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In this note, we shall present the correction of the proofs of the comparison results in the paper [1]. In order to
show clearly the correct way of the demonstration, we shall simplify the problem to the following.
(Problem (I)):

F(x, u,Vu, Vzu) - / ulx +z)—ulx)— lmg(z, Vu(x))q(dz) =0 in$2, @))
RN
(Problem (II)):
F(x,u, Vu, V2u) — / u(x +2z) —ux) — 1<z, Vu(x))g(dz) =0 in 2, )
{zeRN | x+ze2)

where £2 ¢ RN is open, and g(dz) is a positive Radon measure such that flz\<l |z|2q (dz) + f|z|>1 1g(dz) < co. Al-
though in [1] only (II) was studied, in order to avoid the non-essential technical complexity, here, let us give the
explanation mainly for (I). For (I), we consider the Dirichlet B.C.:

u(x)=g(x) VxeR°, 3

where g is a given continuous function in £2¢. For (II), we assume that 2 is a precompact convex open subset in RN
with C! boundary satisfying the uniform exterior sphere condition, and consider either the Dirichlet B.C.:

ux)=h(x) Vxeodsf2, 4
where 4 is a given continuous function on 92, or the Neumann B.C.:
<Vu(x), n(x)) =0 Vxeds2, 5

where n(x) € RN the outward unit normal vector field defined on 92. The above problems are studied in the frame-
work of the viscosity solutions introduced in [1]. Under all the assumptions in [1], for (I) the following comparison
result holds, and for (I), although the proofs therein are incomplete, the comparison results stated in [1] hold, and we
shall show in a future article.
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Theorem 1.1 (Problem (I) with Dirichlet B.C.). Assume that §2 is bounded, and the conditions for F in [1] hold. Let
u € USC(RN) and v € LSC(RN) be respectively a viscosity subsolution and a supersolution of (1) in §2, which satisfy
u<von $2¢ Then, u <vin 2.

To prove Theorem 1.1, we approximate the solutions # and v by the supconvolution: u” (x) = supyeRN{u(y) —
#lx — y|?} and the infconvolution: v, (x) = innyRN{U(y) + 2i—zl)c —y|?} (x € RN), where r > 0.

Lemma 1.2 (Approximation for Problem (I)). Let u and v be respectively a viscosity subsolution and a supersolution
of (1). For any v > 0O there exists r > 0 such that u” and v, are respectively a subsolution and a supersolution of the
following problems.

F(x,u, Vu, V2u) — / u(x +2) — u(x) — 1<z, Vu(x))g(dz) < v, (6)
RN

F(x,v, Vv, V2v) - / v(x 4+ 2) —v(x) — 1<z, Vox))gdz) = —v, @)
RN

in 2, ={x € £ |dist(x, 0§2) > v/2Mr}, where M = max{supg |u|, supg |v|}.

Remark that #” is semiconvex, v, is semiconcave, and both are Lipschitz continuous in RN. We then deduce from
the Jensen’s maximum principle and the Alexandrov’s theorem (deep results in the convex analysis, see [2] and [3]),
the following lemma, the last claim of which is quite important in the limit procedure in the nonlocal term.

Lemma 1.3. Let U be semiconvex and V be semiconcave in 2. For ¢ (x, y) = alx — y|> (a > 0) consider & (x, y) =
U(x) — V(y) — ¢(x,y), and assume that (X, y) is an interior maximum of ® in 2 x 2. Assume also that there is an
open precompact subset O of §2 x §2 containing (x,y), and that i = sup, @ (x,y) —supypo @ (x, y) > 0. Then, the
following holds.

(1) There exists a sequence of points (Xp, Ym) € O (m € N) such that limy,— oo (Xpm, Ym) = (X, ¥), and (pm, Xm) €
ISTUm), (Pl Ym) € ISV (ym) such that

lim p, = lim p;n =2a(Xm — Ym) = P,
m—>00 m—00

and X, <Y, V.
(i) For Py = (pm — p: =P’y — P)), Pm(x,y) = @ (x,y) — (P, (x,y)) takes a maximum at (X, ym) in O.
(iii) The following holds for any z € RN such that (x,, + 2, ym + 2) € O.

Uxm +2) = U@m) = (pms2) SV m +2) = VOm) = (P 2)- ®)

By admitting these lemmas here, let us show how Theorem 1.1 is proved.

Proof of Theorem 1.1. We use the argument by contradiction, and assume that maxg (u —v) = (u — v)(xo) = Mo > 0
for xo € £2. Then, we approximate u by u” (supconvolution) and v by v, (infconvolution), which are a subsolution
and a supersolution of (6) and (7), respectively. Clearly, maxg(u” — v,) = Mo > 0. Let X € £2 be the maximizer of
u” — v,. In the following, we abbreviate the index and write u = u”, v = v, without any confusion. As in the PDE
theory, consider @ (x, y) = u(x) —v(y) — o|x — y|?, and let (%, §) be the maximizer of @. Then, from Lemma 1.3
there exists (X, ym) € £2 (m € N) such that limy,— oo (X, Yyim) = (X, ¥), and we can take (&, 8,;) a pair of positive
numbers such that

1 1
4 +2) SuCn) + (P 2) + 5 (Xmz,2) + Smlzl?, O+ 2) = vOm) (Pl 2) + 5 (Ymz.2) = Smlzl?,

for V|z| < &;,. From the definition of the viscosity solutions, we have
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F(xm”'t(xm)vpm»xm) - / %((Xm +28mI)ZsZ)dCI(Z)

|zl <ém

- / u(Xm +2) — u(xXm) — Liz1<1(2, pm)q(dz) < v,

‘z|>5m
) 1
F(yms vOm)s Py Yim) — E((Ym —28u1)z,2)dq(2)

lzI<em

- / V(¥m +2) — v(ym) — Liz1<1(z, pyy)q(dz) = —v.

2] Zem

By taking the difference of the above two inequalities, by using (8), and by passing m — oo (thanking to (8), it is now
available), we can obtain the desired contradiction. The claim u < v is proved. O

Remark 1.1. To prove the comparison results for (I) (in [1]), we do the approximation by the supconvolution: u" (x) =
supyeﬁ{u(y) — 2;—2 |x — y|?}, and the infconvolution: v, (x) = infyeﬁ{v(y) + 217 |x — y|?} as in Lemma 1.2. Because of
the restriction of the domain of the integral of the nonlocal term and the Neumann B.C., a slight technical complexity
is added. The approximating problem for (2)—(5) in 2 is as follows.

min[F(x,u(x),Vu(x),Vzu(x))+ _ min {— / ulx+2z) —u(x)
yef2, |x—y|<V2Mr _
{zeRN| y+zeQ2)

- 1\z|<1(Z» Vu(x))q(dz), min {(n(y), Vu(x)) + p} ” <v,
yedf2, |x—y|<V2Mr

max|:F(x, v(x), Vu(x), Vzv(x)) +  max {— f v(x +2z) —v(x)
veR, |x—y|<V2Mr _
{zeRN | y+ze02}

— 1<z, Vo))g(da), e lgﬁ;fgmr{(n(y), Vo(x)) - p} ” > —v.

We deduce the comparison result from this approximation and Lemma 1.3, by using the similar argument as in the
proof of Theorem 1.1.
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