,1]
with

∑ν
j=0 tj = 1, such that

∑ν
j=0 tj ξj = 0, and

ν∑
j=0

tj f (ξj ) � f ∗∗(0) + ε. (4.5)

Let {vk} ⊆ W
1,∞
loc (Rn) be given by Lemma 3.3 applied to the above ξ0, . . . , ξν . Then vk → 0 in weak*-W 1,∞

loc (Rn),
and − 1

k
� vk(x) < 0 and ∇vk(x) ∈ {ξ0, . . . , ξν} for every k ∈ N and a.e. x ∈ R

n. In particular, χ{x∈Rn: ∇vk(x)=ξj } → tj
in weak*-L∞

loc(R
n).

Let {εh} be a sequence of positive numbers converging to 0, and observe that, for every h ∈ N, Ch =
{x ∈ Ω0: |uh(x)| � supΩ0

|uh − u| + εh} is a closed subset of R
n. In fact, if h ∈ N and {xk} ⊆ Ch converges to

x ∈ R
n, the continuity of u and of uh implies that∣∣u(x)

∣∣ = lim
k→+∞

∣∣u(xk)
∣∣ � lim

k→+∞
∣∣uh(xk)

∣∣− sup
Ω0

|uh − u| � εh > 0.

In addition, since u has compact support in Ω , we also have that x ∈ Ch ⊆ Ω0 ⊆ Ω , so that x ∈ Ω0. Because of this,
and of the continuity of uh, we conclude that x ∈ Ch, and hence that Ch is closed in R

n.
Let z0, . . . , zn ∈ domf be affinely independent and such that 0 ∈ int(co({z0, . . . , zn})). Then (1.2) provides

s0, . . . , sn ∈ ]0,1[, with
∑n

j=0 sj = 1, such that
∑n

j=0 sj zj = 0. For every h ∈ N, let v0
h ∈ W

1,∞
0 (Ω \ Ch) be

given by Lemma 3.1 applied to the zj and sj above with ν = n and ω = Ω \ Ch. Then −1 � v0
h(x) < 0 and

∇v0
h(x) ∈ {z0, . . . , zn} for a.e. x ∈ Ω \ Ch. Moreover, since vk → 0 in C0(Ω), we can find kh ∈ N such that

lim
h→+∞Ln

({
x ∈ Ω \ Ch: vkh

(x) < v0
h(x)

}) = 0. (4.6)

For every h ∈ N, we now set

χh : t ∈ R �→

⎧⎪⎨⎪⎩
t + supΩ0

|uh − u| + εh if t � − supΩ0
|uh − u| − εh,

0 if − supΩ0
|uh − u| − εh < t < supΩ0

|uh − u| + εh,

t − supΩ0
|uh − u| − εh if t � supΩ0

|uh − u| + εh,

and

wh(x) =
{

χh(uh(x)) if x ∈ Ch,

max
{
vkh

(x), v0
h(x)

}
if x ∈ Ω \ Ch.

Then, since χh(uh(x)) = 0 for every x ∈ ∂Ch and ∂Ch ⊆ Ω , we have that {wh} ⊆ W
1,∞
0 (Ω). Moreover, it is not

difficult to verify that wh → u in C0(Ω).
Let now m ∈ N. We have∫

Ω

f (∇wh)dLn

=
∫
Ch

f (∇uh)dLn +
∫

{x∈Ω\C : v (x)�v0(x)}
f (∇vkh

)dLn +
∫

{x∈Ω\C : v (x)<v0(x)}
f

(∇v0
h

)
dLn
h kh h h kh h
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�
∫
Ω0

f (∇uh)dLn +
∫

Ω\Ch

f (∇vkh
)dLn + max

j∈{0,...,n}
f (zj )Ln

({
x ∈ Ω \ Ch: vkh

(x) < v0
h(x)

})
�

∫
Ω0

f (∇uh)dLn +
∫

⋃
k�m(Ω\Ck)

f (∇vkh
)dLn + max

j∈{0,...,n}
f (zj )Ln

({
x ∈ Ω \ Ch: vkh

(x) < v0
h(x)

})
for every h ∈ N with h � m,

from which, together with (4.4), the properties of {vkh
}, (4.5), and (4.6), we deduce that

�G(0,Ω,u) � lim inf
h→+∞

∫
Ω

f (∇wh)dLn � �G(Ω0, u) + (
f ∗∗(0) + ε

)
Ln

(
Ω

∖ ⋂
k�m

Ck

)
.

Now, we observe that⋃
m∈N

⋂
k�m

Ck = Ω0,

therefore, as m increases and ε goes to 0, we obtain

�G(0,Ω,u) � �G(Ω0, u) + f ∗∗(0)Ln(Ω \ Ω0). (4.7)

Finally we observe that, since u ∈ PA(Rn), then Ln(∂Ω0) = 0. Consequently, since trivially

�G(Ω0, u) + �G(
Ω \ Ω0, u

)
� �G(Ω,u),

by (4.7), (1.16), and (1.15), we obtain

�G(0,Ω,u) � �G(Ω0, u) + f ∗∗(0)Ln
(
Ω \ Ω0

)
� �G(Ω0, u) + �G(

Ω \ Ω0, u
)
� �G(Ω,u)

from which the lemma follows. �
Lemma 4.3. Let f : Rn → [0,+∞] be Borel and satisfy (4.1). Assume that z0 ∈ int(co(domf )), and let �F(uz0 , ·, ·)
be given by (1.12). Then

�F(uz0 ,Ω,u) �
∫
Ω

f ∗∗(∇u)dLn +
∫
Ω

(
f ∗∗)∞

(
dDsu

d|Dsu|
)

d
∣∣Dsu

∣∣
for every Ω ∈A0(R

n) convex, u ∈ BV(Ω) such that u − uz0 has compact support in Ω .

Proof. Let Ω be as above, and assume for the moment that z0 = 0, so that, by Proposition 1.3, f ∗∗(0) < +∞.
Moreover, let us first consider the case in which u ∈ C1

0(Ω) and
∫
Ω

f ∗∗(∇u)dLn < +∞.
Let t ∈ [0,1[, and let {uh} ⊆ PA(Rn) be a sequence of functions with compact support in Ω such that uh → tu in

W 1,∞(Ω). Then, since ∇u(x) ∈ domf ∗∗ for every x ∈ Ω , and since 0 ∈ int(co(domf )) = int(domf ∗∗) by Proposi-
tion 1.3, it turns out that ∇uh(x) belongs to a fixed compact subset of int(domf ∗∗) for every h sufficiently large and
a.e. x ∈ Ω . Because of this, of the continuity of f ∗∗ in int(domf ∗∗), and of the convexity of f ∗∗, it then follows that

lim
h→+∞

∫
Ω

f ∗∗(∇uh)dLn =
∫
Ω

f ∗∗(t∇u)dLn � t

∫
Ω

f ∗∗(∇u)dLn + (1 − t)f ∗∗(0)Ln(Ω). (4.8)

Let now �G(0, ·, ·) be given by (1.14) with u0 = 0. Then, by the C0(Ω)-lower semicontinuity of �G(0,Ω, ·),
Lemma 4.2, Proposition 3.7, and (4.8) we obtain that

�G(0,Ω, tu) � lim inf
h→+∞

�G(0,Ω,uh) � lim inf
h→+∞

�G(Ω,uh) � lim inf
h→+∞

∫
Ω

f ∗∗(∇uh)dLn

�
∫

f ∗∗(∇u)dLn + (1 − t)f ∗∗(0)Ln(Ω),
Ω
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from which, together again the C0(Ω)-lower semicontinuity of �G(0,Ω, ·) and the finiteness of f ∗∗(0), we conclude
that

�G(0,Ω,u) � lim inf
t→1−

�G(0,Ω, tu) �
∫
Ω

f ∗∗(∇u)dLn for every u ∈ C1
0(Ω). (4.9)

If u is in BV(Ω) has compact support in Ω , then clearly u ∈ BV(Rn) and, by the L1(Ω)-lower semicontinuity of
�F(0,Ω, ·), (1.15), (4.9), the finiteness of f ∗∗(0), and Proposition 1.6, we obtain

�F(0,Ω,u) � lim inf
η→0+

�F(0,Ω,uη) � lim inf
η→0+

�G(0,Ω,uη) � lim inf
η→0+

∫
Ω

f ∗∗(∇uη)dLn

� lim sup
η→0+

{ ∫
Ω−

η

f ∗∗(∇uη)dLn + f ∗∗(0)Ln
(
Ω \ Ω−

η

)}

�
∫
Ω

f ∗∗(∇u)dLn +
∫
Ω

(
f ∗∗)∞

(
dDsu

d|Dsu|
)

d
∣∣Dsu

∣∣,
that completes the proof of the lemma when z0 = 0.

Finally, the case when z0 
= 0 follows from the previous considered one applied to f0 : z ∈ R
n �→ f (z0 + z), as in

the proof of Lemma 3.8. �
Lemma 4.4. Let f : Rn → [0,+∞] be Borel and satisfy (4.1). Assume that z0 ∈ int(co(domf )), and let �F(uz0 , ·, ·)
be given by (1.12). Then

�F(uz0 ,Ω,u) �
∫
Ω

f ∗∗(∇u)dLn +
∫
Ω

(
f ∗∗)∞

(
dDsu

d|Dsu|
)

d
∣∣Dsu

∣∣ +
∫

∂Ω

(
f ∗∗)∞(

(uz0 − u)nΩ

)
dHn−1

for every Ω ∈A0
(
R

n
)

convex, u ∈ BV(Ω).

Proof. First of all, we observe that

�F(uz0 ,Ω,u) � lim inf
t→1+

�F (
uz0, x0 + t (Ω − x0), u

)
for every Ω ∈A0

(
R

n
)
, u ∈ L1

loc

(
R

n
)
. (4.10)

Indeed, let Ω , u be as in (4.10), and let us take t > 1 such that �F(uz0 , x0 + t (Ω − x0), u) < +∞, so that there exists
{uh} ⊆ uz0 + W

1,∞
0 (x0 + t (Ω − x0)), with uh → u in L1(x0 + t (Ω − x0)), and

lim inf
h→+∞

∫
x0+t (Ω−x0)

f (∇uh)dLn � �F (
uz0, x0 + t (Ω − x0), u

)
. (4.11)

For every h ∈ N we set, as in (1.10),

vh = uz0(x0) + (
uh − uz0(x0)

)
x0,t

= uz0(x0) + 1

t

(
uh

(
x0 + t (· − x0)

) − u(x0)
)
.

Then, since

uz0(x0) + (
uz0 − uz0(x0)

)
x0,t

= uz0 ,

it follows that

vh ∈ uz0(x0) + (
uz0 − uz0(x0)

)
x0,t

+ W
1,∞
0 (Ω) = uz0 + W

1,∞
0 (Ω) for every h ∈ N.

Moreover

vh → uz (x0) + (
u − uz (x0)

)
in L1(Ω),
0 0 x0,t
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and ∫
Ω

f (∇vh)dLn = 1

tn

∫
x0+t (Ω−x0)

f (∇uh)dLn for every h ∈ N.

This, together with (4.11), yields

tn �F (
uz0,Ω,uz0(x0) + (u − uz0(x0))x0,t

)
� tn lim inf

h→+∞

∫
Ω

f (∇vh)dLn � �F (
uz0, x0 + t (Ω − x0), u

)
. (4.12)

In conclusion, (4.10) follows by (4.12) and the L1(Ω)-lower semicontinuity of �F(uz0 ,Ω, ·), since

uz0(x0) + (
u − uz0(x0)

)
x0,t

→ u

in L1(Ω) as t → 1+.
Let now Ω ∈A0(R

n) be convex, u ∈ BV(Ω), and let us define û as the extension of u to the whole R
n obtained by

defining û = uz0 in R
n \ Ω . Then u ∈ BV loc(R

n). Let us fix x0 ∈ Ω , and take t > 1. Then the convexity of Ω yields
Ω ⊆ x0 + t (Ω − x0) and spt(û − uz0) ⊆ x0 + t (Ω − x0).

By Lemma 4.3, we have that

�F (
uz0, x0 + t (Ω − x0), û

)
�

∫
x0+t (Ω−x0)

f ∗∗(∇û)dLn +
∫

x0+t (Ω−x0)

(
f ∗∗)∞

(
dDsû

d|Dsû|
)

d
∣∣Dsû

∣∣
=

∫
Ω

f ∗∗(∇u)dLn + f ∗∗(z0)Ln
((

x0 + t (Ω − x0)
) \ Ω

)
+

∫
Ω

(
f ∗∗)∞

(
dDsu

d|Dsu|
)

d
∣∣Dsu

∣∣ +
∫

∂Ω

(
f ∗∗)∞

(
dDsû

d|Dsû|
)

d
∣∣Dsû

∣∣. (4.13)

At this point, once we recall that, by (1.5), Dû = (uz0 − u)nΩHn−1 on ∂Ω , by (4.13), the finiteness of f ∗∗(z0),
and the 1-homogeneity of (f ∗∗)∞, we infer that

lim sup
t→1+

�F (
uz0, x0 + t (Ω − x0), û

)
�

∫
Ω

f ∗∗(∇u)dLn +
∫
Ω

(
f ∗∗)∞

(
dDsu

d|Dsu|
)

d
∣∣Dsu

∣∣ +
∫

∂Ω

(
f ∗∗)∞(

(uz0 − u)nΩ

)
dHn−1. (4.14)

Therefore, by (4.14) and (4.10), since clearly �F(uz0 ,Ω, û) = �F(uz0 ,Ω,u), the lemma follows. �
The previous lemmas allow us to prove the representation result for the functional in (1.12).

Theorem 4.5. Let f : Rn → [0,+∞] be Borel and satisfy (4.1). Assume that z0 ∈ int(co(domf )), and let �F(uz0 , ·, ·)
be given by (1.12). Then

�F(uz0 ,Ω,u) =
∫
Ω

f ∗∗(∇u)dLn +
∫
Ω

(
f ∗∗)∞

(
dDsu

d|Dsu|
)

d
∣∣Dsu

∣∣ +
∫

∂Ω

(
f ∗∗)∞(

(uz0 − u)nΩ

)
dHn−1

for every Ω ∈A0
(
R

n
)

convex, u ∈ BV(Ω).

Proof. Follows from (1.17) and Lemma 4.4. �
As in the case of Neumann problems, from Theorem 4.5 we deduce the corollaries below. In the first one the

constraint condition is emphasized. The second one provides information on the structure of the set of the solutions
Dirichlet problems with linear boundary data for first order differential inclusions.
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Corollary 4.6. Let g : Rn → [0,+∞[ be Borel, and let E be a Borel subset of R
n with int(co(E)) 
= ∅. Let z0 ∈

int(co(E)). Then

inf

{
lim inf
h→+∞

∫
Ω

g(∇uh)dLn: {uh} ⊆ uz0 + W
1,∞
0 (Ω), ∇uh(x) ∈ E for every h ∈ N and a.e. x ∈ Ω,

uh → u in L1(Ω)

}
=

∫
Ω

(g + IE)∗∗(∇u)dLn +
∫
Ω

(
(g + IE)∗∗)∞

(
dDsu

d|Dsu|
)

d
∣∣Dsu

∣∣ +
∫

∂Ω

(
(g + IE)∗∗)∞(

(uz0 − u)nΩ

)
dHn−1

for every Ω ∈ A0
(
R

n
)

convex, u ∈ BV(Ω).

Proof. Follows from Theorem 4.5 applied to f = g + IE . �
Corollary 4.7. Let E ⊆ R

n be Borel with int(co(E)) 
= ∅. Then, for every z0 ∈ int(co(E)), Ω ∈ A0(R
n) convex, and

u ∈ uz0 + W
1,1
0 (Ω) such that ∇u(x) ∈ co(E) for a.e. x ∈ Ω , there exists {uh} in uz0 + W

1,∞
0 (Ω) such that uh → u in

L1(Ω), and ∇uh(x) ∈ E for every h ∈ N and a.e. x ∈ Ω .

Proof. Follows from Corollary 4.6 applied with g = 0, once we recall that (IE)∗∗ = Ico(E). �
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