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Abstract

We consider the motion of a rigid body immersed in a bidimensional incompressible perfect fluid. The motion of the fluid is
governed by the Euler equations and the conservation laws of linear and angular momentum rule the dynamics of the rigid body.
We prove the existence and uniqueness of a global classical solution for this fluid–structure interaction problem. The proof relies
mainly on weighted estimates for the vorticity associated with the strong solution of a fluid–structure interaction problem obtained
by incorporating some viscosity.
© 2006

Résumé

Nous étudions le mouvement d’un corps rigide immergé dans un fluide parfait incompressible bidimensionnel. Le mouvement
du fluide est modélisé par les équations d’Euler, et la dynamique du corps rigide est régie par les lois de conservation des moments
linéaires et angulaires. Nous prouvons l’existence et l’unicité d’une solution globale classique pour ce problème d’interaction
fluide–structure. La preuve repose essentiellement sur des estimées à poids pour la vorticité associée à la solution forte d’un
problème d’interaction fluide–structure obtenu en incorporant de la viscosité.
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1. Introduction

In this paper we continue our investigation of the Cauchy problem for the system describing the motion of a
rigid body immersed in an incompressible perfect fluid. In [27], the global existence and uniqueness of a classical
solution were established when the rigid body was a ball. Here, the rigid body may take an arbitrary form. To be
more precise, we assume that the rigid body fills a bounded, simply connected domain S(t) ⊂ R

2 of class C1 and
piecewise C2 and which is different from a ball, and that it is surrounded by a perfect incompressible fluid. For the
sake of simplicity, both the fluid and the solid are assumed to be homogeneous. The domain occupied by the fluid is
denoted by Ω(t) = R

2 \ S(t). The dynamics of the fluid is described by the Euler equations, whereas the motion of
the rigid body is governed by the balance equations for linear and angular momentum (Newton’s laws). The equations
modelling the dynamics of the system read then

∂u

∂t
+ (u · ∇)u + ∇p = 0 in Ω(t) × [0, T ], (1.1)

divu = 0 in Ω(t) × [0, T ], (1.2)

u · n = (
h′ + r(x − h)⊥

) · n on ∂S(t) × [0, T ], (1.3)

mh′′ =
∫

∂S(t)

pndΓ in [0, T ], (1.4)

J r ′ =
∫

∂S(t)

(x − h(t))⊥ · pndΓ in [0, T ], (1.5)

u(x,0) = a(x) ∀x ∈ Ω, (1.6)

h(0) = 0 ∈ R
2, h′(0) = b ∈ R

2, r(0) = c ∈ R. (1.7)

In the above equations u (resp., p) is the velocity field (resp., the pressure) of the fluid, and h (resp., r) denotes
the position of the center of mass (resp., the angular velocity) of the rigid body, y⊥ = (−y2, y1) if y = (y1, y2), and
∂S(t) = ∂Ω(t). Note that we have assumed the center of mass of the solid to be located at the origin at time t = 0.
We have denoted by n the unit outward normal to ∂Ω(t). The continuity equation for the velocity (1.3) means that the
normal component of the velocity is the same for the fluid and the rigid body on ∂S(t). In other words, the fluid does
not enter into the rigid body. The (positive) constants m and J are respectively the mass and the moment of inertia of
the rigid body. They are defined by

m =
∫
S

γ dx, J =
∫
S

γ |x|2 dx,

where γ denotes the (uniform) density of the rigid body. In Newton’s law (1.4) (resp., (1.5)), we notice that the only
exterior force (resp., torque) applied to the rigid body is the one resulting from the fluid pressure integrated along the
boundary ∂S(t). For a derivation of (1.1)–(1.5), we refer e.g. to [13].

As for many fluid–structure interaction problems, the main difficulties come from the fact that the system (1.1)–
(1.7) is nonlinear, strongly coupled and that the domain of the fluid is an unknown function of time. Several papers
devoted to the study of this kind of systems have been published in the last decade. More precisely, when the dynamics
of the fluid is modelled by the Navier–Stokes equations, the existence of solutions has been studied in [5,6,2,16,19,
20,15,28,7,8,33] when the fluid fills a bounded domain, and in [29,21,30,34,12] when the fluid fills the whole space.
The stationary problem was studied in [29] and in [9]. The asymptotic behavior of the solutions has been investigated
(with simplified models) in [37] and in [26].

When the fluid is perfect, the only available result is the one by the authors [27] when the solid is a ball and the
fluid fills R

2. Notice, however, that a theory providing classical solutions to this kind of problems seems desirable for
control purposes, as most of the control results for the Euler flows involve classical solutions. (See e.g. Coron [3,4],
and Glass [14].)
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Fig. 1. Configuration at t = 0.

In order to write the equations of the fluid in a fixed domain, we perform a change of variables. Denoting by S the
set occupied by the solid at t = 0 (see Fig. 1) and by Ω = R

2 \ 	S the initial domain occupied by the fluid, we set

θ(t) =
t∫

0

r(s)ds, Q(t) =
(

cos θ(t) − sin θ(t)

sin θ(t) cos θ(t)

)
, (1.8)

and ⎧⎪⎨⎪⎩
v(y, t) = Q(t)∗u

(
Q(t)y + h(t), t

)
,

q(y, t) = p
(
Q(t)y + h(t), t

)
,

l(t) = Q(t)∗h′(t).
(1.9)

Then, the functions (v, q, l, r) satisfy the following system

∂v

∂t
+ [(

v − l − ry⊥) · ∇]
v + rv⊥ + ∇q = 0 in Ω × [0, T ], (1.10)

divv = 0 in Ω × [0, T ], (1.11)

v · n = (
l + ry⊥) · n on ∂S × [0, T ], (1.12)

ml′ =
∫
∂S

qndΓ − mrl⊥ in [0, T ], (1.13)

J r ′ =
∫
∂S

qn · y⊥ dΓ in [0, T ], (1.14)

v(y,0) = a(y) ∀y ∈ Ω, (1.15)

l(0) = b, r(0) = c. (1.16)

The study of the Cauchy problem for the system (1.10)–(1.16) is more tricky than for the system considered in [27]
(rigid ball). When comparing both systems, we first notice the presence of the additional terms −r(y⊥ · ∇)v and rv⊥
in (1.10), ry⊥ · n in (1.12) and −mrl⊥ in (1.13). Moreover, the angular velocity r fails to be constant here, and its
dynamics, which is governed by (1.14), has to be taken into account. Besides some modifications in the computations
and in the analysis (see below Lemmas 2.1, 6.1 and the section devoted to the uniqueness of the solution), the main
difficulty comes from the presence of the term −r(y⊥ · ∇)v in (1.10), which looks difficult to control as |y| → ∞.
The idea is to first replace y⊥ by a truncated vector y⊥

R in (1.10), and next to derive appropriate estimates to pass to
the limit in the modified equation. As a matter of fact, the theory of weighted estimates for singular integrals (see e.g.
[32]) does not provide any estimate of the form∥∥|y|∇v

∥∥
2 2 � C

∥∥f
(|y|) curlv

∥∥
2 2 ,
L (R ) L (R )
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for any choice of the weight function f . The key observation thanks to which we shall be able to control the term
−r(y⊥ · ∇)v is that |y|∇v ∈ L2(Ω) whenever curlv ∈ L∞(Ω) ∩ L1

θ (Ω) (with θ > 2) and v ∈ L2(Ω) (see below
Proposition 2.2).

A Navier–Stokes based system similar to (1.10)–(1.16) has been recently studied in [18,11,10], but it should be
noticed that the global existence of strong solutions in the 2D case has not been proved because of the term r(y⊥ ·∇)v.

Before stating the main result of the paper, we introduce some notations borrowed from Kikuchi [23]. If V denotes
any scalar-valued function space and u = (u1, u2) is any vector-valued function, we shall say that u ∈ V if ui ∈ V for
all i, for the sake of simplicity. Let T be any positive number, and let QT = Ω × (0, T ). B( 	Ω) (resp., B(QT )) is the
Banach space of all real-valued, continuous and bounded functions defined on 	Ω (resp. QT ), endowed with the L∞
norm. For any θ > 0, L1

θ (Ω) denotes the space of (class of) measurable functions ω on Ω such that

‖ω‖L1
θ (Ω) :=

∫
Ω

∣∣ω(y)
∣∣|y|θ dy < ∞.

Finally, for any λ ∈ (0,1), Cλ( 	Ω) (resp., Cλ,0(QT )) is the space of all the functions ω ∈ B( 	Ω) (resp., ω ∈ B(QT ))
which are uniformly Hölder continuous in y with exponent λ on 	Ω (resp., on QT ). Br(y) will denote the open
ball in R

2 with center y and radius r . At any point y ∈ ∂Ω (= ∂S), n = (n1, n2) will denote the unit outer normal
vector to ∂Ω and τ = (τ1, τ2) will denote the unit tangent vector τ = −n⊥. For any scalar-valued function ω, we set
curlω = (∂ω/∂y2,−∂ω/∂y1) and ∇ω = (∂ω/∂y1, ∂ω/∂y2), while for any vector-valued function v = (v1, v2), we set
curlv = ∂v2/∂y1 − ∂v1/∂y2, divv = ∂v1/∂y1 + ∂v2/∂y2 and ∇v = (∂vi/∂yj )1�i,j�2. The main result in this paper
is the following one.

Theorem 1.1. Let θ > 2, 0 < λ < 1, a ∈ B( 	Ω) ∩ H 1(Ω), b ∈ R
2, and c ∈ R. Assume that diva = 0, (a − b − cy⊥) ·

n|∂S = 0, lim|y|→+∞ a(y) = 0, and curla ∈ L1
θ (Ω) ∩ Cλ( 	Ω). Then there exists a solution (v, q, l, r) of (1.10)–(1.16)

such that

v,
∂v

∂t
,∇v ∈ B

(
QT

)
, ∇q ∈ C

(
QT

)
, v ∈ C1([0, T ],L2(Ω)

) ∩ C
([0, T ],H 1(Ω)

)
,

y⊥ · ∇v ∈ C
([0, T ],L2(Ω)

)
, q ∈ C

([0, T ], Ĥ 1(Ω)
)
, l ∈ C1([0, T ]) and r ∈ C1([0, T ]).

Such a solution is unique up to an arbitrary function of t which may be added to q .

In the above theorem, we have denoted by Ĥ 1(Ω) the homogeneous Sobolev space

Ĥ 1(Ω) = {
q ∈ L2

loc

( 	Ω ) ∣∣ ∇q ∈ L2(Ω)
}
,

where q ∈ L2
loc(

	Ω) means that q ∈ L2(Ω ∩ B0) for any open ball B0 ⊂ R
2 with B0 ∩ Ω �= ∅.

Notice that, with the above regularity, the solution v satisfies the following property

lim|y|→∞v(y, t) = 0 (1.17)

uniformly with respect to t ∈ [0, T ]. Indeed, v ∈ W 1,∞(QT ) ∩ C([0, T ];L2(Ω)), which implies (1.17) thanks to a
simple modification of Barbalat’s lemma.

The kinetic energy of the system is given by

E(t) = 1

2
m

∣∣l(t)∣∣2 + 1

2
J
∣∣r(t)∣∣2 + 1

2

∫
Ω

∣∣v(y, t)
∣∣2 dy.

A great role will be played in the sequel by the scalar vorticity ω := curlv, which will be proved to be bounded in
L1

θ (Ω) ∩ L∞(Ω). (The initial vorticity ω0 := curla ∈ L1
θ (Ω) ∩ L∞(Ω) by assumption.) An integral term of the form∫

Ω
f (ω(y, t))dy, where f : R → R is any continuous function such that f (ω) is integrable, is termed a generalized

enstrophy.
Using the regularity of the solution provided by Theorem 1.1 and the incompressibility of the flow associated with

v − l − ry⊥ (see below), we readily obtain the following result.
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Corollary 1.2. Let (a, b, c) be as in Theorem 1.1. Then the kinetic energy and all the generalized enstrophies of the
solution given in Theorem 1.1 remain constant.

In particular, any Lp-norm of the vorticity is conserved along the flow.
A large part of the proof of Theorem 1.1 rests on the machinery developed in [23] to prove the existence of classical

solutions to the Euler system in an exterior domain. However, unlike [23], a fixed-point argument cannot be applied
directly to the Euler system, due to a lack of pressure estimate. On the other hand, when we compare the assumptions
of our main result to those required in [23], we note that

(1) no additional assumption has to be made here in order to insure the uniqueness of the solution;
(2) the initial velocity a has to belong to H 1(Ω).

The intrusion of an L2-estimate in a classical theory, which may look awkward at first sight, is nevertheless neces-
sary. Indeed, the boundedness of the speed of the rigid body cannot be proved without the aid of the conservation of
the kinetic energy of the system solid+fluid. Thus, a feature of the problem investigated here is that we need estimates
both in L∞(Ω) and in L2(Ω).

To prove Theorem 1.1 we proceed in three steps. In the first step, we construct a strong solution of an approximated
system in which the Euler equations have been replaced by the Navier–Stokes equations (with suitable boundary
conditions and with y⊥ replaced by a truncated vector y⊥

R depending on some parameter R). In the second step,
we demonstrate that the vorticity associated with the strong solution of the Navier–Stokes system is bounded in
L∞(Ω) ∩ L1

θ (Ω), uniformly with respect to the viscosity coefficient ν and to the parameter R. These estimates,
combined with a standard energy estimate, provide the velocity estimates needed to pass to the limit as R ↗ ∞ and
ν → 0. In the final step, we prove that the solution to (1.10)–(1.16) has the regularity depicted in Theorem 1.1.

The paper is outlined as follows. Section 2 contains some preliminary results. Section 3 is devoted to the existence
of strong solutions to the approximated Navier–Stokes system. In Sections 4 and 5, we prove some energy and vorticity
estimates needed to pass to the limit as R → ∞ and ν → 0. Finally, the proof of Theorem 1.1 is given in Section 6.

2. Preliminaries

2.1. Extension of the velocity field to the plane

In the system (1.10)–(1.16), we can extend v to R
2 by setting v(y, t) = l(t) + r(t)y⊥ for all y ∈ S and all t � 0.

Then divv = 0 in R
2 × [0, T ] and D(v) = 0 in S × [0, T ], where

D(v)k,l = 1

2

(
∂vk

∂yl

+ ∂vl

∂yk

)
.

We are led to introduce the following spaces

H = {
φ ∈ L2(

R
2) ∣∣ div(φ) = 0 in R

2, D(φ) = 0 in S
}

(2.1)

and

V = {
φ ∈ H | φ|Ω ∈ H 1(Ω)

}
. (2.2)

We define a scalar product in L2(R2) which is equivalent to the usual one

(u, v)γ :=
∫
Ω

u · v dx + γ

∫
S

u · v dx.

The spaces L2(R2) and H are clearly Hilbert spaces for the scalar product (·,·)γ . Notice that for every u ∈ H there
exists a unique (lu, ru) ∈ R

2 × R such that u = lu + ruy
⊥ in S (see e.g. [35, Lemma 1.1, pp. 18]). It follows that for

all u,v ∈H

(u, v)γ =
∫

u · v dx + mlu · lv + J rurv.
Ω
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The space V is also a Hilbert space for the scalar product

(u, v)V := (u, v)γ +
∫
Ω

∇u : ∇v dx.

A first technical result is the following

Lemma 2.1. Let u,v ∈ V and suppose that u|Ω ∈ H 2(Ω) and that curlu = 0 on ∂S. Then we have the following
identity∫

∂S

v · ∂u

∂n
dΓ =

∫
∂S

κ
(
v − lv − rvy

⊥) · (u − lu − ruy
⊥)

dΓ +
∫
∂S

(rvu · τ + ruv · τ + rurvy · n)dΓ, (2.3)

where κ denotes the curvature of ∂S.

Proof. For the sake of simplicity we assume that the domain S is of class C2, the extension to the general framework
being straightforward. We may extend n as a vector field of class C1 on a neighborhood of ∂S. Since divu = 0 and
divv = 0 in D′(R2), we have that(

u − lu − ruy
⊥) · n = (

v − lv − rvy
⊥) · n = 0 on ∂S.

By using the above equations, we deduce that(
v − lv − rvy

⊥) · ∇[(
u − lu − ruy

⊥) · n] = 0 on ∂S. (2.4)

Since curlu = 0 on ∂S, we infer that(
v − lv − rvy

⊥) · (∇n)∗
(
u − lu − ruy

⊥) + (
v − lv − rvy

⊥) ·
(

∂u

∂n
+ run

⊥
)

= 0 on ∂S

hence

v · ∂u

∂n
= κ

(
v − lv − rvy

⊥) · (u − lu − ruy
⊥) + (

lv + rvy
⊥) · ∂u

∂n
− ru

(
v − lv − rvy

⊥) · n⊥. (2.5)

On the other hand, since divu = 0 and curlu = 0 on ∂S, we have that

∂u

∂n
= −

(
∂u

∂τ

)⊥

where τ = −n⊥. The above equation implies that∫
∂S

(
lv + rvy

⊥) · ∂u

∂n
dΓ =

∫
∂S

rvu · τ dΓ. (2.6)

Gathering (2.5) and (2.6), we obtain the result. �
2.2. Velocity versus vorticity

The following result, which relates the velocity of the fluid to the vorticity, the velocity of the rigid body and the
circulation of the flow along ∂S, will play a great role later.

Proposition 2.2. Let l ∈ R
2, r ∈ R, C ∈ R and ω ∈ L1(Ω)∩L∞(Ω). Then there exists a unique vector field v ∈ B( 	Ω)

fulfilling

curlv = ω in Ω, (2.7)

divv = 0 in Ω, (2.8)

v · n = (
l + ry⊥) · n on ∂S, (2.9)
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∫
∂S

v · τ dΓ = C and (2.10)

lim|y|→+∞v(y) = 0. (2.11)

Furthermore, v ∈ Lp(Ω) ∀p ∈ (2,+∞], ∇v ∈ Lp(Ω) ∀p ∈ (1,+∞) and there exist some positive constants Kp,K ′
p

such that

‖v‖Lp(Ω) � Kp

(|l| + |r| + |C| + ‖ω‖L1(Ω) + ‖ω‖L∞(Ω)

) ∀p ∈ (2,+∞], (2.12)

‖∇v‖Lp(Ω) � K ′
p

(|l| + |r| + |C| + ‖ω‖Lp(Ω)

) ∀p ∈ (1,+∞). (2.13)

If in addition v ∈ L2(Ω) and ω ∈ L1
θ (Ω) with θ > 2, then

∫
Ω

ω dy = −C, |y|∇v ∈ L2(Ω) and there exists some
positive constant K ′′ such that∥∥|y|∇v

∥∥
L2(Ω)

� K ′′(|l| + |r| + ‖ω‖L∞(Ω) + ‖ω‖L1
θ (Ω)

)
. (2.14)

Proof. As the proof is very similar to the one of [27, Proposition 2.3], we limit ourselves to pointing out the main
differences.

First Step: Reduction to the case l = 0, r = 0, and C = 0.
Let us introduce

R0 := sup
y∈∂S

|y|.

(i) Reduction to the case l = 0 and r = 0.
We need the following lemma.

Lemma 2.3. Let l ∈ R
2 and r ∈ R. Then there exists a vector field d1 ∈ C∞(R2,R

2) such that divd1 = 0 on R
2 and

d1(y) =
{

l + ry⊥ if |y| � R0,

0 if |y| � R0 + 1.

Proof of Lemma 2.3. It is sufficient to pick any function θ ∈ C∞(R+,R
+) such that

θ(s) =
{

1 if s � R0,

0 if s � R0 + 1,

and to set d1(y) := curl(θ(|y|) y · l⊥) + rθ(|y|)y⊥. �
Setting v1 := v − d1, we see that (2.7)–(2.11) is changed into

curlv1 = ω1 := ω − curld1 in Ω, (2.15)

divv1 = 0 in Ω, (2.16)

v1 · n = 0 on ∂S, (2.17)∫
∂S

v1 · τ dΓ = C1 := C − r

∫
∂S

y⊥ · τ dΓ and (2.18)

lim|y|→+∞v1(y) = 0. (2.19)

Notice that ω1 ∈ L1(Ω) ∩ L∞(Ω), as curl d1 ∈ C∞
0 (R2).

(ii) Reduction to the case C = 0.
We need the following lemma.

Lemma 2.4. There exists a vector field d2 ∈ C1(R2,R
2) such that divd2 = 0, d2(y) = 0 for |y| � R0 + 1, d2 · n = 0

on ∂S and
∫

d2 · τ dΓ = 1.

∂S
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Proof of Lemma 2.4. We pick a function ψ ∈ C2
0(R2,R

+) such that 	S = {y ∈ R
2 | ψ(y) � 1}, ψ(y) = 1 and ∇ψ �≡ 0

on ∂S, and ψ(y) = 0 for |y| � R0 + 1. Then d2(y) = curlψ fulfills all the requirements of the lemma, except possibly∫
∂S

d2 · τ dΓ = 1. As
∫
∂S

d2 · τ dΓ �= 0, the last condition may be satisfied thanks to a normalization. �
The change of unknown function

v2 := v1 − C1d2

transforms (2.15)–(2.19) into

curlv2 = ω2 := ω1 − C1 curld2 in Ω, (2.20)

divv2 = 0 in Ω, (2.21)

v2 · n = 0 on ∂S, (2.22)∫
∂S

v2 · τ dΓ = 0 and (2.23)

lim|y|→+∞v2(y) = 0. (2.24)

Notice that ω2 ∈ L1(Ω) ∩ L∞(Ω), as d2(y) = 0 for |y| � R0 + 1.
Second Step: Construction of a solution to (2.20)–(2.24).
Proceeding as in [27, Proposition 2.3], one obtains the existence and the uniqueness of the solution v = d1 +C1d2 +

v2 ∈ B( 	Ω) of (2.7)–(2.11).
Third Step: Lp-estimates.
The estimates (2.12) and (2.13) may be proved as in [27, Proposition 2.3]. Assume now that v ∈ L2(Ω) and that

ω ∈ L1
θ (Ω), with θ > 2. For each R > R0 let ΩR := Ω ∩ BR(0). The following result is needed.

Lemma 2.5. Let v :Ω → R
2 be a function such that v ∈ H 1(ΩR) for any R > R0 and curlv ∈ L1(Ω). Assume further

that v ∈ L2(Ω). Then the following Stokes’ formula holds true∫
Ω

curlv dy = −
∫
∂S

v · τ dΓ. (2.25)

Proof of Lemma 2.5. An application of the usual Stokes’ formula in ΩR yields∫
ΩR

curlv dy = −
∫

|y|=R

v · τ dΓ −
∫
∂S

v · τ dΓ, (2.26)

where τ := −n⊥ and n denotes the unit outward normal to ∂ΩR . As v ∈ L2(Ω), there exists a sequence Rn ↗ ∞
such that εn := Rn

∫
|y|=Rn

|v|2 dΓ → 0 as n → ∞. Hence, by Cauchy–Schwarz inequality,( ∫
|y|=Rn

v · τ dΓ

)2

�
∫

|y|=Rn

|v|2 dΓ ·
∫

|y|=Rn

|τ |2 dΓ = 2πεn → 0.

Letting Rn → ∞ in (2.26) yields (2.25), since curl v ∈ L1(Ω). �
It follows from Lemma 2.5 and (2.7), (2.10) that∫

Ω

ω dy = −
∫
∂S

v · τ dΓ = −C,

hence
∫
Ω

ω2(y)dy = 0 and |C| � Const(‖ω‖L∞(Ω) + ‖ω‖L1
θ (Ω)).

We now turn to the estimate (2.14) for v = d1 + C1d2 + v2. As d1(y) = d2(y) = 0 for |y| � R0 + 1, we only have
to prove the following result.
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Lemma 2.6. Let ω2 ∈ L∞(Ω) ∩ L1
θ (Ω) with

∫
Ω

ω2(y)dy = 0, and let v2 denote the solution of (2.20)–(2.24). Then
there exists a constant K2 > 0 (independent of ω2) such that∥∥|y|∇v2

∥∥
L2(Ω)

� K2
(‖ω2‖L∞(Ω) + ‖ω2‖L1

θ (Ω)

)
. (2.27)

Proof of Lemma 2.6. Let us introduce the following weights on R
2

ρ(y) = (
1 + |y|2)1/2 and lg(y) = ln

(
2 + |y|2). (2.28)

Since ω2 ∈ L1
θ (Ω) ∩ L∞(Ω) (with θ > 2), we obtain (with the notations of [1]) that

ω2 ∈ W
0,p

1 (Ω) := {
w ∈ D′(Ω) | ρ(y)w(y) ∈ Lp(Ω)

} ∀p ∈ [2, θ ]
and

ω2 ∈ W
−1,2
0 (Ω) = (

W
1,2
0 (Ω)

)′

where

W
1,2
0 (Ω) := {

w ∈ D′(Ω) | (ρ(y)lg(y)
)−1

w ∈ L2(Ω) and ∇w ∈ L2(Ω)
}
.

It follows then from [1, Remark 2.11] that there exists a function ψ2 ∈ W
2,2
1 (Ω), with ψ2 ∈ W

2,p

1 (Ω) for all p ∈
(2, θ ], such that −�ψ2 = ω2 in Ω and ψ2 = 0 on ∂S. Recall that, with the notations of [1], a function w belongs to
W

2,p

1 (Ω) with p > 2 (resp. p = 2) if ρ(y)−1w(y) ∈ Lp(Ω) (resp., (ρ(y)lg(y))−1w ∈ L2(Ω)), ∂w/∂yi ∈ Lp(Ω) and
ρ(y)∂2w/∂yi∂yj ∈ Lp(Ω) for all i, j . It follows that v̄2 := curlψ2 belongs to W 1,p(Ω) (⊂ B( 	Ω)) for all p ∈ (2, θ ]
and it fulfills (2.20)–(2.22) and (2.24). As v̄2 ∈ L2(Ω) and

∫
Ω

ω2(y)dy = 0, we infer from Lemma 2.5 that (2.23)
holds as well for v̄2, hence v2 = v̄2 by [23, Lemma 2.14]. We conclude that |y|∇v2 ∈ L2(Ω), and that (2.27) holds
true. This completes the proof of Lemma 2.6 and of Proposition 2.2. �
Remark 2.7. It may occur that |y|∇v /∈ L2(Ω) when v /∈ L2(Ω). Indeed, let ψ(y) = − 1

2π
ln |y| denote the classical

fundamental solution of Laplace’s equation in R
2, and let v(y) := curlψ(y) = 1

2π
y⊥
|y|2 for y ∈ Ω := R

2 \ B1(0). Then

(2.7)–(2.11) are fulfilled with ω = 0, l = (0,0) r = 0 and C = 1. It is easy to see that v ∈ Lp(Ω) if and only if p > 2,
and that |y|∇v ∈ Lp(Ω) if and only if p > 2. Note that (2.25) also fails to be true for v.

3. Navier–Stokes approximation for the fluid

To solve (1.10)–(1.16), we follow an idea of P.-L. Lions ([25]). Namely, we replace the Euler equations by the
Navier–Stokes equations and we supplement the system with the boundary condition rotv = 0 on ∂S. As the term
ry⊥ · ∇v may be unbounded with y, we first study an approximated system in which the (unbounded) vector y⊥ is
replaced by the (bounded) vector y⊥

R , which is defined for each number R > R0 by

y⊥
R =

{
y⊥ if |y| � R,
R
|y|y

⊥ if |y| � R.

We then consider the following system

∂v

∂t
+ [(

v − l − ry⊥
R

) · ∇]
v + rv⊥ − ν�v + ∇q = 0 in Ω × [0, T ], (3.1)

divv = 0 in Ω × [0, T ], (3.2)

v · n = (l + ry⊥) · n on ∂S × [0, T ], (3.3)

curlv = 0 on ∂S × [0, T ], (3.4)

ml′ =
∫
∂S

qndΓ − mrl⊥ in [0, T ], (3.5)

J r ′ =
∫

qn · y⊥ dΓ in [0, T ], (3.6)
∂S
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v(y,0) = a(y) y ∈ Ω, (3.7)

l(0) = b, r(0) = c. (3.8)

Proceeding as in [27], we may prove the following result.

Proposition 3.1. Let a ∈ H 1(Ω), b ∈ R
2 and c ∈ R be such that

diva = 0 in Ω,

a · n = (b + cy⊥) · n on ∂S.

Then for any T > 0 the system (3.1)–(3.8) admits a unique solution (vR
ν , qR

ν , lRν , rR
ν ) with

vR
ν ∈ L2(0, T ;H 2(Ω)

) ∩ C
([0, T ];H 1(Ω)

) ∩ H 1(0, T ;L2(Ω)
)
,

qR
ν ∈ L2(0, T ; Ĥ 1(Ω)

)
, lRν ∈ H 1(0, T ;R

2), rR
ν ∈ H 1(0, T ;R).

4. First passage to the limit

In this section, we pass to the limit as R → ∞.

4.1. Some estimates

We first prove an energy estimate for the system (3.1)–(3.8).

Proposition 4.1. Let a ∈ H 1(Ω) be a function satisfying

diva = 0 in Ω and a · n = (b + cy⊥) · n on ∂S. (4.1)

Then there exists a positive constant C = C(S,m,J,‖κ‖L∞(∂S)) independent of R and ν such that the unique strong
solution (vR

ν , qR
ν , lRν , rR

ν ) of (3.1)–(3.8) satisfies∫
Ω

∣∣vR
ν (y, t)

∣∣2 dy + m
∣∣lRν (t)

∣∣2 + J
∣∣rR

ν (t)
∣∣2 + ν

t∫
0

∫
Ω

∣∣∇vR
ν (y, s)

∣∣2 dy ds

� eCνt

[∫
Ω

∣∣a(y)
∣∣2 dy + m|b|2 + J |c|2

]
∀t ∈ [0, T ]. (4.2)

Proof. In this proof, we drop the sub and superscripts (v = vR
ν ) for the sake of readability.

Multiplying (3.1) by v and integrating over Ω × (0, t) for any t < T we get
t∫

0

∫
Ω

∂v

∂t
· v dy ds +

t∫
0

∫
Ω

[((
v − l − ry⊥

R

) · ∇)
v
] · v dy ds −

t∫
0

ν

∫
Ω

�v · v dy ds +
t∫

0

∫
Ω

∇q · v dy ds

= I1 + I2 − I3 + I4 = 0.

After some integrations by parts we obtain I2 = 0 and

I4 =
[

m

2
|l|2 + J

2
r2

]t

0
,

hence∫
Ω

∣∣v(y, t)
∣∣2 dy + m

∣∣l(t)∣∣2 + J
∣∣r(t)∣∣2 + 2ν

t∫
0

∫
Ω

|∇v|2 dy ds

�
∫ ∣∣a(y)

∣∣2 dy + m|b|2 + J |c|2 + 2ν

t∫ ∫
∂v

∂n
· v dΓ. (4.3)
Ω 0 ∂S
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According to Lemma 2.1 we have that∫
∂S

v · ∂v

∂n
dΓ =

∫
∂S

κ|v − l − ry⊥|2 dΓ + 2
∫
∂S

rv · τ dΓ +
∫
∂S

r2y · ndΓ,

hence there exists a positive constant C1 = C1(S,‖κ‖L∞(∂S)) such that∣∣∣∣ ∫
∂S

v · ∂v

∂n
dΓ

∣∣∣∣ � C1

(∫
∂S

|v|2 dΓ + |l|2 + r2
)

.

Using a trace inequality, we see that there exists a positive constant C2 = C2(S) such that∫
∂S

|v|2 dΓ � C2

∫
Ω

|v|2 dy + 1

2C1

∫
Ω

|∇v|2 dy.

It follows that there exists a positive constant C = C(S,m,J,‖κ‖L∞(∂S)) such that

t∫
0

∣∣∣∣∫
∂S

v · ∂v

∂n
dΓ

∣∣∣∣ds � C

2

{ t∫
0

∫
Ω

|v|2 dy ds + m

t∫
0

|l|2 ds + J

t∫
0

r2 ds

}
+ 1

2

t∫
0

∫
Ω

|∇v|2 dy ds

which, combined to (4.3), yields∫
Ω

∣∣v(y, t)
∣∣2 dy + m

∣∣l(t)∣∣2 + J
∣∣r(t)∣∣2 + ν

t∫
0

∫
Ω

|∇v|2 dy ds

�
∫
Ω

∣∣a(y)
∣∣2 dy + m|b|2 + J |c|2 + νC

{ t∫
0

∫
Ω

|v|2 dy ds + m

t∫
0

|l|2 ds + J

t∫
0

r2 ds

}
. (4.4)

An application of Gronwall’s lemma gives then∫
Ω

∣∣v(t)
∣∣2 dy + m

∣∣l(t)∣∣2 + J
∣∣r(t)∣∣2 + ν

t∫
0

∫
Ω

|∇v|2 dy ds � eCνt

{∫
Ω

∣∣a(y)
∣∣2 dy + m|b|2 + J |c|2

}
.

The proof is completed. �
Let us now introduce the vorticity ωR

ν := curlvR
ν . Then

ωR
ν ∈ L2(0, T ;H 1

0 (Ω)
) ∩ C

([0, T ];L2(Ω)
) ∩ H 1(0, T ;H−1(Ω)

)
.

Taking the “curl” in (3.1) results in

∂ωR
ν

∂t
− ν�ωR

ν + (
vR
ν − lRν − rR

ν y⊥
R

) · ∇ωR
ν − rR

ν DR(y) : ∇vR
ν = 0 in Ω × [0, T ] (4.5)

where{
DR(y)

}
i,j

:= R 1|y|>R

yiyj

|y|3 . (4.6)

Eq. (4.5) has to be supplemented with the boundary condition ωR
ν = 0 on ∂S ×[0, T ] and the initial condition ωR

ν (0) =
curla in Ω .

The next result asserts that ωR
ν remains bounded in L2(0, T ;H 1

0 (Ω)) uniformly with respect to R.

Proposition 4.2. Let a ∈ H 1(Ω) be a function fulfilling (4.1). Then there exists a positive constant C independent of
R such that∫

Ω

∣∣ωR
ν (y, t)

∣∣2 dy + 2ν

t∫
0

∫
Ω

∣∣∇ωR
ν (y, s)

∣∣2 dy ds � C ∀t ∈ [0, T ]. (4.7)
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Proof. Scaling in (4.5) by ω, we obtain after some integrations by parts

t∫
0

〈
∂ωR

ν

∂t
,ωR

ν

〉
H−1×H 1

0

ds + ν

t∫
0

∫
Ω

∣∣∇ωR
ν

∣∣2 dy ds −
t∫

0

∫
Ω

rR
ν

(
DR(y) : ∇vR

ν

)
ωR

ν (y, s)dy ds = 0.

Then (4.7) follows from (4.2) and (4.6). �
4.2. Passage to the limit R → ∞

In what follows, we fix ν > 0 and we let R → +∞. According to Propositions 4.1 and 4.2, the functions vR
ν and

ωR
ν are bounded in L2(0, T ;H 1(Ω)) (as ν > 0 is kept constant) and the functions lRν and rR

ν are bounded in L∞(0, T ).
Therefore, there exist a sequence Rk ↗ ∞ and some functions vν ∈ L2(0, T ;H 1(Ω)), ων ∈ L2(0, T ;H 1

0 (Ω)), lν ∈
L∞(0, T ;R

2) and rν ∈ L∞(0, T ) such that

vRk
ν ⇀ vν in L2(0, T ;H 1(Ω)

)
,

ωRk
ν ⇀ ων in L2(0, T ;H 1

0 (Ω)
)
,

lRk
ν ⇀ lν in L∞(

0, T ;R
2)-weak∗,

rRk
ν ⇀ rν in L∞(0, T )-weak∗

as k → +∞. Clearly

divvν = 0 in Ω × [0, T ] (4.8)

and

vν · n = (
lν + rνy

⊥) · n on ∂S × [0, T ]. (4.9)

We now aim to take the limit in (4.5). For any f ∈ L2(0, T ;L2(Ω)), we have that f DRk
→ 0 in L2(0, T ;L2(Ω)),

hence

rRk
ν DRk

(y) : ∇vRk
ν ⇀ 0 in L2(0, T ;L2(Ω)

)
.

Since div(v
Rk
ν − l

Rk
ν − r

Rk
ν y⊥

Rk
) = 0, we obtain that(

vRk
ν − lRk

ν − rRk
ν y⊥

Rk

) · ∇ωRk
ν = div

(
ωRk

ν

(
vRk
ν − lRk

ν − rRk
ν y⊥

Rk

))
. (4.10)

Pick any R > 0. It follows from (4.5) that the sequence (∂ω
Rk
ν /∂t) is bounded in L2(0, T ;H−2(ΩR)). An application

of Aubin’s lemma gives that (for a subsequence)

ωRk
ν → ων in L2(0, T ;L2(ΩR)

)
,

hence

ωRk
ν

(
vRk
ν − lRk

ν − rRk
ν y⊥

Rk

) → ων

(
vν − lν − rνy

⊥)
in D′(ΩR × (0, T )

)
and therefore, using (4.10),(

vRk
ν − lRk

ν − rRk
ν y⊥

Rk

) · ∇ωRk
ν → (

vν − lν − rνy
⊥) · ∇ων in D′(ΩR × (0, T )

)
as k → +∞. It follows that ων fulfills the equation

∂ων

∂t
− ν�ων + [(

vν − lν − rνy
⊥) · ∇]

ων = 0 in D′(Ω × (0, T )
)
.

Clearly, the equations ων = curlvν and ων |∂S = 0 are satisfied. We now turn to the initial condition. Let us introduce
the Hilbert space

H :=
{
ϕ ∈ H 1

0 (Ω)2 | divϕ = 0 and
∫ ∣∣ϕ(y)

∣∣2
ρ(y)2 dy < ∞

}

Ω
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endowed with the norm ‖ϕ‖2
H := ∫

Ω
(|∇ϕ(y)|2 +ρ(y)2|ϕ(y)|2)dy. It may be seen that the sequence (v

Rk
ν )t is bounded

in L3/2(0, T ;H ′). (Scaling in (3.1) by a test function ϕ ∈ L3(0, T ;H), the result follows at once in integrating by
parts in the integral term

∫ T

0

∫
Ω

(v · ∇v) · ϕ dy dt and in using the boundedness of vR
ν in L3(0, T ;L4(Ω)).)

Observing that the first embedding in

H 1(Ω) ⊂ L2
ρ(y)−2 dy

(Ω) ⊂ H ′

is compact and that L2(Ω) ⊂ H ′ compactly, we deduce from [31, Corollary 4] that the sequence (v
Rk
ν ) is relatively

compact in both C([0, T ];H ′) and L2(0, T ;L2
ρ(y)−2 dy

(Ω)). Extracting a subsequence if needed, we may assume that

vRk
ν → vν in C

([0, T ];H ′) ∩ L2(0, T ;L2
ρ(y)−2 dy

(Ω)
)

as k → +∞. Therefore, we conclude that

vν(0) = a, (4.11)

ων(0) = curla. (4.12)

Finally, we show that vν satisfies a variational equation associated with the system (3.1)–(3.8) (with R = +∞). To
this end we introduce two families of Hilbert spaces. For all R > R0, let

HR := {
ϕ ∈ H | ϕ = 0 for |y| � R

}
,

VR := {
ϕ ∈ V | ϕ = 0 for |y| � R

}
.

HR and VR are closed subspaces of H and V , respectively. Noticing that VR is dense in HR and identifying HR

with H′
R , we obtain the diagram

VR ⊂HR ≡H′
R ⊂ V ′

R

where V ′
R denotes the dual space of VR with respect to the pivot space HR . Therefore, we may write for any ϕ ∈ VR

and any ψ ∈ HR

(ψ,ϕ)γ = 〈ψ,ϕ〉R,

where the symbol 〈·, ·〉R denotes the duality pairing between V ′
R and VR . The following result reveals that (vν, lν, rν)

is a weak solution of the Navier–Stokes problem (3.1)–(3.8) (with yR replaced by y).

Proposition 4.3. For all R > R0, v′
ν = (vν)t is bounded in L3/2(0, T ; (VR)′), and for any

ϕ ∈ L3(0, T ;VR) ∩ L∞(
0, T ;L∞(Ω)

)
we have that

T∫
0

{〈
v′
ν, ϕ

〉
R

+ ν

∫
Ω

∇vν : ∇ϕ dy

}
dt

− ν

T∫
0

∫
∂S

{
κ
(
vν − lν − rνy

⊥) · (ϕ − lϕ − rϕy⊥) + (rϕvν + rνϕ) · τ + rνrϕ y · n}
dΓ dt

=
T∫

0

∫
Ω

{(
lν + rνy

⊥ − vν

) · ∇vν − rνv
⊥
ν

} · ϕ dy dt. (4.13)

Proof. By using (3.1)–(3.8) and the fact that v
Rk
ν is bounded in L∞(0, T ;H) ∩ L2(0, T ;V) ∩ L3(0, T ;L4(Ω)), we

easily check that (v
Rk
ν )t is bounded in L3/2(0, T ; (VR)′) and that
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T∫
0

{((
vRk
ν

)′
, ϕ

)
γ

+ ν

∫
Ω

∇vRk
ν : ∇ϕ dy

}
dt

− ν

T∫
0

∫
∂S

{
κ
(
vRk
ν − lRk

ν − rRk
ν y⊥) · (ϕ − lϕ − rϕy⊥) + (

rϕvRk
ν + rRk

ν ϕ
) · τ + rRk

ν rϕ y · n}
dΓ dt

=
T∫

0

∫
Ω

{(
lRk
ν + rRk

ν y⊥
Rk

− vRk
ν

) · ∇vRk
ν − rRk

ν

(
vRk
ν

)⊥} · ϕ dy dt (4.14)

for any ϕ ∈ L3(0, T ;VR). If in addition ϕ ∈ L∞(QT ), then (4.14) yields (4.13) in the limit k → ∞. �
5. Some estimates for the Navier–Stokes problem

In this section, we prove some estimates for the velocities vν, lν, rν and for the vorticity

ων = curlvν. (5.1)

Recall that ων fulfills the following system

∂ων

∂t
+ (

vν − lν − rνy
⊥) · ∇ων − ν�ων = 0 in Ω × [0, T ], (5.2)

ων = 0 on ∂S × [0, T ], (5.3)

ων(y,0) = ω0(y) ∀y ∈ Ω. (5.4)

These estimates will be used in the next section to pass to the limit in (5.2) and in (4.13) as ν → 0.

5.1. Energy estimate

The following (energy) estimate for the functions vν, lν, rν is an obvious consequence of Proposition 4.1.

Proposition 5.1. Let a ∈ H 1(Ω) be a function satisfying (4.1). Then there exists a positive constant C =
C(S,m,J,‖κ‖L∞(∂S)) such that for any ν > 0 and for a.e. t ∈ [0, T ]∫

Ω

∣∣vν(y, t)
∣∣2 dy + m

∣∣lν(t)∣∣2 + J
∣∣rν(t)∣∣2 � eCνt

[∫
Ω

∣∣a(y)
∣∣2 dy + m|b|2 + J |c|2

]
. (5.5)

5.2. Vorticity estimates

We have the following estimate.

Proposition 5.2. Let ω0 ∈ L1(Ω) ∩ L∞(Ω). Then for all p ∈ [1,+∞] and for all t ∈ [0, T ] we have that∥∥ων(t)
∥∥

Lp(Ω)
� ‖ω0‖Lp(Ω). (5.6)

Proof. Multiplying (4.5) by ϕ ∈ L2(0, T ;H 1
0 (Ω)) and integrating with respect to time, we have that

t∫
0

〈
∂ωR

ν

∂t
, ϕ

〉
H−1×H 1

0

ds − ν

t∫
0

〈
�ωR

ν ,ϕ
〉
H−1×H 1

0
ds +

t∫
0

〈
(vR

ν − lRν − rR
ν y⊥

R ) · ∇ωR
ν ,ϕ

〉
H−1×H 1

0
ds

−
t∫
rR
ν

〈
DR : ∇vR

ν ,ϕ
〉
H−1×H 1

0
ds = 0.
0
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The above equation easily yields that
t∫

0

〈
∂ωR

ν

∂t
, ϕ

〉
H−1×H 1

0

ds + ν

t∫
0

∫
Ω

∇ωR
ν · ∇ϕ dy ds

−
t∫

0

∫
Ω

ωR
ν

(
vR
ν − lRν − rR

ν y⊥
R

) · ∇ϕ dy ds −
t∫

0

rR
ν

∫
Ω

(
DR : ∇vR

ν

)
ϕ dy ds = 0. (5.7)

Now, we analyze each integral and consider two cases:
Case 1 (p � 2). As the function |ων |p−2ων cannot be a priori taken as a test function, we are led to truncate it. For

any M > 0 let TM ∈ C(R) denote the function

TM(a) =
{

M if a > M,

a if − M � a � M,

−M if a < −M.

For every δ > 0, let ψδ ∈ C∞(Ω) be the function defined by

ψδ(y) = exp
(−δρ(y)

)
, (5.8)

where ρ(y) is defined in (2.28). We have that

∇ψδ(y) = −δ
y

ρ(y)
ψδ(y), (5.9)

and that

�ψδ(y) =
(

δ2 |y|2
ρ2

+ δ

ρ

( |y|2
ρ2

− 2

))
ψδ(y). (5.10)

We consider for each M > 0 and for each δ > 0, the following test function

ϕ = ∣∣TM

(
ωR

ν

)∣∣p−2
TM

(
ωR

ν

)
ψδ.

We easily check that ϕ ∈ L2(0, T ;H 1
0 (Ω)) and that

∇ϕ(y) =
[
(p − 1)

(∇ωR
ν

)
1|ωR

ν |�M − δ
y

ρ(y)
TM

(
ωR

ν

)]∣∣TM

(
ωR

ν

)∣∣p−2
ψδ.

By using this test function in (5.7), we obtain that for every t ∈ [0, T ]∫
Ω

FM

(
ωR

ν (t)
)
ψδ dy −

∫
Ω

FM(ω0)ψδ dy + ν(p − 1)

t∫
0

∫
Ω

∣∣∇ωR
ν

∣∣2∣∣ωR
ν

∣∣p−21|ωR
ν |�Mψδ dy ds

− νδ

t∫
0

∫
Ω

y

ρ(y)
· (∇ωR

ν

)∣∣TM

(
ωR

ν

)∣∣p−2
TM

(
ωR

ν

)
ψδ dy ds

+
t∫

0

∫
Ω

δ
(
vR
ν − lRν

) · y

ρ(y)

(
ωR

ν TM

(
ωR

ν

) − p − 1

p

∣∣TM

(
ωR

ν

)∣∣2
)∣∣TM

(
ωR

ν

)∣∣p−2
ψδ(y)dy ds

−
t∫

0

rR
ν

∫
Ω

(
DR : ∇vR

ν

)∣∣TM

(
ωR

ν

)∣∣p−2
TM

(
ωR

ν

)
ψδ dy ds = 0, (5.11)

where we have defined the function

FM(a) :=
a∫

0

∣∣TM(σ)
∣∣p−2

TM(σ)dσ = 1

p

∣∣TM(a)
∣∣p + Mp−1(|a| − M

)+ ∀a ∈ R.

Using Cauchy–Schwarz inequality in (5.11), we obtain that
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∫
Ω

FM

(
ωR

ν (t)
)
ψδ dy �

∫
Ω

FM(ω0)ψδ dy + C

{
νδ

t∫
0

∥∥∇ωR
ν

∥∥
L2(Ω)

∥∥ωR
ν

∥∥
L2(Ω)

ds

+ δ

t∫
0

∥∥vR
ν

∥∥
L2(Ω)

∥∥ωR
ν

∥∥
L2(Ω)

ds + δ

t∫
0

∣∣lRν ∣∣∥∥ωR
ν

∥∥2
L2(Ω)

ds

+ ∥∥rR
ν

∥∥
L∞(0,T )

t∫
0

∥∥∇vR
ν

∥∥
L2(Ω)

ds

(∫
Ω

1|y|�Rψδ(y)2 dy

)1/2
}

(5.12)

where C = C(ν,m) is a constant. Taking the limit R → ∞ in above equation, using (4.2), (4.7) and the convexity
of FM , we obtain that there exists a constant C′ = C′(ν) such that∫

Ω

FM

(
ων(t)

)
ψδ dy �

∫
Ω

FM(ω0)ψδ dy + C′δ.

Taking M > ‖ω0‖L∞(Ω) and letting δ → 0, we get∫
Ω

FM

(
ων(t)

)
dy � 1

p

∫
Ω

∣∣ω0(y)
∣∣p dy. (5.13)

Finally, letting M ↗ ∞, we obtain by the monotone convergence theorem∥∥ων(t)
∥∥

Lp(Ω)
� ‖ω0‖Lp(Ω).

Thus, taking the limit as p → ∞ we conclude that∥∥ων(t)
∥∥

L∞(Ω)
� ‖ω0‖L∞(Ω), for any t ∈ [0;T ].

Case 2 (1 � p < 2). Let us now consider the test function

ϕ = (∣∣ωR
ν

∣∣ + ε
)p−2

ωR
ν ψδ

whose gradient is

∇ϕ = (∣∣ωR
ν

∣∣ + ε
)p−3(

(p − 1)
∣∣ωR

ν

∣∣ + ε
)∇ωR

ν ψδ − δy

ρ(y)

(∣∣ωR
ν

∣∣ + ε
)p−2

ωR
ν ψδ.

Replacing ϕ and ∇ϕ by their new expression in (5.7), we obtain after some calculation that∫
Ω

Hε

(
ωR

ν (y, t)
)
ψδ dy + ν

t∫
0

∫
Ω

(∣∣ωR
ν

∣∣ + ε
)p−3(

(p − 1)
∣∣ωR

ν

∣∣ + ε
)∣∣∇ωR

ν

∣∣2
ψδ dy ds

=
∫
Ω

Hε

(
ω0(y)

)
ψδ dy + ν

t∫
0

∫
Ω

Hε

(
ωR

ν

)
�ψδ dy ds − δ

t∫
0

∫
Ω

y

ρ(y)
· (vR

ν − lRν
)∣∣ωR

ν

∣∣2(∣∣ωR
ν

∣∣ + ε
)p−2

ψδ dy ds

+
t∫

0

rR
ν

∫
Ω

(
DR : ∇vR

ν

)(∣∣ωR
ν

∣∣ + ε
)p−2

ωR
ν ψδ dy ds, (5.14)

where

Hε(a) =
a∫

0

(|σ | + ε
)p−2

σ dσ = |a|(|a| + ε)p−1

(p − 1)
− (|a| + ε)p − εp

p(p − 1)
∀a ∈ R. (5.15)

Using Cauchy–Schwarz inequality in (5.14), we obtain for some constant C > 0 (independent of ε, δ, ν,R)
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∫
Ω

Hε

(
ωR

ν (y, t)
)
ψδ dy �

∫
Ω

Hε

(
ω0(y)

)
ψδ dy + Cνδ

t∫
0

∫
Ω

Hε

(
ωR

ν

)
ψδ dy ds

+ δ

ε2−p

t∫
0

(∥∥vR
ν

∥∥
L2(Ω)

∥∥ωR
ν

∥∥2
L4(Ω)

+ ∣∣lRν ∣∣∥∥ωR
ν

∥∥2
L2(Ω)

)
ds

+ C

ε2−p

∥∥rR
ν

∥∥
L∞(0,T )

e−δR

t∫
0

∥∥∇vR
ν

∥∥2
L2(Ω)

ds. (5.16)

By using (4.2), (4.7) we deduce from the above equation that there exists a constant C′ = C′(ν, ε,p) such that∫
Ω

Hε

(
ωR

ν (y, t)
)
ψδ dy �

∫
Ω

Hε

(
ω0(y)

)
ψδ dy + C′δ + C′ e−δR.

From the convexity of Hε we get, by letting R → ∞, that∫
Ω

Hε

(
ων(y, t)

)
ψδ dy �

∫
Ω

Hε

(
ω0(y)

)
ψδ dy + C′δ.

Therefore, letting δ → 0, we obtain∫
Ω

Hε

(
ων(y, t)

)
dy �

∫
Ω

Hε

(
ω0(y)

)
dy.

Finally, taking the limit as ε → 0, we conclude that∫
Ω

∣∣ων(y, t)
∣∣p dy �

∫
Ω

∣∣ω0(y)
∣∣p dy, ∀t ∈ [0, T ]

and by letting p → 1, we have that for all p ∈ [1,2) and all t ∈ [0, T ]∥∥ων(t)
∥∥

Lp(Ω)
� ‖w0‖Lp(Ω). �

Proposition 5.3. Let ω0 ∈ L1(Ω) ∩ L∞(Ω) be a function such that∫
Ω

∣∣ω0(y)
∣∣ρ(y)θ dy < ∞,

for a positive constant θ > 1. Then there exists a positive constant C > 0 such that for all ν > 0 we have that∫
Ω

∣∣ων(y, t)
∣∣ρ(y)θ dy � eCt

∫
Ω

∣∣ω0(y)
∣∣ρ(y)θ dy ∀t ∈ [0, T ]. (5.17)

Proof. To prove this result we proceed as above by choosing a convenient test function φ. Pick two numbers p > 1
and ε > 0, and take

φ(y, t) = ϕ(y, t)ρ(y)θ = (∣∣ωR
ν (y, t)

∣∣ + ε
)p−2

ωR
ν (y, t)ρ(y)θψδ(y).

We can easily check that φ ∈ L2(0, T ;H 1
0 (Ω)) with

∇φ = (
ε + (p − 1)

∣∣ωR
ν

∣∣)(∣∣ωR
ν

∣∣ + ε
)p−3∇ωR

ν ρ(y)θψδ(y) + (∣∣ωR
ν

∣∣ + ε
)p−2

ωR
ν ∇[

ρθψδ

]
(y).

Therefore, replacing ϕ by φ in (5.7), we obtain after some calculations that



156 J. Ortega et al. / Ann. I. H. Poincaré – AN 24 (2007) 139–165
∫
Ω

Hε

(
ωR

ν (y, t)
)
ρ(y)θψδ(y)dy −

∫
Ω

Hε

(
ω0(y)

)
ρ(y)θψδ(y)dy

+ ν

t∫
0

∫
Ω

(
ε + (p − 1)

∣∣ωR
ν

∣∣)(∣∣ωR
ν

∣∣ + ε
)p−3∣∣∇ωR

ν

∣∣2
ρ(y)θψδ(y)dy ds

+ ν

t∫
0

∫
Ω

(∣∣ωR
ν

∣∣ + ε
)p−2

ωR
ν ∇ωR

ν · ∇[
ρθψδ

]
(y)dy ds

+
t∫

0

∫
Ω

(
vR
ν − lRν − rR

ν y⊥
R

) · ∇[
ρθψδ

]
(y)Gε

(
ωR

ν

)
dy ds

−
t∫

0

∫
Ω

((
vR
ν − lRν − rR

ν y⊥
R

) · ∇[
ρθψδ

]
(y)

)(∣∣ωR
ν

∣∣ + ε
)p−2(

ωR
ν

)2 dy ds

−
t∫

0

rR
ν

∫
Ω

(
DR : ∇vR

ν

)(∣∣ωR
ν (y, t)

∣∣ + ε
)p−2

ωR
ν (y, t)ρ(y)θψδ(y)dy ds = 0 (5.18)

where Hε is defined by (5.15) and Gε is defined by

Gε(a) =
a∫

0

σ
(
ε + (p − 1)|σ |)(|σ | + ε

)p−3 dσ = |a|2(|a| + ε
)p−2 − Hε(a).

We shall use the following relations:

∇[
ρθψδ

]
(y) =

{
θ

y

ρ(y)2
− δ

y

ρ(y)

}
ρ(y)θψδ(y), (5.19)

�
[
ρθψδ

]
(y) =

{
2θ + θ2|y|2

ρ(y)4
− δ(2θ − 1)|y|2

ρ(y)3
− 2δ

ρ
+ δ2|y|2

ρ(y)2

}
ρ(y)θψδ(y). (5.20)

In the expression (5.18), some terms can be treated by using the following equalities:∫
Ω

(∣∣ωR
ν

∣∣ + ε
)p−2

ωR
ν ∇ωR

ν · ∇[
ρθψδ

]
(y)dy = − 1

p

∫
Ω

(∣∣ωR
ν

∣∣ + ε
)p

�
[
ρθψδ

]
(y)dy

+ ε

p − 1

∫
Ω

(∣∣ωR
ν

∣∣ + ε
)p−1

�
[
ρθψδ

]
(y)dy + εp

p(p − 1)

∫
∂S

(
δρ(y) − θ

)
ρ(y)θ−2ψδ(y)y · ndΓ, (5.21)

t∫
0

∫
Ω

(
vR
ν − lRν − rR

ν y⊥
R

) · ∇[
ρθψδ

]
Gε

(
ωR

ν

)
dy ds =

t∫
0

∫
Ω

(
vR
ν − lRν

) · ∇[
ρθψδ

]
Gε

(
ωR

ν

)
dy ds (5.22)

and ∫
Ω

((
vR
ν − lRν − rR

ν y⊥
R

) · ∇[
ρθψδ

])(∣∣ωR
ν

∣∣ + ε
)p−2(

ωR
ν

)2 dy

=
∫
Ω

((
vR
ν − lRν

) · ∇[|y|θψδ

])(∣∣ωR
ν

∣∣ + ε
)p−2(

ωR
ν

)2 dy. (5.23)

Consequently, by passing to the limit R → ∞, we obtain that
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∫
Ω

Hε

(
ων(y, t)

)
ρ(y)θψδ dy �

∫
Ω

Hε

(
ω0(y)

)
ρ(y)θψδ dy +

{
C1 + ν

C2

p

} t∫
0

∫
Ω

(|ων | + ε
)p

ρ(y)θψδ dy ds

+ C1

t∫
0

∫
Ω

Gε(ων)ρ(y)θψδ dy ds + εν C2

p − 1

t∫
0

∫
Ω

(|ων | + ε
)p−1

ρ(y)θψδ dy ds

+ εp

p(p − 1)

∫
∂S

∣∣(δρ(y) − θ
)
ρ(y)θ−2ψδ(y)y · n∣∣dΓ, (5.24)

where

C1 = (θ + δ)
∥∥vν(t) − lν(t)

∥∥
L∞(QT )

and C2 = 2
(
θ2 + θ + δ2).

The fact that ‖vν − lν‖L∞(QT ) remains bounded as ν ↘ 0 readily follows from Propositions 2.2, 5.1 and 5.2. (See
below Section 6.1.) Now, letting ε → 0+, we obtain thus for some constant C3 > 0

1

p

∫
Ω

∣∣ων(y, t)
∣∣pρ(y)θψδ dy � 1

p

∫
Ω

∣∣ω0
∣∣pρ(y)θψδ dy +

{
C1 + ν

C2

p
+ C3

} t∫
0

∫
Ω

|ων |pρ(y)θψδ dy ds. (5.25)

Applying Gronwall’s Lemma and then using the monotone convergence theorem in the limit δ → 0, we obtain that
there exists a positive constant C > 0 such that for all p ∈ (1,2), ν ∈ (0,1) and t ∈ [0, T ]∫

Ω

∣∣ων(y, t)
∣∣pρ(y)θ dy � eCt

∫
Ω

∣∣ω0(y)
∣∣pρ(y)θ dy.

Now, we have in the limit p → 1+∫
Ω

∣∣ων(y, t)
∣∣ρ(y)θ dy � eCt

∫
Ω

∣∣ω0(y)
∣∣ρ(y)θ dy

and the proof is complete. �
6. Proof of Theorem 1.1

6.1. Passage to the limit ν → 0

It follows from (5.5) that lν and rν are bounded in L∞(0, T ). On the other hand, the quantity
∫
∂S

vν · τ dΓ is also
bounded in L∞(0, T ). Indeed, using Lemma 2.5 (vν ∈ L2(Ω) by (5.5)), we obtain∫

∂S

vν · τ dΓ = −
∫
Ω

curlvν dy = −
∫
Ω

ων dy

hence, by (5.6),∣∣∣∣ ∫
∂S

vν · τ dΓ

∣∣∣∣ � ‖ων‖L1(Ω) � ‖ω0‖L1(Ω)· (6.1)

As ων is bounded in L∞(0, T ;L1(Ω)∩L∞(Ω)) by (5.6), it follows from Propositions 2.2 and 5.1 that vν is bounded
in L∞(QT ) and in L∞(0, T ;W 1,p(Ω)) ∀p ∈ [2,+∞). Using in addition Proposition 5.3 with θ > 2, we see that
(y⊥ · ∇)vν is bounded in L∞(0, T ;L2(Ω)). Therefore, we infer that for some sequence νk ↘ 0 and some functions

v ∈ L∞(
0, T ;W 1,p(Ω)

) ∀p ∈ [2,+∞) with

(y⊥ · ∇)v ∈ L∞(
0, T ;L2(Ω)

)
,

ω ∈ L∞(
0, T ;L1

θ (Ω) ∩ L∞(Ω)
)
,

l ∈ L∞(0, T ) and r ∈ L∞(0, T ),
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we have that

vνk
⇀ v in L∞(

0, T ;W 1,p(Ω)
)
-weak∗, ∀p ∈ [2,+∞),(

y⊥ · ∇)
vνk

⇀ (y⊥ · ∇)v in L∞(
0, T ;L2(Ω)

)
-weak∗,

ωνk
⇀ ω in L∞(QT )-weak∗,

lνk
⇀ l in L∞(0, T )-weak∗,

rνk
⇀ r in L∞(0, T )-weak∗

as k → +∞. (To see that ω ∈ L∞(0, T ;L1
θ (Ω)) it is sufficient to notice that ‖ωνk

‖L∞(0,T ;Lq
θ (Ω)) � C for some

constant C > 0 independent of k and q , and to do k → ∞ and next q → 1. Here, ‖ω‖q

L
q
θ (Ω)

:= ∫
Ω

|ω(y)|q |y|θ dy.)

We now turn to the pointwise convergence of (vνk
). According to Proposition 4.3 (v′

ν) is bounded in L3/2(0, T ;V ′
R).

Pick any p > 2. Observing that the first embedding in

W 1,p
(
BR(0)

) ∩HR ⊂ C
(
BR(0)

) ∩HR ⊂HR ⊂ V ′
R

is compact, we deduce from [31, Corollary 4] that (vν)ν>0 is relatively compact in C(ΩR × [0, T ]) for any R > R0.
Therefore, we obtain that

v ∈ B(QT ) (6.2)

and that vνk
converges to v uniformly on each compact subset of 	Ω × [0, T ] as k → +∞.

We now aim to establish the uniform convergence of the sequences (lνk
) and (rνk

). The key point is that the
correspondence which to (l, r) ∈ R

2 ×R associates the continuous map y �→ (l + ry⊥) ·n on ∂S is a one-to-one linear
map (hence an isomorphism onto its image) when S is not a ball, as is showed by the next result.

Lemma 6.1. Let S be a bounded simply connected domain which is of class C1 and piecewise C2, and which is
different from a ball. Then the only couple (l, r) ∈ R

2 × R for which (l + ry⊥) · n = 0 for all y ∈ ∂S is (l, r) = (0,0).

Proof of Lemma 6.1. Let y = y(σ ), σ ∈ [0, σp], be an anticlockwise parametrization by arc length of ∂S, y being
of class C2 on each interval [σi, σi+1] where 0 = σ0 < σ1 < · · · < σp denotes an appropriate subdivision of [0, σp].
Thus τ = dy/dσ on [0, σp] and dτ/dσ = κn on each interval (σi, σi+1), where n = τ⊥ denotes the unit outer normal
vector to ∂(R2 \ S) and κ denotes the curvature of ∂S, which may assume nonpositive values. Derivating with respect
to σ ∈ (σi, σi+1) in(

l + ry⊥) · n = 0 (6.3)

yields

r − (
l + ry⊥) · κτ = 0. (6.4)

If (l + ry⊥) · τ = 0 for some σ ∈ [σi, σi+1] (0 � i � p − 1), then r = 0 and l · n = 0 on [0, σp], which gives l = 0. If
(l + ry⊥) · τ �= 0 for each σ ∈ [0, σp]. then κ = r/((l + ry⊥) · τ) is continuous and piecewise C1, hence y = y(σ ) is
of class C2 on [0, σp]. A second derivation gives then(

l + ry⊥) ·
(

dκ

dσ
τ + κ2n

)
+ rn · κτ = 0. (6.5)

Combining (6.3), (6.4) and (6.5) we obtain that

r
dκ

dσ
= 0 on (σi, σi+1).

If r �= 0, then κ has to be constant on each interval (σi, σi+1), and also on [0, σp] by continuity. This implies that S is
a ball, contradicting the hypotheses. Therefore r = 0, and we conclude as before that l = 0. �

Modifying (if necessary) lνk
and rνk

on a zero measure set, we infer from (4.9), Lemma 6.1 and from the continuity
of vν on ∂S × [0, T ] that lν and rν are both continuous on [0, T ]. Furthermore, using the uniform convergence of
k k k
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vνk
to v on ∂S × [0, T ], we infer that lνk

(resp., rνk
) converges uniformly to l (resp., r) on [0, T ], hence l ∈ C([0, T ])

(resp., r ∈ C([0, T ])).
It is then easy to see that the sequence (v′

νk
) is bounded in L2(0, T ;V ′

R) and that v′
νk

⇀ v′ in L2(0, T ;V ′
R) for any

R > R0.
Therefore, taking the limit k → ∞ in (4.13) yields

T∫
0

{
〈v′, ϕ〉R +

∫
Ω

((
v − l − ry⊥) · ∇v + rv⊥) · ϕ dy

}
dt = 0 (6.6)

for all ϕ ∈ L2(0, T ;VR). As∣∣∣∣∣
T∫

0

〈v′, ϕ〉R dt

∣∣∣∣∣ � C‖ϕ‖L2(0,T ;V)

for some constant C > 0 independent of ϕ and R, we see that v′ ∈ L2(0, T ;V ′) (V ′ denoting the dual space of V with
respect to the pivot space H), and that

T∫
0

{
〈v′, ϕ〉 +

∫
Ω

((
v − l − ry⊥) · ∇v + rv⊥) · ϕ dy

}
dt = 0 ∀ϕ ∈ L2(0, T ;V), (6.7)

where 〈·,·〉 denotes the duality pairing between V and V ′. Obviously, (1.11), (1.12), (1.15) and (1.16) hold true. On
the other hand [V,V ′]1/2 =H, hence by a classical result in [24]

v ∈ C
([0, T ],H)

, (6.8)

and we infer from Hölder inequality and (6.2) that

v ∈ C
([0, T ],Lp(Ω)

) ∀p ∈ [2,+∞).

In particular, it follows from [36, Lemma 1.4] that

v ∈ Cw

([0, T ],W 1,p(Ω)
) ∀p ∈ [2,+∞)

and that

lim|y|→+∞v(y, t) = 0 ∀t ∈ [0, T ].

We now turn to the equation satisfied by ω. Using (4.8), (5.2) may be rewritten as

ω′
νk

+ div
((

vνk
− lνk

− rνk
y⊥)

ωνk

) − νk�ωνk
= 0. (6.9)

Clearly, (vνk
− lνk

− rνk
y⊥)ωνk

⇀ (v − l − ry⊥)ω in L∞(ΩR × (0, T ))-weak∗ for any R, hence, letting k → +∞ in
(6.9) we obtain

ω′ + div
((

v − l − ry⊥)
ω

) = 0 in D′(QT ). (6.10)

Finally, passing to the limit in (5.1), (6.1) we get

ω = curlv, (6.11)∣∣∣∣ ∫
∂S

v · τ dΓ

∣∣∣∣ � ‖ω0‖L1(Ω). (6.12)

6.2. Existence of a classical solution of (1.10)–(1.16)

In this section we prove that all the equations in (1.10)–(1.16) are satisfied in the classical sense. More precisely,
we prove that v, ∇v, and vt belong to B(QT ) and that ∇q ∈ C(QT ). We begin with the following result.
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Lemma 6.2. There exists a constant H > 0 such that for all y, z ∈ 	Ω and all t ∈ [0, T ]∣∣v(y, t) − v(z, t)
∣∣ � H |y − z|χ(|y − z|), (6.13)

where

χ(r) :=
{

1 for r � 1,

1 + ln(1/r) for 0 < r < 1.

Proof. Applying Lemma 2.3 with l = l(t), r = r(t), we may write

v(y, t) = d1(y, t) + v1(y, t),

where d1 ∈ C([0, T ],W 1,∞(Ω)) satisfies d1(y, t) = l(t) + r(t)y⊥ for |y| � R0, d1(y, t) = 0 for |y| � R0 + 1, and v1
fulfils curlv1 = ω1 := ω − curld1 and divv1 = 0 in Ω , v1 · n = 0 on ∂S, lim|y|→+∞ v1(y, t) = 0, and∫

∂S

v1 · τ dΓ =
∫
∂S

v · τ dΓ − r(t)

∫
∂S

y⊥ · τ dΓ := C1(t).

(Note that the function C1(t) is continuous.) Then, by virtue of [23, Lemma 2.14],

v1(y, t) = curlG(ω1)(y, t) + λ1(t)u1(y),

where curlG(ω1)(y, t) = (2π)−1
∫
Ω

curlG(y, z)ω1(z, t)dz, G(y, z) denoting the Green function for the exterior zero-
Dirichlet problem, λ1(t) = C1(t)− ∫

∂S
curlG(ω1) · τ dΓ , and u1 ∈ W 1,∞(Ω) is some irrotational and solenoidal flow

satisfying u1 · n = 0 on ∂S,
∫
∂S

u1 · τ dΓ = 1 and u1(y) → 0 as |y| → +∞. (See [23, Lemma 1.5] for the existence
of the vector field u1.) Then, by virtue of [23, Lemma 2.4], v1 and v satisfy (6.13). �
Remark 6.3. In [23], λ1 takes the following form

λ1(t) =
∫
∂B

v1(y,0) · τ dΓ −
∫
∂B

curlG(ω1) · τ dΓ.

The result in [23, Lemma 2.4] remains nevertheless valid with this new definition of λ1(t).

The vector field v being quasi-Lipschitz (see (6.13)), it follows from Osgood’s criterion (see e.g. [17, Corol-
lary 6.2]) that the Cauchy problem⎧⎨⎩

dy

dt
= v(y, t) − l(t) − r(t)y⊥,

y(t0) = y0

has a unique solution y(t). We may therefore define the flow associated with v − l − ry⊥ as the solution of the
following system⎧⎨⎩

d

ds
Us,t (y) = v

(
Us,t (y), s

) − l(s) − r(s)Us,t (y)⊥,

Ut,t (y) = y.

As v ∈ B(QT ), l ∈ C([0, T ]), r ∈ C([0, T ]), and (v − l − ry⊥) · n = 0 on ∂S × [0, T ], we see that Us,t (y) is defined
for all (s, t, y) ∈ [0, T ]2 × 	Ω . The following result comes from [22].

Lemma 6.4. There exist two constants δ > 0 and L > 0 such that∣∣Us,t (y) − Us̄,t̄ (ȳ)
∣∣ � L

(|s − s̄|δ + |t − t̄ |δ + |y − ȳ|δ) ∀s, s̄, t, t̄ ∈ [0, T ], ∀y, ȳ ∈ 	Ω.

The following uniqueness result is similar to a result given in [25, Proof of Theorem 2.5]. Its proof is left to the
reader.
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Lemma 6.5. Let v ∈ L∞(QT ) be such that divv = 0 on Ω × (0, T ) and v · n = 0 on ∂S × (0, T ), and let ω ∈
L∞(0, T ;L1(Ω) ∩ L∞(Ω)) be a solution of

∂ω

∂t
+ div(vω) = 0 in D′(Ω × (0, T )

)
(6.14)

such that ω|t=0 = 0. Then ω ≡ 0.

Let 	ω(y, t) := ω0(U0,t (y)), where ω0 := curla. As div(v − l − ry⊥) = 0, we infer as in [23, pp. 70–71] that for all
t ∈ [0, T ]∫

Ω

∣∣	ω(y, t)
∣∣dy =

∫
Ω

∣∣ω0(y)
∣∣dy,

hence 	ω ∈ L∞(0, T ;L1(Ω) ∩ L∞(Ω)). It follows from Lemma 6.5 (applied to ω − 	ω and v − l − ry⊥) that

ω(y, t) = 	ω(y, t) = ω0
(
U0,t (y)

)
.

Using once again the fact that the Lebesgue measure is preserved by Us,t (y), one may show that∫
Ω

ω(y, t)dy =
∫
Ω

ω0(y)dy,

hence

C(t) =
∫
∂S

v · τ dΓ = −
∫
Ω

ω0(y)dy = Const.

On the other hand, we infer from Lemma 6.4 that

ω ∈ Cδλ,0(QT

)
. (6.15)

Then we derive the following result.

Lemma 6.6. ∂v
∂yj

∈ B(QT ) for j = 1,2.

The proof is virtually the same as the one for [23, Lemma 2.10].
The following result contains the fact that ∇v ∈ C([0, T ],L2(Ω)), which will be used later when proving that

v′ = dv/dt ∈ B(QT ).

Lemma 6.7. v ∈ C([0, T ];Lp(Ω)) for any p ∈ [2,+∞], ∇v ∈ C([0, T ];Lp(Ω)) for any p ∈ (1,+∞), and
(y⊥ · ∇)v ∈ C([0, T ];L2(Ω)).

Proof. We need the following

Claim. ω ∈ C([0, T ],L1
θ ′(Ω) ∩ L∞(Ω)) for any θ ′ ∈ (2, θ).

Pick any number θ ′ ∈ (2, θ). We readily infer from (5.17) and (6.15) that ω ∈ C([0, T ];L1
θ ′(Ω)). On the other

hand, ω0 is Hölder continuous on 	Ω by assumption, and we infer from Lemma 6.4 that∣∣U0,t (y) − U0,t ′(y)
∣∣ � L|t − t ′|δ ∀y ∈ 	Ω, ∀t, t ′ ∈ [0, T ].

Thus, the vorticity ω(y, t) = ω0(U0,t (y)) belongs to the space C([0, T ],L∞(Ω)). The claim is proved.
The proof of the lemma is completed by using Proposition 2.2, (6.8), the claim, and the fact that l ∈ C([0, T ]),

r ∈ C([0, T ]), and
∫
∂B

v · τ dΓ = Const . �
Lemma 6.8. v′ ∈ B(QT ) ∩ C([0, T ],L2(Ω)).
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Proof. Let f denote the function ((v − l − ry⊥) · ∇)v + rv⊥ extended by 0 on S, and let P denote the orthog-
onal projector from L2(R2) (endowed with the (·, ·)γ scalar product) onto H. We infer from Lemma 6.7 that
f ∈ C([0, T ];L2(R2)), hence Pf ∈ C([0, T ];H). It follows that∫

Ω

((
v − l − ry⊥) · ∇v + rv⊥) · ϕ dy = (f,ϕ)γ = (Pf,ϕ)γ = 〈Pf,ϕ〉 ∀ϕ ∈ V .

Thus (6.7) may be rewritten

T∫
0

〈
v′ + Pf,ϕ

〉
dt = 0 ∀ϕ ∈ L2(0, T ;V),

which implies that

v′ + Pf = 0 in L2(0, T ;V ′).

Thus v′ ∈ C([0, T ],H), l′ = lv′ ∈ C([0, T ]) and r ′ = rv′ ∈ C([0, T ]). We now decompose v as

v(y, t) = v2(y, t) + d1(y, t) + C1d2(y), (6.16)

where v2 solves (2.20)–(2.24) (with ω2(y, t) = ω(y, t) − curld1(y, t) − C1 curld2(y)), d1 (resp. d2) is given by
Lemma 2.3 (resp. Lemma 2.4), and C1 = ∫

∂S
a · τ dΓ − r

∫
∂S

y⊥ · τ dΓ . Derivating with respect to time in (6.16),
we obtain

v′ = v′
2 + d ′

1 −
(

r ′
∫
∂S

y⊥ · τ dΓ

)
d2(y).

As l′ ∈ C([0, T ]) and r ′ ∈ C([0, T ]), d ′
1 ∈ B(QT ). The fact that v′

2 ∈ B(QT ) may be found in [23, Proof of
Lemma 2.11]. Therefore, v′ ∈ B(QT ). �
Corollary 6.9. v ∈ C1([0, T ],L2(Ω)) ∩ C([0, T ],H 1(Ω)).

Proof. This is a direct consequence of Lemmas 6.7 and 6.8. �
It remains to prove the existence of a pressure q(y, t) satisfying (1.10) and (1.13)–(1.14) in a classical sense. As

v′ ∈ C([0, T ],H), we infer from (6.7) that for every t ∈ [0, T ]
ml′ · lφ + J r ′ rφ +

∫
Ω

(
v′ + (

v − l − ry⊥) · ∇v + rv⊥) · φ dy = 0 ∀φ ∈ V . (6.17)

In particular,∫
Ω

(
v′ + (

v − l − ry⊥) · ∇v + rv⊥) · φ dy = 0 ∀φ ∈ C∞
0 (Ω) with divφ = 0.

By [36, Propositions 1.1 and 1.2], there exists a function q ∈ L2(0, T ; Ĥ 1(Ω)) such that for a.e. t ∈ (0, T )

v′ + (
v − l − ry⊥) · ∇v + rv⊥ + ∇q = 0. (6.18)

As v′, (v− l − ry⊥) ·∇v and rv⊥ belong to C(QT )∩C([0, T ];L2(Ω)), adding a function of time to q if necessary we
see that q ∈ C([0, T ]; Ĥ 1(Ω)) and ∇q ∈ C(QT ). Picking any φ ∈ V , we infer from (6.17)–(6.18) and the divergence
formula that

ml′ · lφ + J r ′ rφ =
∫
Ω

∇q · φ dy =
∫
Ω

div(qφ)dy =
∫
∂S

qn · φ dΓ.

Therefore (1.13) and (1.14) hold true.
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6.3. Uniqueness of the solution

Finally, we prove the uniqueness of a classical solution to the problem (1.10)–(1.16).
Assume given two solutions (v1, q1, l1, r1) and (v2, q2, l2, r2) of (1.10)–(1.16) with the regularity depicted in

Theorem 1.1. We introduce the functions

v = v1 − v2, q = q1 − q2, r = r1 − r2, l = l1 − l2, (6.19)

which fulfil the following system

∂v

∂t
+ ((

v1 − l1 − r1y⊥) · ∇)
v + ((

v − l − ry⊥) · ∇)
v2 + r1v⊥ + rv2⊥ + ∇q = 0 in Ω × [0, T ], (6.20)

divv = 0 in Ω × [0, T ], (6.21)

v · n = (
l + ry⊥) · n on ∂S × [0, T ], (6.22)

ml′ =
∫
∂S

qndΓ − m
(
r1l⊥ + rl2⊥)

in [0, T ], (6.23)

J r ′ =
∫
∂S

qn · y⊥ dΓ in [0, T ], (6.24)

v(y,0) = 0 ∀y ∈ Ω, (6.25)

l(0) = 0 r(0) = 0. (6.26)

In order to prove that (v, l, r) = (0,0,0), we establish some energy estimate for (6.20)–(6.26).
Multiplying (6.20) by v and integrating over Ω × (0, t), we obtain that

0 =
t∫

0

∫
Ω

vt · v dy ds +
t∫

0

∫
Ω

((
v1 − l1 − r1y⊥) · ∇)

v · v dy ds +
t∫

0

∫
Ω

((
v − l − ry⊥) · ∇)

v2 · v dy ds

+
t∫

0

∫
Ω

rv2⊥ · v dy ds +
t∫

0

∫
Ω

∇q · v dy ds = I1 + I2 + I3 + I4 + I5.

We now study each integral term. We easily have that

I1 = 1

2

∫
Ω

∣∣v(t)
∣∣2 dy.

Next, some integrations by part give that

I2 = 0. (6.27)

On the other hand, we have that

I3 =
t∫

0

∫
Ω

(v · ∇)v2 · v dy ds −
t∫

0

∫
Ω

(l · ∇)v2 · v dy ds −
t∫

0

∫
Ω

(
ry⊥ · ∇)

v2 · v dy ds = I31 + I32 + I33.

We can estimate each part:

|I31| � ‖∇v2‖L∞(QT )

t∫
0

∫
Ω

|v|2 dy ds,

|I32| �
t∫ ∣∣l(s)∣∣(∫ ∣∣∇v2

∣∣2 dy

)1/2(∫
|v|2 dy

)1/2

ds � 1

2

∥∥v2
∥∥

L∞(0,T ;H 1(Ω))

[ t∫ (∫
|v|2 dy + |l|2

)
ds

]

0 Ω Ω 0 Ω
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and

|I33| �
t∫

0

∣∣r(s)∣∣(∫
Ω

|y|2∣∣∇v2
∣∣2 dy

)1/2(∫
Ω

|v|2 dy

)1/2

ds

� 1

2

∥∥|y|∇v2
∥∥

L∞(0,T ;L2(Ω))

[ t∫
0

(∫
Ω

|v|2 dy + |r|2
)

ds

]
.

On the other hand,

|I4| �
t∫

0

∣∣r(s)∣∣(∫
Ω

∣∣v2
∣∣2 dy

)1/2(∫
Ω

|v|2 dy

)1/2

ds � 1

2
‖v2‖L∞(0,T ;L2(Ω))

[ t∫
0

(∫
Ω

|v|2 dy + |r|2
)

ds

]
.

Finally we have that

I5 =
t∫

0

∫
∂S

q
(
l + ry⊥) · ndΓ ds = m

2

∣∣l(t)∣∣2 + J

2

∣∣r(t)∣∣2 + m

t∫
0

l · (rl2⊥)
ds = I51 + I52 + I53

with

|I53| � m

2

∥∥l2
∥∥

L∞(0,T )

t∫
0

(|l|2 + |r|2)ds.

Thus, we have that∫
Ω

∣∣v(t)
∣∣2 dy + m

∣∣l(t)∣∣2 + J
∣∣r(t)∣∣2 � C

[ t∫
0

(∫
Ω

|v|2 dy + m|l|2 + J |r|2
)

ds

]

and by Gronwall’s Lemma, we obtain that

v = 0 in Ω × (0, T ) and (l, r) = (0,0) in (0, T ).

Using (6.20) we conclude that ∇q = 0 in Ω × (0, T ), which proves that the solution of our problem is unique (up to
an arbitrary function of t for q). The proof of Theorem 1.1 is achieved. �
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