Corrigendum

Corrigendum for the comparison theorems in: "A new definition of viscosity solutions for a class of second-order degenerate elliptic integro-differential equations" [Ann. I. H. Poincaré - AN 23 (5) (2006) 695-711]

Mariko Arisawa
GSIS, Tohoku University, Aramaki 09, Aoba-ku, Sendai 980-8579, Japan
Available online 13 November 2006

In this note, we shall present the correction of the proofs of the comparison results in the paper [1]. In order to show clearly the correct way of the demonstration, we shall simplify the problem to the following.
(Problem (I)):

$$
\begin{equation*}
F\left(x, u, \nabla u, \nabla^{2} u\right)-\int_{\mathbf{R}^{\mathbf{N}}} u(x+z)-u(x)-\mathbf{1}_{|z| \leqslant 1}|z, \nabla u(x)| q(\mathrm{~d} z)=0 \quad \text { in } \Omega, \tag{1}
\end{equation*}
$$

(Problem (II)):

$$
\begin{equation*}
F\left(x, u, \nabla u, \nabla^{2} u\right)-\int_{\left\{z \in \mathbf{R}^{\mathrm{N}} \mid x+z \in \bar{\Omega}\right\}} u(x+z)-u(x)-\mathbf{1}_{|z| \leqslant 1}|z, \nabla u(x)| q(\mathrm{~d} z)=0 \quad \text { in } \Omega, \tag{2}
\end{equation*}
$$

where $\Omega \subset \mathbf{R}^{\mathbf{N}}$ is open, and $q(\mathrm{~d} z)$ is a positive Radon measure such that $\int_{|z| \leqslant 1}|z|^{2} q(\mathrm{~d} z)+\int_{|z|>1} 1 q(\mathrm{~d} z)<\infty$. Although in [1] only (II) was studied, in order to avoid the non-essential technical complexity, here, let us give the explanation mainly for (I). For (I), we consider the Dirichlet B.C.:

$$
\begin{equation*}
u(x)=g(x) \quad \forall x \in \Omega^{c}, \tag{3}
\end{equation*}
$$

where g is a given continuous function in Ω^{c}. For (II), we assume that Ω is a precompact convex open subset in $\mathbf{R}^{\mathbf{N}}$ with C^{1} boundary satisfying the uniform exterior sphere condition, and consider either the Dirichlet B.C.:

$$
\begin{equation*}
u(x)=h(x) \quad \forall x \in \partial \Omega, \tag{4}
\end{equation*}
$$

where h is a given continuous function on $\partial \Omega$, or the Neumann B.C.:

$$
\begin{equation*}
\langle\nabla u(x), \mathbf{n}(x)\rangle=0 \quad \forall x \in \partial \Omega, \tag{5}
\end{equation*}
$$

where $\mathbf{n}(x) \in \mathbf{R}^{\mathbf{N}}$ the outward unit normal vector field defined on $\partial \Omega$. The above problems are studied in the framework of the viscosity solutions introduced in [1]. Under all the assumptions in [1], for (I) the following comparison result holds, and for (II), although the proofs therein are incomplete, the comparison results stated in [1] hold, and we shall show in a future article.

[^0]Theorem 1.1 (Problem (I) with Dirichlet B.C.). Assume that Ω is bounded, and the conditions for F in [1] hold. Let $u \in \operatorname{USC}\left(\mathbf{R}^{\mathbf{N}}\right)$ and $v \in \operatorname{LSC}\left(\mathbf{R}^{\mathbf{N}}\right)$ be respectively a viscosity subsolution and a supersolution of (1) in Ω, which satisfy $u \leqslant v$ on Ω^{c}. Then, $u \leqslant v$ in Ω.

To prove Theorem 1.1, we approximate the solutions u and v by the supconvolution: $u^{r}(x)=\sup _{y \in \mathbf{R}^{\wedge}\{u(y)-}$ $\left.\frac{1}{2 r^{2}}|x-y|^{2}\right\}$ and the infconvolution: $v_{r}(x)=\inf _{y \in \mathbf{R}^{\mathbb{N}}}\left\{v(y)+\frac{1}{2 r^{2}}|x-y|^{2}\right\}\left(x \in \mathbf{R}^{\mathbf{N}}\right)$, where $r>0$.

Lemma 1.2 (Approximation for Problem (I)). Let u and v be respectively a viscosity subsolution and a supersolution of (1). For any $v>0$ there exists $r>0$ such that u^{r} and v_{r} are respectively a subsolution and a supersolution of the following problems.

$$
\begin{align*}
& F\left(x, u, \nabla u, \nabla^{2} u\right)-\int_{\mathbf{R}^{\mathrm{N}}} u(x+z)-u(x)-\mathbf{1}_{|z| \leqslant 1}|z, \nabla u(x)| q(\mathrm{~d} z) \leqslant v, \tag{6}\\
& F\left(x, v, \nabla v, \nabla^{2} v\right)-\int_{\mathbf{R}^{\mathrm{N}}} v(x+z)-v(x)-\mathbf{1}_{|z| \leqslant 1}|z, \nabla v(x)| q(d z) \geqslant-v, \tag{7}
\end{align*}
$$

in $\Omega_{r}=\{x \in \Omega \mid \operatorname{dist}(x, \partial \Omega)>\sqrt{2 M} r\}$, where $M=\max \left\{\sup _{\bar{\Omega}}|u|, \sup _{\bar{\Omega}}|v|\right\}$.
Remark that u^{r} is semiconvex, v_{r} is semiconcave, and both are Lipschitz continuous in $\mathbf{R}^{\mathbf{N}}$. We then deduce from the Jensen's maximum principle and the Alexandrov's theorem (deep results in the convex analysis, see [2] and [3]), the following lemma, the last claim of which is quite important in the limit procedure in the nonlocal term.

Lemma 1.3. Let U be semiconvex and V be semiconcave in Ω. For $\phi(x, y)=\alpha|x-y|^{2}(\alpha>0)$ consider $\Phi(x, y)=$ $U(x)-V(y)-\phi(x, y)$, and assume that (\bar{x}, \bar{y}) is an interior maximum of Φ in $\bar{\Omega} \times \bar{\Omega}$. Assume also that there is an open precompact subset O of $\Omega \times \Omega$ containing (\bar{x}, \bar{y}), and that $\mu=\sup _{O} \Phi(x, y)-\sup _{\partial O} \Phi(x, y)>0$. Then, the following holds.
(i) There exists a sequence of points $\left(x_{m}, y_{m}\right) \in O(m \in \mathbf{N})$ such that $\lim _{m \rightarrow \infty}\left(x_{m}, y_{m}\right)=(\bar{x}, \bar{y})$, and $\left(p_{m}, X_{m}\right) \in$ $J_{\Omega}^{2,+} U\left(x_{m}\right),\left(p_{m}^{\prime}, Y_{m}\right) \in J_{\Omega}^{2,-} V\left(y_{m}\right)$ such that

$$
\lim _{m \rightarrow \infty} p_{m}=\lim _{m \rightarrow \infty} p_{m}^{\prime}=2 \alpha\left(x_{m}-y_{m}\right)=p
$$

and $X_{m} \leqslant Y_{m} \forall m$.
(ii) For $P_{m}=\left(p_{m}-p,-\left(p_{m}^{\prime}-p\right)\right), \Phi_{m}(x, y)=\Phi(x, y)-\left\langle P_{m},(x, y)\right\rangle$ takes a maximum at $\left(x_{m}, y_{m}\right)$ in O.
(iii) The following holds for any $z \in \mathbf{R}^{\mathbf{N}}$ such that $\left(x_{m}+z, y_{m}+z\right) \in O$.

$$
\begin{equation*}
U\left(x_{m}+z\right)-U\left(x_{m}\right)-\left\langle p_{m}, z\right\rangle \leqslant V\left(y_{m}+z\right)-V\left(y_{m}\right)-\left\langle p_{m}^{\prime}, z\right\rangle . \tag{8}
\end{equation*}
$$

By admitting these lemmas here, let us show how Theorem 1.1 is proved.
Proof of Theorem 1.1. We use the argument by contradiction, and assume that $\max _{\bar{\Omega}}(u-v)=(u-v)\left(x_{0}\right)=M_{0}>0$ for $x_{0} \in \Omega$. Then, we approximate u by u^{r} (supconvolution) and v by v_{r} (infconvolution), which are a subsolution and a supersolution of (6) and (7), respectively. Clearly, $\max _{\bar{\Omega}}\left(u^{r}-v_{r}\right) \geqslant M_{0}>0$. Let $\bar{x} \in \Omega$ be the maximizer of $u^{r}-v_{r}$. In the following, we abbreviate the index and write $u=u^{r}, v=v_{r}$ without any confusion. As in the PDE theory, consider $\Phi(x, y)=u(x)-v(y)-\alpha|x-y|^{2}$, and let (\hat{x}, \hat{y}) be the maximizer of Φ. Then, from Lemma 1.3 there exists $\left(x_{m}, y_{m}\right) \in \Omega(m \in \mathbf{N})$ such that $\lim _{m \rightarrow \infty}\left(x_{m}, y_{m}\right)=(\hat{x}, \hat{y})$, and we can take $\left(\varepsilon_{m}, \delta_{m}\right)$ a pair of positive numbers such that

$$
u\left(x_{m}+z\right) \leqslant u\left(x_{m}\right)+\left\langle p_{m}, z\right\rangle+\frac{1}{2}\left\langle X_{m} z, z\right\rangle+\delta_{m}|z|^{2}, \quad v\left(y_{m}+z\right) \geqslant v\left(y_{m}\right)+\left\langle p_{m}^{\prime}, z\right\rangle+\frac{1}{2}\left\langle Y_{m} z, z\right\rangle-\delta_{m}|z|^{2},
$$

for $\forall|z| \leqslant \varepsilon_{m}$. From the definition of the viscosity solutions, we have

$$
\begin{aligned}
& F\left(x_{m}, u\left(x_{m}\right), p_{m}, X_{m}\right)-\int_{|z| \leqslant \varepsilon_{m}} \frac{1}{2}\left\langle\left(X_{m}+2 \delta_{m} I\right) z, z\right\rangle \mathrm{d} q(z) \\
& -\int_{|z| \geqslant \varepsilon_{m}} u\left(x_{m}+z\right)-u\left(x_{m}\right)-\mathbf{1}_{|z| \leqslant 1}\left\langle z, p_{m}\right\rangle q(\mathrm{~d} z) \leqslant v, \\
& F\left(y_{m}, v\left(y_{m}\right), p_{m}^{\prime}, Y_{m}\right)-\int_{|z| \leqslant \varepsilon_{m}} \frac{1}{2}\left\langle\left(Y_{m}-2 \delta_{m} I\right) z, z\right\rangle \mathrm{d} q(z) \\
& -\int_{|z| \geqslant \varepsilon_{m}} v\left(y_{m}+z\right)-v\left(y_{m}\right)-\mathbf{1}_{|z| \leqslant 1}\left\langle z, p_{m}^{\prime}\right\rangle q(\mathrm{~d} z) \geqslant-v .
\end{aligned}
$$

By taking the difference of the above two inequalities, by using (8), and by passing $m \rightarrow \infty$ (thanking to (8), it is now available), we can obtain the desired contradiction. The claim $u \leqslant v$ is proved.

Remark 1.1. To prove the comparison results for (II) (in [1]), we do the approximation by the supconvolution: $u^{r}(x)=$ $\sup _{y \in \bar{\Omega}}\left\{u(y)-\frac{1}{2 r^{2}}|x-y|^{2}\right\}$, and the infconvolution: $v_{r}(x)=\inf _{y \in \bar{\Omega}}\left\{v(y)+\frac{1}{2 r^{2}}|x-y|^{2}\right\}$ as in Lemma 1.2. Because of the restriction of the domain of the integral of the nonlocal term and the Neumann B.C., a slight technical complexity is added. The approximating problem for (2)-(5) in $\bar{\Omega}$ is as follows.

$$
\begin{aligned}
& \min \left[F\left(x, u(x), \nabla u(x), \nabla^{2} u(x)\right)+\min _{y \in \bar{\Omega},|x-y| \leqslant \sqrt{2 M r} r}\left\{-\int_{\left\{z \in \mathbf{R}^{\mathbf{N}} \mid y+z \in \bar{\Omega}\right\}} u(x+z)-u(x)\right.\right. \\
& \left.\left.\left.\quad-\mathbf{1}_{|z| \leqslant 1} \mid z, \nabla u(x)\right) q(\mathrm{~d} z), \min _{y \in \partial \Omega,|x-y| \leqslant \sqrt{2 M r}}\{|\mathbf{n}(y), \nabla u(x)\rangle+\rho\}\right\}\right] \leqslant v, \\
& \max \left[F\left(x, v(x), \nabla v(x), \nabla^{2} v(x)\right)+\max _{y \in \bar{\Omega},|x-y| \leqslant \sqrt{2 M r}}\left\{-\int_{\left\{z \in \mathbf{R}^{\mathbf{N}} \mid y+z \in \bar{\Omega}\right\}} v(x+z)-v(x)\right.\right. \\
& \left.\left.\quad-\mathbf{1}_{|z| \leqslant 1}|z, \nabla v(x)| q(\mathrm{~d} z), \max _{y \in \partial \Omega,|x-y| \leqslant \sqrt{2 M r}}\{\langle\mathbf{n}(y), \nabla v(x)\rangle-\rho\}\right\}\right] \geqslant-v .
\end{aligned}
$$

We deduce the comparison result from this approximation and Lemma 1.3, by using the similar argument as in the proof of Theorem 1.1.

References

[1] M. Arisawa, A new definition of viscosity solutions for a class of second-order degenerate elliptic integro-differential equations, Ann. I. H. Poincaré - AN 23 (5) (2006) 695-711.
[2] M.G. Crandall, H. Ishii, P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. 27 (1) (1992).
[3] W.H. Fleming, H.M. Soner, Controlled Markov Processes and Viscosity Solutions, Springer-Verlag, 1992.

[^0]: DOI of original article: 10.1016/j.anihpc.2005.09.002.
 E-mail address: arisawa@math.is.tohoku.ac.jp (M. Arisawa).

