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Abstract

In this paper, we study the minimization problem on the L°°-norm functional over the divergence-free fields with given bound-
ary normal component. We focus on the computation of the minimum value and the classification of certain special minimizers
including the so-called absolute minimizers. In particular, several alternative approaches for computing the minimum value are
given using L9-approximations and the sets of finite perimeter. For problems in two dimensions, we establish the existence of
absolute minimizers using a similar technique for the absolute minimizers of L% -functionals of gradient fields. In some special
cases, precise characterizations of all minimizers and the absolute minimizers are also given based on equivalent descriptions of
the absolutely minimizing Lipschitz extensions of boundary functions.
© 2011 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
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1. Introduction and main results

Let £2 be a bounded domain in R" (n > 2) with Lipschitz continuous boundary 92 and o be a positive continuous
function on £2. Given H : 2 — R" and 8:0£2 — R, we study the value of the following minimization problem:

G+H

o2

,H)= min
p(p.H) = min

, (1.1)
L>(2)

where Sg(£2) is the set of all divergence-free fields G in £2 of fixed boundary normal-component G - v|3 = .

The motivation for studying such a problem is two-folds. First, in many variational problems, it is typical that
finding the best constant for some inequalities to hold or the certain threshold condition for a problem to have some
special solutions will eventually lead to computing optimal values involving the L°°-norm of divergence-controlled
quantities [4,8,12,13,22]. It is certainly desirable to find alternative ways to compute such values. Second, the study
of the L°°-norm of divergence-free fields is a special case of the study of the L°-functionals of general functions
with certain .A-quasiconvexity [9,15]. In working with the special problem (1.1) for divergence-free fields, we are
hoping to further explore the similar ideas from the study of gradient fields, as in [6,7,19,23]. In particular, for our
problem (1.1), we would like to study whether some special (hopefully unique) minimizers can be obtained through
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certain underlying selection principles similar to those for the viscosity solutions and the absolute minimizers in the
gradient case.

We first address the issues concerning the alternative ways to compute the value p(8, H). Motivated by some
results in [10], we assume the following natural conditions for H and S:

H e L™(2;R"), divH € L"(2); BeL®OR), /,BdH”_l =0. (1.2)
02
The space of functions H satisfying the conditions in (1.2) will be denoted by &}, (£2) and has been studied by many

authors [5,8,11-13], even with div H being a Radon measure. In particular, if H € &}, (£2), then a normal-component
H -v e L®(3£2) can be defined H"'-a.e. on 352 in such a way that the generalized divergence formula

/;didexzfg(H.u)dH”*‘ —/H~V§dx (1.3)
2 982 22

holds for all H € X,,(£2) and ¢ € W1(£2); this formula can be extended to ¢ € BV(£2), the space of functions of
bounded variation in £2. The admissible class Sg(£2) is defined by

S,g(.Q):{GeLOO(.Q;R”)’divG:O, G~v=ﬁ} (1.4)
and is nonempty under the assumptions on g in (1.2). For G € Sg(£2) and ¢ € wll2), by (1.3), it follows that

G+H
/owu
L=@ )

o

fc<ﬂ+H-v)—/;divH=/(G+H)-v;<H
082 2 2

and hence we have that
fooCB+H -v)dH"™' — [, ¢ divH dx

{‘GWI’I(Q) f_QO'|V§'|dx
¢ F#const

p(B, H) >

(1.5)

One of the main motivations of the paper is that the equality holds in this relation:

Theorem 1.1. Let H, § satisfy (1.2). Then p(8, H) = n(B + H - v, div H), where the quantity (g, h) is defined by
JootgdH"™ = [, ¢hdx

u(g,h)= su (1.6)
cewingy  Jao@IVEldx
¢ #const
for functions g and h satisfying the condition
g€ L>®(08), hel"(£2), /gd?‘(”*1 =/hdx. (1.7)

982 2

The optimization problem (1.6) is similar to the problems appearing in several important studies, such as the dual
variational principle for plasticity [12], the best constant for the Sobolev trace-embedding of W!-1(£2) into L' (32)
[4,24], the eigenvalue problem for 1-Laplacian operator [8,13], and the generalized Cheeger problems [2,18,20]. One
readily verifies that

n—1 __ h

CEBV(2) [ood|Dg|
¢ #const

, (1.8)

where y : BV(£2) — L'(d£2) is the trace operator and | D¢| is the total variation measure of the vector Radon mea-
sure D¢. The formula (1.8) is different from the one used in the generalized Cheeger problem studied in [18] because
we do not have any boundary condition on ¢ € BV (£2). However, as in [18], we will see that the number @ (g, #) can
also be characterized in terms of sets of finite perimeter instead of functions of bounded variation (see Theorem 3.3
below).
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We discuss another approach for (g, h) based on approximation by power-law functionals. Let B:BV(£2) — R
be defined by

B(g“)=/7/(;“)ga’H”‘1 —/;“hdx- (1.9)
a0 2
Note that B =0 if and only if g =2 = 0. Assume B s 0. We define the following constrained minimization problems:
Mg, h) = inf /O’dD , Ap(g, h) = inf /JPVP 1< p<o0). 1.10
gm= il [odiDel Apgm= il - [orvelr (<p<oo) (1.10)
B@)=1 2 B()=1 £

If B=0(.e., g=h=0), define A(0,0) =1,(0,0) = +o0.
The following result provides another way to compute the quantity u(g, ).

Theorem 1.2. It follows that L1(g, h) = (g, h) = m > 0 and
lim (g, k) = A1(g, h) = (g, h). (L11)
p—1F

Assume B 0. For each 1 < p < 00, a standard direct method in the calculus of variations shows that there exists
a unique function u, € W”’(.Q) with B(u,) =1 satisfying f_Q up dx =0 that minimizes the problem (1.10); that is,
fQ o?|Vup|P =x,(g, h). We have the following result.

Theorem 1.3. There exist subsequence p;j — 1t as j — oo, functions it € BV(§2) and F € L®(82; R") with
| Fll Loo(2y < 1 such that, as j — oo,

u,,j—\ﬁ inLﬁ(.Q), Vu,,j—*\Dﬁ as measures on §2, (1.12)
\Vup, |Pi™2Vu,, = F in L(2) forany r > 1, (1.13)
div(cF)=Ah, oF-v=2\g, where\=Xxr(g,h). (1.14)

The function u so determined is a minimizer for A(g, h) in BV (82) if and only if B(u) = 1.

Since the trace operator y : BV(£2) — L'(32) is not continuous under the weak-star convergence of BV(£2), one
may not have B(u) = 1 for the function # determined in the theorem; so # may not be a minimizer for u(g, h)
in BV(£2). But any such limit & is a weak solution to a Neumann problem for a 1-Laplacian-type equation (see
Remark 3.1). In general, the existence of a minimizer for A(g, #) in BV(§2) is unknown. However, under certain
conditions (see Theorem 5.2 below), any such function & will satisfy B(u#) = 1 and hence is a minimizer for A(g, h).

We now address the issues concerning the special (hopefully unique) minimizers for p(8, H) in problem (1.1).
Note that, with g =8+ H - v, h =div H and F so determined in Theorem 1.3, the relationship

oF
- H
Alg, h)

defines a minimizer G for p(B, H); all such minimizers G can also be characterized by minimizing the L?-norm as
g — 00 (see Proposition 4.2 below) in much similar way as for the L°°-functionals of gradients of scalar functions
[6,7,19]. The I'-convergence of the general power-law functionals of divergence-free fields as power tends to infinity
has been studied in [9]. However, unlike the gradient case, viscosity and comparison principles seem intractable for
our problem (1.1) with divergence-free vector-fields. Instead, we focus on the principle of absolute minimizers. In a
natural analogy to the absolute minimizers for L*°-functionals of gradients, we make the following definition.

G=

(1.15)

Definition 1.1. A minimizer G € Sg(£2) for p(B, H) is called an absolute minimizer provided that | GjH oo (k) <

| E£H | L (£) holds for all open sets E & §2 with connected §2 \ E and all fields G € Sg(§2) satisfying

[

/G-V{dx:/(_}-vg‘dx V¢ € CP(RY). (1.16)
E E
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If E is a set of finite perimeter in 2, then there is a local characterization of the condition (1.16) in terms of the
interior normal-components relative to £2 on 9*E; see Remark 2.2(b). The requirement of connectedness on £2 \ E
seems necessary as seen in the two dimensional case.

The existence of an absolute minimizer is unknown in general. However, in dimension n = 2, using the fact that
a divergence-free field is a rotated gradient and some results about absolute minimizers in the gradient case, we are
able to show that any minimizer G obtained through (1.15) from a vector-field F determined in Theorem 1.3 is an
absolute minimizer. With given Dirichlet boundary conditions, the similar result in the gradient case would follow
from the I"-convergence of the power-law energies to the L°°-energy [7,9]. However, some care need to be taken here
because the Dirichlet boundary conditions are not uniquely determined from the normal trace of the divergence-free
fields, especially when 02 consists of disjoint closed curves.

We summarize the results for the two-dimensional problem in the following theorem, which provides a concrete
procedure of finding the absolute minimizers for p(8, H) in the special case and also indicates that the absolute
minimizers may not be unique; the convex set X' and the Lipschitz continuous functions «, given in the theorem will
be specified later.

Theorem 1.4. Let n = 2. Then any minimizer G determined by a function F in Theorem 1.3 through (1.15) is an
absolute minimizer for p(B8, H).

In the special case when o = 1, H =0 and 052 consists of k + 1 disjoint Lipschitz Jordan curves, there exist
nonempty compact convex set X C R and certain given Lipschitz continuous functions . on 382, distinct for different
c € X, such that any absolute minimizer G € Sp(82) is representable as G = (@xy, —@x,), Where @ is the absolute
minimizing Lipschitz extension of a for some ¢c € X.

The paper is organized as follows. In Section 2, we collect some notation and preliminary results on functions
of bounded variation and sets of finite perimeter, mostly from [3,17], and on the normal-components for functions
in &, (£2) and we define the measures (F, Dv) for functions F € &},(£2) and v € BV(S2) in a slightly different way
from those used in [4,5,8,11-13]. In Section 3, we prove Theorems 1.2 and 1.3 by giving several characterizations of
u(g, h). In Section 4, we present two proofs of Theorem 1.1, one based on Theorem 1.3 and the other on a natural di-
rect approach analogous to the approach for L°°-functionals of gradient fields given in [7,9] using the limit of p-power
functionals as p — oo. In Section 5, we provide a sufficient condition for the existence of minimizers for A(g, &) in
BV (£2) and maximizing sets of (g, 7). A highly non-trivial interesting example is also given (see Example 5.1). In
Section 6, we study two-dimensional problems and we prove Theorem 1.4 as two separate theorems (Theorems 6.2
and 6.5). The proof of Theorem 6.5 relies on several equivalent descriptions of the absolutely minimizing Lipschitz
extension as the viscosity solution to the infinity Laplacian equation as given in [6,19,23].

2. Notation and preliminaries

Let U be an open set in R”. Let L”(U) and W!-?(U) be the usual Lebesgue and Sobolev spaces [1]. A function
u € LY(U) is said to have bounded variation in U if |Du|(U) = fU |Du| < oo, where

/|Du|:sup{/udivgpdx‘(pECé(U;R”), el Loy < 1}. 2.1
U U

We denote by BV (U) the space of all functions in L! (U) having bounded variation in U; this is a Banach space with
norm |lullgv(2) = llull 1) + |Dul($2). It is well-known that u € BV(U) if and only if u € LY (U) and, for each
i =1,2,...,n, the distributional derivative u,, is a measure u; of finite total variation in the space M (U) of all
Radon measures on U. Hence, the distributional gradient of u is a vector measure Du = (w1, L2, ..., n)-

Let E be a Borel set in R". The perimeter P(E,U) of E in U is defined to be P(E,U) = fU |IDxEg|; write
P(E) = P(E,R"). We say that E is a set of finite perimeter in U if P(E,U) < 0o. A set E is called a Caccioppoli
setif P(E,U) < oo for every bounded open set U in R”. For a Caccioppoli set E, a point x € R" is said to be in the
e PxE

IBE (x) [DxEl
and satisfies |[vg(x)| = 1. (Note that we use the same notation as [17] for the reduced boundary, which is different

reduced boundary 0*E of E if fBg ) |[DxEg| > 0 for all € > 0 and the vector limit vg (x) = lim¢_¢ exists
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from the notation used in [3], where F E is used.) This unit vector vg(x) is called the generalized inner normal to E
at x € 9*E. By Theorem 3.59 in [3] or Theorem 4.4 in [17], we know that, as Radon measures in M (R"),

Dyxg=velDxel,  |Dxpl=M""'/y*E. (2.2)
Given a measurable set E in R” and a number ¢ € [0, 1], the set E? of all points where E has density ¢ is defined

by

Etz{xeR"

. |E N Be(x)] }
m-——————=1
e>0  |Be(x)]

The sets E° and E' can be considered as the measure-theoretic interior and exterior of E. So the set 3™ E = R" \
(EYU E') is defined to be the measure-theoretic boundary of E (or the essential boundary of E); clearly 9" E C 9E.
(Note again that our notation for the essential boundary is different from that used in [3].) A well-known theorem (cf.,
[3, Theorem 3.61]) states that if E as finite perimeter in R”, then

O*ECE*CO"E,  H'"'(3"E\9*E)=0. 2.3)
In particular, E has density either 0, % orlat H" '-ae. x eR".
In what follows, we assume £2 is a bounded domain with Lipschitz boundary 92 in R” and define the family
P(2)={EC]|0<P(E, 2) <oo}. (2.4)

The trace operator u|js; can be extended as a linear bounded operator y = y :BV(§2) — L'(382) (see [3, Theo-
rem 3.87] and [17, Theorem 2.10]) so that, for each u € BV (52),

111%6% / |u(x) —y ) (@)|dx =0 (2.5)
Bc(a)N$2

for H"~!-almost every a € 3£2; moreover, for all ¢ € C'(R"; R"),

/udiv;dx:—/;“-d(Du)+/y(u)§-vdH"_l. (2.6)
Q Q EY;
The trace operator yg; is onto from wWhl(2) to L1(92) (see, e.g., [5, Lemma 5.5]).

It is well-known that (see [5, Lemma 5.2] and [17, Remark 2.12]), for each u € BV (52), there exists a sequence
uj € C®(2) N WhH1(£2) such that

(@ uj—u inL%(Q) (b) /|Vuj|dx—>/|Du| © y;)=ywm). 2.7)
2 2

By [3, Corollary 3.49 and Remark 3.50], we have the following Poincaré inequality: there exists a constant C such
that, for all u € BV (£2),

Ju— el <c/|Du|, (2.8)
2

where () = ﬁ f_Q udx is the average of u on £2.
Let u € BV(£2). By [3, Theorem 3.40], for almost every ¢t € R, the set {u >t} = {x € £2 | u(x) > t} has finite
perimeter in §2 and the coarea formula

|Du|(B) = / |D Xju>n|(B)dt, Du(B) = f D x> (B)dt (2.9)

holds for any Borel set B C 2. Ifu € WL1(£2) and is precisely represented in £2, say, u € C(£2)N WL1(£2) (see [21]),
then for all Borel functions ¥ : 2 — R

[e¢]

/wvm:/( / 1/de"“>dz: 7(/1//d|Dx{u>l}|>dt. (2.10)
2 2

—00 u_l(t) —0o0
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We gather some useful convergence results in BV(£2) in the following proposition; see, e.g., [3, Propositions 3.6,
3.13 and Theorem 3.88] and [17, Theorem 2.11].

Proposition 2.1. Let u,u; € BV(£2), |Du;|(£2) <M and uj — u in L' (2) as j — co. Then

wi—u in Li1(82), 2.11)
uj—u inLI(82) for each 1 < q<L1, (2.12)
n
[Du|(A) <liminf|Du;|(A) VA C $2 open, (2.13)
]—)OO
/¢d|Du| <liminf/¢d|Duj|, (2.14)
Jj—00
2 Q
where ¢ is any nonnegative lower semi-continuous function in $2. If, in addition, we assume
jli)m |Du]|_/|Du| (2.15)

then we have

y;)— y@) inL'3%2), (2.16)
lim wd|Du,|_/wd|Du| (2.17)
/—>oo

for all bounded continuous functions r € C(82). In particular, | Du ;| X |Du| in M(£2).
We prove the following result providing a formula for the traces of certain functions.
Proposition 2.2. For each u € BV(S2),

Y@= I Bea)

/ xe@)u(x)dx

Be(a)

for H" '-a.e. a € 382; for each E € P(2), v (x£) = xa2na+E in L1 (382).

Proof. Note that §£2 has finite perimeter in R” (see [3, Proposition 3.62]) and that 3*2 C 952 = 3™£2. Hence
H™=1(32\ £27) = 0. By (2.5), for H"'-ae. a € 922,

1
/ (u<x>—y<u>(a>)‘<elgr(l)€—n / () — y ) (@)] =0,

B (a)n$2 Be(a)N2

1
lim —
e—0 €

from which we have

Y ) (a) tim 2D 2L
e—~0 |Be(a)l €—0 |Be(a)|

/ xe@u(x)dx.

Be(a)

Since H"~1(92 \ .Q%) =0, for H" '-a.e. a € 942, it follows that lim._, ¢ % = 2, the first statement is proved.

To prove the second statement, let ¢ = y (xg) € L'(3£2) be the trace function. Then
B NE
¢(a)=21imw. (2.18)
=0 |Be(a)l

We write 92 = (92 N EQ) U (92 NENYU (2 NI*E)U[92 N (3™ E\ 8* E)]. First, since E C 2, 22 NE' = ¢; thus
H 1 ORNEY=0.1fa € 32 N E°, then ¢(a) =0.If a € 32 N 9*E then, by (2.3),a € E? and hence ¢a)=1.
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Finally, by Lemma 2.3, H"~' (8™ E \ *E) = 0, and hence ¢ (a) = xy0ny+£(a) for H" '-a.e. a € 852, which proves
Y(XE) = xoenp£ in L1(0£2). O

In the rest of this section, we review the space &, (£2) and normal-components on d£2. The normal-component
operator (called interior normal trace) can be defined on the reduced boundary of a set of finite perimeter for the so-
called divergence-measure vector fields F € L°°(£2; R") with div F being a Radon measure [11]. However, for our
purpose, we only consider the vector fields of X}, (£2) with L" integrable divergence. The following result is proved
in [5].

Theorem 2.3. (See Theorem 1.2 in [5].) There exists a linear (outward) normal-component operator § =
80 1 X, (82) — L°(082) such that, for all F € X,,(£2),

18| a2y < IF L), (2.19)
8(¢l2)=t(x)-v(x) V¢eC'(R;RY), (2.20)
/vdivF+fF~Vv:/y(v)(S(F)dH”_l vve whl(2). (2.21)
2 2 082

Moreover, if Fj, F € X,(82) satisfy F; X Fin L>®(£2;R") and div F; — div F in L"(82), then §(F) A 8(F) in
L®(3£2).

We extend the function F - Vv in (2.21) from v € Wh1(£2) to v € BV(2) by defining the pairing (F, Dv) as a

measure for F' € &,,(£2) and v € BV (£2). We do this in a slightly different way from [4,5,8,11-13] by making (F, Dv)
a Radon measure on whole R". To do so, given v € BV(R2), F € &;,(§2), define a distribution L : C3°(R") — R by

L(p) = / oy (V)S(F)dH"™ ' — /(gov divF + (Vg - F)v) dx Vec CSO(R"). (2.22)
92 2

Theorem 2.4. There exists a unique Radon measure w in M(R"), denoted by w = (F, Dv), such that L(¢) = fR" odw
for all ¢ € Cg°(R"). Moreover, for any positive bounded continuous function o on §2 and any Borel set B in R",

‘/dw g/d|w|< / o d|Dv| (2.23)
L®(UNSR)
B B BN

where U is any open set containing B. In particular, the measure w = (F, Dv) is concentrated on §2 and absolutely
continuous with respect to | Dv|| 2.

o

Proof. Let v; be an approximation sequence as determined in (2.7) for v € BV(§2). Using (2.21) with v = ¢v;, we
have

L(p) = lim /(F~ij)(pdx Yo € C°(R"). (2.24)
j—o00
2

Hence
|IL@)| < IIFll=l@lr> lim /|ij|dx=||F||L°°||‘P||L°°/|DU|
J—>00
Q 2

for all ¢ € Cj°(R"). Since C3°(R") is dense in Co(R"), L can be uniquely extended as a linear functional L on
Co(R") that still satisfies

ILp)| < ||F||Loo<g>||so||mg)/|Dv| Vo € Co(R").
2
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By Riesz’s theorem, there exists a unique finite Radon measure @ on R” such that I:(gp) = fRn pdwforall ¢ € Co(R").
We now prove (2.23). Let B be any Borel set in R” and let K C B C U, where K is compact and U is open. For any
€ > 0, by the outer regularity of measure o d|Dv|, there exists an open set V C U containing K such that

/od|Dv|< / od|Dv|+e€.

vng Kng2

Given any ¢ € C.(V) with [|@]lzev) < 1, let g € C2°(V) be such that ||gx — ¢@|lzoovy = 0 as k — oo. Let Uy =
supp ¢k be the compact support of ¢ in V. Let us consider the measures p; = o'|Vv;|dx and A = o d|Dv| in M(£2).
Since [, [Vv;|dx — [, |Dvl, by Proposition 2.1, we have ;(£2) — A(£2) and A(A) < liminf;_, o it (A) for all
open sets A C §2. This implies A(£2\ A) > limsup;_, ., i j(§2 \ A) for all open sets A C §2. Taking A = Ui N 2, we
have, foreachk=1,2, ...,

lim sup / o|Vujldx < / o d|Dv].
j—o00
UrN§2 UrN$2

Therefore, by (2.24),

|L(p)| :kli)fgo|L(<Pk)| = lim

lim / (F-Vvj)erdx
j—00 ’
UrN$2

glimsup[ — ||(pk||Loc(limsup / a|ij|dx>]
k—o00 o L>®(UNS) Jj—00
UrN$2
F

F
/ o d|Dv].
o LW(UQQ)VHQ

o

lim sup / od|Dv|><

L°°(Um’2)< k— 00

UrNS$2

Since @] (V) = sup{L(g) | ¢ € Cc(V), llgllL=(vy < 1}, we have

F
wl(V) < | = /ad|Dv|.
o Lewne) J
Therefore
F
0l (K) < lol(V) < | = ( / 0d|Dv|+e),
O llLowne) o

for all € > 0. This proves

lwl(K) <

F
f o d|Dv|
o LOC(UmQ)ImQ

forall K C B C U, K compact and U open. Hence (2.23) follows by the inner regularity of || and o d|Dv|[£2. O

Remark 2.1. Since w = (F, Dv) is concentrated on §2, we can write fR" pdw = fQ ¢ dw. Therefore, by (2.22) we
obtain a more general divergence formula

/(pd(F, Dv) = / gp)/(u)S(F)d’}-[”_l — /((pvdiVF—i— Vo - F)v) dx (2.25)
Q 02 Q

for all F € X,(£2), v e BV(£2) and all Lipschitz functions ¢ € W1 ().

We have the following compensated compactness result; see also [5, Theorems 4.1 and 4.2].
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Proposition 2.5. Let uj, u € BV(82) satisfy, for some 1 < q < ;.= 1, uj—uin L9 (.Q) and let F;, F € X, (£2) satisfy
F; X Fin L>(£2), divF; —div F in L9 (£2), where q¢' = . Then (Fj, Duj) A (F, Du) as Radon measures in
M(.Q) Furthermore, if, in addition,

hm |Du |—f|Du| (2.26)

then (F;, Du;j) -~ (F, Du) in M(R").
Proof. Given any ¢ € Cé (R™), by (2.25), we have, foreach j =1,2, ...,

/(pd(Fj, Du;) = / (,0)/(14]-)5(Fj)a’?—{"*1 - /((puj divF; + (Ve - Fj)uj).
Q 082 Q
First, if ¢ € Cé (£2), then there vanishes the boundary term and hence we have
lim [ ¢d(F;, Duj) :/(pd(F, Du) 2.27)
J—>00
Q Q

for all ¢ € Cé (£2). This proves the weak-star convergence in M (£2). Now, assume (2.26). Then by Theorem 2.3,

3(F}) A 8(F) in L*°(3£2), and by (2.16) in Proposition 2.1, y (u;) — y (1) in L'(3£2). Hence, (2.27) holds for all
XS Cé (R™), which proves the weak-star convergence in M(R"). 0O

The following result defines a boundary normal-component for functions in X}, (£2) on sets of finite perimeter; the
similar definition has been given in [11, Theorem 5.2] for a broader class of functions.

Proposition 2.6. Given any F € X,(2) and any set E C 2 of finite perimeter, there exists a function O (F) €
L®Q*E; dH"™Y), called the interior normal-component of F on 3*E, such that

/((pdiVF—i—Vgo-F)dx:—/(péE(F)dH'“] V(peCI(R”). (2.28)
I*E

Moreover, if E is an open set with Lipschitz boundary, then éE (F)=—8g(F), where g (F) € L°°(E) is the normal-
component of F € X, (E) on 0E defined above.

Proof. Since xr € BV(£2), the measure (F, D x) is well-defined above as a Radon measure in R” concentrated on 2
and absolutely continuous relative to |D xg||£2 = H"~'Z(£2 N *E). Hence, by the Radon-Nikodym theorem, there
exists a function O (F) € L®(2 N9*E; dH"~1) with ||0g (F)| 1=~ < | Fllzoey, U C §2 any open set containing E,
such that

d(F, D) =0p(F)dH" '/(2N3*E) onR". (2.29)

(The function 0 (F) has been called the interior normal-trace relative to E of F on 0*E in [11, Theorem 5.2] for a
broader class of functions F.) Let us define

O(F)(x) xef2NI*E,

—8(F)(x) x€df2NI*E (2.30)

Op(F)(x) = {

where § (F) = 8 (F) is the normal-component of F' on 952 defined in Theorem 2.3. Combining formula (2.25) with
(2.29) and Proposition 2.2, we have the following general Gauss—Green formula:

f(¢divF+V<p-F)dx=—fqaé,;(F)dH"—l Vo e C'(R").
E *E

This proves (2.28). If E is a Lipschitz domain itself, then by (2.21) we easily see that Op(F)=—8p(F). O
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Remark 2.2. (a) The formula (2.28) generalizes a case of the Gauss—Green formula in [11, Theorem 5.3] since we
allow ¢ € CY(£2) and 9E N 9 K2 # (; in [11, Theorem 5.3], only sets E € £2 are considered. Furthermore, we have
Op(F)=F -vg on 9*E if F € C/(R"; R").

(b)Let G, G € Sp(£2) and E C £2 be a set of finite perimeter in §2. Then the condition (1.16) in Definition 1.1 is
equivalent to the local condition: 0p(G) =0g(G) in L®°(0*E; dH"™1).

3. Characterization of u(g, k) and proof of Theorems 1.2 and 1.3

Given any function u on §2, denote by E;(u) the upper-level set {u >t} = {x € 2 | u(x) > t} for each t € R. We
first prove the following useful result.

Lemma 3.1. Let u € BV(82). Then

o0 0

u(x) = / XE, ) (x)dt — f (1= xg,@@)dt (L -ae x €82),
0 ~00
0 0
y(u)(a) = f Y (XE ) (@) dt — / (1= y(xgw)@)dt (H''-ae aecdf).
0 —00

Proof. By writing u = u* — u~, without loss of generality, we assume u > 0, so in the two identities there are only
integral terms from O to co. The first identity is easy; so we only prove the second identity. We proceed to prove

o0 o
V(fXE,(u)(X)dl)(a)Z/V(XE,(M))(a)dl 3.1
0 0
for H""'-a.e. a € 32. Note that, for almost every ¢ € R, the set E,(u) has finite perimeter in £2 and so x E/(u) €

BV(£2).Let{t;}, j =1,2,..., be a dense sequence of (0, co) such that each xg, ) € BV(§2). By Proposition 2.2, we
have that, for H" !-a.e.a € 982,

Y Ot )@ = lm Bja)l [ e viziz.. (3:2)
Be(a)
and foreach N =1,2,...,
N N
y( / xE,<u)(x>dr)(a>= lim - Bf(a” / ( / xE,w)(x)dt) dx.
0 Be(a) 0

For such an a € 952, the function r(¢) = ¥ (xE,()) (@) is a non-increasing function in ¢ € (0, 0o) and hence is contin-
uous almost everywhere. At any continuity point 7y of this function, by (3.2), it follows that

Oty @ = lim o [ gy, 6:3)
Be(a)
Hence, by Fubini’s theorem,
N N )
y(/ XE'<“)(x)d’)(“)=!E%/ Be@)] / X,y (0)
0 0 Be(a)
N N

2
=101 u dxdt = u dr,
O/G%IBs(a)l / XE ) (¥) dx /y(“" )@

Be(a) 0
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where the change of order of the limit into the integral is justified by the dominated convergence theorem. Finally note
that, by [16, Proposition 6, p. 340],

N 00
/XEt(M)(x)dt:min{u(x),N}—>u(x):/XEt(u)(x)dt
0 0

in the norm topology of BV (£2) as N — oo. Hence, by the continuity of the trace-operator,

N 00

V(/XE,(u)dt) _)V(/XE,(u)dt>

0 0
in L'(3£2) as N — ooc. This proves (3.1) for H" '-ae.a € 32. O

In what follows, we assume o is the function given in the introduction; that is, o is continuous function in £2 and
satisfies, for two positive constants o and My, that

O<op<o(x)<KMp<oo Vxef2. (3.4

Let g € L*°(982) and h € L"(£2) satisfy (1.7) above. Define the following functionals on BV (§2):

N(u):/od|Du|, B(u):/y(u)gd?—["*1 —/uhdx. (3.5

2 982 2

Proposition 3.2. Given 0 < m < o0, the following statements are equivalent:

@@ mN(@)>B(&) YeeC®@)nwhi(f).
(b) mN@u) > Bu) YuecBV(R).

(c) mN(xp) > B(xg) YEeP(R).

d) mN(xg)>|B(xg)| VE eP(82) open.

Proof. That (a) implies (b) follows by the approximation (2.7) and the convergence result Proposition 2.1. That (b)
implies (c) is immediate as yg € BV($2) for all E € P(£2). To prove that (c) implies (d), note that if E € P(£2)
then 2\ E € P(£2) and Dxo\g = —Dxg and 3*(£2 \ E) = 9" E; hence, by condition (1.7), N(xo\r) = N(x) and
B(x2\E) = —B(xg). This proves that (c) implies (d). Finally we prove that (d) implies (a). Let L*¥(u) =mN@u) £+
B(u). Then, by (d),

Li(XE) >0 VE € P(£2) open.
Given any ¢ € C®(£2) N wl1(£2), we write ¢ = ¢t — ¢, where ¢*(x) = max{£¢(x), 0}. Then ¢* € C(22) N
Wh1(2) are nonnegative and

v©) =y(*)—r(7). IVel=|ver|+|ve|.

Hence mN() —B(&) =L~ (&)=L~ (T —¢)=L" ")+ L (). Weclaimthat L~ (¢T)>0and LT (¢7) >0
and hence mN () > B(¢) follows, as desired of (a). Since the argument is similar, we only prove L™ (") > 0. Note
that, by Lemma 3.1 and Fubini’s theorem,

/h(x)fr(x)dx:f/ X{;+>,}(x)h(x)dtdx:/</X{§+>t}(x)h(x)dx> dt; (3.6)
20 0 Q

2
00

/ gy(EH)an" ! = / ( / V(x{;+>,})gdH”_l> dt. (3.7)

082 0 08
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Also, by the coarea formula (2.10),

/a(x)}vg+(x)|dx=/<fad|DX{;+>t}|> dt. (3.8)
2 0 2

Note that, for almost every ¢ € (0, 00), the open set E; = {¢T > t} is either in P(£2) oris £2 or empty. By assumption
(d), L™ (xg,) = 0 for a.e. t € (0, 00). Finally, combining (3.8), (3.6) and (3.7), we obtain

oo oo

L™(¢") =/L‘(x{;+>t})dr=/L—(XE,)dr>o,
0 0

as claimed. This completes the proof. O

Theorem 3.3. Let o, g, h be the functions satisfying conditions (3.4) and (1.7). Then the following quantities are all
finite and equal:

fag V(g)gdan - fg Chdx

H1 = s
cew! (@) fg o (x)|VEldx
¢ #const
1y = fagy(g)gdHnil_f_Q;hdx
CeBV(2) Joo(x)d|Dt]
¢ #const
crgdHV — [ hdx
pz= sup fagma ES n—flE ’
E€P(R) JanppodH
wrgdHV — [ hdx
1y = sup |fa.fzma ES nfflE |'
E€P(£2) open Janpp o dH

We denote the value of these quantities by (g, h). Moreover, (g, h) =0 ifand only if g =h =0.

Proof. Let N(u) and B(u) be defined by (3.5) above. Define Q(¢) = % if ¢ is not a constant function and let

0(¢) =0if ¢ is a constant function. Note that for each E € P(£2), by (2.2) and Proposition 2.2(b),

B(xg) = / gdH" ! — / hdx, N(xg)= f odH" 1.
Q2NI*E E QNI*E

Hence, it is obvious that ug4 < pu3 < p2 and py < po. If ug = 0, then, as in the proof of the previous result, using
(3.6)—(3.7), we have B(¢) =0 forall ¢ € C(2) N W!1(£2) and hence B(u) = 0 for all u € BV(£2); this implies g = 0
and & = 0. So, in this case, all the numbers are zero. Now assume B £ 0. We show wy < 00; this proves all these
numbers are positive. Once we have proved this, the equality of them follows again from the previous result. To show
U2 < oo, note that Q(¢ + C) = Q(¢) for all constants C. Given any nonconstant u € BV (£2),letc = (1) = ﬁ f:z u.
Then

|Bu—o)| < ligllze@e) |y @ —c) ”Ll(ag) + 11l 2)llu — Clannj(Q)

< C(lIglle@e) + Il @) / [Dul
2

and, by (3.4) and u being nonconstant, N (u — ¢) > og f_Q |Du| > 0. Hence

C
Ow)=0@m—c) <

— 00 (4 + hllrn
Uo(llgllL 02) + Ikl (2))

for all u € BV(£2). This proves s < 0%(||g||Loo(3Q) + Al (@) <oo. O
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Let A, (g, h) and A(g, h) be defined as above in (1.10). If B # 0, we easily see that 1 = m and puy = m,

where 1 and u; are the equal numbers defined in Theorem 3.3; therefore A1(g, h) = A(g, h) = m. If B =0; that

is, if g =h =0, since (0, 0) = 0, these equalities remain valid since we have defined A, (0, 0) = 1(0,0) = oo for
1< p<oo.

Proof of Theorem 1.2. The first statement of the theorem follows easily as explained above. We now prove (1.11).
Without loss of generality, we assume B # 0. Given any p > 1, let {; € WP (£2) be such that

hp(g.h) = lim fam)ngwx, B(gj)=1.
Jj—>00
2

Young’s inequality easily implies that

1 p—1
oIV < —oP()IVEIP + ——.
p 4

Since ¢; € W1 (£2) and B(¢;) = 1, it follows that

mGe b < [owIvelar< %/Up(x)lvé“jl”dx ; ”lem
2 2
Letting j — oo, we have 11(g, h) < %)\p(g, h) + ijl |$2|. Letting p | 1, this implies
ri(g, h) < llilril)ilrlf/\p(g, h). (3.9

On the other hand, given any ¢ € C'(£2) with B(¢) = 1, we have Ap(g,h) < fg oP(x)|Ve|Pdx. Let 1 < p <2.
Then o? (x)|V¢|P < (14 Mo)2(1 4 |V¢]?) < K < oo. Letting p | 1 in the above inequality and using the dominated
convergence theorem, we have

limsupkp(g,h)</a(x)|V§|dx,
p—~>1t o
for all ¢ € C!(£2) with B(¢) = 1. By the standard approximation argument, this inequality also holds for all ¢ €
wb1(£2) with B(¢) = 1. Hence it follows that
limsup A, (g, h) < inlf
(

[ oenveiax=i.m.
Pl o 5
This, combined with (3.9), completes the proof. O

The following theorem contains some results of Theorem 1.3 and other results that are useful later.

Theorem 3.4. Assume B # 0. Then, for each 1 < p < 00, there exists a unique u, € WLP(2) with fg up,dx =0
such that
/ap(x)|Vup|"_2Vup -Vodx=»%1,(g,h)B(p) Vee whP(02). (3.10)
2

berthermore, there exist subsequence p; — 1t as Jj — oo, functions u € BV($2) and F e L(2: R") with
| FllLoo(2y < 1 such that, as j — oo,

Up, —~u in Lﬁ(ﬂ), Vi, A Dii in M(£2), (3.11)
|V, |pf_2Vupj —~ F inL"(Q) foreachr > 1, (3.12)
div(c F) = A h, 8(cF)=MA1g, wherei; =Xri(g,h) >0, (3.13)
oPi|Vuy, |Pi A (o F,Dit) in M(£2), (3.14)

(0 F, Dit) = o |Dit| as Radon measures in M($2). (3.15)
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Proof. Since B(Zo) = 1 for some ¢p € C*°(R"), the constraining set {u € W17(£2) | B(u) = 1} in defining Ap(g, h)
above is nonempty. We first show that, for each 1 < p < oo, the number A, (g, /) is attained by a unique function u
in Wir () satisfying B(u,) =1 and fQ up,dx =0.Letv; € WLP(2)bea minimizing sequence for A, (g, h); that
is,

lim /op(x)|ij|pdx:kp(g,h), B(vj)=1.
]—)OO

Since B(v + C) = B(v) for all constants C, we can assume fQ vjdx = 0. Therefore, since {||Vv;llLr(2)} is
bounded, by Poincaré’s inequality for WP (£2)-functions [1], {v i} is a bounded sequence in WLP(£2). Hence, by
a subsequence, v; — u,, where u, € W7(£2) satisfies [, u;dx = 0. By the compact embedding W'7(£2) —
L'@2)n LT (£2) (see, e.g., [1]), we have B(u,) =1lim; B(v;) =1 and hence, by the convexity of fQ oP|Vu|P dx
and the definition of A, (g, h), it follows that

B(u,) =1, /Up|Vup|pdx=Ap(g,h); (3.16)
2

that is, u ,, is a minimizer for A, (g, h). The strict convexity of o 0P|Vv|? dx implies that u , is the unique minimizer
of A, (g, h) satisfying [ o Updx =0. By the Lagrange theorem for constrained minimizers, u, is a critical point of the
functional L(u) = fQ P (x)|Vu|? dx — AB(u) on u € WP (£2), where A is a real number (the Lagrange multiplier).
Hence we have

pfop(x)|wp|l’—2w,, -Vodx =1B(p) Vo e W'P(2).
2

Taking ¢ =u,, we have A = pA (g, h) and this proves (3.10).
To prove the second part of the theorem, consider the set of functions {F), = |Vu,|? —2Vu p)with1 < p <2. Since
|Fpl =|Vu,|P~ !, by Young’s inequality, for any 0 < r < -2, it follows that

—1
|F |r — |VM |r(p—1) g r(P )|Vlzt |[7 + 1 r(P )
p p p p p

and hence
—1
Fordx< X220 o+ (1= 222D 10, 3.17)
paé’ p
2

Using this inequality with r = ﬁ and r = 2, it follows that {u,}1<p<2 is bounded in BV(£2) and {Fp}1<p<2 is
bounded in L2(§2; R"). Hence there exists a decreasing sequence pj — 1 such thatu,, — i in L=t (£2) and Vu,, A
Dii in M(2), where ii € BV(£2) satisfies [, i =0, and F),; — F in L?(22; R"), where F € L?(22; R"). Given any
r>1,letr < % for all j = N,. Then (3.17) implies that the sequence {F),;};>n, is bounded in L"(£2; R")

and hence any subsequence of it with p; — 1 has a sub-subsequence {F/ P/‘k} weakly converging to a function F €
L"(£2;R") as pj, — 1. Again, by (3.17), we have

/|F|fdx 11m1nf/|Fp I"dx < |£2|.

Pjp—

On the other hand, since the whole sequence {F),;} is weakly convergent to Fin L*>($2;R") as p ;i — 1, we must

have F = F. This shows that F € L”(£2; R") for each r > 1 and the whole sequence F p; — F as pj — 1 weakly in
L"(£2; R") for each r > 1 in the sense that, given any 1 < g < oo and any @ € L9(£2; R"),

im [ |Vu,, [PV, ~¢dx=/F-<Ddx. (3.18)
j—o00 ’
2
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We have thus proved the convergences (3.11)~(3.12). Note also that [, |F|"dx < |$2| and thus || F||-(2) < [2]'/"
for all » > 1. Hence

I1F o2y = lim | Fllire) < 1. (3.19)

Letting ¢ € C*°(R") and p = p; — 1in (3.10), by Theorem 1.2, we have

/G(x)ﬁ(x) -Ve(x)dx =11(g.h)B(p) VYo e C®(R"), (3.20)
2
which implies that div(o F) = Ah and (o F) = A1 g; this proves (3.13). To prove (3.14), let ¢ € C5°(£2), using pu,
as test function in (3.10), and we obtain

/(paquplpdx =A,(g, h)Blou,) — / upo?F,-Vodx (3.21)

2 2
forall 1 < p < 0o, where B(pu,) = — [, u,hdx. Hence

lim B((pu,,):—/(pﬁhdx.

pj~>l

2

Since oPiu ), — ou in L9(82) for any fixed 1 < g < n"j and F);, — F weakly in Lq/(Q; R") with ¢/ = qu, we
have, by (3.21),

limI/gaapf|Vupj|pf dx = —k1/<pﬁhdx —/ﬁaﬁ-dex,

pj—

! 2 2 2

where A1 = A1 (g, h). Using div(c F) = A1 h, the right-hand side of this identity exactly becomes
— /[wﬁ div(c F) +iio F - Vo|dx = /cpd(oﬁ, Dii),
2 Q

by the definition of the measure (o F, Di) (see, e.g., (2.25)). Hence we have
lim [ 9oPi|Vu, |’ = / pd(c F, Dit)

pji—1
2

for all ¢ € C§°($2); this proves (3.14). Finally, we show (3.15). It is easy to see, along a subsequence of p; — 1, that
o|Vup,|dx A u > o|Di|/2 in M(R™). By Young’s inequality,

1 p—1
o|Vu,.|< —o?|Vu,|’ + —,
pj p p p

an_d hence by (3.14) we have that o|Di|/2 < u < (O’F, Du) as Radon measures in M (£2). However, using
| FllLeo(2) < 1 and Theorem 2.4, we easily see that (o F, Du) < o|Du|/$2 as measures in M (R"). Therefore,
o|Du| = (o F, Du) in M($2), which proves (3.15). O

The following result indicates the condition (1.7) is the right condition for the solvability of divY =h,Y -v =g in
L*°(£2; R"); see also [10, Theorem 3’]. It also shows that the admissible set Sg(£2) defined above is nonempty.
Corollary 3.5. Let g, h satisfy (1.7). Then there exists a function Y € X,(§2) such that

divY =h, 5(Y)=g.
In particular, for any B € L>°(052) with faQ BdH"' =0, the admissible set
Sﬂ(Q)Z{GGXn(Q)‘diVGZO, 8(G)=;3}7EQJ. (3.22)
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Proof. If g =h =0 then ¥ =0 is a solution. If at least one of g and A is not zero, then (3.13) of Theorem 3.4 implies
that there exists o F € &, (£2) such that

div(c F) = A h, S(cF) =g,
where A1 = A(g, h) > 0. Hence the function ¥ = % in A}, (£2) will satisfy the required condition. O

Remark 3.1. Given h € X,(£2), g € L*°(082), a function u € BV($2) is said to be a BV solution to the Neumann
problem of the equation:

. Du ~
le(U ﬁ) = h,
u
Du (3.23)
O——*V =g,
Dl =28

provided that there exists a function F with o F' € &;,(£2) such that

div(cF) =h, S(cF)=3g, (3.24)
(o F, Du) =0 d|Du| in M(£2). (3.25)
By (3.13) and (3.15), the limit function « is a BV solution of (3.23) with h=Ah, g=Xrg.

The following result, combined with Theorem 3.4, completes the proof of Theorem 1.3.

Proposition 3.6. Any function i determined in Theorem 3.4 satisfies 0 < B(u) < 1. Moreover, if i # 0, then v =

ﬁ € BV(82) is a minimizer for A(g, h).

Proof. From (3.13) it follows that

/d(aﬁ, Dv) =11 B(v) YveBV(L2). (3.26)
2
Hence, by (3.15), A1 B(it) = [, od|Dit| < Ay. Since A1 > 0, it follows that 0 < B(i) < 1. Note that, since [, it =0,
B(u) =0 if and only if u = 0. Therefore, if u # 0, then the function v = ﬁ € BV(£2) will be a minimizer for

A(g, h). Therefore i is a minimizer for A(g, k) if and only if B(i) = 1. We finally note that the condition B(u) =1
holds if and only if

limI/y(up,«)gdH”*‘ =/J/(zZ)gdH”’l. O (3.27)
P 982 082

4. Special minimizers for p (8, H) and proof of Theorem 1.1

In this section, we present two approaches for minimizers of p (8, H) defined by (1.1) and thus provide two proofs
of Theorem 1.1. One approach is based on Theorem 3.4 and the other is based on a natural direct approach analogous
to the method for L°°-functionals in [6,7] using the limits of p-power functionals as p — oo.

First proof of Theorem 1.1. Let H € X,,(£2), 8 € L*°(0§2) andlet g =8+ 3(H) and h =div H. By Corollary 3.5,
Sp(82) #0. By (1.5), u(g, h) < p(B, H). Therefore, it suffices to show that there exists a G € Sg(§2) such that

< u(g, h). 4.1

G+H
o

Leo(£2)

Let B be the linear functional defined above through g and /. Note that B = 0 if and only if g =0 and & = 0; that
is,divH =0and § = —8(H). Hence B =0 if and only if —H € Sg(£2). If —H € Sg(§2) then G = —H will satisty
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(4.1) as both quantities are zero. So, we assume B # 0; that is, —H ¢ Sg(£2). Let F be any vector-field determined
in Theorem 3.4. Since h = div H and g = 8 + §(H), condition (3.13) exactly means

- F
= HeSyR), (4.2)
r1(g, h)
and hence, by (3.19) and Theorem 1.2,
G+H | F |l Lo 1
H— = L2@) < = u(g, h),
0 oy Mg h) " ri(g h)

which proves (4.1). This completes the proof. O

For 1 < g < oo, define
G+H
o

py(B, H)= inf

, 4.3)
Gesg(.rz)

LI(R2)

where the admissible set Sg (£2) is defined as follows: G € Sg (£2) if and only if G € L9(£2; R") and

/G(x) -Vo(x)dx = / Bo dH"! Vo € C3° (R”). 4.4)
Q 982
Note that

B#Sp(82) =S5°(2) CS4(R) V1<g <o

and Sg (£2) is closed under the weak (or weak-star if ¢ = c0) convergence of L9(§2; R").

Proposition 4.1. For any 1 < g < 00, there exists a unique G4 € SZ (£2) such that

Wh+H G+H

o

= min
Li(2) GeSH(R)

= pqe(B, H). 4.5)

o L9(£2)

Furthermore, there exists an increasing sequence q; — 00 and G e Sp(82) such that Gq.i —~ G in L"(R2) for all
1 <r <ooand,

G+H . |G+H
= min =p(B, H).
o L®(£2) GGSﬁ(Q) o Lo°(£2)
Moreover, for all measurable sets E C §2,
G+H G, +H
H + < liminf| —2—— . (4.6)
o Lo(E) 17> o L9J (E)
In particular, it follows that
q—>00

Proof. The existence of minimizer G, of p, (8, H) follows from the standard direct method of calculus of variations
since Sg (£2) is nonempty and weakly closed in L7 (§2; R"). The uniqueness of G, follows from the strict convexity of

the L7-norm. We now prove the rest of the proposition. Given any G € Sg(£2), since G € Sg (£2), by the minimality
of G4, we have
G,+H
o

G+H
o

G+H
o

1
12]7. (4.8)
L)

|

L9(£2) La(2)

For any 1 < r < g and any measurable set E C £2, by Holder’s inequality,
H G,+H G,+H

\E|" 7. (4.9)

o o LY(E)

L7 (E)
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In particular, using (4.8) and (4.9) with E = §2, we have
H G,+H G+ H

o o

1217 V1<r<q. GeSs(). (4.10)
L%(2)

< ‘
L7 (£2)

Using this estimate with r = 2, we have that the sequence {G,}4>2 is bounded in L2(£2; R") and hence there exists an
increasing subsequence g; — oo such that G4, — G in L?(£2;R"), where G € Sé (£2). Givenany r > 1,letg; > r
forall j > J,. Then, using (4.10), the sequence {Gg,} >, is bounded in L"(§2; R"); hence a subsequence of it (with

qj — o0) will converge weakly to some function G in L"(£2; R") and the limit function G will satisfy

G+H
o

1
|£2]7.

L%(£2)

G+H
o

L"(£2)

However, the whole sequence {Gg4;} converges weakly to G in L?(22; R") and thus G = G. This proves that G €
L"(£2; R") for all r > 1; moreover, by (4.10),

G+H G+H
+ < H + 1217 Vr>1.
o L' () o L®(£2)
Letting r — oo, we have
G+H G+H
+ < H + VG € Sp(2).
0 L~ 0 L~

This proves that G € Sp(£2) and is a minimizer for p (B, H). In (4.9), letting first ¢ = ¢; — oo and then r — oo, we
have

Gg, +H

o

< liminf

HG+H
L®(E) qj—>00

o

LY (E)

for all measurable sets E C §2. Finally, (4.7) follows by combining (4.6) for E = £2 and (4.8) for G = G. O

The following result establishes the one-to-one correspondence between G, G determined in Proposition 4.1 and
up, F determined in Theorem 3.4.

Proposition 4.2. Let g = 8+ §(H) and h = div H. Then, G satisfies (4.5) if and only if

P|Vu,|P=2v
_U| Mp| I/tp_H, p= q ’ 4.11)

T k(g q—1
where Ap,(g, h) is defined as above and u, € WP (82) is the unique function determined in Theorem 3.4. Hence

1 - -
pq(B, H) = (Ap(g, h)) ?. Furthermore, any function G determined in Proposition 4.1 corresponds to a function F
determined in Theorem 3.4 through the relation: o F = A(g, h)(G + H).

Proof. We only need to establish the relation (4.11). To show (4.11), it suffices to show that the function G, defined
by (4.11) is the minimizer of p, (B8, H). First, note that, by (3.10), G, € SZ(.Q). To show G, is a minimizer for

pq (B, H), given any G € Sg(SZ), let F =G — G,. Then

/W .Fdx=0 YveW'?(2).
2
Note that, by (4.11), one easily verifies that
|Gy +H|""2(G,+H)  Vu,
ol Ap(g h)1=1
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Hence
G, +HI" (G, +H 1
/| g+ HI"2(G, ),Fdxzipr.mxzo.
o4 )\'p(gah)q_l
A 2

Finally, by the convexity of function #(X) = | X|? for ¢ > 1, we have

G+H|"_ |Gy +H|" qlGo+ HI" Gy + H)
o - o o4 ’
and hence
G+ HI|? G H|?
/ + dx}/‘ gt dx.
o o
Q Q

This proves that G, € Sg (£2) is the minimizer for p, (8, H). The proof is complete. O

Second proof of Theorem 1.1. Combining the first part of Proposition 4.2 and Proposition 4.1 and using (4.7), we
obtain another proof of Theorem 1.1. We remark that this proof does not rely on the second part of either Theorem 3.4
or Proposition4.2. 0O

Given any measurable set £ C £2 and any function G € L7(£2; R") with div G = 0 in the sense of distributions on
£2, we denote the distribution div(G xg) on R" by §g(G); that is,

<SE(G),§)=—/G-V§dx V¢ € C3°(R"). (4.12)
E

I~f qg =00 ~and E C £2 is a set of finite perimeter in §2 then, by the generalized Green formula (2.28), it follows that
SE(G) =0r(G)/O*E.

Lemmad4.3.Let 1 <g<ooand G, Gy € Sg (£2). Assume E C $2 is measurable and Sg (Gy) = Sg (G») as distribu-
tions on R". Then the function G = G xg + G2 x\E belongs to Sg (£2).

Proof. Clearly G € L7($2; R"). Now, for any ¢ € C;°(R"), it follows that

/G-Vgpdx:/Gl-V<pdx+ / Gy -Vodx

2 E 2\E
=/G2~V(pdx+ / G2-V(pdx=/G2'V(pdx=/,3(,0617'{"71,
E 2\E 2 982

with the second equality resulting from s £(Gy) = § £(G») and the last from the definition of G, € SZ (£2). Hence, by
definition (4.4), G € Sg (£2). O

We streamline a possible approach for proving that G is an absolute minimizer for p(8, H) in much a similar way
to [7].

Proposition 4.4. Let G be any function determined in Proposition 4.1 and let E C §2 be an open set and G € Sp(£2)
satisfy SE (G) = SE (G). Suppose that there exist two sequences {Ek}k:m,m and {Ej*k}j,kzl,zw of measurable subsets
of E such that

o0
EX is increasing on k and E = U Ek, 4.13)
k=1

EFc EJk for all sufficiently large j, (4.14)
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SE/,k(qu) =65ix(G). (4.15)

G+H G+H
Then || <2 || oo gy < I EEE || Loo ().

Proof. By (4.15) and Lemma 4.3, G = Gy xo\eik + Gxgik € ng (£2); hence, upon testing the minimality of G,

with G and canceling common terms, we have (the absolutely minimizing property of Gy)

Gy +H < G+H
o o

G+H
o

L
|E["
L (E)

~ ~
L9 (Eik) L (EJk)

forall j,k=1,2,.... Therefore, combining with (4.6), it follows that
Gy, +H o H G+H

o o

G+H

o

< liminf
Loo(Ek) J—00

~X
LY (EJk) L(E)

forall k=1, 2,.... Letting k — oo, the result follows. O
5. An existence result on minimizers of A(g, k) in BV (£2)

In this section, we give a sufficient condition for the existence of minimizers for A(g, k) in BV (82); we follow
closely some idea of [12, Theorem 2.3]. First, we have the following result relying on the special property of nonneg-
ative Radon measures.

Proposition 5.1. Let o be the function as given above. Let wy, w € BV (§2) satisfy wy — w in LY(£2), Dwy A Dw

in M(82) and od|Dwg| A win M(82). Let Fy, F with o Fy,0 F € X,(82) satisfy |Fxllr~) <1, Fy X Fin
L>®(£2;R") and div(c F;) — div(c F) in L"(£2). Then

Og/(o|Dw| —(aF,Du))) S/(u— (o F, Dw)) (5.1
2 2
gl}(minf[/ad|Dwk| _fd(JFk’Dwk)}' 5.2)
= 2 2

Proof. By Theorem 2.4, the measure o|Dv| — (o F, Dv) is nonnegative for all v € BV (£2). Given any € > 0, let
K € £2 be a compact set such that

/d(u — (o F, Dw)) < /d(u — (0 F, Dw)) +e.

2 K
Let ¢ € C.(£2) be a cut-off function such that 0 < ¢(x) < 1 on £2 and ¢ (x) = 1 on K. By Proposition 2.5, we have
(0 Fy, Dwy) -~ (o F, Dw) in M(£2) and thus

0§/(U|Dw| —(UF,Dw)) S/(,u—(oF, Dw))

2

2
</d(y,—(aF,Dw))+eg/d)d(u—(UF,Dw))—i-e
K 2

:klim /¢(0d|Dwk| —d(oFk,Dwk)) +€
—00
2

< 1}{minff(ad|1)wk| —d(o Fy, Duy)) + ¢
—>00
2
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k—o00

=1iminf|:/od|Dwk| —/d(aFk,Dwk):| +€
2 2

for arbitrary € > 0. Hence, we have proved (5.1) and (5.2). O

Assume g, h are given functions satisfying (1.7). Let

ﬁ(g)=Y€i)gf(m p , p(g, h)= Yei)?f(m — : (5.3)
5(Y)=g L@ divY=h, 8(Y)=g L=

By Corollary 3.5, the set of functions Y defining p(g, /) is nonempty and in fact p(g, &) is attained as a minimum.
Let H € X,(£2) be any function such that divH =& and §(H) = g, and let 8 = g — 6(H). Then, by Theorem 1.1,

p(g.h)=p(B, H) = (g, h); hence
n(g,h)=p(g, h) = p(g). (5.4)

We have the following existence result similar to [12, Theorem 2.3].

Theorem 5.2. Assume (g, h) > p(g). Suppose {v;} C BV($2) with f_Q vjdx =0 is a minimizing sequence for
A(g, h); that is,

lim | od|Dvj|=x(g, h), B(vj)=1.
J—>00
2

Then there exists a subsequence {wy} = {v;, } and v € BV (§2) such that

wr — 0 in LY(), [|Dwk|—>/|D17|. (5.5)

Consequently y (wy) — v (v) in L'(382) and

/Ud|Dﬁ|:A(g,h), B(v) =1;
2
that is, v € BV(82) is a minimizer for M(g, h).

Proof. We write A1 = X1(g, h) = A(g, h) for simplicity. The condition ﬁ = (g, h) > p(g) implies that there exists a
Y € &, (£2) with §(Y) = g such that % = ||GZ||L00(Q) < All (hencet > Aq).Let Fy = % € X, (£2). Then || Fi| L) =1
and 6(o F1) = tg. We assume the subsequence {wy} satisfies that wy — v in LY(2), Dwy A Dv in M(£2) and

od|Dwg| A w in M(£2). First use (5.1)—(5.2) of Proposition 5.1 with constant sequence Fj = F, where F is deter-
mined in Theorem 3.4. Since fQ (o F, Dwy) = A B(wg) = A1 and {wg} is minimizing, we have

klim [/ad|Dwk| —/d(oF,Dwk)} =0 (5.6)
—00

Q 2
and hence u = o |Dv| = (6 F, DD) in M(£2). We then use (5.1)—(5.2) with Fy, = F} to obtain

/(a|Da| — (o F1, D)) <liminf|:/ad|Dwk| —/d(chl,Dwk):|.
k—o00
2 2

2

Using (5.6), we have

/(oF—aFl,Dv) 11m1nf/(oF—aF1 Dwy). 5.7)
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This inequality and the divergence formula imply, by virtue of SF—0oF)=0O—1) g and wy — v in LT (£2),
that

(A1 —t)/)/(f))gdH"*1 <1}€minf()»1 —t)/y(wk)gdH””
—00

and hence, since A —t <0,

/y(f))gdH”*l >limsup/y(wk)gd7-(”*l.
oo k— 00

From this, we easily have

B(f)):/y(ﬁ)gdH”_l —/f)hdx

082 2
> limsup|:/ y(w)gdH" ™ — / wkhdxi| = limsup B(wg) = 1.
k—o00 k— 00
On the other hand,

A]B(ﬁ)zf(o}_?, Df)):fadle| 11m1nf/od|Dwk|=)q,
Q Q

and hence B(v) < 1 since A1 > 0. So we have proved B(v) = 1 and hence

Jim [ o d| Dl =1 :AlB(ﬁ):/(aﬁ,Dﬁ):/ocﬂDf)l. (5.8)
—> 00
2 2 2

This proves v € BV (£2) is a minimizer of A(g, /). Obviously,

/Ud|Dv| llm1nf/od|Dwk| VA C £2 open.
A A

Let ux = od|Dwg|, A =0od|Dv| and ¢ = % Then we have proved that
Iim wp(2) =A(2) and A(A) < llmmfuk(A)
k— 00

for all open sets A C §2. Hence, by [3, Proposition 1.80],

hm qﬁduk—/(bd)»

that is,

lim /d|Dwk|=/a’|D17|.
k— 00
2

2

This completes the proof. O
Corollary 5.3. Assume (g, h) > p(g). Then any function u determined in Theorem 3.4 is a minimizer for A(g, h).
Proof. Since p(g,h) > p(g), it follows that B # 0. Let vj = u);, where u, is the minimizer of A,(g, h) in The-

orem 3.4. Since A,(g,h) — A(g,h) as p — 1, by the Young inequality, we easily see that {v;} is the minimizing
sequence of A(g, ). Hence the result follows from Theorem 5.2. O
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Corollary 5.4. Assume (g, h) > p(g). Then there exists a set A € P(§2) such that

Jogrpa8dH" ™" — [y hdx Jogryep 84H"! _fEhdx.

= max
Jongra o dH ! EcP(2) Jongp o dH!

Proof. We use the same notation as in Theorem 3.3. Assume E; € P(§2) is a maximizing sequence:

B(xg;) wp Bxe)

1m = U3 .
j—oo N(XE;) EcP@) N(XE)

Again since B # 0, we have u3 > 0. Let v; = bj(xEj —cj), where b; > 0 and c; € [0, 1] are constants such that
B(vj)=1and [, v;dx =0. Therefore

1
lim N(v;)= lim /od|va| =— =A(g, h).
j—o0 ]—>0°Q U3

Hence {v;} is a minimizing sequence of A(g, k) in BV (§2). By Theorem 5.2, there exists a subsequence wy = vj, — v
in L'(£2), where o € BV(£2) is a minimizer for A(g, ). We may assume wg(x) — v(x) for almost every x € £2,
—bjcj —>ae[—o00,0land b (1 —cj,) — d €[0, o0], as k — oo. Since the essential range of v(x) can only belong
to {a,d} and v is not constant (since B(v) = 1), a and d must be finite and distinct. Hence there exists a set A C £2
such that v =r (x4 — s) for some constants 7, s € R. This shows A € P(£2) is a maximizing set for u3. O

Remark 5.1. Assume that o = 1, £2 is C? and g€ CL(3£2). The result [13, Proposition 5] shows that, for each € > 0,
there exists a Y. € A}, (§2) satisfying 6(Ye) = g and || Ye||1o2) < (1 +€)lgllL>@pe). So, by (2.19),

o0 < inf Y| Lo < | Yell oo <(I+e€ 00
llgllLeme) yelo) 1Y lLoeo2) < 1 YellLeo2) < ( MigllLe@po)

s(Y)=¢

for all € > 0. Hence, in this case, p(g) = llgllL> k)

Example 5.1. We consider an interesting example. Letn >2and 2 = Bg \ B, ={x e R" | r < |x| < R} andleth =0
and g:052 = dBg U 3B, — R be defined by

_ 0 Ixl=r,
g0 = {xl |x| = R.
By Remark 5.1 above, we have p(g) = |IgllL>@ne) = R. However,
-1
Jorenope X1 dH" R"
wu(g,0)= sup b R > ——F——— >R, (5.9
EcP(R2) (E, $2) R —r

if we choose E = 27 = {x € £2 | x; > 0}. Therefore the condition (g, 0) > o(g) holds and so Corollary 5.3 applies.
Let

B(u) = / x1ye ) dH"™!, Np(u)=/|Du|1’dx.
2

[x]=1

Note that B(u) = B(it), Np(u) = N,(i) for all u € WP (), where ii(x1, x’) = eu(exy, O'x’); here x’ € R,
€ =1 and O’ is any rotation of R*~!. This invariance property of B, N p and the uniqueness of minimizer u
show that u,(x) = Up(x1, |x|), where U, (s, 1) is a function of s € R and r > 0 which is odd in s. For any function
ueWhP(£2)oddin xq, let u* = [u|xo+ — |u|xo-, where 27 = {x € £2 | x; <0}. Itis easily seen that B(u*) > B(u)
and N, (u*) = N,(u). This shows that u, = u}‘, =|uplxe+ — luplxe-, and hence u, > 0 on o+,

Let u be any function determined in Theorem 3.4 as a limit of a subsequence of u), as p=p; — 1 in LY(£2).
The invariance properties of u, above show that it(x) = U (x1, |x'|), where U (s, t) is a function of s € R and 7 > 0,
odd in s and nonnegative for s > 0; moreover, u is a minimizer for A(g, 0). Consider now the upper-level sets of i:
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Er={xeR|ux)>t}, FF={xe 2 |ia(x)>1t}. Sinceuu >0o0n 2, we have E; C F; C 27 forall t > 0. As in
Lemma 3.1, we have

o0 o
M(X)=/.XE,(x)dt=/.xp,(x)dt Vae x e 2T
0 0

and, integrating over 2% and using Fubini’s theorem, we have fooo L"(F;\ E;)dt =0. This implies that L (F; \ E;) =
0 for almost every ¢ > 0. Hence, by [3, Proposition 3.38(c)], we have
P(F;, 2)= P(E;, 2) Vae.t>0. (5.10)

Let x = (x1, x") € R" and ¥ = (—x1, x'). For any set E C R", denote E = {i | x € E}. We easily see that P(E, 2) =
P(E, §2). By the invariance property of i, we have E_; = §2 \ F; for all ¢t € R. From these properties, by Lemma 3.1
and the coarea formula, one eventually obtains that

B(ﬁ):Z/B(XEt)dt:l; N(ﬁ):2/N(XE[)dt:)»(g,0), (5.11)
I I

where the set I C (0, 00) is the set of ¢t > 0 such that E; € P(§2) and the condition (5.10) holds. Obviously L0, 00) \

I)=0.Foreacht € I, we have A(g,0)B(xg,) < N(xk,) and hence (5.11) implies that for each ¢
B(xg) 1
N(xe) g, 0)

that is, for each t € I, the set E; is a maximizer for (g, 0).

Let E C £27 be any set invariant with respect to rotation about the x1-axis. Then we can write E as

E={(x1,x")e 2" | (x, |x'|) eK}UZ, (5.12)

where Z = E N {x’ =0} and hence £"~1(Z) =0 and K is a subset of ot = {(¢,5) |1 >0, s >0, r2 <s?+1> < R?}
in R? and we also have that E has finite perimeter in §2 if and only if K has finite perimeter in the annulus A =
{(t,5) | r? < t2 + 52 < R%}. In this case one obtains that

B e 1" 2 dH! B(K

e) _ Joeor =28 (5.13)

N(xEe) fa*me+ s"—2dH N(K)
where I' = {(z, 5) | t2 + s> = R%, t >0, s > 0}. Furthermore, E defined by (5.12) is a maximizer for (g, 0) if and
only if K is a maximizer for the functional 7 (K) over K C w™.

= M(g,O),

Proposition 5.5. Let K be a maximizer of functional I above over the sets of finite perimeter in ™. Then 3*K = 0*w™
and hence p(g,0) = I(K) = I(0%) = 7.
Proof. It suffices to show that 3* K Nint(w™) = ¢J. Suppose for the contrary that 3* K Nint(w™) # @. Since 9* K is the
union of rectifiable curves [3, Theorem 3.59], any piece, say B, of these curves inside int(w™') can be parameterized
as B = (t(1), s(r)), where t € [a, b] is the arc-length parameter of §; the rectifiability of curve B implies that both
t(7) and s(7) are differentiable a.e. and hence 7(7)2 + §(t)2 = 1 on [a, b]. We claim §(t) = 0 on [a, b] and hence
B is parallel to the z-axis. If not, assuming $(7p) # O for some 1y € (a, b), then, near the point Py = (¢(tg), s(79)),
the set K lies either on the left-hand side or on the right-hand side of 8. We assume K near Py lies on the left-side
of B; that is, for some interval (c, d) containing 7y in [a, b], any point (¢, s(t)) with ¢ > #(t) for some 7 € (c,d) is
notin K. Now let ¢ € C3°(c,d), ¢ > 0, be any given test function. For small € > 0, consider the sets R = {(t, s(7)) |
t(t) —el(t) <t <t(r), Te(c,d)} and L ={(t,s(7)) | t(7) <t <t(r) +€¢(r), T € (c,d)}. Let Kj =KUL,,
K- = K \ R.. Then 3*(KZX) = (3*K \ Blre(c.a)) U B, where B = {(t(1) £ €¢(1),s(1)) | T € (¢, d)} C int(w™) if
€ > 0 is sufficiently small. Let hy(€) = N(Kei) — N(K). Since K is maximizer of I and é(Kei) = B(K), we must
have h4(0) =0 and h4(€) > 0 for all small € > 0 and hence h’i(0+) > 0. But, using (D)2 435 =1,

d

hi(e)zfs(r)”_2[,/iz+(t'ieg;)z— 1]dx,

c
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and hence we have 1/, (07) =+ de s(t)""2¢ dt > 0 for all test functions ¢ > 0. This implies fcd s"2¢ dr =0 forall

test functions ¢ and thus s(7) must be constant on t € (c, d), which contradicts with s(7p) 7 0. Hence every rectifiable
piece of 3*K Nint(w™) is a line segment parallel to the ¢-axis, and as such a line segment cannot have the end-points
still in int(w™) it must reach to the boundary of w™. Therefore 9* K consists of a family of closed line segments with
endpoints on dw™; this implies that

K=J{e.o]y(r*=s2)" <t <VR2—s2}UN,

seA

where A C (0, R) and H'(N) = 0. Note that A is a parameter set for 3* K N I" since 3*K N I" = {(v/R2 —s2,5) | s €
A}. Using this parametrization, we can write

R, " 2ds —
JaneryS"2ds + Xsc0 pinaa S 2 (VR — 52 — V2 —s2)*)

From the assumption 9*K Nint(w™) # @, we have already shown that (0, R) N A # @. We proceed to derive the
desired contradiction. First suppose there is a point sg € (0,7] N d A. Define a set Ag = (A N [sg, R]) U [0, so]. Then
A C Ap and (0, R) NdAg = (s9, R) N dA is strictly contained in (0, R) N dA. Hence J(A) < J(Ap). Use Ag to
define K as A for K; then we have 1 (K) < I (Kp), a contradiction. Therefore (0, R) N d A C (, R) is nonempty; so
A C [r, R) and we arrive at

1(K) =

2
RfAm(r,R) s""Cds
fAm(r,R) s"72ds + ) e pynaa STV RE — 52

which is again a contradiction with (5.9). This completes the proof. O

n(g,0)=1(K)=J(A) = <R,

From this result, we also see that each upper-level set E; of i is 2. Therefore the function i is constant on 2+
and hence u is uniquely given by i = c(2x o+ — 1), where c is the constant such that B(iz) = 1. This also proves that
the whole family {u,} converges in L'(£2) to the same function i as p — 17.

6. Problems in two dimensions and proof of Theorem 1.4
The main goal of this section is to prove Theorem 1.4. Assume n = 2 and let 2 C R? be a bounded domain such

that its boundary 952 consists of k + 1 simple closed Lipschitz (thus Jordan) curves denoted by Iy, I'1, ..., Ik (k > 0),
with Iy being the boundary of the unbounded component of R? \ £2. Hence

k
2=Do\ | JDi. (6.1)
i=1
where D; is the simply-connected domain enclosed by I';; that is, the inside of the curve I'; foreach j =0,1,... k.

For each 1 < g < o0, define Sg (£2)= Sg (£2) as above with 8 = 0. In order to characterize this set Sg (£2), we
introduce the following space

k

1,
Wﬂ(rz):{weWL%m\m(w):Zcm, cieRp, (6.2)
i=0
where yg; is the trace-operator on 2. Obviously,
Re W, (2):={c+¢|ceR, e Wy (@)} c W) (2);
however, if k > 1, the two spaces are not the same. Given any ¢ € W*l 4 (£2), if we extend ¢ by constant ¢; onto 55
(i=1,2,...,k), then the extended function ¢ belongs to R & W(}’q (Dg). Therefore, W*l‘q (£2) can be considered as a

subspace of R ® WO1 “1(Dy) consisting of functions that are constant on each D;(i=1,2,...k).
A closer look of the proof of Morrey’s estimate in [ 14, pp. 266—268] yields that, if 2 < g < oo, forall ¢ € W4 (£2),

_2
o) — ()| < Cqlx =3I 7T IVellLa) Vx.yes, (6.3)



350 B. Yan / Ann. I. H. Poincaré — AN 28 (2011) 325-355

1—
where the constant C; = 4;3;’ ﬁ(g—:z)Tq. Note that the estimate (6.3) holds also when ¢ = oo with C, defined by
127

Co=IlimCj=———.
* gm0 T gy 33
Therefore, if 2 < g < 0o, each function ¢ € Wi’q(.Q) can be viewed as a continuous function in Holder’s space
2 — —
c'q (£2) and so we automatically consider W*l’q(Q) CcC(R)ifg>2.

Lemma 6.1. Let 1 < g <ooand Z € L4(2;R?). Then Z € Sg (£2) if and only if there exists a ¢ € W*l’q (£2) (unique
up to adding constants) such that Z = (¢x,, —@x,) = — (V). Moreover, if 2 < g < 00, we have

_2
l0() — 0| < Cqlx = yI' 711 Zllagey Vx,y € L. (6.4)

Proof. First, assume Z = (¢x,, —¢y,) for some ¢ € Wi’q(()). Letc; =¢|r fori=0,1,...,kandlet ¢ € W(;’q(Do)
be the function equal to ¢ — ¢g in §2 and ¢; — ¢o on D;. Define Z = V@ € L9(Dg; R?). Then Z=Z on 2 and Z=0
on Dy \ £2 and hence we easily have

/ZV{dx:/ZV{dx:/(@ng‘m _anlgxz)d-xzo

2 Dy Dy

forall ¢ € C(l) (R?). By definition, Z € Sg (£2). We now assume Z € Sg (£2). Let Z be the extension of Z by zero onto
R? \ 2. Then Ze L?(R?; R?) satisfies div Z =0 in the sense of distributions. Hence, there exists f € Wllo’f (R?) such
that Z = (fxy» —fx;) on R2. Note that V f = 0 on R?\ £2 and thus f is constant on each component of R?\ £2. Hence
flr; =dj is a constant for each j =0, 1, ..., k. Since Z € L1(R%; R?), we have fe Wllo’f(Rz). Let ¢ = f|g. Then

XS W;'q (£2) satisfies Z = (¢x,, —¢x,) in £2. Since §2 is connected, it is easily seen that ¢ is unique up to constants.
If 2 < g < o0, the estimate (6.4) follows from (6.3). This completes the proof. O

We prove the first part of Theorem 1.4 in the following theorem.

Theorem 6.2. Any minimizer G of (1.1) determined in Proposition 4.1 is an absolute minimizer of p(8, H) as defined
in Definition 1.1.

Proof. Let G be the weak limit of G4, determined in Proposition 4.1 and E € §2 be an open set with connected
2\ E. Assume G € Sg(£2) satisfies that §£(G) =85 (G). We want to show

G+H
o

HG+H 65)

o

|

L% (E) L>®(E)

Since the proof is long, we split it into several steps.

Step 1. Since G4; — G e ng (£2), by Lemma 6.1, there exists a function ¢/ € W*l’qj (§2) such that G4, = G+
(@3, —¢;). We make ¢/ unique by assuming /|, = 0. Since G4, — G in L"(£2; R?) for each r > 1, we have
Vg/ — 0 in L"(£2; R?) for each r > 1. By (6.4), {¢/} is a uniformly bounded and equi-continuous sequence of
continuous functions on £2 and hence there exists a subsequence of {¢/} which converges uniformly to a continuous
function ¢° on £2. Obviously, ¢°| r, =0and V" = 0 in the sense of distributions in £2; hence, ¢* = 0 on £2. Without
loss of generality, we assume that the whole sequence {¢/} converges uniformly to zero on £2 as j — oo.

Step 2. Consider Z = (G — G)xg € L>(52; R?). Since 3£ (G) = §£(G), it follows that Z € S3°(£2). Hence, by
Lemma 6.1, there exists a (Lipschitz continuous) function ¢ € W*l "°(£2) such that Z = (¢x,, —¢x,) on £2. Since
Vo =0a.e.on 2\ E and §2 \ E is connected, we have that ¢(x) is constant on §2 \ E. By adding a constant, without
loss of generality, we assume ¢ =0 on £2 \ E. So ¢(x) =0 on dE. We remark that the connectedness of §2 \ E
plays an important role here since otherwise we would only assert that ¢ is constant but perhaps different on each
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component of £2 \ E and so we may not assume ¢ =0 on d E. The condition ¢ = 0 on dE seems critical in Step 5
below. ~ ~ ~ .

Step 3. Let I (u: A) = YL a; qy, T (s A) = |5 || Lo 4y, where H = —(G + H)™*. Then (6.5) is equivalent
to

1(0; E) < I(g; E). (6.6)

The following steps are devoted to the proof of (6.6). Note that /;(u; A) = || == G ||Lq, (A) if G =G — (Vu)t. The
minimality of qu =G — (V(pj)l can be written as

g/ @)= min L) Vj=12.... 6.7)
ueW, (@)

We decompose the set E = E U EgU E_, where
Ei={x€eE|+p(x)>0}, Eo={xeE|px)=0}.

Note that 7(0; E) = max{I(0; E), I(0; Ep), I(0; E_)}. We prove (6.6) in different cases. First assume 7(0; Eg) >
max{/(0; E;), 1(0; E_)}. In this case, 1(0; E) = I1(0; Ep) and |Eg| > 0. On Eg, ¢ =0 and hence V¢ = 0 for a.e.
x € Eg. So I(0; Eg) =1(p; Ep) < I(p; E) and (6.6) follows.

Step 4. We now assume [ (0; E) = max{/(0; E;), 1(0; E_)}. Without loss of generality, assume (0; E) =
1(0; E4). Let €, > 0 be a decreasing sequence converging to zero such that each of the following open sets has
finite perimeter in £2:

Ef_ = {x ek | o) > ek}, (6.8)
EF* = {er‘q)(x)>O, ol (x) <(/)(x)—%k}. (6.9)

These sets will satisfy the requirements similar to (4.13)—(4.15) mentioned above in Proposition 4.4 above. Note that
E; =Jg2, EX. Given £, since ¢/ (x) — 0 uniformly on x € £2, we have EX C Eik for all sufficiently large j. Let

Pje(x) = ( (x) — )xE/k(x) +¢’ Ak () (x € Q). (6.10)

Step 5. We claim that for each given k the function ¢; ; defined by (6.10) belongs to W*1 i (£2) for all sufficiently
large j. Since both ¢/ and ¢ are in W*1 & (£2), this claim amounts to proving ¢; x is continuous on Q. Letxe
8(Ej_’k) and we would like to show (pj x) =¢kx) — e—k and hence ¢; x is continuous on £2. Note that ¥ € 8(E_{_‘k)
implies ¢/ (¥) < ¢(X) — %" Suppose ¢/ (x) < ¢(X) — %. In this case, since ¥ € 8(E ) we will have the following
possibilities: (a) x € 0E; (b) x ¢ 0E, p(x) =0.1In either case, we have ¢(x) = 0. This would imply that ¢/ (¥) < —%
which is impossible for sufficiently large j since ¢/ — 0 uniformly on £2 as j — oco. Hence ¢/ (¥) = ¢(¥) — & at
any point x € d(E fr’k) for all sufficiently large j. Therefore ¢; x € W*1 ’_qj (£2) for all sufficiently large j.

Step 6. We use @; . as a test in (6.7) and thus it follows that I;(¢/; £2) < I; ((pj r; §2) for all sufﬁc1ently large j.

Canceling the common terms on £2 \ E7* we have 1i(g’; Eik) <Ij(p— % E k) =1j(¢; E’ ). Hence, for each
given k and all sufficiently large j,

1
. k k 7
1i(e7; EX) <1 (75 ELY) <1j(ps ELY) < 1G9 EDIEL] "
Letting j — oo and using (4.6), it follows that
1(0; EX) < liminf 7; (¢7; EX) < 1(p; E4).

Since Eﬁ increases to E, this proves 1(0; E1) = limg_ oo 1 (0; EX 1) < I(p; Ey), from which (6.6) follows. This
completes the proof of Theorem 6.2. O
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The rest of this section is devoted to the second part of Theorem 1.4 in the special case where H =0 and o = 1;
we thus study the problem

min ||G||re02), 6.11
Gesﬁ(m” lLoo2) (6.11)

where £2 C R? is described as above and 8 € L™ (9£2) is a given function to be specified below.
We need to consider Lipschitz functi_ons and their exten_sions relative to domain £2. First of all, following [19], we
define the distance-function dg; : £2 x £2 — R relative to §2 by

1
do(x,y)= liminf inf /|))(l)|dl . (6.12)
(a.b)e2x2 \ yeCc!((0,1];82)
(a,b)=>(x,y) " y(0)=a, y(1)=b 0

(The dot here and below means differentiation with respect to the given parameter.) Given any nonempty set S C £2
and any function u : S — R, we say u is Lipschitz on S with respect to d; and write u € Lipg, (S) provided that

Lipg(u) := sup M <

(6.13)
x#yeS do(x,y)

It is well known that any Lipschitz function u on S admits a minimal Lipschitz extension v on £2; that is, v =u on §
and Lips (v) = Lipg (). A minimal Lipschitz extension v of u is called an absolutely minimizing Lipschitz extension
(AMLE) if Lipy (v) = Lip,y (v) for every open set V C 2\ S. For existence and uniqueness of AMLE and other
related results, we refer to [6,19,23].

We now make further specific assumptions on 952 and S. Let us parametrize Iy counter-clockwise and other I5’s
(i =1,...,k) clockwise using the arc-length parameter s on each curve. We assume that the parametric equation so
obtained

X (s) = (xi(s),xé(s)), 0<s <L,

foreachi =0,1,...,k, i_s one-to-one and Lipschitz continuqus from [Q, L;) onto I;. Then for almost every s € [0, L;)
the unit tangent vector ' and outward unit normal vector v’ at x =Xx'(s) € I are given by
T =% (s) = (¥] (), ¥5(5)), V= —(r")L = (¥4(s), =% (5)). (6.14)
Foreachi =0,1,...,k, let
N
bi(s) = Bi (xi (s)), a;(s) = / bi(t)dt, 0<s<L;. (6.15)
0

Then a; € WH2°(0, L;) and ||d;|lz~ < | BillLoo(ryy> laillLee < LillBillLoe(r;). Define a function «; on each I by
setting «; (x) = a;(s) if x € I is represented by x = x! (s) for some s € [0, L;). Let « = Zf:o a; xr;- We make the
following assumption:

o €Lipo(I7) Vi=0,1,.... k. (6.16)

A necessary condition of (6.16) is that a;(L;) = fn Bi dH!' =0 foralli =0,1,...,k, which is stronger than the
usual assumption [,, BdH' =0.

Proposition 6.3. Under the assumption (6.16), we have that o € Lip(3§2) and that there exists a function § €
WLoo(2) N C($2) such that Y =aond$2 and |V | @) = Lipyg (o). Furthermore, F = (Yx,, —x;) € Sp(£2).

Proof. Letx #y € 0§2. Assumex € I; andy € I';. If i # j, then |a(x) —a(y)| = |o; (x) —oj(y)| < M and |x — y| >
m > 0, where

M =2 max {L;||BillLe~r i, =min{|la —bl:ael;, bel;}.
max (LillBilliery),  m=minfla—bl: ac T}, be ;)
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Hence |a(x) — a(y)]| < %|x —y| < %dg(x, y) if i % j. Now assume i = j; then x, y € I;. By assumption (6.16), it
follows also that |a(x) — a(y)| < Kdg (x, ¥), where
K= Lipp (o .
Oféliaék ipr () <00
This proves that o € Lip, (0§2). The existence of a minimal Lipschitz extension v follows from, e.g., Lemma 1.6 and
Theorem 1.8 of [19]. In fact, for any o € Lip (952), such a function v can be taken to be

Y= inf (@) +Lipyg(@de(x,y) Vre2. (6.17)
We prove the last statement. Let F' = (Yx,, —¥x,). Givenany { € C (R?), by an easy density argument, we have

/F VC dx Z/(wxz§X| _IﬁX|§X2)d-x: /(a§X|v2 —Olé‘x21)1)dHl,
2 2 082

where v = (v, v7) is the outward unit normal on the boundary of §2. Split 92 into the union of I'; and use the formula
for outward unit normal on each I given in (6.14) and we obtain

fF-V{dx = f(a{xl vy —a§X2v1)dHl

2 082
—2/(0‘19{1 V2 —Ollfle)l)dH Zf(at§x1x1 +at§x2x2)ds
i= OF _OO
kL ¢ Li
=—Z/a,<s)—( X' (5))) Z/c X (5)) az(s))
l:OO 1200
ko Li
=3 [ e )b ds v [ cwpiwarco.
i:OO i= 01—-

This proves that fg F-Vidx = fa.(z B¢ dH! for all ¢ € C'(R?). Hence, by definition, F € Sp(£2). The proof is now
complete. O

We have the following characterization of the set Sg(£2).

Proposition 6.4. G € Sg(82) if and only if G = (¢x,, —@x,) in 2 for a unique function ¢ € Who(2) N C(2)
satisfying o =apon lpand o =ci +a;onI; fori =1,...,k, wherec=(c1,...,ck) € R¥ and o; € Lipg (I7) is the
function defined above. Furthermore, letting

k k
Otc=(¥0XFO+Z(Ci+‘Xi)XF,~ =“+ZCiXFw 6.18)
i=1 i=1
it follows that ||G || L= () = Lipy g (ctc).

Proof. Let F' = (Yy,, —¥yx,), where ¢ € whe@)ynCc(2) is any function determined in Proposition 6.3. Given any
GeL®(2;:R?, G e Sp(82) if and only if G — F € S(‘)’O(Q). By Lemma 6.1, this condition is equivalent to G —
F = (¢x,, —¢x,) for some ¢ Wi’oo(.Q), which becomes G = (¢x,, —¢x,), where p =y + ¢ € whe@)yn c(2)
satisfies ¢|; =c¢; +«; foralli =0, 1,..., k. We make ¢ unique by taking co = 0; that is, ¢ = ¢ on d£2 for some
constant vector ¢ € R¥. Finally, the inequality || G || =) = Lipy g (arc) follows from Lemma 1.6 of [19]. O

Let L(¢) =Lipyg (atc). Then, for any e = (cy, ..., cx) € R,
L(c) = max { sup lei = ¢j +ait0) — ;)] } (6.19)
0<i<j<k | very, yery do(x,y)
Xy
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where ¢y = 0. It is easily seen that L is convex on RF and L(c) > lole| =11 for all ¢ € R*, where Iy > 0 and [, are
certain constants. Therefore the following set is a nonempty compact convex set in R¥:
5 = argmin(L) = {c cRF ’ L(¢) = min L(c)}. (6.20)
ceR
Finally, we reformulate and prove the second part of Theorem 1.4 as follows.

Theorem 6.5. It follows that

min  ||Gllree) = min L(c) = min Li o). 6.21
g Gl (2) in (© in Pag (oc) (6.21)
Moreover Ge Sp(82) is a minimizer if and only if there exists a unique function ¢ € W1(2) N C(2) such that
= (Qxy, —@x,) in 2 and ¢ = oz on 952 for some ¢ € X, where X is the set defined above by (6.20). Furthermore, G

is an absolute minimizer if and only if ¢ is the AMLE of ag on 2. Therefore, there exists a unique absolute minimizer
G if the set X is a singleton and there exist infinitely many absolute minimizers G if X contains more than one points.

Proof. By Proposition 6.4, we easily see that

Ge%:f(lm 1GllL=2) = min Lipygo (ae) = min L(c).
Letc € X; thatis, L(€) = mingcge L(c). Using the formula (6.17), there exists a function v € W (£2)NC(82) such
that Y = og on 92 and ||V || L (@) = Lipy o (ae) = L(€). Let G = (Yr,, —V¥x,). Then G € Sp(£2) and ||G||L>(2) =
L(¢c). This proves (6.21); the proof also shows that Ge Sp($2) is a minimizer if and only if there exists a unique
function ¢ € W1 (£2)N C(£2) such that G = (@x,» —@x;) in £2 and ¢ = ag on 92 for some ¢ € X. Assume G, <p
are given this way. We would like to show that G is an absolute minimizer if and only if @ is the AMLE of o on £2.
We split this proof into two steps.

Step 1. Assume G = (@xy» —@x,) 1s an absolute minimizer of (6.11). We show that ¢ is the AMLE of og. By the
many equivalent descriptions of AMLE in [6, Theorem 4.1 and Proposition 4.5], we only need to show that, for any
open disk V € £2 (hence £2 \ V is connected) and any function ¢ € W1*°(£2) with ¢ = @ on 9V, it follows that

Vol vy < IVOllLewv). (6.22)

To prove (6.22), let ¢ = ¢ xv + @ x2\v and G= (@xy, —Px,). Then ¢ € Wh®(£2)NC(2) and § = g on 3£2; hence,
by Proposition 6.4, G € Sg(£2). Also 8y (G) =8y (G) since @ = ¢ on dV. Hence (6.22) follows from the absolute
minimality of G.

Step 2. Assume @ is the AMLE of az. We show that G = (¢xy» —¢x,) is an absolute minimizer of (6.11). Let
G € Sp(£2) and let E C £2 be an open set with £2 \ E connected. Assume SE(G) = SE(G). By Proposition 6.4,
G = (¢x,, —¢x), Where n =¢p — ¢ € W*l"oo(.Q) satisfies n = a for some ¢ € R¥. Since SE(G) = SE((_;), it follows
that Vip =0 on £2 \ E and hence, by the connectedness of §2 \ E and continuity of 5, it follows that 5 is constant on
2\ E. However, since Iy UJE C 2\ E and n =0 on Iy, we have =0 on dE and thus ¢ = ¢ on 9 E. Therefore,
from the equivalent descriptions of the AMLE, we have

IG L) = IV@lLeE) < IV@lle) = 1G L)
This proves that G is an absolute minimizer. The proof is complete. [

Example 6.1 (Special case of Example 5.1 in two dimensions). Let 2 = {x € R?> | r < |x| < R} be the annulus. Let
H=0,h=divH =0and 8 = g:0§2 — R as before; i.e., B(x) =0 on |x| =r, B(x) = x1 on |x| = R. In this case,
the function «: 92 — R defined above is given by a(x) =0 on |x| =r and R? — Rxy on |x| = R. The function
L(c) =Lip, g (ac) with ¢ € R defined by (6.19) can be computed to be

Note that the set ¥ = argmin(L) = {R?} is a singleton and hence
2

,0 = min Gl =minL(c) =
p(B.0)=  min_ 1Glix(@) =min L) = 7

’
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which agrees with the general result obtained in Proposition 5.5. However, by Theorem 6.5, we know that the problem
for p(B,0) has a unique absolute minimizer G, which is given by G = (@xys —¢x,), where ¢ is the absolute min-
imizing Lipschitz extension onto §2 of the boundary function a2 (x) = R? on |x| =r and R — Rx> on |x| = R.
Therefore, for this problem, the functions G and F determined as weak limits in Proposition 4.1 and Theorem 3.4 are
unique, which implies the whole sequences {G,} and {|Vu |P=2Vu p} defined there converge in the respective cases
as ¢ — oo and p — 1. Recall that, by Example 5.1, the limit # of {u} is also unique.
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