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Minimizing L∞-norm functional on divergence-free fields

Baisheng Yan

Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA

Received 15 November 2010; accepted 22 December 2010

Available online 18 February 2011

Abstract

In this paper, we study the minimization problem on the L∞-norm functional over the divergence-free fields with given bound-
ary normal component. We focus on the computation of the minimum value and the classification of certain special minimizers
including the so-called absolute minimizers. In particular, several alternative approaches for computing the minimum value are
given using Lq -approximations and the sets of finite perimeter. For problems in two dimensions, we establish the existence of
absolute minimizers using a similar technique for the absolute minimizers of L∞-functionals of gradient fields. In some special
cases, precise characterizations of all minimizers and the absolute minimizers are also given based on equivalent descriptions of
the absolutely minimizing Lipschitz extensions of boundary functions.
© 2011

MSC: 49J45; 49K30; 26B30; 35J92

Keywords: L∞-norm functional; Divergence-free field; BV function; Power-law approximation; 1-Laplacian-type equation; Absolute minimizer

1. Introduction and main results

Let Ω be a bounded domain in Rn (n � 2) with Lipschitz continuous boundary ∂Ω and σ be a positive continuous
function on Ω̄ . Given H :Ω → Rn and β : ∂Ω → R, we study the value of the following minimization problem:

ρ(β,H) = min
G∈Sβ(Ω)

∥∥∥∥G + H

σ

∥∥∥∥
L∞(Ω)

, (1.1)

where Sβ(Ω) is the set of all divergence-free fields G in Ω of fixed boundary normal-component G · ν|∂Ω = β.

The motivation for studying such a problem is two-folds. First, in many variational problems, it is typical that
finding the best constant for some inequalities to hold or the certain threshold condition for a problem to have some
special solutions will eventually lead to computing optimal values involving the L∞-norm of divergence-controlled
quantities [4,8,12,13,22]. It is certainly desirable to find alternative ways to compute such values. Second, the study
of the L∞-norm of divergence-free fields is a special case of the study of the L∞-functionals of general functions
with certain A-quasiconvexity [9,15]. In working with the special problem (1.1) for divergence-free fields, we are
hoping to further explore the similar ideas from the study of gradient fields, as in [6,7,19,23]. In particular, for our
problem (1.1), we would like to study whether some special (hopefully unique) minimizers can be obtained through
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certain underlying selection principles similar to those for the viscosity solutions and the absolute minimizers in the
gradient case.

We first address the issues concerning the alternative ways to compute the value ρ(β,H). Motivated by some
results in [10], we assume the following natural conditions for H and β:

H ∈ L∞(Ω;Rn
)
, divH ∈ Ln(Ω); β ∈ L∞(∂Ω),

∫
∂Ω

β dHn−1 = 0. (1.2)

The space of functions H satisfying the conditions in (1.2) will be denoted by Xn(Ω) and has been studied by many
authors [5,8,11–13], even with divH being a Radon measure. In particular, if H ∈ Xn(Ω), then a normal-component
H · ν ∈ L∞(∂Ω) can be defined Hn−1-a.e. on ∂Ω in such a way that the generalized divergence formula∫

Ω

ζ divH dx =
∫

∂Ω

ζ(H · ν)dHn−1 −
∫
Ω

H · ∇ζ dx (1.3)

holds for all H ∈ Xn(Ω) and ζ ∈ W 1,1(Ω); this formula can be extended to ζ ∈ BV(Ω), the space of functions of
bounded variation in Ω. The admissible class Sβ(Ω) is defined by

Sβ(Ω) = {
G ∈ L∞(Ω;Rn

) ∣∣ divG = 0, G · ν = β
}

(1.4)

and is nonempty under the assumptions on β in (1.2). For G ∈ Sβ(Ω) and ζ ∈ W 1,1(Ω), by (1.3), it follows that∫
∂Ω

ζ(β + H · ν) −
∫
Ω

ζ divH =
∫
Ω

(G + H) · ∇ζ �
∥∥∥∥G + H

σ

∥∥∥∥
L∞(Ω)

∫
Ω

σ |∇ζ |

and hence we have that

ρ(β,H) � sup
ζ∈W 1,1(Ω)

ζ �=const

∫
∂Ω

ζ(β + H · ν)dHn−1 − ∫
Ω

ζ divH dx∫
Ω

σ |∇ζ |dx
. (1.5)

One of the main motivations of the paper is that the equality holds in this relation:

Theorem 1.1. Let H,β satisfy (1.2). Then ρ(β,H) = μ(β + H · ν,divH), where the quantity μ(g,h) is defined by

μ(g,h) = sup
ζ∈W 1,1(Ω)

ζ �=const

∫
∂Ω

ζg dHn−1 − ∫
Ω

ζhdx∫
Ω

σ(x)|∇ζ |dx
(1.6)

for functions g and h satisfying the condition

g ∈ L∞(∂Ω), h ∈ Ln(Ω),

∫
∂Ω

g dHn−1 =
∫
Ω

hdx. (1.7)

The optimization problem (1.6) is similar to the problems appearing in several important studies, such as the dual
variational principle for plasticity [12], the best constant for the Sobolev trace-embedding of W 1,1(Ω) into L1(∂Ω)

[4,24], the eigenvalue problem for 1-Laplacian operator [8,13], and the generalized Cheeger problems [2,18,20]. One
readily verifies that

μ(g,h) = sup
ζ∈BV(Ω)
ζ �=const

∫
∂Ω

γ (ζ )g dHn−1 − ∫
Ω

ζhdx∫
Ω

σ d|Dζ | , (1.8)

where γ : BV(Ω) → L1(∂Ω) is the trace operator and |Dζ | is the total variation measure of the vector Radon mea-
sure Dζ . The formula (1.8) is different from the one used in the generalized Cheeger problem studied in [18] because
we do not have any boundary condition on ζ ∈ BV(Ω). However, as in [18], we will see that the number μ(g,h) can
also be characterized in terms of sets of finite perimeter instead of functions of bounded variation (see Theorem 3.3
below).
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We discuss another approach for μ(g,h) based on approximation by power-law functionals. Let B : BV(Ω) → R
be defined by

B(ζ ) =
∫

∂Ω

γ (ζ )g dHn−1 −
∫
Ω

ζhdx. (1.9)

Note that B ≡ 0 if and only if g = h = 0. Assume B �≡ 0. We define the following constrained minimization problems:

λ(g,h) = inf
ζ∈BV(Ω)
B(ζ )=1

∫
Ω

σ d|Dζ |, λp(g,h) = inf
ζ∈W 1,p(Ω)

B(ζ )=1

∫
Ω

σp|∇ζ |p (1 � p < ∞). (1.10)

If B ≡ 0 (i.e., g = h = 0), define λ(0,0) = λp(0,0) = +∞.

The following result provides another way to compute the quantity μ(g,h).

Theorem 1.2. It follows that λ1(g,h) = λ(g,h) = 1
μ(g,h)

> 0 and

lim
p→1+ λp(g,h) = λ1(g,h) = λ(g,h). (1.11)

Assume B �≡ 0. For each 1 < p < ∞, a standard direct method in the calculus of variations shows that there exists
a unique function up ∈ W 1,p(Ω) with B(up) = 1 satisfying

∫
Ω

up dx = 0 that minimizes the problem (1.10); that is,∫
Ω

σp|∇up|p = λp(g,h). We have the following result.

Theorem 1.3. There exist subsequence pj → 1+ as j → ∞, functions ū ∈ BV(Ω) and F̄ ∈ L∞(Ω;Rn) with
‖F̄‖L∞(Ω) � 1 such that, as j → ∞,

upj
⇀ ū in L

n
n−1 (Ω), ∇upj

∗
⇀ Dū as measures on Ω, (1.12)

|∇upj
|pj −2∇upj

⇀ F̄ in Lr(Ω) for any r > 1, (1.13)

div(σ F̄ ) = λh, σ F̄ · ν = λg, where λ = λ(g,h). (1.14)

The function ū so determined is a minimizer for λ(g,h) in BV(Ω) if and only if B(ū) = 1.

Since the trace operator γ : BV(Ω) → L1(∂Ω) is not continuous under the weak-star convergence of BV(Ω), one
may not have B(ū) = 1 for the function ū determined in the theorem; so ū may not be a minimizer for μ(g,h)

in BV(Ω). But any such limit ū is a weak solution to a Neumann problem for a 1-Laplacian-type equation (see
Remark 3.1). In general, the existence of a minimizer for λ(g,h) in BV(Ω) is unknown. However, under certain
conditions (see Theorem 5.2 below), any such function ū will satisfy B(ū) = 1 and hence is a minimizer for λ(g,h).

We now address the issues concerning the special (hopefully unique) minimizers for ρ(β,H) in problem (1.1).
Note that, with g = β + H · ν, h = divH and F̄ so determined in Theorem 1.3, the relationship

Ḡ = σ F̄

λ(g,h)
− H (1.15)

defines a minimizer Ḡ for ρ(β,H); all such minimizers Ḡ can also be characterized by minimizing the Lq -norm as
q → ∞ (see Proposition 4.2 below) in much similar way as for the L∞-functionals of gradients of scalar functions
[6,7,19]. The Γ -convergence of the general power-law functionals of divergence-free fields as power tends to infinity
has been studied in [9]. However, unlike the gradient case, viscosity and comparison principles seem intractable for
our problem (1.1) with divergence-free vector-fields. Instead, we focus on the principle of absolute minimizers. In a
natural analogy to the absolute minimizers for L∞-functionals of gradients, we make the following definition.

Definition 1.1. A minimizer Ḡ ∈ Sβ(Ω) for ρ(β,H) is called an absolute minimizer provided that ‖ Ḡ+H
σ

‖L∞(E) �
‖G+H

σ
‖L∞(E) holds for all open sets E � Ω with connected Ω \ E and all fields G ∈ Sβ(Ω) satisfying∫

G · ∇ζ dx =
∫

Ḡ · ∇ζ dx ∀ζ ∈ C∞
0

(
Rn
)
. (1.16)
E E
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If E is a set of finite perimeter in Ω , then there is a local characterization of the condition (1.16) in terms of the
interior normal-components relative to Ω on ∂∗E; see Remark 2.2(b). The requirement of connectedness on Ω \ E

seems necessary as seen in the two dimensional case.

The existence of an absolute minimizer is unknown in general. However, in dimension n = 2, using the fact that
a divergence-free field is a rotated gradient and some results about absolute minimizers in the gradient case, we are
able to show that any minimizer Ḡ obtained through (1.15) from a vector-field F̄ determined in Theorem 1.3 is an
absolute minimizer. With given Dirichlet boundary conditions, the similar result in the gradient case would follow
from the Γ -convergence of the power-law energies to the L∞-energy [7,9]. However, some care need to be taken here
because the Dirichlet boundary conditions are not uniquely determined from the normal trace of the divergence-free
fields, especially when ∂Ω consists of disjoint closed curves.

We summarize the results for the two-dimensional problem in the following theorem, which provides a concrete
procedure of finding the absolute minimizers for ρ(β,H) in the special case and also indicates that the absolute
minimizers may not be unique; the convex set Σ and the Lipschitz continuous functions αc given in the theorem will
be specified later.

Theorem 1.4. Let n = 2. Then any minimizer Ḡ determined by a function F̄ in Theorem 1.3 through (1.15) is an
absolute minimizer for ρ(β,H).

In the special case when σ = 1, H = 0 and ∂Ω consists of k + 1 disjoint Lipschitz Jordan curves, there exist
nonempty compact convex set Σ ⊂ Rk and certain given Lipschitz continuous functions αc on ∂Ω, distinct for different
c ∈ Σ, such that any absolute minimizer Ḡ ∈ Sβ(Ω) is representable as Ḡ = (ϕ̄x2 ,−ϕ̄x1), where ϕ̄ is the absolute
minimizing Lipschitz extension of αc for some c ∈ Σ.

The paper is organized as follows. In Section 2, we collect some notation and preliminary results on functions
of bounded variation and sets of finite perimeter, mostly from [3,17], and on the normal-components for functions
in Xn(Ω) and we define the measures (F,Dv) for functions F ∈ Xn(Ω) and v ∈ BV(Ω) in a slightly different way
from those used in [4,5,8,11–13]. In Section 3, we prove Theorems 1.2 and 1.3 by giving several characterizations of
μ(g,h). In Section 4, we present two proofs of Theorem 1.1, one based on Theorem 1.3 and the other on a natural di-
rect approach analogous to the approach for L∞-functionals of gradient fields given in [7,9] using the limit of p-power
functionals as p → ∞. In Section 5, we provide a sufficient condition for the existence of minimizers for λ(g,h) in
BV(Ω) and maximizing sets of μ(g,h). A highly non-trivial interesting example is also given (see Example 5.1). In
Section 6, we study two-dimensional problems and we prove Theorem 1.4 as two separate theorems (Theorems 6.2
and 6.5). The proof of Theorem 6.5 relies on several equivalent descriptions of the absolutely minimizing Lipschitz
extension as the viscosity solution to the infinity Laplacian equation as given in [6,19,23].

2. Notation and preliminaries

Let U be an open set in Rn. Let Lp(U) and W 1,p(U) be the usual Lebesgue and Sobolev spaces [1]. A function
u ∈ L1(U) is said to have bounded variation in U if |Du|(U) = ∫

U
|Du| < ∞, where∫

U

|Du| = sup

{∫
U

udivϕ dx

∣∣∣ ϕ ∈ C1
0

(
U ;Rn

)
, ‖ϕ‖L∞(U) � 1

}
. (2.1)

We denote by BV(U) the space of all functions in L1(U) having bounded variation in U ; this is a Banach space with
norm ‖u‖BV(Ω) = ‖u‖L1(Ω) + |Du|(Ω). It is well-known that u ∈ BV(U) if and only if u ∈ L1(U) and, for each
i = 1,2, . . . , n, the distributional derivative uxi

is a measure μi of finite total variation in the space M(U) of all
Radon measures on U. Hence, the distributional gradient of u is a vector measure Du = (μ1,μ2, . . . ,μn).

Let E be a Borel set in Rn. The perimeter P(E,U) of E in U is defined to be P(E,U) = ∫
U

|DχE |; write
P(E) = P(E,Rn). We say that E is a set of finite perimeter in U if P(E,U) < ∞. A set E is called a Caccioppoli
set if P(E,U) < ∞ for every bounded open set U in Rn. For a Caccioppoli set E, a point x ∈ Rn is said to be in the

reduced boundary ∂∗E of E if
∫
Bε(x)

|DχE | > 0 for all ε > 0 and the vector limit νE(x) = limε→0

∫
Bε(x) DχE∫

Bε(x) |DχE | exists

and satisfies |νE(x)| = 1. (Note that we use the same notation as [17] for the reduced boundary, which is different
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from the notation used in [3], where F E is used.) This unit vector νE(x) is called the generalized inner normal to E

at x ∈ ∂∗E. By Theorem 3.59 in [3] or Theorem 4.4 in [17], we know that, as Radon measures in M(Rn),

DχE = νE |DχE |, |DχE | = Hn−1 � ∂∗E. (2.2)

Given a measurable set E in Rn and a number t ∈ [0,1], the set Et of all points where E has density t is defined
by

Et =
{
x ∈ Rn

∣∣∣ lim
ε→0

|E ∩ Bε(x)|
|Bε(x)| = t

}
.

The sets E0 and E1 can be considered as the measure-theoretic interior and exterior of E. So the set ∂mE = Rn \
(E0 ∪ E1) is defined to be the measure-theoretic boundary of E (or the essential boundary of E); clearly ∂mE ⊂ ∂E.

(Note again that our notation for the essential boundary is different from that used in [3].) A well-known theorem (cf.,
[3, Theorem 3.61]) states that if E as finite perimeter in Rn, then

∂∗E ⊂ E
1
2 ⊂ ∂mE, Hn−1(∂mE \ ∂∗E

)= 0. (2.3)

In particular, E has density either 0, 1
2 or 1 at Hn−1-a.e. x ∈ Rn.

In what follows, we assume Ω is a bounded domain with Lipschitz boundary ∂Ω in Rn and define the family

P (Ω) = {
E ⊂ Ω

∣∣ 0 < P(E,Ω) < ∞}
. (2.4)

The trace operator u|∂Ω can be extended as a linear bounded operator γ = γΩ : BV(Ω) → L1(∂Ω) (see [3, Theo-
rem 3.87] and [17, Theorem 2.10]) so that, for each u ∈ BV(Ω),

lim
ε→0

1

εn

∫
Bε(a)∩Ω

∣∣u(x) − γ (u)(a)
∣∣dx = 0 (2.5)

for Hn−1-almost every a ∈ ∂Ω; moreover, for all ζ ∈ C1(Rn;Rn),∫
Ω

udiv ζ dx = −
∫
Ω

ζ · d(Du) +
∫

∂Ω

γ (u)ζ · ν dHn−1. (2.6)

The trace operator γΩ is onto from W 1,1(Ω) to L1(∂Ω) (see, e.g., [5, Lemma 5.5]).
It is well-known that (see [5, Lemma 5.2] and [17, Remark 2.12]), for each u ∈ BV(Ω), there exists a sequence

uj ∈ C∞(Ω) ∩ W 1,1(Ω) such that

(a) uj → u in L
n

n−1 (Ω) (b)
∫
Ω

|∇uj |dx →
∫
Ω

|Du| (c) γ (uj ) = γ (u). (2.7)

By [3, Corollary 3.49 and Remark 3.50], we have the following Poincaré inequality: there exists a constant C such
that, for all u ∈ BV(Ω),∥∥u − (u)Ω

∥∥
L

n
n−1 (Ω)

� C

∫
Ω

|Du|, (2.8)

where (u)Ω = 1
|Ω|

∫
Ω

udx is the average of u on Ω.

Let u ∈ BV(Ω). By [3, Theorem 3.40], for almost every t ∈ R, the set {u > t} = {x ∈ Ω | u(x) > t} has finite
perimeter in Ω and the coarea formula

|Du|(B) =
∞∫

−∞
|Dχ{u>t}|(B)dt, Du(B) =

∞∫
−∞

Dχ{u>t}(B)dt (2.9)

holds for any Borel set B ⊂ Ω. If u ∈ W 1,1(Ω) and is precisely represented in Ω , say, u ∈ C(Ω)∩W 1,1(Ω) (see [21]),
then for all Borel functions ψ :Ω → R∫

Ω

ψ |∇u| =
∞∫

−∞

( ∫
−1

ψ dHn−1
)

dt =
∞∫

−∞

( ∫
Ω

ψ d|Dχ{u>t}|
)

dt. (2.10)
u (t)
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We gather some useful convergence results in BV(Ω) in the following proposition; see, e.g., [3, Propositions 3.6,
3.13 and Theorem 3.88] and [17, Theorem 2.11].

Proposition 2.1. Let u,uj ∈ BV(Ω), |Duj |(Ω) � M and uj → u in L1(Ω) as j → ∞. Then

uj ⇀ u in L
n

n−1 (Ω), (2.11)

uj → u in Lq(Ω) for each 1 � q <
n

n − 1
, (2.12)

|Du|(A) � lim inf
j→∞ |Duj |(A) ∀A ⊂ Ω open, (2.13)∫

Ω

φ d|Du| � lim inf
j→∞

∫
Ω

φ d|Duj |, (2.14)

where φ is any nonnegative lower semi-continuous function in Ω . If, in addition, we assume

lim
j→∞

∫
Ω

|Duj | =
∫
Ω

|Du|, (2.15)

then we have

γ (uj ) → γ (u) in L1(∂Ω), (2.16)

lim
j→∞

∫
Ω

ψ d|Duj | =
∫
Ω

ψ d|Du| (2.17)

for all bounded continuous functions ψ ∈ C(Ω). In particular, |Duj | ∗
⇀ |Du| in M(Ω).

We prove the following result providing a formula for the traces of certain functions.

Proposition 2.2. For each u ∈ BV(Ω),

γ (u)(a) = lim
ε→0

2

|Bε(a)|
∫

Bε(a)

χΩ(x)u(x) dx

for Hn−1-a.e. a ∈ ∂Ω; for each E ∈ P (Ω), γ (χE) = χ∂Ω∩∂∗E in L1(∂Ω).

Proof. Note that Ω has finite perimeter in Rn (see [3, Proposition 3.62]) and that ∂∗Ω ⊂ ∂Ω = ∂mΩ. Hence

Hn−1(∂Ω \ Ω
1
2 ) = 0. By (2.5), for Hn−1-a.e. a ∈ ∂Ω ,

lim
ε→0

1

εn

∣∣∣∣
∫

Bε(a)∩Ω

(
u(x) − γ (u)(a)

)∣∣∣∣� lim
ε→0

1

εn

∫
Bε(a)∩Ω

∣∣u(x) − γ (u)(a)
∣∣= 0,

from which we have

γ (u)(a) lim
ε→0

|Bε(a) ∩ Ω|
|Bε(a)| = lim

ε→0

1

|Bε(a)|
∫

Bε(a)

χΩ(x)u(x) dx.

Since Hn−1(∂Ω \Ω
1
2 ) = 0, for Hn−1-a.e. a ∈ ∂Ω , it follows that limε→0

|Bε(a)∩Ω|
|Bε(a)| = 1

2 ; the first statement is proved.

To prove the second statement, let φ = γ (χE) ∈ L1(∂Ω) be the trace function. Then

φ(a) = 2 lim
ε→0

|Bε(a) ∩ E|
|Bε(a)| . (2.18)

We write ∂Ω = (∂Ω ∩E0)∪ (∂Ω ∩E1)∪ (∂Ω ∩∂∗E)∪[∂Ω ∩ (∂mE \∂∗E)]. First, since E ⊂ Ω , Ω
1
2 ∩E1 = ∅; thus

Hn−1(∂Ω ∩ E1) = 0. If a ∈ ∂Ω ∩ E0, then φ(a) = 0. If a ∈ ∂Ω ∩ ∂∗E then, by (2.3), a ∈ E
1
2 and hence φ(a) = 1.
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Finally, by Lemma 2.3, Hn−1(∂mE \ ∂∗E) = 0, and hence φ(a) = χ∂Ω∩∂∗E(a) for Hn−1-a.e. a ∈ ∂Ω, which proves
γ (χE) = χ∂Ω∩∂∗E in L1(∂Ω). �

In the rest of this section, we review the space Xn(Ω) and normal-components on ∂Ω. The normal-component
operator (called interior normal trace) can be defined on the reduced boundary of a set of finite perimeter for the so-
called divergence-measure vector fields F ∈ L∞(Ω;Rn) with divF being a Radon measure [11]. However, for our
purpose, we only consider the vector fields of Xn(Ω) with Ln integrable divergence. The following result is proved
in [5].

Theorem 2.3. (See Theorem 1.2 in [5].) There exists a linear (outward) normal-component operator δ =
δΩ : Xn(Ω) → L∞(∂Ω) such that, for all F ∈ Xn(Ω),∥∥δ(F )

∥∥
L∞(∂Ω)

� ‖F‖L∞(Ω), (2.19)

δ(ζ |Ω) = ζ(x) · ν(x) ∀ζ ∈ C1(Rn;Rn
)
, (2.20)∫

Ω

v divF +
∫
Ω

F · ∇v =
∫

∂Ω

γ (v)δ(F )dHn−1 ∀v ∈ W 1,1(Ω). (2.21)

Moreover, if Fj ,F ∈ Xn(Ω) satisfy Fj
∗
⇀ F in L∞(Ω;Rn) and divFj ⇀ divF in Ln(Ω), then δ(Fj )

∗
⇀ δ(F) in

L∞(∂Ω).

We extend the function F · ∇v in (2.21) from v ∈ W 1,1(Ω) to v ∈ BV(Ω) by defining the pairing (F,Dv) as a
measure for F ∈ Xn(Ω) and v ∈ BV(Ω). We do this in a slightly different way from [4,5,8,11–13] by making (F,Dv)

a Radon measure on whole Rn. To do so, given v ∈ BV(Ω), F ∈ Xn(Ω), define a distribution L :C∞
0 (Rn) → R by

L(ϕ) =
∫

∂Ω

ϕγ (v)δ(F )dHn−1 −
∫
Ω

(
ϕv divF + (∇ϕ · F)v

)
dx ∀ϕ ∈ C∞

0

(
Rn
)
. (2.22)

Theorem 2.4. There exists a unique Radon measure ω in M(Rn), denoted by ω = (F,Dv), such that L(ϕ) = ∫
Rn ϕ dω

for all ϕ ∈ C∞
0 (Rn). Moreover, for any positive bounded continuous function σ on Ω and any Borel set B in Rn,∣∣∣∣

∫
B

dω

∣∣∣∣�
∫
B

d|ω| �
∥∥∥∥F

σ

∥∥∥∥
L∞(U∩Ω)

∫
B∩Ω

σ d|Dv| (2.23)

where U is any open set containing B. In particular, the measure ω = (F,Dv) is concentrated on Ω and absolutely
continuous with respect to |Dv|�Ω.

Proof. Let vj be an approximation sequence as determined in (2.7) for v ∈ BV(Ω). Using (2.21) with v = ϕvj , we
have

L(ϕ) = lim
j→∞

∫
Ω

(F · ∇vj )ϕ dx ∀ϕ ∈ C∞
0

(
Rn
)
. (2.24)

Hence∣∣L(ϕ)
∣∣� ‖F‖L∞‖ϕ‖L∞ lim

j→∞

∫
Ω

|∇vj |dx = ‖F‖L∞‖ϕ‖L∞
∫
Ω

|Dv|

for all ϕ ∈ C∞
0 (Rn). Since C∞

0 (Rn) is dense in C0(Rn), L can be uniquely extended as a linear functional L̃ on
C0(Rn) that still satisfies∣∣L̃(ϕ)

∣∣� ‖F‖L∞(Ω)‖ϕ‖L∞(Ω)

∫
|Dv| ∀ϕ ∈ C0

(
Rn
)
.

Ω
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By Riesz’s theorem, there exists a unique finite Radon measure ω on Rn such that L̃(ϕ) = ∫
Rn ϕ dω for all ϕ ∈ C0(Rn).

We now prove (2.23). Let B be any Borel set in Rn and let K ⊂ B ⊂ U , where K is compact and U is open. For any
ε > 0, by the outer regularity of measure σ d|Dv|, there exists an open set V ⊂ U containing K such that∫

V ∩Ω

σ d|Dv| <
∫

K∩Ω

σ d|Dv| + ε.

Given any ϕ ∈ Cc(V ) with ‖ϕ‖L∞(V ) � 1, let ϕk ∈ C∞
c (V ) be such that ‖ϕk − ϕ‖L∞(V ) → 0 as k → ∞. Let Uk =

suppϕk be the compact support of ϕk in V . Let us consider the measures μj = σ |∇vj |dx and λ = σ d|Dv| in M(Ω).

Since
∫
Ω

|∇vj |dx → ∫
Ω

|Dv|, by Proposition 2.1, we have μj (Ω) → λ(Ω) and λ(A) � lim infj→∞ μj (A) for all
open sets A ⊂ Ω . This implies λ(Ω \ A) � lim supj→∞ μj (Ω \ A) for all open sets A ⊂ Ω. Taking A = Uk ∩ Ω , we
have, for each k = 1,2, . . . ,

lim sup
j→∞

∫
Uk∩Ω

σ |∇vj |dx �
∫

Uk∩Ω

σ d|Dv|.

Therefore, by (2.24),

∣∣L̃(ϕ)
∣∣= lim

k→∞
∣∣L(ϕk)

∣∣= lim
k→∞

∣∣∣∣ lim
j→∞

∫
Uk∩Ω

(F · ∇vj )ϕk dx

∣∣∣∣
� lim sup

k→∞

[∥∥∥∥F

σ

∥∥∥∥
L∞(U∩Ω)

‖ϕk‖L∞
(

lim sup
j→∞

∫
Uk∩Ω

σ |∇vj |dx

)]

�
∥∥∥∥F

σ

∥∥∥∥
L∞(U∩Ω)

(
lim sup
k→∞

∫
Uk∩Ω

σ d|Dv|
)

�
∥∥∥∥F

σ

∥∥∥∥
L∞(U∩Ω)

∫
V ∩Ω

σ d|Dv|.

Since |ω|(V ) = sup{L̃(ϕ) | ϕ ∈ Cc(V ), ‖ϕ‖L∞(V ) � 1}, we have

|ω|(V ) �
∥∥∥∥F

σ

∥∥∥∥
L∞(U∩Ω)

∫
V ∩Ω

σ d|Dv|.

Therefore

|ω|(K) � |ω|(V ) �
∥∥∥∥F

σ

∥∥∥∥
L∞(U∩Ω)

( ∫
K∩Ω

σ d|Dv| + ε

)
,

for all ε > 0. This proves

|ω|(K) �
∥∥∥∥F

σ

∥∥∥∥
L∞(U∩Ω)

∫
K∩Ω

σ d|Dv|

for all K ⊂ B ⊂ U , K compact and U open. Hence (2.23) follows by the inner regularity of |ω| and σ d|Dv|�Ω . �
Remark 2.1. Since ω = (F,Dv) is concentrated on Ω , we can write

∫
Rn ϕ dω = ∫

Ω
ϕ dω. Therefore, by (2.22) we

obtain a more general divergence formula∫
Ω

ϕ d(F,Dv) =
∫

∂Ω

ϕγ (v)δ(F )dHn−1 −
∫
Ω

(
ϕv divF + (∇ϕ · F)v

)
dx (2.25)

for all F ∈ Xn(Ω), v ∈ BV(Ω) and all Lipschitz functions ϕ ∈ W 1,∞(Ω).

We have the following compensated compactness result; see also [5, Theorems 4.1 and 4.2].
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Proposition 2.5. Let uj ,u ∈ BV(Ω) satisfy, for some 1 � q � n
n−1 , uj → u in Lq(Ω) and let Fj ,F ∈ Xn(Ω) satisfy

Fj
∗
⇀ F in L∞(Ω), divFj ⇀ divF in Lq ′

(Ω), where q ′ = q
q−1 . Then (Fj ,Duj )

∗
⇀ (F,Du) as Radon measures in

M(Ω). Furthermore, if, in addition,

lim
j→∞

∫
Ω

|Duj | =
∫
Ω

|Du|, (2.26)

then (Fj ,Duj )
∗
⇀ (F,Du) in M(Rn).

Proof. Given any ϕ ∈ C1
0(Rn), by (2.25), we have, for each j = 1,2, . . . ,∫

Ω

ϕ d(Fj ,Duj ) =
∫

∂Ω

ϕγ (uj )δ(Fj ) dHn−1 −
∫
Ω

(
ϕuj divFj + (∇ϕ · Fj )uj

)
.

First, if ϕ ∈ C1
0(Ω), then there vanishes the boundary term and hence we have

lim
j→∞

∫
Ω

ϕ d(Fj ,Duj ) =
∫
Ω

ϕ d(F,Du) (2.27)

for all ϕ ∈ C1
0(Ω). This proves the weak-star convergence in M(Ω). Now, assume (2.26). Then by Theorem 2.3,

δ(Fj )
∗
⇀ δ(F) in L∞(∂Ω), and by (2.16) in Proposition 2.1, γ (uj ) → γ (u) in L1(∂Ω). Hence, (2.27) holds for all

ϕ ∈ C1
0(Rn), which proves the weak-star convergence in M(Rn). �

The following result defines a boundary normal-component for functions in Xn(Ω) on sets of finite perimeter; the
similar definition has been given in [11, Theorem 5.2] for a broader class of functions.

Proposition 2.6. Given any F ∈ Xn(Ω) and any set E ⊂ Ω of finite perimeter, there exists a function θ̃E(F ) ∈
L∞(∂∗E;dHn−1), called the interior normal-component of F on ∂∗E, such that∫

E

(ϕ divF + ∇ϕ · F)dx = −
∫

∂∗E

ϕ θ̃E(F )dHn−1 ∀ϕ ∈ C1(Rn
)
. (2.28)

Moreover, if E is an open set with Lipschitz boundary, then θ̃E(F ) = −δE(F ), where δE(F ) ∈ L∞(∂E) is the normal-
component of F ∈ Xn(E) on ∂E defined above.

Proof. Since χE ∈ BV(Ω), the measure (F,DχE) is well-defined above as a Radon measure in Rn concentrated on Ω

and absolutely continuous relative to |DχE |�Ω = Hn−1 � (Ω ∩ ∂∗E). Hence, by the Radon–Nikodym theorem, there
exists a function θE(F ) ∈ L∞(Ω ∩ ∂∗E;dHn−1) with ‖θE(F )‖L∞ � ‖F‖L∞(U), U ⊂ Ω any open set containing E,
such that

d(F,DχE) = θE(F )dHn−1 � (Ω ∩ ∂∗E
)

on Rn. (2.29)

(The function θE(F ) has been called the interior normal-trace relative to E of F on ∂∗E in [11, Theorem 5.2] for a
broader class of functions F .) Let us define

θ̃E(F )(x) =
{

θE(F )(x) x ∈ Ω ∩ ∂∗E,

−δ(F )(x) x ∈ ∂Ω ∩ ∂∗E,
(2.30)

where δ(F ) = δΩ(F ) is the normal-component of F on ∂Ω defined in Theorem 2.3. Combining formula (2.25) with
(2.29) and Proposition 2.2, we have the following general Gauss–Green formula:∫

E

(ϕ divF + ∇ϕ · F)dx = −
∫

∂∗E

ϕ θ̃E(F )dHn−1 ∀ϕ ∈ C1(Rn
)
.

This proves (2.28). If E is a Lipschitz domain itself, then by (2.21) we easily see that θ̃E(F ) = −δE(F ). �
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Remark 2.2. (a) The formula (2.28) generalizes a case of the Gauss–Green formula in [11, Theorem 5.3] since we
allow ϕ ∈ C1(Ω̄) and ∂E ∩ ∂Ω �= ∅; in [11, Theorem 5.3], only sets E � Ω are considered. Furthermore, we have
θ̃E(F ) = F · νE on ∂∗E if F ∈ C1(Rn;Rn).

(b) Let G,Ḡ ∈ Sβ(Ω) and E ⊂ Ω be a set of finite perimeter in Ω . Then the condition (1.16) in Definition 1.1 is
equivalent to the local condition: θ̃E(G) = θ̃E(Ḡ) in L∞(∂∗E;dHn−1).

3. Characterization of μ(g,h) and proof of Theorems 1.2 and 1.3

Given any function u on Ω , denote by Et(u) the upper-level set {u > t} = {x ∈ Ω | u(x) > t} for each t ∈ R. We
first prove the following useful result.

Lemma 3.1. Let u ∈ BV(Ω). Then

u(x) =
∞∫

0

χEt (u)(x) dt −
0∫

−∞

(
1 − χEt (u)(x)

)
dt

(
Ln-a.e. x ∈ Ω

)
,

γ (u)(a) =
∞∫

0

γ (χEt (u))(a) dt −
0∫

−∞

(
1 − γ (χEt (u))(a)

)
dt

(
Hn−1-a.e. a ∈ ∂Ω

)
.

Proof. By writing u = u+ − u−, without loss of generality, we assume u � 0, so in the two identities there are only
integral terms from 0 to ∞. The first identity is easy; so we only prove the second identity. We proceed to prove

γ

( ∞∫
0

χEt (u)(x) dt

)
(a) =

∞∫
0

γ (χEt (u))(a) dt (3.1)

for Hn−1-a.e. a ∈ ∂Ω. Note that, for almost every t ∈ R, the set Et(u) has finite perimeter in Ω and so χEt (u) ∈
BV(Ω). Let {tj }, j = 1,2, . . . , be a dense sequence of (0,∞) such that each χEt (u) ∈ BV(Ω). By Proposition 2.2, we
have that, for Hn−1-a.e. a ∈ ∂Ω ,

γ (χEtj
(u))(a) = lim

ε→0

2

|Bε(a)|
∫

Bε(a)

χEtj
(u)(x) dx ∀j = 1,2, . . . , (3.2)

and for each N = 1,2, . . . ,

γ

( N∫
0

χEt (u)(x) dt

)
(a) = lim

ε→0

2

|Bε(a)|
∫

Bε(a)

( N∫
0

χEt (u)(x) dt

)
dx.

For such an a ∈ ∂Ω , the function r(t) = γ (χEt (u))(a) is a non-increasing function in t ∈ (0,∞) and hence is contin-
uous almost everywhere. At any continuity point t0 of this function, by (3.2), it follows that

γ (χEt0 (u))(a) = lim
ε→0

2

|Bε(a)|
∫

Bε(a)

χEt0 (u)(x) dx. (3.3)

Hence, by Fubini’s theorem,

γ

( N∫
0

χEt (u)(x) dt

)
(a) = lim

ε→0

N∫
0

2

|Bε(a)|
∫

Bε(a)

χEt (u)(x) dx dt

=
N∫

lim
ε→0

2

|Bε(a)|
∫

χEt (u)(x) dx dt =
N∫

γ (χEt (u))(a) dt,
0 Bε(a) 0
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where the change of order of the limit into the integral is justified by the dominated convergence theorem. Finally note
that, by [16, Proposition 6, p. 340],

N∫
0

χEt (u)(x) dt = min
{
u(x),N

}→ u(x) =
∞∫

0

χEt (u)(x) dt

in the norm topology of BV(Ω) as N → ∞. Hence, by the continuity of the trace-operator,

γ

( N∫
0

χEt (u) dt

)
→ γ

( ∞∫
0

χEt (u) dt

)

in L1(∂Ω) as N → ∞. This proves (3.1) for Hn−1-a.e. a ∈ ∂Ω. �
In what follows, we assume σ is the function given in the introduction; that is, σ is continuous function in Ω and

satisfies, for two positive constants σ0 and M0, that

0 < σ0 � σ(x) � M0 < ∞ ∀x ∈ Ω. (3.4)

Let g ∈ L∞(∂Ω) and h ∈ Ln(Ω) satisfy (1.7) above. Define the following functionals on BV(Ω):

N(u) =
∫
Ω

σ d|Du|, B(u) =
∫

∂Ω

γ (u)g dHn−1 −
∫
Ω

uhdx. (3.5)

Proposition 3.2. Given 0 < m < ∞, the following statements are equivalent:

(a) mN(ζ) � B(ζ ) ∀ζ ∈ C∞(Ω) ∩ W 1,1(Ω).

(b) mN(u) � B(u) ∀u ∈ BV(Ω).

(c) mN(χE) � B(χE) ∀E ∈ P (Ω).

(d) mN(χE) �
∣∣B(χE)

∣∣ ∀E ∈ P (Ω) open.

Proof. That (a) implies (b) follows by the approximation (2.7) and the convergence result Proposition 2.1. That (b)
implies (c) is immediate as χE ∈ BV(Ω) for all E ∈ P (Ω). To prove that (c) implies (d), note that if E ∈ P (Ω)

then Ω \ E ∈ P (Ω) and DχΩ\E = −DχE and ∂∗(Ω \ E) = ∂∗E; hence, by condition (1.7), N(χΩ\E) = N(χE) and
B(χΩ\E) = −B(χE). This proves that (c) implies (d). Finally we prove that (d) implies (a). Let L±(u) = mN(u) ±
B(u). Then, by (d),

L±(χE) � 0 ∀E ∈ P (Ω) open.

Given any ζ ∈ C∞(Ω) ∩ W 1,1(Ω), we write ζ = ζ+ − ζ−, where ζ±(x) = max{±ζ(x),0}. Then ζ± ∈ C(Ω) ∩
W 1,1(Ω) are nonnegative and

γ (ζ ) = γ
(
ζ+)− γ

(
ζ−), |∇ζ | = ∣∣∇ζ+∣∣+ ∣∣∇ζ−∣∣.

Hence mN(ζ) − B(ζ ) = L−(ζ ) = L−(ζ+ − ζ−) = L−(ζ+) + L+(ζ−). We claim that L−(ζ+) � 0 and L+(ζ−) � 0
and hence mN(ζ) � B(ζ ) follows, as desired of (a). Since the argument is similar, we only prove L−(ζ+) � 0. Note
that, by Lemma 3.1 and Fubini’s theorem,

∫
Ω

h(x)ζ+(x) dx =
∫
Ω

∞∫
0

χ{ζ+>t}(x)h(x) dt dx =
∞∫

0

( ∫
Ω

χ{ζ+>t}(x)h(x) dx

)
dt; (3.6)

∫
gγ
(
ζ+)dHn−1 =

∞∫ ( ∫
γ (χ{ζ+>t})g dHn−1

)
dt. (3.7)
∂Ω 0 ∂Ω
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Also, by the coarea formula (2.10),

∫
Ω

σ(x)
∣∣∇ζ+(x)

∣∣dx =
∞∫

0

( ∫
Ω

σ d|Dχ{ζ+>t}|
)

dt. (3.8)

Note that, for almost every t ∈ (0,∞), the open set Et = {ζ+ > t} is either in P (Ω) or is Ω or empty. By assumption
(d), L−(χEt ) � 0 for a.e. t ∈ (0,∞). Finally, combining (3.8), (3.6) and (3.7), we obtain

L−(ζ+)=
∞∫

0

L−(χ{ζ+>t}) dt =
∞∫

0

L−(χEt ) dt � 0,

as claimed. This completes the proof. �
Theorem 3.3. Let σ , g, h be the functions satisfying conditions (3.4) and (1.7). Then the following quantities are all
finite and equal:

μ1 = sup
ζ∈W 1,1(Ω)

ζ �=const

∫
∂Ω

γ (ζ )g dHn−1 − ∫
Ω

ζhdx∫
Ω

σ(x)|∇ζ |dx
,

μ2 = sup
ζ∈BV(Ω)
ζ �=const

∫
∂Ω

γ (ζ )g dHn−1 − ∫
Ω

ζhdx∫
Ω

σ(x)d|Dζ | ,

μ3 = sup
E∈P (Ω)

∫
∂Ω∩∂∗E g dHn−1 − ∫

E
hdx∫

Ω∩∂∗E σ dHn−1
,

μ4 = sup
E∈P (Ω) open

| ∫
∂Ω∩∂∗E g dHn−1 − ∫

E
hdx|∫

Ω∩∂∗E σ dHn−1
.

We denote the value of these quantities by μ(g,h). Moreover, μ(g,h) = 0 if and only if g = h = 0.

Proof. Let N(u) and B(u) be defined by (3.5) above. Define Q(ζ) = B(ζ )
N(ζ )

if ζ is not a constant function and let
Q(ζ) = 0 if ζ is a constant function. Note that for each E ∈ P (Ω), by (2.2) and Proposition 2.2(b),

B(χE) =
∫

∂Ω∩∂∗E

g dHn−1 −
∫
E

hdx, N(χE) =
∫

Ω∩∂∗E

σ dHn−1.

Hence, it is obvious that μ4 � μ3 � μ2 and μ1 � μ2. If μ4 = 0, then, as in the proof of the previous result, using
(3.6)–(3.7), we have B(ζ ) = 0 for all ζ ∈ C(Ω)∩W 1,1(Ω) and hence B(u) = 0 for all u ∈ BV(Ω); this implies g = 0
and h = 0. So, in this case, all the numbers are zero. Now assume B �≡ 0. We show μ2 < ∞; this proves all these
numbers are positive. Once we have proved this, the equality of them follows again from the previous result. To show
μ2 < ∞, note that Q(ζ +C) = Q(ζ) for all constants C. Given any nonconstant u ∈ BV(Ω), let c = (u)Ω = 1

|Ω|
∫
Ω

u.
Then ∣∣B(u − c)

∣∣� ‖g‖L∞(∂Ω)

∥∥γ (u − c)
∥∥

L1(∂Ω)
+ ‖h‖Ln(Ω)‖u − c‖

L
n

n−1 (Ω)

� C
(‖g‖L∞(∂Ω) + ‖h‖Ln(Ω)

)∫
Ω

|Du|

and, by (3.4) and u being nonconstant, N(u − c) � σ0
∫
Ω

|Du| > 0. Hence

Q(u) = Q(u − c) � C

σ0

(‖g‖L∞(∂Ω) + ‖h‖Ln(Ω)

)
for all u ∈ BV(Ω). This proves μ2 � C (‖g‖L∞(∂Ω) + ‖h‖Ln(Ω)) < ∞. �
σ0
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Let λp(g,h) and λ(g,h) be defined as above in (1.10). If B �≡ 0, we easily see that μ1 = 1
λ1(g,h)

and μ2 = 1
λ(g,h)

,

where μ1 and μ2 are the equal numbers defined in Theorem 3.3; therefore λ1(g,h) = λ(g,h) = 1
μ(g,h)

. If B ≡ 0; that
is, if g = h = 0, since μ(0,0) = 0, these equalities remain valid since we have defined λp(0,0) = λ(0,0) = ∞ for
1 � p < ∞.

Proof of Theorem 1.2. The first statement of the theorem follows easily as explained above. We now prove (1.11).
Without loss of generality, we assume B �≡ 0. Given any p > 1, let ζj ∈ W 1,p(Ω) be such that

λp(g,h) = lim
j→∞

∫
Ω

σp(x)|∇ζj |p dx, B(ζj ) = 1.

Young’s inequality easily implies that

σ(x)|∇ζj | � 1

p
σp(x)|∇ζj |p + p − 1

p
.

Since ζj ∈ W 1,1(Ω) and B(ζj ) = 1, it follows that

λ1(g,h) �
∫
Ω

σ(x)|∇ζj |dx � 1

p

∫
Ω

σp(x)|∇ζj |p dx + p − 1

p
|Ω|.

Letting j → ∞, we have λ1(g,h) � 1
p
λp(g,h) + p−1

p
|Ω|. Letting p ↓ 1, this implies

λ1(g,h) � lim inf
p→1+ λp(g,h). (3.9)

On the other hand, given any ζ ∈ C1(Ω̄) with B(ζ ) = 1, we have λp(g,h) �
∫
Ω

σp(x)|∇ζ |p dx. Let 1 � p � 2.
Then σp(x)|∇ζ |p � (1 + M0)

2(1 + |∇ζ |2) � K < ∞. Letting p ↓ 1 in the above inequality and using the dominated
convergence theorem, we have

lim sup
p→1+

λp(g,h) �
∫
Ω

σ(x)|∇ζ |dx,

for all ζ ∈ C1(Ω̄) with B(ζ ) = 1. By the standard approximation argument, this inequality also holds for all ζ ∈
W 1,1(Ω) with B(ζ ) = 1. Hence it follows that

lim sup
p→1+

λp(g,h) � inf
ζ∈W1,1(Ω)

B(ζ )=1

∫
Ω

σ(x)|∇ζ |dx = λ1(g,h).

This, combined with (3.9), completes the proof. �
The following theorem contains some results of Theorem 1.3 and other results that are useful later.

Theorem 3.4. Assume B �≡ 0. Then, for each 1 < p < ∞, there exists a unique up ∈ W 1,p(Ω) with
∫
Ω

up dx = 0
such that∫

Ω

σp(x)|∇up|p−2∇up · ∇ϕ dx = λp(g,h)B(ϕ) ∀ϕ ∈ W 1,p(Ω). (3.10)

Furthermore, there exist subsequence pj → 1+ as j → ∞, functions ū ∈ BV(Ω) and F̄ ∈ L∞(Ω;Rn) with
‖F̄‖L∞(Ω) � 1 such that, as j → ∞,

upj
⇀ ū in L

n
n−1 (Ω), ∇upj

∗
⇀ Dū in M(Ω), (3.11)

|∇upj
|pj −2∇upj

⇀ F̄ in Lr(Ω) for each r > 1, (3.12)

div(σ F̄ ) = λ1h, δ(σ F̄ ) = λ1g, where λ1 = λ1(g,h) > 0, (3.13)

σpj |∇upj
|pj

∗
⇀ (σF̄ ,Dū) in M(Ω), (3.14)

(σ F̄ ,Dū) = σ |Dū| as Radon measures in M(Ω). (3.15)
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Proof. Since B(ζ0) = 1 for some ζ0 ∈ C∞(Rn), the constraining set {u ∈ W 1,p(Ω) | B(u) = 1} in defining λp(g,h)

above is nonempty. We first show that, for each 1 < p < ∞, the number λp(g,h) is attained by a unique function up

in W 1,p(Ω) satisfying B(up) = 1 and
∫
Ω

up dx = 0. Let vj ∈ W 1,p(Ω) be a minimizing sequence for λp(g,h); that
is,

lim
j→∞

∫
Ω

σp(x)|∇vj |p dx = λp(g,h), B(vj ) = 1.

Since B(v + C) = B(v) for all constants C, we can assume
∫
Ω

vj dx = 0. Therefore, since {‖∇vj‖Lp(Ω)} is
bounded, by Poincaré’s inequality for W 1,p(Ω)-functions [1], {vj } is a bounded sequence in W 1,p(Ω). Hence, by
a subsequence, vj ⇀ up , where up ∈ W 1,p(Ω) satisfies

∫
Ω

uj dx = 0. By the compact embedding W 1,p(Ω) ↪→
L1(∂Ω) ∩ L

n
n−1 (Ω) (see, e.g., [1]), we have B(up) = limj B(vj ) = 1 and hence, by the convexity of

∫
Ω

σp|∇v|p dx

and the definition of λp(g,h), it follows that

B(up) = 1,

∫
Ω

σp|∇up|p dx = λp(g,h); (3.16)

that is, up is a minimizer for λp(g,h). The strict convexity of
∫
Ω

σp|∇v|p dx implies that up is the unique minimizer
of λp(g,h) satisfying

∫
Ω

up dx = 0. By the Lagrange theorem for constrained minimizers, up is a critical point of the
functional L(u) = ∫

Ω
σp(x)|∇u|p dx − λB(u) on u ∈ W 1,p(Ω), where λ is a real number (the Lagrange multiplier).

Hence we have

p

∫
Ω

σp(x)|∇up|p−2∇up · ∇ϕ dx = λB(ϕ) ∀ϕ ∈ W 1,p(Ω).

Taking ϕ = up , we have λ = pλp(g,h) and this proves (3.10).
To prove the second part of the theorem, consider the set of functions {Fp = |∇up|p−2∇up} with 1 < p < 2. Since

|Fp| = |∇up|p−1, by Young’s inequality, for any 0 < r <
p

p−1 , it follows that

|Fp|r = |∇up|r(p−1) � r(p − 1)

p
|∇up|p +

(
1 − r(p − 1)

p

)
,

and hence∫
Ω

|Fp|r dx � r(p − 1)

pσ
p

0

λp(g,h) +
(

1 − r(p − 1)

p

)
|Ω|. (3.17)

Using this inequality with r = 1
p−1 and r = 2, it follows that {up}1<p<2 is bounded in BV(Ω) and {Fp}1<p<2 is

bounded in L2(Ω;Rn). Hence there exists a decreasing sequence pj → 1 such that upj
⇀ ū in L

n
n−1 (Ω) and ∇upj

∗
⇀

Dū in M(Ω), where ū ∈ BV(Ω) satisfies
∫
Ω

ū = 0, and Fpj
⇀ F̄ in L2(Ω;Rn), where F̄ ∈ L2(Ω;Rn). Given any

r > 1, let r <
pj

pj −1 for all j � Nr. Then (3.17) implies that the sequence {Fpj
}j�Nr

is bounded in Lr(Ω;Rn)

and hence any subsequence of it with pj → 1 has a sub-subsequence {Fpjk
} weakly converging to a function F̃ ∈

Lr(Ω;Rn) as pjk
→ 1. Again, by (3.17), we have∫

Ω

|F̃ |r dx � lim inf
pjk

→1

∫
Ω

|Fpjk
|r dx � |Ω|.

On the other hand, since the whole sequence {Fpj
} is weakly convergent to F̄ in L2(Ω;Rn) as pj → 1, we must

have F̃ = F̄ . This shows that F̄ ∈ Lr(Ω;Rn) for each r > 1 and the whole sequence Fpj
⇀ F̄ as pj → 1 weakly in

Lr(Ω;Rn) for each r > 1 in the sense that, given any 1 < q < ∞ and any Φ ∈ Lq(Ω;Rn),

lim
j→∞

∫
|∇upj

|pj −2∇upj
· Φ dx =

∫
F̄ · Φ dx. (3.18)
Ω Ω
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We have thus proved the convergences (3.11)–(3.12). Note also that
∫
Ω

|F̄ |r dx � |Ω| and thus ‖F̄‖Lr(Ω) � |Ω|1/r

for all r > 1. Hence

‖F̄‖L∞(Ω) = lim
r→∞‖F̄‖Lr(Ω) � 1. (3.19)

Letting ϕ ∈ C∞(Rn) and p = pj → 1 in (3.10), by Theorem 1.2, we have∫
Ω

σ(x)F̄ (x) · ∇ϕ(x)dx = λ1(g,h)B(ϕ) ∀ϕ ∈ C∞(Rn
)
, (3.20)

which implies that div(σ F̄ ) = λ1h and δ(σ F̄ ) = λ1g; this proves (3.13). To prove (3.14), let ϕ ∈ C∞
0 (Ω), using ϕup

as test function in (3.10), and we obtain∫
Ω

ϕσp|∇up|p dx = λp(g,h)B(ϕup) −
∫
Ω

upσpFp · ∇ϕ dx (3.21)

for all 1 < p < ∞, where B(ϕup) = − ∫
Ω

ϕuphdx. Hence

lim
pj →1

B(ϕup) = −
∫
Ω

ϕūhdx.

Since σpj upj
→ σ ū in Lq(Ω) for any fixed 1 < q < n

n−1 and Fpj
⇀ F̄ weakly in Lq ′

(Ω;Rn) with q ′ = q
q−1 , we

have, by (3.21),

lim
pj →1

∫
Ω

ϕσpj |∇upj
|pj dx = −λ1

∫
Ω

ϕūhdx −
∫
Ω

ūσ F̄ · ∇ϕ dx,

where λ1 = λ1(g,h). Using div(σ F̄ ) = λ1h, the right-hand side of this identity exactly becomes

−
∫
Ω

[
ϕūdiv(σ F̄ ) + ūσ F̄ · ∇ϕ

]
dx =

∫
Ω

ϕ d(σ F̄ ,Dū),

by the definition of the measure (σ F̄ ,Dū) (see, e.g., (2.25)). Hence we have

lim
pj →1

∫
Ω

ϕσpj |∇upj
|pj =

∫
Ω

ϕ d(σ F̄ ,Dū)

for all ϕ ∈ C∞
0 (Ω); this proves (3.14). Finally, we show (3.15). It is easy to see, along a subsequence of pj → 1, that

σ |∇upj
|dx

∗
⇀ μ � σ |Dū|� Ω in M(Rn). By Young’s inequality,

σ |∇upj
| � 1

p
σp|∇up|p + p − 1

p
,

and hence by (3.14) we have that σ |Dū|� Ω � μ � (σ F̄ ,Dū) as Radon measures in M(Ω). However, using
‖F̄‖L∞(Ω) � 1 and Theorem 2.4, we easily see that (σ F̄ ,Dū) � σ |Dū|� Ω as measures in M(Rn). Therefore,
σ |Dū| = (σ F̄ ,Dū) in M(Ω), which proves (3.15). �

The following result indicates the condition (1.7) is the right condition for the solvability of divY = h,Y · ν = g in
L∞(Ω;Rn); see also [10, Theorem 3’]. It also shows that the admissible set Sβ(Ω) defined above is nonempty.

Corollary 3.5. Let g, h satisfy (1.7). Then there exists a function Y ∈ Xn(Ω) such that

divY = h, δ(Y ) = g.

In particular, for any β ∈ L∞(∂Ω) with
∫
∂Ω

β dHn−1 = 0, the admissible set

Sβ(Ω) = {
G ∈ Xn(Ω)

∣∣ divG = 0, δ(G) = β
} �= ∅. (3.22)
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Proof. If g = h = 0 then Y = 0 is a solution. If at least one of g and h is not zero, then (3.13) of Theorem 3.4 implies
that there exists σ F̄ ∈ Xn(Ω) such that

div(σ F̄ ) = λ1h, δ(σ F̄ ) = λ1g,

where λ1 = λ(g,h) > 0. Hence the function Y = σ F̄
λ1

in Xn(Ω) will satisfy the required condition. �
Remark 3.1. Given h̃ ∈ Xn(Ω), g̃ ∈ L∞(∂Ω), a function u ∈ BV(Ω) is said to be a BV solution to the Neumann
problem of the equation:⎧⎪⎪⎨

⎪⎪⎩
div

(
σ

Du

|Du|
)

= h̃,

σ
Du

|Du| · ν|∂Ω = g̃,

(3.23)

provided that there exists a function F with σF ∈ Xn(Ω) such that

div(σF ) = h̃, δ(σF ) = g̃, (3.24)

(σF,Du) = σ d|Du| in M(Ω). (3.25)

By (3.13) and (3.15), the limit function ū is a BV solution of (3.23) with h̃ = λ1h, g̃ = λ1g.

The following result, combined with Theorem 3.4, completes the proof of Theorem 1.3.

Proposition 3.6. Any function ū determined in Theorem 3.4 satisfies 0 � B(ū) � 1. Moreover, if ū �= 0, then v =
ū

B(ū)
∈ BV(Ω) is a minimizer for λ(g,h).

Proof. From (3.13) it follows that∫
Ω

d(σ F̄ ,Dv) = λ1B(v) ∀v ∈ BV(Ω). (3.26)

Hence, by (3.15), λ1B(ū) = ∫
Ω

σd|Dū| � λ1. Since λ1 > 0, it follows that 0 � B(ū) � 1. Note that, since
∫
Ω

ū = 0,
B(ū) = 0 if and only if ū = 0. Therefore, if ū �= 0, then the function v̄ = ū

B(ū)
∈ BV(Ω) will be a minimizer for

λ(g,h). Therefore ū is a minimizer for λ(g,h) if and only if B(ū) = 1. We finally note that the condition B(ū) = 1
holds if and only if

lim
pj →1

∫
∂Ω

γ (upj
)g dHn−1 =

∫
∂Ω

γ (ū)g dHn−1. � (3.27)

4. Special minimizers for ρ(β,H) and proof of Theorem 1.1

In this section, we present two approaches for minimizers of ρ(β,H) defined by (1.1) and thus provide two proofs
of Theorem 1.1. One approach is based on Theorem 3.4 and the other is based on a natural direct approach analogous
to the method for L∞-functionals in [6,7] using the limits of p-power functionals as p → ∞.

First proof of Theorem 1.1. Let H ∈ Xn(Ω), β ∈ L∞(∂Ω) and let g = β + δ(H) and h = divH . By Corollary 3.5,
Sβ(Ω) �= ∅. By (1.5), μ(g,h) � ρ(β,H). Therefore, it suffices to show that there exists a Ḡ ∈ Sβ(Ω) such that∥∥∥∥Ḡ + H

σ

∥∥∥∥
L∞(Ω)

� μ(g,h). (4.1)

Let B be the linear functional defined above through g and h. Note that B ≡ 0 if and only if g = 0 and h = 0; that
is, divH = 0 and β = −δ(H). Hence B ≡ 0 if and only if −H ∈ Sβ(Ω). If −H ∈ Sβ(Ω) then Ḡ = −H will satisfy
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(4.1) as both quantities are zero. So, we assume B �≡ 0; that is, −H /∈ Sβ(Ω). Let F̄ be any vector-field determined
in Theorem 3.4. Since h = divH and g = β + δ(H), condition (3.13) exactly means

Ḡ = σ F̄

λ1(g,h)
− H ∈ Sβ(Ω), (4.2)

and hence, by (3.19) and Theorem 1.2,∥∥∥∥Ḡ + H

σ

∥∥∥∥
L∞(Ω)

= ‖F̄‖L∞(Ω)

λ1(g,h)
� 1

λ1(g,h)
= μ(g,h),

which proves (4.1). This completes the proof. �
For 1 < q < ∞, define

ρq(β,H) = inf
G∈S q

β (Ω)

∥∥∥∥G + H

σ

∥∥∥∥
Lq(Ω)

, (4.3)

where the admissible set S q
β (Ω) is defined as follows: G ∈ S q

β (Ω) if and only if G ∈ Lq(Ω;Rn) and∫
Ω

G(x) · ∇ϕ(x)dx =
∫

∂Ω

βϕ dHn−1 ∀ϕ ∈ C∞
0

(
Rn
)
. (4.4)

Note that

∅ �= Sβ(Ω) = S ∞
β (Ω) ⊂ S q

β (Ω) ∀1 � q < ∞
and S q

β (Ω) is closed under the weak (or weak-star if q = ∞) convergence of Lq(Ω;Rn).

Proposition 4.1. For any 1 < q < ∞, there exists a unique Gq ∈ S q
β (Ω) such that∥∥∥∥Gq + H

σ

∥∥∥∥
Lq(Ω)

= min
G∈S q

β (Ω)

∥∥∥∥G + H

σ

∥∥∥∥
Lq(Ω)

= ρq(β,H). (4.5)

Furthermore, there exists an increasing sequence qj → ∞ and Ḡ ∈ Sβ(Ω) such that Gqj
⇀ Ḡ in Lr(Ω) for all

1 < r < ∞ and,∥∥∥∥Ḡ + H

σ

∥∥∥∥
L∞(Ω)

= min
G∈Sβ(Ω)

∥∥∥∥G + H

σ

∥∥∥∥
L∞(Ω)

= ρ(β,H).

Moreover, for all measurable sets E ⊂ Ω,∥∥∥∥Ḡ + H

σ

∥∥∥∥
L∞(E)

� lim inf
qj →∞

∥∥∥∥Gqj
+ H

σ

∥∥∥∥
L

qj (E)

. (4.6)

In particular, it follows that

lim
q→∞ρq(β,H) = ρ(β,H). (4.7)

Proof. The existence of minimizer Gq of ρq(β,H) follows from the standard direct method of calculus of variations
since S q

β (Ω) is nonempty and weakly closed in Lq(Ω;Rn). The uniqueness of Gq follows from the strict convexity of

the Lq -norm. We now prove the rest of the proposition. Given any G ∈ Sβ(Ω), since G ∈ S q
β (Ω), by the minimality

of Gq , we have∥∥∥∥Gq + H

σ

∥∥∥∥
Lq(Ω)

�
∥∥∥∥G + H

σ

∥∥∥∥
Lq(Ω)

�
∥∥∥∥G + H

σ

∥∥∥∥
L∞(Ω)

|Ω| 1
q . (4.8)

For any 1 < r < q and any measurable set E ⊂ Ω , by Hölder’s inequality,∥∥∥∥Gq + H

σ

∥∥∥∥
r

�
∥∥∥∥Gq + H

σ

∥∥∥∥
q

|E| 1
r
− 1

q . (4.9)

L (E) L (E)
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In particular, using (4.8) and (4.9) with E = Ω , we have∥∥∥∥Gq + H

σ

∥∥∥∥
Lr(Ω)

�
∥∥∥∥G + H

σ

∥∥∥∥
L∞(Ω)

|Ω| 1
r ∀1 < r < q, G ∈ Sβ(Ω). (4.10)

Using this estimate with r = 2, we have that the sequence {Gq}q>2 is bounded in L2(Ω;Rn) and hence there exists an
increasing subsequence qj → ∞ such that Gqj

⇀ Ḡ in L2(Ω;Rn), where Ḡ ∈ S 2
β(Ω). Given any r > 1, let qj > r

for all j � Jr . Then, using (4.10), the sequence {Gqj
}j�Jr

is bounded in Lr(Ω;Rn); hence a subsequence of it (with

qj → ∞) will converge weakly to some function G̃ in Lr(Ω;Rn) and the limit function G̃ will satisfy∥∥∥∥G̃ + H

σ

∥∥∥∥
Lr(Ω)

�
∥∥∥∥G + H

σ

∥∥∥∥
L∞(Ω)

|Ω| 1
r .

However, the whole sequence {Gqj
} converges weakly to Ḡ in L2(Ω;Rn) and thus G̃ = Ḡ. This proves that Ḡ ∈

Lr(Ω;Rn) for all r > 1; moreover, by (4.10),∥∥∥∥Ḡ + H

σ

∥∥∥∥
Lr(Ω)

�
∥∥∥∥G + H

σ

∥∥∥∥
L∞(Ω)

|Ω| 1
r ∀r > 1.

Letting r → ∞, we have∥∥∥∥Ḡ + H

σ

∥∥∥∥
L∞(Ω)

�
∥∥∥∥G + H

σ

∥∥∥∥
L∞(Ω)

∀G ∈ Sβ(Ω).

This proves that Ḡ ∈ Sβ(Ω) and is a minimizer for ρ(β,H). In (4.9), letting first q = qj → ∞ and then r → ∞, we
have ∥∥∥∥Ḡ + H

σ

∥∥∥∥
L∞(E)

� lim inf
qj →∞

∥∥∥∥Gqj
+ H

σ

∥∥∥∥
L

qj (E)

for all measurable sets E ⊂ Ω. Finally, (4.7) follows by combining (4.6) for E = Ω and (4.8) for G = Ḡ. �
The following result establishes the one-to-one correspondence between Gq , Ḡ determined in Proposition 4.1 and

up , F̄ determined in Theorem 3.4.

Proposition 4.2. Let g = β + δ(H) and h = divH. Then, Gq satisfies (4.5) if and only if

Gq = σp|∇up|p−2∇up

λp(g,h)
− H, p = q

q − 1
, (4.11)

where λp(g,h) is defined as above and up ∈ W 1,p(Ω) is the unique function determined in Theorem 3.4. Hence

ρq(β,H) = (λp(g,h))
− 1

p . Furthermore, any function Ḡ determined in Proposition 4.1 corresponds to a function F̄

determined in Theorem 3.4 through the relation: σ F̄ = λ(g,h)(Ḡ + H).

Proof. We only need to establish the relation (4.11). To show (4.11), it suffices to show that the function Gq defined
by (4.11) is the minimizer of ρq(β,H). First, note that, by (3.10), Gq ∈ S q

β (Ω). To show Gq is a minimizer for

ρq(β,H), given any G ∈ S q
β (Ω), let F = G − Gq. Then∫

Ω

∇v · F dx = 0 ∀v ∈ W 1,p(Ω).

Note that, by (4.11), one easily verifies that

|Gq + H |q−2(Gq + H)

σq
= ∇up

λ (g,h)q−1
.

p
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Hence∫
Ω

|Gq + H |q−2(Gq + H)

σq
· F dx = 1

λp(g,h)q−1

∫
Ω

∇up · F dx = 0.

Finally, by the convexity of function h(X) = |X|q for q > 1, we have∣∣∣∣G + H

σ

∣∣∣∣
q

�
∣∣∣∣Gq + H

σ

∣∣∣∣
q

+ q|Gq + H |q−2(Gq + H)

σq
· F,

and hence∫
Ω

∣∣∣∣G + H

σ

∣∣∣∣
q

dx �
∫
Ω

∣∣∣∣Gq + H

σ

∣∣∣∣
q

dx.

This proves that Gq ∈ S q
β (Ω) is the minimizer for ρq(β,H). The proof is complete. �

Second proof of Theorem 1.1. Combining the first part of Proposition 4.2 and Proposition 4.1 and using (4.7), we
obtain another proof of Theorem 1.1. We remark that this proof does not rely on the second part of either Theorem 3.4
or Proposition 4.2. �

Given any measurable set E ⊂ Ω and any function G ∈ Lq(Ω;Rn) with divG = 0 in the sense of distributions on
Ω, we denote the distribution div(GχE) on Rn by δ̃E(G); that is,〈

δ̃E(G), ζ
〉= −

∫
E

G · ∇ζ dx ∀ζ ∈ C∞
0

(
Rn
)
. (4.12)

If q = ∞ and E ⊂ Ω is a set of finite perimeter in Ω then, by the generalized Green formula (2.28), it follows that
δ̃E(G) = θ̃E(G)� ∂∗E.

Lemma 4.3. Let 1 � q � ∞ and G1, G2 ∈ S q
β (Ω). Assume E ⊂ Ω is measurable and δ̃E(G1) = δ̃E(G2) as distribu-

tions on Rn. Then the function G = G1χE + G2χΩ\E belongs to S q
β (Ω).

Proof. Clearly G ∈ Lq(Ω;Rn). Now, for any ϕ ∈ C∞
0 (Rn), it follows that∫

Ω

G · ∇ϕ dx =
∫
E

G1 · ∇ϕ dx +
∫

Ω\E
G2 · ∇ϕ dx

=
∫
E

G2 · ∇ϕ dx +
∫

Ω\E
G2 · ∇ϕ dx =

∫
Ω

G2 · ∇ϕ dx =
∫

∂Ω

βϕ dHn−1,

with the second equality resulting from δ̃E(G1) = δ̃E(G2) and the last from the definition of G2 ∈ S q
β (Ω). Hence, by

definition (4.4), G ∈ S q
β (Ω). �

We streamline a possible approach for proving that Ḡ is an absolute minimizer for ρ(β,H) in much a similar way
to [7].

Proposition 4.4. Let Ḡ be any function determined in Proposition 4.1 and let E ⊂ Ω be an open set and G ∈ Sβ(Ω)

satisfy δ̃E(G) = δ̃E(Ḡ). Suppose that there exist two sequences {Ek}k=1,2,... and {Ej,k}j,k=1,2,... of measurable subsets
of E such that

Ek is increasing on k and E =
∞⋃

k=1

Ek, (4.13)

Ek ⊂ Ej,k for all sufficiently large j, (4.14)
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δ̃Ej,k (Gqj
) = δ̃Ej,k (G). (4.15)

Then ‖ Ḡ+H
σ

‖L∞(E) � ‖G+H
σ

‖L∞(E).

Proof. By (4.15) and Lemma 4.3, G̃ = Gqj
χΩ\Ej,k + GχEj,k ∈ S qj

β (Ω); hence, upon testing the minimality of Gqj

with G̃ and canceling common terms, we have (the absolutely minimizing property of Gq )∥∥∥∥Gqj
+ H

σ

∥∥∥∥
L

qj (Ej,k)

�
∥∥∥∥G + H

σ

∥∥∥∥
L

qj (Ej,k)

�
∥∥∥∥G + H

σ

∥∥∥∥
L∞(E)

|E|
1
qj

for all j, k = 1,2, . . . . Therefore, combining with (4.6), it follows that∥∥∥∥Ḡ + H

σ

∥∥∥∥
L∞(Ek)

� lim inf
j→∞

∥∥∥∥Gqj
+ H

σ

∥∥∥∥
L

qj (Ej,k)

�
∥∥∥∥G + H

σ

∥∥∥∥
L∞(E)

for all k = 1,2, . . . . Letting k → ∞, the result follows. �
5. An existence result on minimizers of λ(g,h) in BV(Ω)

In this section, we give a sufficient condition for the existence of minimizers for λ(g,h) in BV(Ω); we follow
closely some idea of [12, Theorem 2.3]. First, we have the following result relying on the special property of nonneg-
ative Radon measures.

Proposition 5.1. Let σ be the function as given above. Let wk, w ∈ BV(Ω) satisfy wk → w in L1(Ω), Dwk
∗
⇀ Dw

in M(Ω) and σd|Dwk| ∗
⇀ μ in M(Ω). Let Fk , F with σFk,σF ∈ Xn(Ω) satisfy ‖Fk‖L∞(Ω) � 1, Fk

∗
⇀ F in

L∞(Ω;Rn) and div(σFk) ⇀ div(σF ) in Ln(Ω). Then

0 �
∫
Ω

(
σ |Dw| − (σF,Dw)

)
�
∫
Ω

(
μ − (σF,Dw)

)
(5.1)

� lim inf
k→∞

[∫
Ω

σ d|Dwk| −
∫
Ω

d(σFk,Dwk)

]
. (5.2)

Proof. By Theorem 2.4, the measure σ |Dv| − (σF,Dv) is nonnegative for all v ∈ BV(Ω). Given any ε > 0, let
K � Ω be a compact set such that∫

Ω

d
(
μ − (σF,Dw)

)
�
∫
K

d
(
μ − (σF,Dw)

)+ ε.

Let φ ∈ Cc(Ω) be a cut-off function such that 0 � φ(x) � 1 on Ω and φ(x) = 1 on K . By Proposition 2.5, we have

(σFk,Dwk)
∗
⇀ (σF,Dw) in M(Ω) and thus

0 �
∫
Ω

(
σ |Dw| − (σF,Dw)

)
�
∫
Ω

(
μ − (σF,Dw)

)

�
∫
K

d
(
μ − (σF,Dw)

)+ ε �
∫
Ω

φ d
(
μ − (σF,Dw)

)+ ε

= lim
k→∞

∫
Ω

φ
(
σ d|Dwk| − d(σFk,Dwk)

)+ ε

� lim inf
k→∞

∫ (
σ d|Dwk| − d(σFk,Dwk)

)+ ε
Ω
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= lim inf
k→∞

[∫
Ω

σ d|Dwk| −
∫
Ω

d(σFk,Dwk)

]
+ ε

for arbitrary ε > 0. Hence, we have proved (5.1) and (5.2). �
Assume g, h are given functions satisfying (1.7). Let

ρ̄(g) = inf
Y∈Xn(Ω)
δ(Y )=g

∥∥∥∥Y

σ

∥∥∥∥
L∞(Ω)

, ρ̄(g,h) = inf
Y∈Xn(Ω)

divY=h, δ(Y )=g

∥∥∥∥Y

σ

∥∥∥∥
L∞(Ω)

. (5.3)

By Corollary 3.5, the set of functions Y defining ρ̄(g,h) is nonempty and in fact ρ̄(g,h) is attained as a minimum.
Let H ∈ Xn(Ω) be any function such that divH = h and δ(H) = g, and let β = g − δ(H). Then, by Theorem 1.1,
ρ̄(g,h) = ρ(β,H) = μ(g,h); hence

μ(g,h) = ρ̄(g,h) � ρ̄(g). (5.4)

We have the following existence result similar to [12, Theorem 2.3].

Theorem 5.2. Assume μ(g,h) > ρ̄(g). Suppose {vj } ⊂ BV(Ω) with
∫
Ω

vj dx = 0 is a minimizing sequence for
λ(g,h); that is,

lim
j→∞

∫
Ω

σ d|Dvj | = λ(g,h), B(vj ) = 1.

Then there exists a subsequence {wk} = {vjk
} and v̄ ∈ BV(Ω) such that

wk → v̄ in L1(Ω),

∫
Ω

|Dwk| →
∫
Ω

|Dv̄|. (5.5)

Consequently γ (wk) → γ (v̄) in L1(∂Ω) and∫
Ω

σ d|Dv̄| = λ(g,h), B(v̄) = 1;

that is, v̄ ∈ BV(Ω) is a minimizer for λ(g,h).

Proof. We write λ1 = λ1(g,h) = λ(g,h) for simplicity. The condition 1
λ1

= μ(g,h) > ρ̄(g) implies that there exists a

Y ∈ Xn(Ω) with δ(Y ) = g such that 1
t
= ‖Y

σ
‖L∞(Ω) < 1

λ1
(hence t > λ1). Let F1 = tY

σ
∈ Xn(Ω). Then ‖F1‖L∞(Ω) = 1

and δ(σF1) = tg. We assume the subsequence {wk} satisfies that wk → v̄ in L1(Ω), Dwk
∗
⇀ Dv̄ in M(Ω) and

σd|Dwk| ∗
⇀ μ in M(Ω). First use (5.1)–(5.2) of Proposition 5.1 with constant sequence Fk = F̄ , where F̄ is deter-

mined in Theorem 3.4. Since
∫
Ω

(σ F̄ ,Dwk) = λ1B(wk) = λ1 and {wk} is minimizing, we have

lim
k→∞

[∫
Ω

σ d|Dwk| −
∫
Ω

d (σ F̄ ,Dwk)

]
= 0 (5.6)

and hence μ = σ |Dv̄| = (σ F̄ ,Dv̄) in M(Ω). We then use (5.1)–(5.2) with Fk = F1 to obtain∫
Ω

(
σ |Dv̄| − (σF1,Dv̄)

)
� lim inf

k→∞

[∫
Ω

σ d|Dwk| −
∫
Ω

d(σF1,Dwk)

]
.

Using (5.6), we have

0 �
∫

(σ F̄ − σF1,Dv̄) � lim inf
k→∞

∫
(σ F̄ − σF1,Dwk). (5.7)
Ω Ω
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This inequality and the divergence formula imply, by virtue of δ(σ F̄ − σF1) = (λ1 − t)g and wk ⇀ v̄ in L
n

n−1 (Ω),
that

(λ1 − t)

∫
∂Ω

γ (v̄)g dHn−1 � lim inf
k→∞ (λ1 − t)

∫
∂Ω

γ (wk)g dHn−1

and hence, since λ1 − t < 0,∫
∂Ω

γ (v̄)g dHn−1 � lim sup
k→∞

∫
∂Ω

γ (wk)g dHn−1.

From this, we easily have

B(v̄) =
∫

∂Ω

γ (v̄)g dHn−1 −
∫
Ω

v̄hdx

� lim sup
k→∞

[ ∫
∂Ω

γ (wk)g dHn−1 −
∫
Ω

wkhdx

]
= lim sup

k→∞
B(wk) = 1.

On the other hand,

λ1B(v̄) =
∫
Ω

(σ F̄ ,Dv̄) =
∫
Ω

σ d|Dv̄| � lim inf
k→∞

∫
Ω

σ d|Dwk| = λ1,

and hence B(v̄) � 1 since λ1 > 0. So we have proved B(v̄) = 1 and hence

lim
k→∞

∫
Ω

σ d|Dwk| = λ1 = λ1B(v̄) =
∫
Ω

(σ F̄ ,Dv̄) =
∫
Ω

σ d|Dv̄|. (5.8)

This proves v̄ ∈ BV(Ω) is a minimizer of λ(g,h). Obviously,∫
A

σ d|Dv̄| � lim inf
k→∞

∫
A

σ d|Dwk| ∀A ⊂ Ω open.

Let μk = σd|Dwk|, λ = σd|Dv̄| and φ = 1
σ

. Then we have proved that

lim
k→∞μk(Ω) = λ(Ω) and λ(A) � lim inf

k→∞ μk(A)

for all open sets A ⊂ Ω . Hence, by [3, Proposition 1.80],

lim
k→∞

∫
Ω

φ dμk =
∫
Ω

φ dλ;

that is,

lim
k→∞

∫
Ω

d|Dwk| =
∫
Ω

d|Dv̄|.

This completes the proof. �
Corollary 5.3. Assume μ(g,h) > ρ̄(g). Then any function ū determined in Theorem 3.4 is a minimizer for λ(g,h).

Proof. Since μ(g,h) > ρ̄(g), it follows that B �≡ 0. Let vj = upj
, where up is the minimizer of λp(g,h) in The-

orem 3.4. Since λp(g,h) → λ(g,h) as p → 1, by the Young inequality, we easily see that {vj } is the minimizing
sequence of λ(g,h). Hence the result follows from Theorem 5.2. �



B. Yan / Ann. I. H. Poincaré – AN 28 (2011) 325–355 347
Corollary 5.4. Assume μ(g,h) > ρ̄(g). Then there exists a set A ∈ P (Ω) such that∫
∂Ω∩∂∗A g dHn−1 − ∫

A
hdx∫

Ω∩∂∗A σ dHn−1
= max

E∈P (Ω)

∫
∂Ω∩∂∗E g dHn−1 − ∫

E
hdx∫

Ω∩∂∗E σ dHn−1
.

Proof. We use the same notation as in Theorem 3.3. Assume Ej ∈ P (Ω) is a maximizing sequence:

lim
j→∞

B(χEj
)

N(χEj
)

= μ3 = sup
E∈P (Ω)

B(χE)

N(χE)
.

Again since B �≡ 0, we have μ3 > 0. Let vj = bj (χEj
− cj ), where bj > 0 and cj ∈ [0,1] are constants such that

B(vj ) = 1 and
∫
Ω

vj dx = 0. Therefore

lim
j→∞N(vj ) = lim

j→∞

∫
Ω

σ d|Dvj | = 1

μ3
= λ(g,h).

Hence {vj } is a minimizing sequence of λ(g,h) in BV(Ω). By Theorem 5.2, there exists a subsequence wk = vjk
→ v̄

in L1(Ω), where v̄ ∈ BV(Ω) is a minimizer for λ(g,h). We may assume wk(x) → v̄(x) for almost every x ∈ Ω ,
−bjk

cjk
→ a ∈ [−∞,0] and bjk

(1 − cjk
) → d ∈ [0,∞], as k → ∞. Since the essential range of v̄(x) can only belong

to {a, d} and v̄ is not constant (since B(v̄) = 1), a and d must be finite and distinct. Hence there exists a set A ⊂ Ω

such that v̄ = r(χA − s) for some constants r, s ∈ R. This shows A ∈ P (Ω) is a maximizing set for μ3. �
Remark 5.1. Assume that σ ≡ 1, Ω is C2 and g ∈ C1(∂Ω). The result [13, Proposition 5] shows that, for each ε > 0,
there exists a Yε ∈ Xn(Ω) satisfying δ(Yε) = g and ‖Yε‖L∞(Ω) � (1 + ε)‖g‖L∞(∂Ω). So, by (2.19),

‖g‖L∞(∂Ω) � inf
Y∈Xn(Ω)
δ(Y )=g

‖Y‖L∞(Ω) � ‖Yε‖L∞(Ω) � (1 + ε)‖g‖L∞(∂Ω)

for all ε > 0. Hence, in this case, ρ̄(g) = ‖g‖L∞(∂Ω).

Example 5.1. We consider an interesting example. Let n � 2 and Ω = BR \ B̄r = {x ∈ Rn | r < |x| < R} and let h = 0
and g : ∂Ω = ∂BR ∪ ∂Br → R be defined by

g(x) =
{

0 |x| = r,

x1 |x| = R.

By Remark 5.1 above, we have ρ̄(g) = ‖g‖L∞(∂Ω) = R. However,

μ(g,0) = sup
E∈P (Ω)

∫
∂∗E∩∂BR

x1 dHn−1

P(E,Ω)
� Rn

Rn−1 − rn−1
> R, (5.9)

if we choose E = Ω+ = {x ∈ Ω | x1 � 0}. Therefore the condition μ(g,0) > ρ̄(g) holds and so Corollary 5.3 applies.
Let

B(u) =
∫

|x|=1

x1γΩ(u)dHn−1, Np(u) =
∫
Ω

|Du|p dx.

Note that B(u) = B(ũ), Np(u) = Np(ũ) for all u ∈ W 1,p(Ω), where ũ(x1, x
′) = εu(εx1,O

′x′); here x′ ∈ Rn−1,
ε = ±1 and O ′ is any rotation of Rn−1. This invariance property of B , Np and the uniqueness of minimizer up

show that up(x) = Up(x1, |x′|), where Up(s, t) is a function of s ∈ R and t � 0 which is odd in s. For any function
u ∈ W 1,p(Ω) odd in x1, let u∗ = |u|χΩ+ −|u|χΩ− , where Ω− = {x ∈ Ω | x1 � 0}. It is easily seen that B(u∗) � B(u)

and Np(u∗) = Np(u). This shows that up = u∗
p = |up|χΩ+ − |up|χΩ− , and hence up � 0 on Ω+.

Let ū be any function determined in Theorem 3.4 as a limit of a subsequence of up as p = pj → 1 in L1(Ω).

The invariance properties of up above show that ū(x) = Ū (x1, |x′|), where Ū (s, t) is a function of s ∈ R and t � 0,
odd in s and nonnegative for s � 0; moreover, ū is a minimizer for λ(g,0). Consider now the upper-level sets of ū:
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Et = {x ∈ Ω | ū(x) > t}, Ft = {x ∈ Ω | ū(x) � t}. Since ū � 0 on Ω+, we have Et ⊆ Ft ⊆ Ω+ for all t > 0. As in
Lemma 3.1, we have

u(x) =
∞∫

0

χEt (x) dt =
∞∫

0

χFt (x) dt ∀a.e. x ∈ Ω+

and, integrating over Ω+ and using Fubini’s theorem, we have
∫∞

0 Ln(Ft \Et) dt = 0. This implies that Ln(Ft \Et) =
0 for almost every t > 0. Hence, by [3, Proposition 3.38(c)], we have

P(Ft ,Ω) = P(Et ,Ω) ∀a.e. t > 0. (5.10)

Let x = (x1, x
′) ∈ Rn and x̃ = (−x1, x

′). For any set E ⊆ Rn, denote Ẽ = {x̃ | x ∈ E}. We easily see that P(Ẽ,Ω) =
P(E,Ω). By the invariance property of ū, we have E−t = Ω \ F̃t for all t ∈ R. From these properties, by Lemma 3.1
and the coarea formula, one eventually obtains that

B(ū) = 2
∫
I

B(χEt ) dt = 1; N(ū) = 2
∫
I

N(χEt ) dt = λ(g,0), (5.11)

where the set I ⊆ (0,∞) is the set of t > 0 such that Et ∈ P (Ω) and the condition (5.10) holds. Obviously L1((0,∞)\
I ) = 0. For each t ∈ I, we have λ(g,0)B(χEt ) � N(χEt ) and hence (5.11) implies that for each t

B(χEt )

N(χEt )
= 1

λ(g,0)
= μ(g,0);

that is, for each t ∈ I , the set Et is a maximizer for μ(g,0).

Let E ⊆ Ω+ be any set invariant with respect to rotation about the x1-axis. Then we can write E as

E = {(
x1, x

′) ∈ Ω+ ∣∣ (x1,
∣∣x′∣∣) ∈ K

}∪ Z, (5.12)

where Z = E ∩ {x ′ = 0} and hence Ln−1(Z) = 0 and K is a subset of ω+ = {(t, s) | t � 0, s > 0, r2 < s2 + t2 < R2}
in R2 and we also have that E has finite perimeter in Ω if and only if K has finite perimeter in the annulus � =
{(t, s) | r2 < t2 + s2 < R2}. In this case one obtains that

B(χE)

N(χE)
=
∫
∂∗K∩Γ

tsn−2 dH1∫
∂∗K∩ω+ sn−2 dH1

:= I (K) ≡ B̃(K)

Ñ(K)
, (5.13)

where Γ = {(t, s) | t2 + s2 = R2, t � 0, s > 0}. Furthermore, E defined by (5.12) is a maximizer for μ(g,0) if and
only if K is a maximizer for the functional I (K) over K ⊆ ω+.

Proposition 5.5. Let K be a maximizer of functional I above over the sets of finite perimeter in ω+. Then ∂∗K = ∂∗ω+
and hence μ(g,0) = I (K) = I (ω+) = Rn

Rn−1−rn−1 .

Proof. It suffices to show that ∂∗K ∩ int(ω+) = ∅. Suppose for the contrary that ∂∗K ∩ int(ω+) �= ∅. Since ∂∗K is the
union of rectifiable curves [3, Theorem 3.59], any piece, say β , of these curves inside int(ω+) can be parameterized
as β = (t (τ ), s(τ )), where τ ∈ [a, b] is the arc-length parameter of β; the rectifiability of curve β implies that both
t (τ ) and s(τ ) are differentiable a.e. and hence ṫ (τ )2 + ṡ(τ )2 = 1 on [a, b]. We claim ṡ(τ ) = 0 on [a, b] and hence
β is parallel to the t -axis. If not, assuming ṡ(τ0) �= 0 for some τ0 ∈ (a, b), then, near the point P0 = (t (τ0), s(τ0)),

the set K lies either on the left-hand side or on the right-hand side of β. We assume K near P0 lies on the left-side
of β; that is, for some interval (c, d) containing τ0 in [a, b], any point (t, s(τ )) with t > t (τ ) for some τ ∈ (c, d) is
not in K. Now let ζ ∈ C∞

0 (c, d), ζ � 0, be any given test function. For small ε � 0, consider the sets Rε = {(t, s(τ )) |
t (τ ) − εζ(τ ) � t � t (τ ), τ ∈ (c, d)} and Lε = {(t, s(τ )) | t (τ ) � t � t (τ ) + εζ(τ ), τ ∈ (c, d)}. Let K+

ε = K ∪ Lε ,
K−

ε = K \ Rε. Then ∂∗(K±
ε ) = (∂∗K \ β|τ∈(c,d)) ∪ β±

ε , where β±
ε = {(t (τ ) ± εζ(τ ), s(τ )) | τ ∈ (c, d)} ⊂ int(ω+) if

ε � 0 is sufficiently small. Let h±(ε) = Ñ(K±
ε ) − Ñ(K). Since K is maximizer of I and B̃(K±

ε ) = B̃(K), we must
have h±(0) = 0 and h±(ε) � 0 for all small ε � 0 and hence h′±(0+) � 0. But, using ṫ (τ )2 + ṡ(τ )2 = 1,

h±(ε) =
d∫
s(τ )n−2[√ṡ2 + (ṫ ± εζ̇ )2 − 1

]
dτ,
c
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and hence we have h′±(0+) = ± ∫ d

c
s(τ )n−2ζ̇ dτ � 0 for all test functions ζ � 0. This implies

∫ d

c
sn−2ζ̇ dτ = 0 for all

test functions ζ and thus s(τ ) must be constant on τ ∈ (c, d), which contradicts with ṡ(τ0) �= 0. Hence every rectifiable
piece of ∂∗K ∩ int(ω+) is a line segment parallel to the t -axis, and as such a line segment cannot have the end-points
still in int(ω+) it must reach to the boundary of ω+. Therefore ∂∗K consists of a family of closed line segments with
endpoints on ∂ω+; this implies that

K =
⋃
s∈Λ

{
(t, s)

∣∣ √(r2 − s2
)+

< t <
√

R2 − s2
}∪ N,

where Λ ⊆ (0,R) and H1(N) = 0. Note that Λ is a parameter set for ∂∗K ∩Γ since ∂∗K ∩Γ = {(√R2 − s2, s) | s ∈
Λ}. Using this parametrization, we can write

I (K) = R
∫
Λ

sn−2 ds∫
Λ∩(r,R)

sn−2 ds +∑
s∈(0,R)∩∂Λ sn−2(

√
R2 − s2 −√

(r2 − s2)+)
:= J (Λ).

From the assumption ∂∗K ∩ int(ω+) �= ∅, we have already shown that (0,R) ∩ ∂Λ �= ∅. We proceed to derive the
desired contradiction. First suppose there is a point s0 ∈ (0, r] ∩ ∂Λ. Define a set Λ0 = (Λ ∩ [s0,R]) ∪ [0, s0]. Then
Λ ⊆ Λ0 and (0,R) ∩ ∂Λ0 = (s0,R) ∩ ∂Λ is strictly contained in (0,R) ∩ ∂Λ. Hence J (Λ) < J(Λ0). Use Λ0 to
define K0 as Λ for K ; then we have I (K) < I (K0), a contradiction. Therefore (0,R) ∩ ∂Λ ⊆ (r,R) is nonempty; so
Λ ⊆ [r,R) and we arrive at

μ(g,0) = I (K) = J (Λ) = R
∫
Λ∩(r,R)

sn−2 ds∫
Λ∩(r,R)

sn−2 ds +∑
s∈(r,R)∩∂Λ sn−2

√
R2 − s2

< R,

which is again a contradiction with (5.9). This completes the proof. �
From this result, we also see that each upper-level set Et of ū is Ω+. Therefore the function ū is constant on Ω+

and hence ū is uniquely given by ū = c(2χΩ+ − 1), where c is the constant such that B(ū) = 1. This also proves that
the whole family {up} converges in L1(Ω) to the same function ū as p → 1+.

6. Problems in two dimensions and proof of Theorem 1.4

The main goal of this section is to prove Theorem 1.4. Assume n = 2 and let Ω ⊂ R2 be a bounded domain such
that its boundary ∂Ω consists of k+1 simple closed Lipschitz (thus Jordan) curves denoted by Γ0,Γ1, . . . ,Γk (k � 0),
with Γ0 being the boundary of the unbounded component of R2 \ Ω. Hence

Ω = D0 \
k⋃

i=1

D̄i, (6.1)

where Dj is the simply-connected domain enclosed by Γj ; that is, the inside of the curve Γj for each j = 0,1, . . . , k.

For each 1 � q � ∞, define S q

0 (Ω) = S q
β (Ω) as above with β = 0. In order to characterize this set S q

0 (Ω), we
introduce the following space

W
1,q∗ (Ω) =

{
ϕ ∈ W 1,q (Ω)

∣∣∣ γΩ(ϕ) =
k∑

i=0

ciχΓi
, ci ∈ R

}
, (6.2)

where γΩ is the trace-operator on ∂Ω. Obviously,

R ⊕ W
1,q

0 (Ω) := {
c + ϕ

∣∣ c ∈ R, ϕ ∈ W
1,q

0 (Ω)
}⊂ W

1,q∗ (Ω);
however, if k � 1, the two spaces are not the same. Given any ϕ ∈ W

1,q∗ (Ω), if we extend ϕ by constant ci onto D̄i

(i = 1,2, . . . , k), then the extended function ϕ̃ belongs to R ⊕ W
1,q

0 (D0). Therefore, W
1,q∗ (Ω) can be considered as a

subspace of R ⊕ W
1,q

0 (D0) consisting of functions that are constant on each D̄i (i = 1,2, . . . , k).
A closer look of the proof of Morrey’s estimate in [14, pp. 266–268] yields that, if 2 < q < ∞, for all ϕ ∈ W 1,q (Ω),∣∣ϕ(x) − ϕ(y)

∣∣� Cq |x − y|1− 2
q ‖∇ϕ‖Lq(Ω) ∀x, y ∈ Ω, (6.3)
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where the constant Cq = 12π

4π−3
√

3
(
q−2
q−1 )

1−q
q . Note that the estimate (6.3) holds also when q = ∞ with C∞ defined by

C∞ = lim
q→∞Cq = 12π

4π − 3
√

3
.

Therefore, if 2 < q � ∞, each function ϕ ∈ W
1,q∗ (Ω) can be viewed as a continuous function in Hölder’s space

C
1− 2

q (Ω̄) and so we automatically consider W
1,q∗ (Ω) ⊂ C(Ω̄) if q > 2.

Lemma 6.1. Let 1 � q � ∞ and Z ∈ Lq(Ω;R2). Then Z ∈ S q

0 (Ω) if and only if there exists a ϕ ∈ W
1,q∗ (Ω) (unique

up to adding constants) such that Z = (ϕx2 ,−ϕx1) = −(∇ϕ)⊥. Moreover, if 2 < q � ∞, we have∣∣ϕ(x) − ϕ(y)
∣∣� Cq |x − y|1− 2

q ‖Z‖Lq(Ω) ∀x, y ∈ Ω. (6.4)

Proof. First, assume Z = (ϕx2 ,−ϕx1) for some ϕ ∈ W
1,q∗ (Ω). Let ci = ϕ|Γi

for i = 0,1, . . . , k and let ϕ̃ ∈ W
1,q

0 (D0)

be the function equal to ϕ − c0 in Ω and ci − c0 on D̄i . Define Z̃ = ∇ϕ̃ ∈ Lq(D0;R2). Then Z̃ = Z on Ω and Z̃ = 0
on D0 \ Ω and hence we easily have∫

Ω

Z · ∇ζ dx =
∫
D0

Z̃ · ∇ζ dx =
∫
D0

(ϕ̃x2ζx1 − ϕ̃x1ζx2) dx = 0

for all ζ ∈ C1
0(R2). By definition, Z ∈ S q

0 (Ω). We now assume Z ∈ S q

0 (Ω). Let Z̃ be the extension of Z by zero onto

R2 \Ω. Then Z̃ ∈ L2(R2;R2) satisfies div Z̃ = 0 in the sense of distributions. Hence, there exists f ∈ W
1,2
loc (R2) such

that Z̃ = (fx2,−fx1) on R2. Note that ∇f = 0 on R2 \Ω and thus f is constant on each component of R2 \Ω. Hence

f |Γj
= dj is a constant for each j = 0,1, . . . , k. Since Z̃ ∈ Lq(R2;R2), we have f ∈ W

1,q
loc (R2). Let ϕ = f |Ω. Then

ϕ ∈ W
1,q∗ (Ω) satisfies Z = (ϕx2 ,−ϕx1) in Ω . Since Ω is connected, it is easily seen that ϕ is unique up to constants.

If 2 < q � ∞, the estimate (6.4) follows from (6.3). This completes the proof. �
We prove the first part of Theorem 1.4 in the following theorem.

Theorem 6.2. Any minimizer Ḡ of (1.1) determined in Proposition 4.1 is an absolute minimizer of ρ(β,H) as defined
in Definition 1.1.

Proof. Let Ḡ be the weak limit of Gqj
determined in Proposition 4.1 and E � Ω be an open set with connected

Ω \ E. Assume G ∈ Sβ(Ω) satisfies that δ̃E(G) = δ̃E(Ḡ). We want to show∥∥∥∥Ḡ + H

σ

∥∥∥∥
L∞(E)

�
∥∥∥∥G + H

σ

∥∥∥∥
L∞(E)

. (6.5)

Since the proof is long, we split it into several steps.

Step 1. Since Gqj
− Ḡ ∈ S qj

0 (Ω), by Lemma 6.1, there exists a function ϕj ∈ W
1,qj∗ (Ω) such that Gqj

= Ḡ +
(ϕ

j
x2 ,−ϕ

j
x1). We make ϕj unique by assuming ϕj |Γ0 = 0. Since Gqj

⇀ Ḡ in Lr(Ω;R2) for each r > 1, we have
∇ϕj ⇀ 0 in Lr(Ω;R2) for each r > 1. By (6.4), {ϕj } is a uniformly bounded and equi-continuous sequence of
continuous functions on Ω̄ and hence there exists a subsequence of {ϕj } which converges uniformly to a continuous
function ϕ0 on Ω̄. Obviously, ϕ0|Γ0 = 0 and ∇ϕ0 = 0 in the sense of distributions in Ω ; hence, ϕ0 ≡ 0 on Ω̄. Without
loss of generality, we assume that the whole sequence {ϕj } converges uniformly to zero on Ω̄ as j → ∞.

Step 2. Consider Z = (G − Ḡ)χE ∈ L∞(Ω;R2). Since δ̃E(G) = δ̃E(Ḡ), it follows that Z ∈ S ∞
0 (Ω). Hence, by

Lemma 6.1, there exists a (Lipschitz continuous) function ϕ ∈ W
1,∞∗ (Ω) such that Z = (ϕx2 ,−ϕx1) on Ω . Since

∇ϕ = 0 a.e. on Ω \E and Ω \E is connected, we have that ϕ(x) is constant on Ω \E. By adding a constant, without
loss of generality, we assume ϕ ≡ 0 on Ω \ E. So ϕ(x) = 0 on ∂E. We remark that the connectedness of Ω \ E

plays an important role here since otherwise we would only assert that ϕ is constant but perhaps different on each
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component of Ω \ E and so we may not assume ϕ = 0 on ∂E. The condition ϕ = 0 on ∂E seems critical in Step 5
below.

Step 3. Let Ij (u;A) = ‖∇u+H̃
σ

‖L
qj (A), I (u;A) = ‖∇u+H̃

σ
‖L∞(A), where H̃ = −(Ḡ+H)⊥. Then (6.5) is equivalent

to

I (0;E) � I (ϕ;E). (6.6)

The following steps are devoted to the proof of (6.6). Note that Ij (u;A) = ‖G+H
σ

‖L
qj (A) if G = Ḡ − (∇u)⊥. The

minimality of Gqj
= Ḡ − (∇ϕj )⊥ can be written as

Ij

(
ϕj ;Ω)= min

u∈W
1,qj∗ (Ω)

Ij (u;Ω) ∀j = 1,2, . . . . (6.7)

We decompose the set E = E+ ∪ E0 ∪ E−, where

E± = {
x ∈ E

∣∣±ϕ(x) > 0
}
, E0 = {

x ∈ E
∣∣ ϕ(x) = 0

}
.

Note that I (0;E) = max{I (0;E+), I (0;E0), I (0;E−)}. We prove (6.6) in different cases. First assume I (0;E0) >

max{I (0;E+), I (0;E−)}. In this case, I (0;E) = I (0;E0) and |E0| > 0. On E0, ϕ = 0 and hence ∇ϕ = 0 for a.e.
x ∈ E0. So I (0;E0) = I (ϕ;E0) � I (ϕ;E) and (6.6) follows.

Step 4. We now assume I (0;E) = max{I (0;E+), I (0;E−)}. Without loss of generality, assume I (0;E) =
I (0;E+). Let εk > 0 be a decreasing sequence converging to zero such that each of the following open sets has
finite perimeter in Ω :

Ek+ = {
x ∈ E

∣∣ ϕ(x) > εk

}
, (6.8)

E
j,k
+ =

{
x ∈ E

∣∣∣ ϕ(x) > 0, ϕj (x) < ϕ(x) − εk

2

}
. (6.9)

These sets will satisfy the requirements similar to (4.13)–(4.15) mentioned above in Proposition 4.4 above. Note that
E+ =⋃∞

k=1 Ek+. Given k, since ϕj (x) → 0 uniformly on x ∈ Ω̄ , we have Ek+ ⊂ E
j,k
+ for all sufficiently large j. Let

ϕ̃j,k(x) =
(

ϕ(x) − εk

2

)
χ

E
j,k
+

(x) + ϕj (x)χ
Ω̄\Ej,k

+
(x) (x ∈ Ω̄). (6.10)

Step 5. We claim that for each given k the function ϕ̃j,k defined by (6.10) belongs to W
1,qj∗ (Ω) for all sufficiently

large j. Since both ϕj and ϕ are in W
1,qj∗ (Ω), this claim amounts to proving ϕ̃j,k is continuous on Ω̄. Let x̄ ∈

∂(E
j,k
+ ) and we would like to show ϕj (x̄) = ϕ(x̄) − εk

2 and hence ϕ̃j,k is continuous on Ω̄. Note that x̄ ∈ ∂(E
j,k
+ )

implies ϕj (x̄) � ϕ(x̄) − εk

2 . Suppose ϕj (x̄) < ϕ(x̄) − εk

2 . In this case, since x̄ ∈ ∂(E
j,k
+ ), we will have the following

possibilities: (a) x̄ ∈ ∂E; (b) x̄ /∈ ∂E, ϕ(x̄) = 0. In either case, we have ϕ(x̄) = 0. This would imply that ϕj (x̄) < − εk

2 ,

which is impossible for sufficiently large j since ϕj → 0 uniformly on Ω̄ as j → ∞. Hence ϕj (x̄) = ϕ(x̄) − εk

2 at

any point x̄ ∈ ∂(E
j,k
+ ) for all sufficiently large j. Therefore ϕ̃j,k ∈ W

1,qj∗ (Ω) for all sufficiently large j.

Step 6. We use ϕ̃j,k as a test in (6.7) and thus it follows that Ij (ϕ
j ;Ω) � Ij (ϕ̃j,k;Ω) for all sufficiently large j.

Canceling the common terms on Ω \ E
j,k
+ , we have Ij (ϕ

j ;Ej,k
+ ) � Ij (ϕ − εk

2 ;Ej,k
+ ) = Ij (ϕ;Ej,k

+ ). Hence, for each
given k and all sufficiently large j ,

Ij

(
ϕj ;Ek+

)
� Ij

(
ϕj ;Ej,k

+
)
� Ij

(
ϕ;Ej,k

+
)
� I (ϕ;E+)|E+|

1
qj .

Letting j → ∞ and using (4.6), it follows that

I
(
0;Ek+

)
� lim inf

j→∞ Ij

(
ϕj ;Ek+

)
� I (ϕ;E+).

Since Ek+ increases to E+, this proves I (0;E+) = limk→∞ I (0;Ek+) � I (ϕ;E+), from which (6.6) follows. This
completes the proof of Theorem 6.2. �
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The rest of this section is devoted to the second part of Theorem 1.4 in the special case where H = 0 and σ = 1;
we thus study the problem

min
G∈Sβ(Ω)

‖G‖L∞(Ω), (6.11)

where Ω ⊂ R2 is described as above and β ∈ L∞(∂Ω) is a given function to be specified below.
We need to consider Lipschitz functions and their extensions relative to domain Ω. First of all, following [19], we

define the distance-function dΩ : Ω̄ × Ω̄ → R relative to Ω̄ by

dΩ(x, y) = lim inf
(a,b)∈Ω×Ω
(a,b)→(x,y)

(
inf

γ∈C1([0,1];Ω)
γ (0)=a, γ (1)=b

1∫
0

∣∣γ̇ (t)
∣∣dt

)
. (6.12)

(The dot here and below means differentiation with respect to the given parameter.) Given any nonempty set S ⊂ Ω̄

and any function u :S → R, we say u is Lipschitz on S with respect to dΩ and write u ∈ LipΩ(S) provided that

LipS(u) := sup
x �=y∈S

|u(x) − u(y)|
dΩ(x, y)

< ∞. (6.13)

It is well known that any Lipschitz function u on S admits a minimal Lipschitz extension v on Ω̄ ; that is, v = u on S

and LipΩ̄ (v) = LipS(u). A minimal Lipschitz extension v of u is called an absolutely minimizing Lipschitz extension
(AMLE) if LipV (v) = Lip∂V (v) for every open set V ⊂ Ω̄ \ S. For existence and uniqueness of AMLE and other
related results, we refer to [6,19,23].

We now make further specific assumptions on ∂Ω and β. Let us parametrize Γ0 counter-clockwise and other Γi ’s
(i = 1, . . . , k) clockwise using the arc-length parameter s on each curve. We assume that the parametric equation so
obtained

xi (s) = (
xi

1(s), x
i
2(s)

)
, 0 � s < Li,

for each i = 0,1, . . . , k, is one-to-one and Lipschitz continuous from [0,Li) onto Γi . Then for almost every s ∈ [0,Li)

the unit tangent vector τ i and outward unit normal vector νi at x = xi (s) ∈ Γi are given by

τ i = ẋi (s) = (
ẋi

1(s), ẋ
i
2(s)

)
, νi = −(τ i

)⊥ = (
ẋi

2(s),−ẋi
1(s)

)
. (6.14)

For each i = 0,1, . . . , k, let

bi(s) = βi

(
xi (s)

)
, ai(s) =

s∫
0

bi(t) dt, 0 � s < Li. (6.15)

Then ai ∈ W 1,∞(0,Li) and ‖ȧi‖L∞ � ‖βi‖L∞(Γi), ‖ai‖L∞ � Li‖βi‖L∞(Γi). Define a function αi on each Γi by
setting αi(x) = ai(s) if x ∈ Γi is represented by x = xi (s) for some s ∈ [0,Li). Let α =∑k

i=0 αiχΓi
. We make the

following assumption:

αi ∈ LipΩ(Γi) ∀i = 0,1, . . . , k. (6.16)

A necessary condition of (6.16) is that ai(L
−
i ) = ∫

Γi
βi dH1 = 0 for all i = 0,1, . . . , k, which is stronger than the

usual assumption
∫
∂Ω

β dH1 = 0.

Proposition 6.3. Under the assumption (6.16), we have that α ∈ LipΩ(∂Ω) and that there exists a function ψ ∈
W 1,∞(Ω) ∩ C(Ω̄) such that ψ = α on ∂Ω and ‖∇ψ‖L∞(Ω) = Lip∂Ω(α). Furthermore, F = (ψx2 ,−ψx1) ∈ Sβ(Ω).

Proof. Let x �= y ∈ ∂Ω. Assume x ∈ Γi and y ∈ Γj . If i �= j , then |α(x)−α(y)| = |αi(x)−αj (y)| � M and |x −y| �
m > 0, where

M = 2 max
{
Li‖βi‖L∞(Γi)

}
, m = min

i �=j

{|a − b|: a ∈ Γi, b ∈ Γj

}
.

0�i�k
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Hence |α(x) − α(y)| � M
m

|x − y| � M
m

dΩ(x, y) if i �= j. Now assume i = j ; then x, y ∈ Γi. By assumption (6.16), it
follows also that |α(x) − α(y)| � KdΩ(x, y), where

K = max
0�i�k

LipΓi
(αi) < ∞.

This proves that α ∈ LipΩ(∂Ω). The existence of a minimal Lipschitz extension ψ follows from, e.g., Lemma 1.6 and
Theorem 1.8 of [19]. In fact, for any α ∈ LipΩ(∂Ω), such a function ψ can be taken to be

ψ(x) = inf
y∈∂Ω

(
α(y) + Lip∂Ω(α)dΩ(x, y)

) ∀x ∈ Ω̄. (6.17)

We prove the last statement. Let F = (ψx2 ,−ψx1). Given any ζ ∈ C1(R2), by an easy density argument, we have∫
Ω

F · ∇ζ dx =
∫
Ω

(ψx2ζx1 − ψx1ζx2) dx =
∫

∂Ω

(αζx1ν2 − αζx2ν1) dH1,

where ν = (ν1, ν2) is the outward unit normal on the boundary of Ω . Split ∂Ω into the union of Γi and use the formula
for outward unit normal on each Γi given in (6.14) and we obtain∫

Ω

F · ∇ζ dx =
∫

∂Ω

(αζx1ν2 − αζx2ν1) dH1

=
k∑

i=0

∫
Γi

(αiζx1ν2 − αiζx2ν1) dH1 = −
k∑

i=0

Li∫
0

(aiζx1 ẋ
i
1 + aiζx2 ẋ

i
2) ds

= −
k∑

i=0

Li∫
0

ai(s)
d

ds

(
ζ
(
xi (s)

))
ds =

k∑
i=0

Li∫
0

ζ
(
xi (s)

) d

ds

(
ai(s)

)
ds

=
k∑

i=0

Li∫
0

ζ
(
xi (s)

)
bi(s) ds =

k∑
i=0

∫
Γi

ζ(x)βi(x) dH1(x).

This proves that
∫
Ω

F · ∇ζ dx = ∫
∂Ω

βζ dH1 for all ζ ∈ C1(R2). Hence, by definition, F ∈ Sβ(Ω). The proof is now
complete. �

We have the following characterization of the set Sβ(Ω).

Proposition 6.4. G ∈ Sβ(Ω) if and only if G = (ϕx2 ,−ϕx1) in Ω for a unique function ϕ ∈ W 1,∞(Ω) ∩ C(Ω̄)

satisfying ϕ = α0 on Γ0 and ϕ = ci + αi on Γi for i = 1, . . . , k, where c = (c1, . . . , ck) ∈ Rk and αi ∈ LipΩ(Γi) is the
function defined above. Furthermore, letting

αc = α0χΓ0 +
k∑

i=1

(ci + αi)χΓi
= α +

k∑
i=1

ciχΓi
, (6.18)

it follows that ‖G‖L∞(Ω) � Lip∂Ω(αc).

Proof. Let F = (ψx2 ,−ψx1), where ψ ∈ W 1,∞(Ω)∩C(Ω̄) is any function determined in Proposition 6.3. Given any
G ∈ L∞(Ω;R2), G ∈ Sβ(Ω) if and only if G − F ∈ S ∞

0 (Ω). By Lemma 6.1, this condition is equivalent to G −
F = (φx2 ,−φx1) for some φ ∈ W

1,∞∗ (Ω), which becomes G = (ϕx2 ,−ϕx1), where ϕ = ψ + φ ∈ W 1,∞(Ω) ∩ C(Ω̄)

satisfies ϕ|Γi
= ci + αi for all i = 0,1, . . . , k. We make ϕ unique by taking c0 = 0; that is, ϕ = αc on ∂Ω for some

constant vector c ∈ Rk. Finally, the inequality ‖G‖L∞(Ω) � Lip∂Ω(αc) follows from Lemma 1.6 of [19]. �
Let L(c) = Lip∂Ω(αc). Then, for any c = (c1, . . . , ck) ∈ Rk,

L(c) = max
0�i�j�k

{
sup

x∈Γi, y∈Γj

|ci − cj + αi(x) − αj (y)|
dΩ(x, y)

}
, (6.19)
x �=y
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where c0 = 0. It is easily seen that L is convex on Rk and L(c) � l0|c| − l1 for all c ∈ Rk, where l0 > 0 and l1 are
certain constants. Therefore the following set is a nonempty compact convex set in Rk :

Σ = argmin(L) =
{

c ∈ Rk
∣∣∣ L(c) = min

c∈Rk
L(c)

}
. (6.20)

Finally, we reformulate and prove the second part of Theorem 1.4 as follows.

Theorem 6.5. It follows that

min
G∈Sβ(Ω)

‖G‖L∞(Ω) = min
c∈Rk

L(c) = min
c∈Rk

Lip∂Ω(αc). (6.21)

Moreover, Ḡ ∈ Sβ(Ω) is a minimizer if and only if there exists a unique function ϕ̄ ∈ W 1,∞(Ω) ∩ C(Ω̄) such that
Ḡ = (ϕ̄x2 ,−ϕ̄x1) in Ω and ϕ̄ = αc̄ on ∂Ω for some c̄ ∈ Σ, where Σ is the set defined above by (6.20). Furthermore, Ḡ
is an absolute minimizer if and only if ϕ̄ is the AMLE of αc̄ on Ω̄. Therefore, there exists a unique absolute minimizer
Ḡ if the set Σ is a singleton and there exist infinitely many absolute minimizers Ḡ if Σ contains more than one points.

Proof. By Proposition 6.4, we easily see that

min
G∈Sβ(Ω)

‖G‖L∞(Ω) � min
c∈Rk

Lip∂Ω(αc) = min
c∈Rk

L(c).

Let c̄ ∈ Σ ; that is, L(c̄) = minc∈Rk L(c). Using the formula (6.17), there exists a function ψ ∈ W 1,∞(Ω)∩C(Ω̄) such
that ψ = αc̄ on ∂Ω and ‖∇ψ‖L∞(Ω) = Lip∂Ω(αc̄) = L(c̄). Let G = (ψx2 ,−ψx1). Then G ∈ Sβ(Ω) and ‖G‖L∞(Ω) =
L(c̄). This proves (6.21); the proof also shows that Ḡ ∈ Sβ(Ω) is a minimizer if and only if there exists a unique
function ϕ̄ ∈ W 1,∞(Ω) ∩ C(Ω̄) such that Ḡ = (ϕ̄x2 ,−ϕ̄x1) in Ω and ϕ̄ = αc̄ on ∂Ω for some c̄ ∈ Σ. Assume Ḡ, ϕ̄

are given this way. We would like to show that Ḡ is an absolute minimizer if and only if ϕ̄ is the AMLE of αc̄ on Ω̄.

We split this proof into two steps.
Step 1. Assume Ḡ = (ϕ̄x2 ,−ϕ̄x1) is an absolute minimizer of (6.11). We show that ϕ̄ is the AMLE of αc̄. By the

many equivalent descriptions of AMLE in [6, Theorem 4.1 and Proposition 4.5], we only need to show that, for any
open disk V � Ω (hence Ω \ V is connected) and any function φ ∈ W 1,∞(Ω) with φ = ϕ̄ on ∂V , it follows that

‖∇ϕ̄‖L∞(V ) � ‖∇φ‖L∞(V ). (6.22)

To prove (6.22), let ϕ̃ = φχV + ϕ̄χΩ\V and G̃ = (ϕ̃x2 ,−ϕ̃x1). Then ϕ̃ ∈ W 1,∞(Ω)∩C(Ω̄) and ϕ̃ = αc̄ on ∂Ω ; hence,
by Proposition 6.4, G ∈ Sβ(Ω). Also δ̃V (G) = δ̃V (Ḡ) since ϕ̃ = ϕ̄ on ∂V . Hence (6.22) follows from the absolute
minimality of Ḡ.

Step 2. Assume ϕ̄ is the AMLE of αc̄. We show that Ḡ = (ϕ̄x2 ,−ϕ̄x1) is an absolute minimizer of (6.11). Let
G ∈ Sβ(Ω) and let E ⊂ Ω be an open set with Ω \ E connected. Assume δ̃E(G) = δ̃E(Ḡ). By Proposition 6.4,
G = (φx2 ,−φx1), where η = φ − ϕ̄ ∈ W

1,∞∗ (Ω) satisfies η = αc for some c ∈ Rk. Since δ̃E(G) = δ̃E(Ḡ), it follows
that ∇η = 0 on Ω \ E and hence, by the connectedness of Ω \ E and continuity of η, it follows that η is constant on
Ω \ E. However, since Γ0 ∪ ∂E ⊂ Ω \ E and η = 0 on Γ0, we have η = 0 on ∂E and thus φ = ϕ̄ on ∂E. Therefore,
from the equivalent descriptions of the AMLE, we have

‖Ḡ‖L∞(E) = ‖∇ϕ̄‖L∞(E) � ‖∇φ‖L∞(E) = ‖G‖L∞(E).

This proves that Ḡ is an absolute minimizer. The proof is complete. �
Example 6.1 (Special case of Example 5.1 in two dimensions). Let Ω = {x ∈ R2 | r < |x| < R} be the annulus. Let
H = 0, h = divH = 0 and β = g : ∂Ω → R as before; i.e., β(x) = 0 on |x| = r , β(x) = x1 on |x| = R. In this case,
the function α : ∂Ω → R defined above is given by α(x) = 0 on |x| = r and R2 − Rx2 on |x| = R. The function
L(c) = Lip∂Ω(αc) with c ∈ R defined by (6.19) can be computed to be

L(c) = |c − R2| + R2

R − r
.

Note that the set Σ = argmin(L) = {R2} is a singleton and hence

ρ(β,0) = min
G∈S (Ω)

‖G‖L∞(Ω) = min
c∈R

L(c) = R2

R − r
,

β
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which agrees with the general result obtained in Proposition 5.5. However, by Theorem 6.5, we know that the problem
for ρ(β,0) has a unique absolute minimizer Ḡ, which is given by Ḡ = (ϕ̄x2 ,−ϕ̄x1), where ϕ̄ is the absolute min-
imizing Lipschitz extension onto Ω of the boundary function αR2(x) = R2 on |x| = r and R2 − Rx2 on |x| = R.

Therefore, for this problem, the functions Ḡ and F̄ determined as weak limits in Proposition 4.1 and Theorem 3.4 are
unique, which implies the whole sequences {Gq} and {|∇up|p−2∇up} defined there converge in the respective cases
as q → ∞ and p → 1. Recall that, by Example 5.1, the limit ū of {up} is also unique.
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