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In this note, we shall present the correction of the proofs of the comparison results in the paper [1]. In order to
show clearly the correct way of the demonstration, we shall simplify the problem to the following.

(Problem (I)):

F
(
x,u,∇u,∇2u

) −
∫

RN

u(x + z) − u(x) − 1|z|�1
〈
z,∇u(x)

〉
q(dz) = 0 in Ω, (1)

(Problem (II)):

F
(
x,u,∇u,∇2u

) −
∫

{z∈RN |x+z∈Ω}
u(x + z) − u(x) − 1|z|�1

〈
z,∇u(x)

〉
q(dz) = 0 in Ω, (2)

where Ω ⊂ RN is open, and q(dz) is a positive Radon measure such that
∫
|z|�1 |z|2q(dz) + ∫

|z|>1 1q(dz) < ∞. Al-
though in [1] only (II) was studied, in order to avoid the non-essential technical complexity, here, let us give the
explanation mainly for (I). For (I), we consider the Dirichlet B.C.:

u(x) = g(x) ∀x ∈ Ωc, (3)

where g is a given continuous function in Ωc . For (II), we assume that Ω is a precompact convex open subset in RN

with C1 boundary satisfying the uniform exterior sphere condition, and consider either the Dirichlet B.C.:

u(x) = h(x) ∀x ∈ ∂Ω, (4)

where h is a given continuous function on ∂Ω , or the Neumann B.C.:〈∇u(x),n(x)
〉 = 0 ∀x ∈ ∂Ω, (5)

where n(x) ∈ RN the outward unit normal vector field defined on ∂Ω . The above problems are studied in the frame-
work of the viscosity solutions introduced in [1]. Under all the assumptions in [1], for (I) the following comparison
result holds, and for (II), although the proofs therein are incomplete, the comparison results stated in [1] hold, and we
shall show in a future article.
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Theorem 1.1 (Problem (I) with Dirichlet B.C.). Assume that Ω is bounded, and the conditions for F in [1] hold. Let
u ∈ USC(RN) and v ∈ LSC(RN) be respectively a viscosity subsolution and a supersolution of (1) in Ω , which satisfy
u � v on Ωc . Then, u � v in Ω .

To prove Theorem 1.1, we approximate the solutions u and v by the supconvolution: ur(x) = supy∈RN{u(y) −
1

2r2 |x − y|2} and the infconvolution: vr(x) = infy∈RN{v(y) + 1
2r2 |x − y|2} (x ∈ RN), where r > 0.

Lemma 1.2 (Approximation for Problem (I)). Let u and v be respectively a viscosity subsolution and a supersolution
of (1). For any ν > 0 there exists r > 0 such that ur and vr are respectively a subsolution and a supersolution of the
following problems.

F
(
x,u,∇u,∇2u

) −
∫

RN

u(x + z) − u(x) − 1|z|�1
〈
z,∇u(x)

〉
q(dz) � ν, (6)

F
(
x, v,∇v,∇2v

) −
∫

RN

v(x + z) − v(x) − 1|z|�1
〈
z,∇v(x)

〉
q(dz) � −ν, (7)

in Ωr = {x ∈ Ω | dist(x, ∂Ω) >
√

2Mr}, where M = max{supΩ |u|, supΩ |v|}.

Remark that ur is semiconvex, vr is semiconcave, and both are Lipschitz continuous in RN. We then deduce from
the Jensen’s maximum principle and the Alexandrov’s theorem (deep results in the convex analysis, see [2] and [3]),
the following lemma, the last claim of which is quite important in the limit procedure in the nonlocal term.

Lemma 1.3. Let U be semiconvex and V be semiconcave in Ω . For φ(x, y) = α|x − y|2 (α > 0) consider Φ(x,y) =
U(x) − V (y) − φ(x, y), and assume that (x̄, ȳ) is an interior maximum of Φ in Ω × Ω . Assume also that there is an
open precompact subset O of Ω × Ω containing (x̄, ȳ), and that μ = supO Φ(x, y) − sup∂O Φ(x, y) > 0. Then, the
following holds.

(i) There exists a sequence of points (xm, ym) ∈ O (m ∈ N) such that limm→∞(xm, ym) = (x̄, ȳ), and (pm,Xm) ∈
J

2,+
Ω U(xm), (p′

m,Ym) ∈ J
2,−
Ω V (ym) such that

lim
m→∞pm = lim

m→∞p′
m = 2α(xm − ym) = p,

and Xm � Ym ∀m.
(ii) For Pm = (pm − p,−(p′

m − p)), Φm(x, y) = Φ(x,y) − 〈Pm, (x, y)〉 takes a maximum at (xm, ym) in O.
(iii) The following holds for any z ∈ RN such that (xm + z, ym + z) ∈ O .

U(xm + z) − U(xm) − 〈pm, z〉 � V (ym + z) − V (ym) − 〈p′
m, z〉. (8)

By admitting these lemmas here, let us show how Theorem 1.1 is proved.

Proof of Theorem 1.1. We use the argument by contradiction, and assume that maxΩ(u−v) = (u−v)(x0) = M0 > 0
for x0 ∈ Ω . Then, we approximate u by ur (supconvolution) and v by vr (infconvolution), which are a subsolution
and a supersolution of (6) and (7), respectively. Clearly, maxΩ(ur − vr) � M0 > 0. Let x̄ ∈ Ω be the maximizer of
ur − vr . In the following, we abbreviate the index and write u = ur , v = vr without any confusion. As in the PDE
theory, consider Φ(x,y) = u(x) − v(y) − α|x − y|2, and let (x̂, ŷ) be the maximizer of Φ . Then, from Lemma 1.3
there exists (xm, ym) ∈ Ω (m ∈ N) such that limm→∞(xm, ym) = (x̂, ŷ), and we can take (εm, δm) a pair of positive
numbers such that

u(xm + z) � u(xm) + 〈pm, z〉 + 1

2
〈Xmz, z〉 + δm|z|2, v(ym + z) � v(ym) + 〈p′

m, z〉 + 1

2
〈Ymz, z〉 − δm|z|2,

for ∀|z| � εm. From the definition of the viscosity solutions, we have
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F
(
xm,u(xm),pm,Xm

) −
∫

|z|�εm

1

2

〈
(Xm + 2δmI)z, z

〉
dq(z)

−
∫

|z|�εm

u(xm + z) − u(xm) − 1|z|�1〈z,pm〉q(dz) � ν,

F
(
ym,v(ym),p′

m,Ym

) −
∫

|z|�εm

1

2

〈
(Ym − 2δmI)z, z

〉
dq(z)

−
∫

|z|�εm

v(ym + z) − v(ym) − 1|z|�1〈z,p′
m〉q(dz) � −ν.

By taking the difference of the above two inequalities, by using (8), and by passing m → ∞ (thanking to (8), it is now
available), we can obtain the desired contradiction. The claim u � v is proved. �
Remark 1.1. To prove the comparison results for (II) (in [1]), we do the approximation by the supconvolution: ur(x) =
supy∈Ω{u(y)− 1

2r2 |x −y|2}, and the infconvolution: vr(x) = infy∈Ω{v(y)+ 1
2r2 |x −y|2} as in Lemma 1.2. Because of

the restriction of the domain of the integral of the nonlocal term and the Neumann B.C., a slight technical complexity
is added. The approximating problem for (2)–(5) in Ω is as follows.

min

[
F

(
x,u(x),∇u(x),∇2u(x)

) + min
y∈Ω, |x−y|�√

2Mr

{
−

∫

{z∈RN |y+z∈Ω}
u(x + z) − u(x)

− 1|z|�1
〈
z,∇u(x)

〉
q(dz), min

y∈∂Ω, |x−y|�√
2Mr

{〈
n(y),∇u(x)

〉 + ρ
}}]

� ν,

max

[
F

(
x, v(x),∇v(x),∇2v(x)

) + max
y∈Ω, |x−y|�√

2Mr

{
−

∫

{z∈RN |y+z∈Ω}
v(x + z) − v(x)

− 1|z|�1
〈
z,∇v(x)

〉
q(dz), max

y∈∂Ω, |x−y|�√
2Mr

{〈
n(y),∇v(x)

〉 − ρ
}}]

� −ν.

We deduce the comparison result from this approximation and Lemma 1.3, by using the similar argument as in the
proof of Theorem 1.1.
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