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Abstract

We study the collision of two solitons for the nonlinear Schrodinger equation iy, = —Yxx + F(|1//|2)1//, F()=-2¢t+ 0(&2)
as £ — 0, in the case where one soliton is small with respect to the other. We show that in general, the two soliton structure is not
preserved after the collision: while the large soliton survives, the small one splits into two outgoing waves that for sufficiently long
times can be controlled by the cubic NLS: iy = —rxx — 2|1//|21//.
© 2011 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.

0. Introduction

In this paper we consider the nonlinear Schrédinger equation
ivi =Y + F(IW )Y, (,H)eRxXR, (0.1)

where F is a smooth function that satisfies F (&) = —2& + O(£2), as &€ — 0.
This equation possesses solutions of special form — solitary waves (or, shortly, solitons):

eiq)(x’t)<p(x —b(1), E),

1 2
Sl =ot+y+5ux b =vi+c, E=w+%>Q

where w, v, ¢, v € R are constants and ¢ is the ground state that is a smooth positive even exponentially decreasing
solution of the equation

—pux +E@+ F(p?)p=0, ¢peH' (0.2)

In this paper we shall be concerned with the solutions of (0.1) that behave as t — —oo like a sum of two nonlinearly
stable solitons

' P (x — bo(t), Eo) + ¢ p(x — b1(1), E1),
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Qj=wit+y;+ %vjx, bj(t) =vjt, v1 — vg # 0, our goal being to understand the collision between the solitons and
to determine what happens after. We show that in the case where E| = ¢? <« 1 (depending on v; — vy and Eo) the
collision leads to the splitting of the small soliton into two outgoing parts, that at least up to the times 7 ~ £ ~2|In¢|
propagate independently according to the cubic NLS:

iV = —vx = 2117V (0.3)
The splitting of the small soliton is essentially controlled by the flow linearized around the “large” one: in the interac-

tion region a small amplitude soliton behaves as a slowly modulated plane wave ge ™ vit/A+ivin/2 gpd i splitted by the
large soliton into a reflected and a transmitted parts accordingly to the linear scattering theory. For the first time this
phenomenon was observed by J. Holmer, J. Marzuola, M. Zworski [3,4] in the context of soliton—potential interaction
for the cubic NLS with an external delta potential:

iV = —Yex + 8 —2|¥ 2,

see also [10].

To control the solution in the post-interaction region ¢ ~! =% <t < 8¢~ 2|Ine| one invokes the orbital stability argu-
ment combined with the integrability of (0.3), again in the spirit of [3,4].

The structure of this paper is briefly as follows. It consists of three sections. In the first section we introduce some
preliminary objects and state the main results. The second and the third ones contain the complete proofs of the
indicated results, some technical details being removed to Appendix A.

1. Background and statement of the results
1.1. Assumptions on F

Consider the nonlinear Schrédinger equation

vy =—Yux + F(IW )y, (xr,0) eRxR. (1.1)

We assume the following.

Hypothesis (H1). F is a C™ function, F(£) = —2& + O(£2), as £ — 0, and satisfies:
F()>-Cg1, C>0,6>1,q<2. (1.2)
It is well known, see [1] and references therein, that under assumption (H1) the Cauchy problem for Eq. (1.1)

is globally well posed in H': for any ¥ € H'(R) there exists a unique solution ¥ € C(R, H') of (1.1) satisfying
¥ (0) = Y. Furthermore, for all # € R one has the conservation of L, norm, of energy and of momentum:

lv®ll, = lIvoll2. (1.3)
¢

H(y () =/dx(|1/fx(x,r>|2+U(|x/f<x,r>|2)) =H®Wo), U®E) =fdsF(s>, (1.4)
0

P(W)):/dx (U — Ye) = P (Yo). (1.5)

Recall also that conservation of energy (1.4) and of L, norm (1.3) combined with (1.2) imply an a priori bound on the
H' norm of the solution:

[ ]| g1 < c(Iwollgn) 1ol g1,

with some smooth function c: Ry — R .
Furthermore, if in addition x € L, then x4 € C(R, L,) and

lxw @], < c(lvoll g1) (Ixvoll2 + 2110l 1) (1.6)
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SetU(&, E) = E& + U (§). We denote by A the set of E, E > 0, such that the function & — U/(&, E) has a positive
root and Us (§o, E) # 0, where £y = &p(E) is the smallest positive root. Note that under assumption (H1) this condition
is always verified for E sufficiently small.

It is easily seen that for E € A, (0.2) has a unique smooth positive even exponentially decreasing solution ¢(x, E):

ox,E)~C(E )e_‘/a"‘. Moreover, as E — 0, ¢(x, E) admits an asymptotic expansion of the following form:

o(x, E)=ed(ex,e),  ¢(y.e)=) e¥a(y), e=VE,

k=0
1 " 3
wo(y) = my —@p + 9o — 2¢5 =0,
e ()] < Cre P, (1.7)

Asymptotic expansion (1.7) holds in the sense:

N
P(y.e) = e*or(y)| < Cye?N el
k=0

and can be differentiated any number of times with respect to y.
We shall call the functions w(x,o) = exp(if + ivx/2)p(x — b, E), 0 = (B, E,b,v) € R* by soliton states.
w(x, o (1)) is a solitary wave solution iff o (¢) satisfies the system:

B =E——, E' =0, b =v, vV =0. (1.8)
1.2. Linearization

Consider the linearization of Eq. (1.1) on a soliton w(x, o (t)):
v~w+x,
ixe = (=97 + F(lwP)x + F'(jwl) (lwl’x + w’%).

Introducing the function f :

f= (;) X, 1) =exp(i®) f(y,1),

vX
P=B0)+ 5. y=x—bw),
one gets
ifi=L(E)f.  L(E)=Lo(E)+V(E), Lo(E)=(-0%+E)os,
V(E) = Vi(E)o3 +iVa(E)or,
Vi=F(p?)+ F (%>,  Va(E)=F'(p*)e.

Here 09, o3 are the standard Pauli matrices

0 —i 10
(0 0) =62

We consider L as an operator in Lo(R — C2) defined on the domain where L is self-adjoint. L satisfies the relations
o3Lo; =L"%, oiLoy=—-L,

where o] = (? (])) The continuous spectrum of L(E) fills up two semi-axes (—oo, —E] and [E, 00). In addition L(E)
may have finite and finite dimensional point spectrum on the real and imaginary axes.
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Zero is always a point of the discrete spectrum. One can indicate two eigenfunctions

> 1 z 1
SO—QO(_l), El—‘/’y(l>,

and two generalized eigenfunctions

g _ 1 § 1 1
Lé:j:(), L§2+/~:§j, j=0,1.
Let M (E) be the generalized null space of the operator L(E).

Proposition 1.1. The spectrum of L(E) is real and the vectors 5 7, J=0,...,3, span the subspace M iff

d
@3>0 (1.9)

See [12,2] for example.

Note that under assumption (H1) condition (1.9) is verified at least for E sufficiently small.
We denote by A the set of E, E € A, such that (1.9) holds.

Consider the evolution operator e ~’~. One has the following proposition.

Proposition 1.2. For E € A, one has
|e B PE) f || i1y < CIF Ny (1.10)
where P(E) =1 — Py(E), Py(E) being the spectral projection of L(E) corresponding to the zero eigenvalue:
KCI'P()Z(O?,M)J', Ran Pp =M.

The constant C here is uniform with respect to E in compact subsets of Ay.

The proof of this assertion can be found in [12].
Next we introduce some notions related to the scattering problem for the operator L(E).
Consider the equation
Lf =X\f, le(—oo0,—E]JU[E,+00). (1.11)
Since o1L = —Loy, it suffices to consider the solutions for A > E. In [2] (see also [6]) a basis of solutions f;,

j=1,...,4, with the standard behavior etikx ((1)), etHx ((1)), r=E + k2, w=~2E +k%>0,as x - +00, was con-
structed. We collect here some properties of these solutions that we shall need later, all the details and the proofs can

be found in [2]. The solutions f;(x, k), j =1, ..., 4, are smooth functions of x and k with the following asymptotics
as x — +o<:
. 1 _
fio(x, k) = eil"XKO) +O((1 4 Ik]) 'eV")], (1.12)
0 _
fralx k)= ﬁf”[<1> + O((1+ IkI) le—”)] (1.13)

uniformly with respect to k € R.
The asymptotic representations (1.12), (1.13) can be differentiated with respect to x and k any number of times.
Here and below we use y as a general notation for the positive constants that may change from line to line.
Furthermore, one can choose f; in such a way that

Sfi1(x, =k) = fa(x, k), f3.a(x, —k) = f34(x, k),
k)= fhak,  fabk)=fiabk), keR,
w(f1, f2) = 2ik, w(f1, f3) =0,

w(f1, f4) =0, w(f3, f4) = —-2u.
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Here w(f, g) stands for the Wronskian:

U)(f, g) = <f/v g>R2 - (fa g/>R29

w(f, g) does not depend on x if f and g are solutions of (1.11).
The solutions with standard behavior as x — —oo can be obtained by using the fact that the operator L is invariant
under the change of variable x — —x. Let

g, k)= fi(—x,k), j=1,...,4
In addition to scalar Wronskian we shall also use matrix Wronskian
W(F,G)=F'G-F'G,

where F and G are 2 x 2 matrices composed of pairs of solutions. The matrix Wronskian does not depend on x.
Consider the matrix solutions

F1=(f1, f3), F=(f2, fa), G1=1(g2.84), G2 =(g1.83),

Gi(x, k) = F(—x, k), Ga(x, k) = Fi(—=x, k). (1.14)
For k # 0 we have
Fi=G1A+ G,B, Gr=FA+ FiB, (1.15)

where A and B are constant matrices given by:

A" Qikp —2uq) = W(F1, Go),
—B'Qikp —211q) = W(F1, G1).
Here

(1 0 _ (0 O
P=lo o) 9%\0 1)
As |k| = +o0,
Aby=1+0(k™"), Blky=0(").
It was shown in [2] that for k # 0, det A(k) = 0 if and only if E + k% is an eigenvalue of L(E).
Fork e R, E + k? ¢ 0, (L(E)), one can define the solutions

F(x, k)= Fi(x, k) A" (k)e, G(x, k) =F(—x,k), e= <(1))
It follows from (1.14), (1.15) that F, which is bounded as x — 400 by the definition of Fi, is also bounded as
X — —00:

F=[G2+G2BA ' ]e.
More precisely, F satisfies

Flek)y=se* e+ O((1+ k) 'e%), x— +oo,

Flx, k) = (€ +rke ™ e+ 0((1+ k) 'e?™), x— —oc.
Here the coefficients s and r are defined by the relations

pA~le =se, pBA e =re.
One has

Is)>+ |r]> =1, rs +sr =0, F=5'G+rs7'g.

We call the solutions F(x, k), G(x, k) solutions of the scattering problem, s(k) and r(k) being respectively the
transmission and reflection coefficients.
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1.3. Description of the problem

We are interested in the solutions that as t — —oo are given by a two soliton state:
U= w(x, ao(t)) + w(x, o1 (t)) +ogi(l), t— —o0,
where o (t) = (B;(t), Ej,bj(t),v;), j =0, 1, are two solutions of (1.8). One can always suppose that
bo(1) =vo =0, B1(0) =b1(0) =0, vy 2 0.
Assume that
(H2) vy > 0;
(H3) Eo € Ao;

(H4) m(Eg + vf/4) ¢ op(L(Ep)) form=1,2;
(H5) € =/E| is sufficiently small.!

Then one has the following proposition.

Proposition 1.3. Under assumptions (H1), (H2), (H3), (HS), Eq. (1.1) has a unique solution € C(R, H') such that
| @) = w(- 00(0) —w(-01(0)) | 1 = O(e"™), 1+ — —o0.
See Appendix A for the proof.

Towards the understanding of the behavior of the above solutions for large positive times we have the following
partial result.

Theorem 1.1. Assume (H1)—(H5). Let ¥ (t) be a solution of (1.1) given by Proposition 1.3. Then, for ¢ ~'7% <1 <
se2|Ing|, 0 < 8 sufficiently small, W (t) admits the representation

v =w(,o®)+y+@) +v_@)+h@), @)= (B), Eo,b(1), Vo).

Here

2
D Vo = 26k, x = UIr@E
D Vo =2¢x, 1€ == 00

|B(t) = Bo(@)|, [b(@) — 1Vo| < Cet.

(i) Ye(x,t)= e_i“12’/4ii”"‘/28§i(8(x Fuit), €21), where £ (y, 1) is the solution of the Cauchy problem:

’

itk =—¢ =2t
tH|, o =ar90(y),
{7 |,y =Wy (y),
ay =s(v1/2), a_=r(1/2), S(y)=In(chy)+y+1n2,
s(k), r(k) being the transmission and reflection coefficients of the operator L(E)).
(iii) | 1 < Ce¥/7eCe.

Remark. As %1 =t — 400, {* (1) resolves into solitons plus radiation. More precisely, one has
- . 1
[¢* @] =0(@717), ifax <,

1
lc*@] , =0m@+1)(r)""?), ifas= 7

1 “Sufficiently small” assumes constants that depend only on v and Ej.
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and finally for % <a4 < %,

2 ) . , . _
é.:l:(y’ =e zviz/4+mit+wi)/2+n&Miwo(ui(y _ vir)) + OLoo((T> 1/2)’
with some y+ € R and uy =2./ar — 1. Here

2 2 2
ary =l as=la_?—«?,

vy =0, v_ =4k.

See [3-5,11], for example.
1.4. Outline of the proof

To prove Theorem 1.1 we split the analysis into two parts by considering separately the time interval (—oo, T],
T =¢~ 173, § > 0 sufficiently small, where the interaction takes place, and the post-interaction region [T, 8¢ 2|In¢]),
our main tool being the construction of a suitable approximate solution in the collision region in the spirit of [3,4,
8-10]. The large time behavior is then controlled by combining the perturbation arguments of [3,4] with the orbital
stability techniques [12], see also [7]. We now describe briefly the main steps of the corresponding constructions.

Step 1. Re-parametrisation of the flow. We start by decomposing the solution v (¢) as

¥ (x, 1) = PO (g(x —b(1), E@) + f(x = b(0), 1)), (1.16)
the time-dependent parameters o (t) = (8(¢), E(t), b(t), v(t)) being determined by the orthogonality conditions
(F(1), 038 (E®))=0, k=0,...,3. (1.17)

Here f = (;), (+,-) is the inner product in Ly(R — C?). The decomposition (1.16), (1.17) satisfies the following
orbital stability bounds: for all # € R,

lf O] <ce'? )|+ |E@) — Eo| < Ce,

see Lemma 2.1 below.
Rewriting (1.1) in terms of f(¢) and o () one gets a system of coupled equations of the form:

ifi=L(E®)f+D(E®), f),
A=G(E®), f),

where A = (8’ — E, E',b' —v,v’) and D, G are some nonlinear functions that are at least quadratic in f.

Step 2. Construction of an approximate solution. Motivated by the fact that o (#) — op(¢) is a slow function of 7, we
perform a kind of “normal form analysis” and construct iteratively the main order terms of f () and o (¢) fort < T as
a power expansion in &, see Sections 2.3, 2.4, 2.5. At this stage the considerations are formal.

Step 3. Control of the remainder. The remainder is controlled by energy estimates of the linearized flow close to a
solitary wave. The success of this strategy relies crucially on the fact that the formal expansions of f and o have been
pushed to a sufficiently large order in €. As a final outcome of our analysis we obtain a complete description of the
solution on the time interval ¢+ < 7 up to the terms of order £3/2 and, in particular, prove that for g |1ne|2 <t <
e~ 178 it resolves into a modulated solution w(-, o(t)) plus two outgoing waves ¥ (¢) of the cubic NLS:

Y (@) =w( o 0) + P () +Y_() + O (£772),
o(t) = (B(1), E(1), b(r), v(r)) with b(¢) satisfying |b(r) — t Vo| < Ce?t.

Step 4. Control of the solution in the post-interaction region e 178 L <8672 [Ing|. We are now left with the follow-
ing Cauchy problem
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iV =—VYu + F(IWP)¥. xeR 12T,
Vli=r = w( 0 (D) + Y (T) +Y—(T) + O (£72).

We use once more the representation (1.16), (1.17) further decomposing y (x, 1) = ePOFVOX/2 £(x _b(1), 1) as
X)) =Y @) +y-@) +r@).

To control r(t) we employ again the energy estimates of the linearized flow around a solitary wave. In this way we
are able to show that

r(t < Ce32eCe
[r@] g <

up to the times ¢ < 8¢ 2|Ing|. This result relies heavily on the fact that for e 1% <1 < 8¢ ?|Ing|, ¥4 (r) and ¥_ (1)
remain decoupled from each other and from the large soliton w(-, o (¢)) in all orders of ¢.

2. Pre-interaction and interaction region: ¢t < T
2.1. Decomposition of the solution

We represent ¥/ (¢) as a sum

Y(x, 1) =w(x, o)+ x(x,1). (2.1
Here o (t) = (B(t), E(t), b(t), v(¢)) is an arbitrary trajectory in the set of admissible values of parameters.
We fix the decomposition (2.1) by imposing the orthogonality conditions

(@), 38 (E())) =0, k=0,...,3. (2.2)
Here
f= (j;) x(x, 1) =exp(i®) f(y,1),

®=B@t)+vx/2,  y=x—b).

The existence of such a decomposition is guaranteed by the following lemma.

Lemma 2.1. System (2.1), (2.2) has a unique C' solution o (t), o (t) — oo(t) = O(e”?") as t — —oo. Moreover, one
has forallt e R

lx®] 1 < ce'’?, 2.3)
lv@®)| + |E@) — Eo| < Ce. (2.4)
Proof. This lemma is a standard consequence of the orbital stability of w(-, og(¢)), combined with Proposition 1.3

(see [2,7,12] for example), estimate (2.4) being due to the conservation of mass and momentum. Indeed, by the
conservation of || (¢)||2 and the orthogonality condition (re f, ¢) = 0, we have

le(E®); = leEo |3 = [w(- o1@)[3 =[x 25)
Recall that

d 2

agle®h >0

=E,

and, by the orbital stability, E(¢) is close to Eq. Therefore by (2.5), (2.3) we obtain
|E(t) — Eo| < Ce.

Similarly, by the conservation of momentum and the orthogonality condition (im f, ¢y) = 0 one has
@ v+ P(f©) = P(w(- 01())).

As a consequence,
hhv@|<Ce. O
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2.2. Differential equations

We start by rewriting (1.1) as an equation for f(¢):
ifi=L(E@®)f+D.,  D=Do+Di+Ds+Ds,

N 1
Do =1(0)&(y, E), l(o)=y + Ev’y +ic'dyo3 —iE'dgo3,
t

B(1) = Po(1) + / ds (E(s) — Ey

—00

v2(s) V' (s)b(s)
4 2

>+V(t),

t
b(t)=q(t)+c(), q(t) = / dsv(s),
- 1
Dy =li(o(1)o3f, Lio)=y + Ev/y+ic’ayo—3,
D> =Dy(E(@), f),

DyE, f)=F(lp+ ) (_“’;_f f) - F(wz)w(_ll> VB - F(fP) (_f f), 0 =¢(B),

D3=F(If1%) (_ff> (2.6)

Substituting the expression for f; from (2.6) into the derivative of the orthogonality conditions, one gets
(Bo(E) + Bi(E, P)r=g(E, f),  »=(Ev,y,¢),
o , d o Lo 2
Bo(E) =diag(ie(E), n(E), e(E), —in(E)), 6=d—E||</>||2, n=llel.
g(E, )= ({D2+ D3, 058;(E)))' g 5 2.7)
At last, the matrix B (E, f) is defined by the relation
Bi(E, fin=—({f.1@EE) ), 5

In principle, Egs. (2.7) can be solved with respect to A and together with (2.6) constitute a complete system for o
and f:

ifi=L(E®)f+D(EQ), f), 2.8)

A=G(E®), f). (2.9)
Note that both D and G are at least quadratic in f. In particular, A(¢) admits the estimate

M) < Ce, teR. (2.10)

Note also that (2.8), (2.9) imply that o € C? and
V()| <Ce, teR. (2.11)

The remainder of this section is devoted to the proof of the following proposition.

Proposition 2.2. For t < e~'7%, 0 < § sufficiently small, the decomposition (2.1), (2.2) satisfies:

eVE!

|E(t) — Eo| + |v(®) — vo(0)] §C82W, (2.12)

vo(t) = ek (th(evit) + 1), (2.13)
yet

|B(t) — Bo(0)| + |b(t) — 2kv ' S(ev11)| < Ce(l +8t)ﬁ, (2.14)
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lx®] ., <Ce. (2.15)
eVel
lx @ —w(- o1®)] <81/21+e7”' (2.16)
Moreover, for e '|Ing|> <t <e 173, x(t) resolves into outgoings waves:
X =Y )+ Y- () + 0 (77). 2.17)

2.3. Main order terms of x

In this and next two sections we exhibit an explicit ansatz that we expect to describe adequately the main order
terms of x(¢) and o (¢) in the region r < ¢~ !7%, § being a small positive number to be fixed later. At this stage the
considerations are formal.

We start by rewriting (2.6) in terms of g(x, ) = e‘iﬂO(t)x (x,1):

igi=HMg+N, §:<§>. (2.18)

Here
H() = How),q() Hp g = (=37 + Eo)o3 + €7V (x — q, Eg)e™ %%,
0@) =pB@) — Bo),
N = No+ N1 + Ny + N3,
Nj=e%%D;,  d=0d—fo(1), j=0,2,3, N =V@)g.

V(x, 1) = el® V(x —b(@), E(r))e—"@‘f’ — WY (x — (1), Eg)e 0", (2.19)
Notice that the operator Hy 4 is unitary equivalent to L(Ep):

Hpg=TogL(E)Ty . (Toq /() =% f(x —q).
Note also that by (2.3), (2.4), (2.10), 6 and ¢ are slow functions of 7:

0'(t), q' (1) = O(e). (2.20)

This fact is a starting point of our analysis that on the heuristic level can be summarized as follows. In a first approxi-
mation we neglect N and consider the linear problem

igr=H()g, (2.21)
e D) —w(-,01(1))] ;1 = O(e""), t—> —o0. (2.22)

Using (2.20) we solve (2.21), (2.22) approximatively by exhibiting an explicit profile go(x, ¢) that satisfies (2.22) and
solves (2.21) up to the terms of order &2, see (2.23) below. We expect the difference g(¢) — go(#) to be of order e3/2in
H' and of order £? in L. To determine the main order terms of o we inject the profile go into (2.9) and solve (again
approximatively)

(E"'.y'". ") =G(E, fo)

where fy is defined by
g0(x.1) =P fo(x —b(1). 7).

As a result, we get an explicit trajectory (Eo, vo(?), yo(t), co(t)), that we expect to satisfy
|E — Eol. [e(®) = co)]. [y ) = @] [u(®) = vo()| = O(¢?),

at least for t < e~1, see Section 2.4. We next return to the full equation (2.18), inject go and (Eo, vo(?), yo(t), co(t))
into N and construct a better approximation g” of g by adding the corrections g;, j =1, 2:

’

g =go+ g1+ g2,
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where the increments g1 and g», both of order £%/? in H! and of order £ in L successively improve the error in the
regions [x — g (¢)| > 1 and x ~ ¢(¢)| respectively. As a result, the profile g%” solves (2.18) up to an error of order &3
in H!, see Section 2.6.

On the technical level this scheme is realised as follows. Consider the profile go(x, #):

N . . —_— o go
So(x, 1) = On(x, 1) + e Ve n(x, 1), go=<g0),

n(x, 1) = e@(e(x — v11), &) To(r), gy F(x, v1/2) — e[@(e(x — vi1), &) — 1 @PEDN=AN G (e (x +v11), €)]

(v1/2)
x O (x — Q(f))%Te(z),q(z)g(x, v1/2),
2 =p1(t) — B(®) +vi19(1)/2, px,t)=(x —q@®)v; ' +1. (2.23)

Here F(x, k), G(x, k) are the solutions of the scattering problem associated to the operator L(Ey), @_ is a cut-off
function: @_ € C*(R), O_(§) =1foré < -2,0_(§)=0for& > —1.
Notice that:

(1) for x| < &7, |g@®)| <&7V,v < 1, the main order term of gy(x, t) is given by the expression:

go(x, 1) ~ Tory.q) Z(x, 1), (2.24)
Z(x, 1) =egolevit)[e D F (x,v1/2) + e Do Fx,v1/2)], (2.25)

(i) as x — Fo00, go has the following asymptotics:

go(x, 1) ~ ei(ﬂ'(t)_ﬂ()(t))r)i(x, 1),
ne(x, 1) = ei”‘x/zesé(e(x —vit), €),
n_(x,t) = ei”‘x/zsé(e(x —vin), ) + e_“”x/2+i”"1("("”))8r<ﬁ(e(x +vit), €). (2.26)

As a consequence, for all 7 € R one has

lgo® |, <Ce'2, Jalgo)|, < Ce, 1=0,1,
) eVet

[P g0(t) = w(-, 010) | o < Ce' P @27)
and forany y; > 0,71=0,1,

||e*”1|x*q(’)‘8igo(t) HOO < Cee Vel

o159 406~ Ty 20) |, < Cefgto)e . @23
Here and in what follows ¢ (¢) is assumed to satisfy

lg| < ce™!. (2.29)

As a first approximation of g(f) we take the expression go(z). The difference gV (1) = g(r) — go(r) solves

iz =Hmnz" +NOD, (2.30)
where

ND=N+Nyy  Ny=—id g0+ H()go. (2.31)

We expect NV to be of order £2 in H'.
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2.4. Main order terms of o (t)

Consider the r.h.s. of (2.9). We expect that locally
fo.n~ 20,0,
and therefore the main order term of G is given by the expression

Go="8y" (Eogo,  go=((Q, 038 (E))_y 3 (2.32)

.....

Q being the quadratic in Z part of the expression D2 (Eyp, Z). One can write it down explicitly:

B Z(Z+27) A
Q—Cl (—Z(Z—FQ,Z)) +C2(_Zz)a
1
c| = F/((ﬂz)(ﬂ‘i‘ EF//(¢2)¢3’

1
= EF’/(¢2)¢3, ¢ = 9(Eo). (2.33)

Substituting (2.25) into (2.33) one gets
0 =e?@t(ev1t)[e¥ D QL (Eg) + e 2D 0 _(Ep) + Qo(Eo)],

v(v+u) u? —
Q+:€1<—u(u+2v)> +02<_v2), Q0 =-0104+,

2 2 = =
v|°+ +v v v

Q0=2C‘] | | |u| u_ +2C2 " _ ) F = .

—|v)?2 = |u]2 —uv —vil u

Asa consequence,

Go = &25 (ev1)[e*CDit (Eg) + e 22Dk~ (Eg) + k°(Ep)],
! = (i, 1 5, 163)',
! =By (Eo)gy, g =((Qi(E0), 038 (E))_y 5 1=+ —.0. (2.34)

The expressions (Qo(Eo), 03§ (Eo)), j =0, 1, and, therefore, two first components of «Y can be computed explicitly.
Indeed,

(Qo(E), 0380(E)) = —i im{V (E) F, F)

= RETooim(O':;f/, f)cz

= lim im{F, F)q fR =0.

R—+o0

As a consequence,
Ky =0. (2.35)
Consider (Qo(Ep), 03€1(Ep)). One has

(Qo,0381) = (Vi F, 03F)
R

= — R]_1>Too dx ((H — (E + kz))]:xv o-3]:)((:2
—R
R

= RETOO(fxx, Fhez — (Fxs Fx)ez

= —2k%[s(k)| + 26> (1 + |r () )
=42 r)7, k=u1/2,
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which together with (2.7) implies

o 203rui/2)?

kW= k. (2.36)
T lle(Eo) I3
We write
G=Go+ Gp 2.37)

and decompose vector (E (), v(t), y (1), c(t)) as

E(t) = Eo + ER(1), v(t) = vo(?) + vr (1),
y (@) =yo(t) + yr(1), c(t) = co(t) + cr(1), (2.38)
where vy (1), yo(t), co(t) are defined by

t

(0, vo(1), Yo(1), co(t)) = ek / ds (pg(evls)=8U1_1K0(th(€l)1l)+ 1). (2.39)

—00

The remainder (Eg(t), vg(t), yr(t), cg(t)) satisfies

AR = szwg(svlt)[eZiQ(’)KJr(Eo) + eziQ(l)K_(Eo)] + Grg,
Ar = (ER(D), vg®), yr(1), cr(1)). (2.40)

We expect that G = O (&%) and therefore (Eg(r), vr(t), yr(t), cr(?)) is of order &2 (at least for ¢ < e D).
Furthermore, for ¢ () = f i oo @5 v(s) we will need a refined decomposition

q(1) =qo(t) +qr(@), qo(t) = qoo(t) + qo1 (1),

t

qoo(1) = / ds vo(s) =2k S(evin),

—00

t
q01(t)=82/ds(t—s)q)g(svls)[ 2i821(s) ++e 2i821(s) ¢ +]

—00

21(t) = 2(1) +6(t) = B1(1) — Bo(t) + ’”g(” 2.41)

gr (1) being the remainder. We will see later that for r <71,

lgr)]| = 0@),  |ar®|=0(?).,  |ap®|+|ag®)| = 0().

Notice also that due to (2.4), one has forall r € R

yet
a0 ()] < Cel +ety) ——
. evet
|‘]01(f)|<cgw,
o1 < Cele el

Here and below ¢, = max({z, 0}.
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2.5. Second approximation of g

We return now to (2.30) and consider the main order terms of N (). They are generated by the expression
Ni1o + Noo + N3p + Na,

where
N1o=To),qnVo(t) Z,

Vox, 1) = —co(t) Ve (x, Eo) + %vo(l)(x + o3, Vix, Eo)],
Noo = To(r),q() Q (1),

80
N30=F(|go|2)< _ ) (2.42)
—80
The direct calculations show that

Nio + N3o + Noa=Ty1),q)Lo + Lo + R,
Lo= el 201y — o0 g T

L= B0=p00s (g oy "™ Vo - =
—F i )
Op=1-6_. (2.43)

Here

re(e,t) = (=id, — 07 — vi/4+e?)nx + F(Ins )0,
Lo, 1) = >go(evi) (W1(x0) + g () W2(x)) + 2¢p(ev10) (W3 () + g () Wa (), (2.44)
W;, j=1,...,4, being some smooth exponentially decaying functions of x only. It is possible to give the explicit

expressions for them but they are useless for our purpose.
At last, the remainder R satisfies

|R|+ |8x R| < C8(82<q) +16'®)| + |vr ()] + sup|q” (x)] + sup|q/”(z)|)e*V'X*‘1'*8V'”. (2.45)
<t <t

Notice that Lo and L, are of size O 1 (e%) and Op1(e7/?) respectively, while R is expected to be of order &3 at least
fort <e= 1.

We now construct a correction to go that allows to solve (2.30) up to an error of order 3 in H!. This is done by
a two step procedure. We first construct a correction g1, that allows to improve the approximation at infinity. For this
purpose we further develop r using (1.7), (2.38), (2.41):

ry = ri + r/i,
rg(x, 1) = —283€ile/2(|s|2 - l)S(pg (e(x — vlt)),
O, = iei”‘(zj_3)x/2Aj(x, 1),

j=0
A= —2£3r26i2“‘q(p)(p§(8(x + vlt))(po(s(x - vt)),
Al=An+An+ A+ A,
An =47 1P g3 (e (x — v1n))po (e (x + vi)),
A= =28%r(Ir? = 1)1 P 3 (e (x + vi1))

+ere 11O [(v3(p) — vy ') (0))po(e(x +v11)) — 2ievo(p)gy(e(x + vit))],

-1 _n

A3 =—iervy; q01(p)ei”‘q(p)¢o(8(x + vlt)),
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Arg = —ervy e Py (v (p)go (e (x + v1)),

Ay = —4g3 |r| (s(x + vt))goo(s(x — vt))

Az = —2&Fe wlq(”)goo(e(x + vt))(po (e(x — vt)),

p= vl_l(x - q(t)) +t. (2.46)

At last, the remainders r/, satisfy

”@i(x _Q)r/i”Hl(R)

< Ce ‘/271 — (e +sup|61 ()] +sup|q/”(r)| +esup|vr(7)] +€SuP|U3e(T)|)- (2.47)
+ <t <t
As a consequence, we expect that
|©+(x — @)l ”Hl(R) <, 1<e

Set
o Hb(x,1) H™(x,1)
— A BIO=Fo)03| & (r — 9 (x —
gi(x,n)=e 0 3[O+(X q)<H+(x’t)>+O(x q)(H_(x’t)ﬂ,

X
HY(x,0) = —i—rl(x,1),
1]

3
H™(x,t)=) H; (x,1),
j=0
_ —31v|x/2A0(x 2]
2v1 ’
H =H;+H,+H;+Hy,
Hj = —2i82rvf1e_i”1x/2+i”1’1(/’)<po(e(x + v10))(th(e(x + v11)) + th(e(x — v11))),

— _ =1 _—ivix/2
H,=iv e

H, =

xAp(x, 1),
4v%
(4Eo+v7)?
Hiy =iervp e 2090, (0) (qoo (1) — qoo(vy ' x +1))go(e(x + v11),

H, = 2i82U1 e ’”‘x/cho(s(x — vlt))(th(s(x —+ vlt)) —+ 1),

H; — 31v1x/2 A32(x 1)
Ul

13— — e_iUIX/2A13(xat)y

(2.48)

It is not difficult to check that H* gives an approximate solution of the equation i3, H = (—8)% - v% J/HHT + r?_ in
the sense that

eVl

|64 =) ((=id — dex + v /4= ) HT +rL) | 1y < C +st+)ﬁs7/2. (2.49)
Similarly, for H j_ one has
” O_(x - ‘1)((_i8t — Oxx + ”12/4 )H + MmN )HH'(R)
<C(+er) w[ 2 4 g3 Sup|q ()] +&¥ sup|q”’(r)|]. (2.50)

Notice also that
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eVEl
le1®] g < Ce¥2 0 +et0)——
yet
g1 < C20 +et) T 1=0.1,
B _ B e}/é‘t
||@—(X_Q)(H _H12_H14)||H1<C83/21+g)/£t’

and for any y; > 0,/ =0, 1, one has
||e—1/1 |x_q|8ig1(t) ”OO < C82e—y€|t|’
”e—)/llx—qla)ch-F”oo’ ”e—}’l |X—t]|3)1( (H_ _ 1:1—) ”oo < Ce_yg‘tléj(q),

where

- 2ig? .
A7 (x.1) = 2|1 2o (e 1) (1 + th(evy ).
vy

Write gV = g1 + ¢@. Then g@ solves
ig? =HnZ?® + N2,
where
N® =N —id,(30+ &)+ H®) (o +81).
It follows from (2.43), (2.45), (2.46), (2.47), (2.49), (2.50), (2.53) that
NP =Ty L1+ Ty40+No+Nj+N,+N;+R.
Here

N\ =Nj—Noj, j=12.3,

‘ H_ (x,
Ly =Lo+ V(x, Eg)O_(x)e¥1s (ﬂ)
H_(x,t)
- s
— 010 (x)e! s (ﬁ) — 0" (x)g3el 213 (ﬁ)
H_(x, 1) A (x,1)

Notice that L can be written in the form
Li=ePOL, 471 0g 17
where
L1 (x, 1) = 2p0(ev10) (W1 () + g (O W2 () + 2 ¢ (ev1) (W3 (x) + g () Wa(x)),

with some new functions W;, j =1, ..., 4, of the same type as in (2.43), (2.44).
At last, R’ is the remainder that satisfies:

evet
1+ evet

X [83 + 83/2|9/(Z)| +&3/2 sup|vgr(v)| + el/? sup|gp (7| +el/? sup|q}é/(r)|]
<t <t <t

RO <t +]a)])

+ Ce e (lur()] + 16" @)]).
We assume here that § < % Accordingly to our heuristics we expect that

||R’(t)||H1 <egd, r<el.

(2.51)

(2.52)

(2.53)

(2.54)

(2.55)

(2.56)

(2.57)

(2.58)

The next step is to construct a correction g; that allows to remove from the r.h.s. of (2.54) the e2-order terms Ty,4 Ly

and Ty 4, Q. Following (2.23) we define
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&2(x, 1) =gr0(x, 1) + g2.1(x,1) + g2.2(x,1),
g2.00x, 1) = =293 (ev11)Tp s L™ " (Eo) P(E0) Qo,
82 (x,0) =[O0, 1) + e V01 (x, D], j=1,2,

ni(x,t)= Z Vi (x, ) To).q0)Ej (%),

j=1,....4
m(x, 1) =¥s(x, ) Toe) g0 E5(x).
Here
£j(x)=—(L(Eo) — Eg— v} /4 —i0) "' W;(x), j=1,....4,
£5(x) = —(L(Eo) —2Eq — v}/2— i0) ™' P(E0) Q1+,
Vi, 1) =04 (x — )pj(x — vit, 1) + O_(x — g)e! M0V FDZIVIa0® o (x Lyyp) 1), j=1,...,4,
p1(§,1) = @o(£§), p3(E, 1) = —@y(e8),
pj+1E 0 =pjE D(q0(5v; ") + 90 () +gr®), j=1.3,
Ys(x, 1) =601 (x — q)wé(s(x — vzt))e’-AJr +O_(x — q)(pg(s(x + vzt))eiA‘,

Ap =2 . =2,/ Eq+v?/2
¢—§(v1$v2)(QOo(f$xvz ) — q00(0)). vy = o+ vi/2.

It is not difficult to check that

lg2.0®) | 1 < Ce2evel,

evet
210 1 < Ce¥2(1+]a®) = 00—
eVet
||g2,2(t) ”Hl < C53/2 1+ evet ’
evet

||8,ng2”oo < C82(1 + |q () —Cloo(f)|)m’
e —alales | < CeXigre ™M, 1=0,1,

|—id:g2+ H)g2 + To.qL1 + To.q P(E0) Q| 11

< Clg) (32[6' ()] + &3 [ur ()] + £3). (2.59)

1+ evet

2.6. Final equations

We now summarize the above constructions. Set
f=r7+r, fP=fo+ fi+ fo (2.60)
where f; are defined by
gjlx,t)= ei‘ﬁ("”)fj (x = b(),1).
Then f"(y,t) solves

ifr=L(E®) " +L(o®)f +D,

D=Dy+D;+D,+D3;+R", (2.61)
Do = Do + Po(E(l))Dz(E(t), f(f)),
Dy = e 1 PBVY(1)e P fr — o=, 0 L V(D Z, (2.62)

Dy = P(E)D2(E(t), £(t)) — e 2400 (P(Ep) Q) (- + (1), 1), (2.63)
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D3 = D3 — F(| fol )( f;O)

where R” admits the same estimate as R’:
evet

|R"®] 1 < <q(t)>l+eV“

x [8 +s3/2‘9 (t)] +&3/? sup]vR(r)] +el/ sup]q (r)‘ +el/? sup‘q’”(r)]]
<t

+Ce e (lur@)] + [0/ @)]).
We finally represent f” as a sum:
frO=h®+k@).  h@)y=P(E®)f ®,
k()= Po(E®)f" ()= kj ()& (E®)).
j

Then h(t) and k(z) satisfy
ihy=L(E®)h+1(0®))h+ D,

D' = P(E)D + Dy, Dy =[P(E), ll(a)]fr +iE'()dg P(E) f",

(k, 03€) = —(fP, 03&;).
It follows from (2.23), (2.27), (2.28), (2.51), (2.59) that

L foll g < Ce'/2,

eVel

32 .
I £l < Ce ((q)+8t+)m, ji=1,2,
 follwie < Ce,

) eVet
I fillwiee < Ce (<q>+8t+)1+ = J=12,

and for any y; > 0,
le™Ma5(fo = )] < C(2 (@) +ele@)e M, 1=0,1,
e ol £, < Ce*ghe M, j=1,2,1=0,1.
Here we have assumed that
e <C
Combining (2.67), (2.72), (2.73) one gets
k)| < C(e2lq) +efeto])er M.

2.7. Estimates of D’

Consider Dj. It follows from (2.28), (2.73), (2.74) that
D1l < Ce 7 g)2 (&7 + 2(|ER| + Icr| + [vrl)).
For D, one has
D2l < C((74q) + °[c@)| + & e 7P f = 2)|| yu)e 7!
+ e = 2) [0+ e £ 0)s

with some yy > 0. Combining this inequality with (2.72), (2.73), (2.75), one gets

D20l < C((¥(q) + &2[c@®)] + ellhll 1 )e M+ ||n1%,)).

(2.64)

(2.65)

(2.66)
(2.67)

(2.68)

(2.69)
(2.70)

2.71)

(2.72)
(2.73)

(2.74)

(2.75)

(2.76)

2.77)
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Consider D3. From (2.68)—(2.72) one has
) eVet
|77 + k) +R) = F(1fol) foll 1 < Ce*((@) +et0) T

so that

D3l < C|F ()£ + k) (£ + &) = F(1fol®) foll 1 + | £ + K|yt Il g1 + I1A13,1)

yet

< C<83((61) + ety) T oot

+ ekl + ||h||3;,1). (2.78)

For D4 one has

IDall g1 < C|A@)] (e 7 + [1ll 1)

By (2.7),

A< C(ePe M+ 1n]7,1). (2.79)
Therefore,

IDall g < (e 4 |1A13,0).- (2.80)

Combining (2.76), (2.77), (2.78), (2.80), one gets

|PEYD'| ) < C(ee—”‘f'<q>2[|e/(r>| + |Er(®)] + [cr®)] + [vr ()]

eVet

+ ((g)* +ety) [83+83/2<|9/(t)| +sup|vR(r)|)
<t

14 evet
1/2 " "
+&'72( sup|g (v)| + sup|q¥ (7))
<t <t
+ e Vg h|l g1 + 2Rl g1 + ||h||§1.). (2.81)
2.8. Some estimates of the trajectory o (t)
Consider (2.37). By definition of G r one has
|Gr| < C(gefysltl ”e*)’oly\(f —7) ”2 + ”e*}’olﬂ(f —7) ”3 + 8||efyo|y|f||§ + “e*VO\yIfHZI).
It is also not difficult to check that a similar estimate holds for % GR:

d ,
2568 < Clee M) = D)+ eI = D e [ Je L),

Combining these inequalities with (2.72), (2.73), (2.75) one gets

d
—Gpg

Ga
|G Rl o

< C((¥g) + e2lel)e M+ ee VM h| gy + 11113,0). (2.82)

Therefore, integrating (2.40) one obtains

|ER(t)

vr(D)|, |cr(®)]
t

<C (sze—y“' + f ds (£3(q () + *[c(9)])e 71 + e VB ()| 1 + | () ||i,,>. (2.83)

—00

’
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2.9. Bootstrap arguments

Define

m(t) = sup”h(r)”Hl (l + e_al”),
<t
61 > 0. In this subsection we prove

Proposition 2.3. For 8 sufficiently small (independent of €) and for t < e~ '=% § < 1/8, one has

m(t) < Ce?(1 4 ety)"/?. (2.84)
The proof of this proposition is by the bootstrap argument based on the following lemma.

Lemma 2.4. Assume that in addition to (2.29), (2.74) one has

m(t) < &2, (2.85)
Then

m(t) < Ce>(1+ 1),

2816t

|e(t)| < Ce, (2.86)

—3,2

provided t < & and ¢ is sufficiently small.

Since (2.29), (2.74), (2.85) do hold as t — —oo, Lemma 2.4 implies Proposition 2.3 by a standard continuity
argument.
The rest of the subsection is devoted to the proof of Lemma 2.4 which relies on the energy type estimate on h(z).

Proof of Lemma 2.4. Combining (2.79) with (2.85) one gets

25
A < Clee el 4 8367181 (2.87)
= 1+€2516t ’ :

which gives

e2518t
HGIBEGIES Ce o
251t
la| <ca+ e@m. (2.88)
Injecting (2.88) into (2.83) one obtains
) 2816t f 5|
—YVE|S
|ER®)], |vr@®)]. |cr()| < C| & (1+8t+)m+/dsee Y R | )- (2.89)

Consider 6(t) = B(t) — Bo(t). One has
0'()| < C(]A0(g @)+ v* + |El).
Therefore by (2.87)—(2.89),
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28, et

AG] <C(ez +|vR|+|ER|),

1+626181

) 62518t !
o] <Clel +ety) WJF / dse(t —5)e V1 n(s)| 1
—00
1/2 5 251 et
< Ce (1 +8t+) W

By definition of gg(¢) (see (2.41)) one has
|ak] < C(IGRI + 27710 ()]),
g% | < C(‘%GR +e2e (o) +g)>,

which together with (2.82), (2.85), (2.88), (2.91) gives

628|£v|t
1+ 628181)1[ :

Combining (2.81), (2.89), (2.90), (2.92) one gets finally

lgr O] + g7 ()] < €&

25818t

2
T 200t + e llhll g

|PEYD'| 1 < C<83(1 +ety)?

t

_I_ge—yalrl||h||H1 +826_V£|’|/dse_y“”h(s)”Hl)'

—0o0

Here we have used 1 < e=3/2,
We now perform the energy type estimates on 2. We compute

d - -
E(L(E(t))h(t), o3h(1))

—im([L(E), 1 (0)03]h, o3h) + 2im(P(E)D', 63 L(E)h) + E'(t1) ((h, h) + (VEh, o3h)).
Since [L(E),li(0)o3] = —v/8y + [V(E), l1(0)o3], one gets from (2.94), (2.93), (2.87):

d R .
TALEO)R), 0300 < (O [AO [0 + | PED 1 I111)

t
<C(SSao(st)+8a(8t)||h||§1. + %a(er) / dsa(ss)||h(s)||§{l>,

where
_ 6 62511’
ao(t) = (1 +74) Ty
) 251‘[
a(t)=~0+1y) Tr oo

Since under assumption (H2), one has
(L(E®)h(t), o30()) = Clh|1%,
(see [12], for example), one can rewrite (2.95) as
d t
Ey(t) <C (85a0(8t) +ea(e)y(t) + a(et) / ds a(ss)y(s)) ,

—00

377

(2.90)

(2.91)

(2.92)

(2.93)

(2.94)

(2.95)
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where y(t) = (L(E (t))ﬁ(t), 03;; (t)). Integrating this inequality and using the boundedness of « in L1 (R) one gets
1

y(t) < Ce’ / dsag(es) < Ce*(1 +e1y)’
—0oQ

In terms of £, (2.96) takes the form

281t

Trom (2.96)

e51€t

2 7/2
|h®)|| ;1 < Ce*(1 +e1y) o
which completes the proof of Lemma 2.4. O
2.10. Proof of Proposition 2.2

We are now in position to finish the proof of Proposition 2.2. By (2.75), (2.83), (2.84), (2.88), (2.90) one has for

any et <&~ 1/8:
2516t
’U(t)L |C(t)} < CSW’
ezalet
|ER(D)|, [vr@)], [cr(D)] <Cezm, (2.97)
2816t
g < CA+er)—s
ezslst
|90 = qo0(®)| < Cel +et0) T (2.98)
28, et
o) < ce(l +8t+)m, (2.99)
S1&t
|fr o), < ce2a +st+)4m, (2.100)

which together with (2.27), (2.69), (2.70) gives (2.12), (2.15).
To prove (2.17) we return to the explicit formulas for g;, j = 0, 1. Consider go. It follows directly from (2.23),
(2.98) that for (Ing)? < er < e /8,

e PoO=PD)gn(x 1) = ere"'”“‘/zﬂ'”lqoow("””(pg(s(x +vi1)) + eseivl"/zgoo(s(x —vi11)) 4+ O (83/2)
= sre_ile/2+i”1q"O(vl_IH’)(1 - ivflqoo(t)vo(vflx +1))po(e(x 4+ vi1))
+ese 2o (e(x — v10)) + 01 (63/7). (2.101)
By (2.52), (2.98) one has for g;:
e PP gy (x 1) = ievl_1re_i”'x/2+iv‘q°°(”1_1x+’)vo(vl_lx + 1)qoo(t)po (e (x + vit))
—itrd (x, 1) —ite "2 Ay (x, 1) + O (6777), (2.102)
where
Ap(x,t) = —283r(|r|2 — l)eiv'qOO(vl_]X+t)<p8(8(x + vlt))
+eretM19000T (2 (v x 4 1) — vy g (v x + 1)) go (e Cx + v18))
— 2iev0(vl_1x + 1) g (e(x + vi1))]
and rj)_ is given by (2.45). Notice that
Ap(x, 1) = eV (=ia, — agy — (v} /4 — £%)a — 2]al*a), (2.103)
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where
. . —1
a(x,t) = ere VX2 Hivigo, X‘H)(po(s(x + v1t)).

Combining (2.59), (2.98), (2.100), (2.101), (2.102), (2.103) and still under assumption (Ing)*> < et < ¢~'/8 one
gets

X, 1) = x4(x, ) + x—(x, 1) + O (697, (2.104)
where

X (e 1) = e A 26 5 (6 F i), £%1),

R D) = G0 + it (9265 ) + 2 e E ),

Ly =s90(y),

gy =re* Mgy (y). (2.105)

Introducing ¢*(y, 7) as being the solution of the following Cauchy problem
. 2
ity =—¢5, —20ct ¢,
+ +
¢ lemo =1
one can rewrite (2.104), (2.105) in the form
X, 1) =Yy, 1) + Y- (x, 1) + Op (€%77),
Yo (x, 1) = e VA 20 (o (x 00, 621), (2.106)

which concludes the proof of Proposition 2.2.
3. Post-interaction region: g~ 1-8 <t< 6|lne|€_2

3.1. Ansatz

To control the dynamics in the post-interaction regime ¢~ !~¢

further decomposing f as

FO.0=f+O.0+ -, 1) +r(y, 0,
where f1 are defined by

Ya(x, 1) =P fi (x — (1), 7).

In terms of r orthogonality conditions (2.2) take the form

(F,038)) = —(fy + fo,038)),  j=0,....3. 3.1)

Notice also that ¢*(t) are bounded in H! uniformly in T € R. As a consequence, one has

=T <t we still use the representation (2.1), (2.2)

| @ <Ce'?, teR,
and by Lemma 2.1, the same is true for r(¢):

lr®] 0 <Ce'? teRr (3.2)
Note also that by Proposition 2.2:

[r ()] 1 < €2 3.3)

Our goal now will be to improve (3.2) by showing that, in fact, one has
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Proposition 3.1. For ¢ 7179 <t < 8|Ine|e 2, § > 0 sufficiently small, one has

|r @) < Ce¥2eC57. (3.4)

The proof of (3.4) relies on the orbital stability type arguments combined with the spacial localisation properties
of ¢* described by the following lemma.

Lemma 3.2. For any k,l € N one has

lafe* @], <c.
[fase @], < ciry™®D, reR. (3.5)

The proof of this lemma can be found in [3].
As a consequence of (3.5) one gets for any &, /:

” f:l:(t) ” Wk, < CE,

|+ f-O] e < C&', &7 <1< Ce7Inel. (3.6)
By (2.4), (2.12) one has
|b()| < C(1+er), (3.7)

which combined with (3.5) implies for any /, k
[ ~o5 fe) ], < Ce' (3.8)

provided e 10« C8_2|11’18|.
Applying (3.8) to (3.1) one gets for any /

(F(), 036, (E0))| < Ce', e <t <Ce?|nel, j=0,....,3. (3.9)
Consider
VOO =y (@) = ¥4 (O = Y- =P (p(x = b(0), ED) +r(x —b(1), 1)).
It solves

iv) = -y + F([v° ) + R,

R(x, 1) =e'®(Ro(x —b(t), 1) + Ri(x — b(1),1)),

Ro=F(lp+ fr + [-P) @+ fr + ) — F(0D) e+ 21 £ P fr + 21 f-1* f.

Ri=F(lp+ fr+ /- +rP) e+ fr+ -+ —F(lo+ fr+ [ P)e+ fr+[)
—F(lp+r1*)(@+1r)+ F(¢*)p. (3.10)

Lemma 3.3. y/°(¢) satisfies the following “conservation laws”:

d
ZIveol;

d
+ ‘EH(w%))

d
+ 'EP(W(;))‘ <CleT+2|r@| 3 +elr@|3]- (3.11)

Proof. It follows from (3.10), that
d
vl =2im(R.y°).
d
TH(0) =2im(y. Ry) - 2im(F(|v°[)y°,R),

d
EP(wo(t)) = —4re(Ry, ¥°). (3.12)
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By (3.6), (3.7) one has
IRoll 1 < Ce™2,
and for any y; > 0, any [,
”e—leyIRO“Hl <Cé, (3.13)

e 170 <r < Ce2lne.
Consider R . It is easy to check that

1Rt < C(Ir i (Je PN+ F oo + 1 Fe + Fol0) + 1101 fx + f= Do),
and for any y; > 0,
i R (A R F A PO T P
Combining these inequalities with (3.6), (3.7) one gets
IR g1 < C(EX N7l gr +llrl3).
le MR, < CéE (3.14)

e 10 <r g C8_2|1n8|.
From (3.12)—(3.14) one deduces immediately

<CleT+&r| 3 +e|rd]}] O

d d d
SOl S| |4 rweo)

As a direct consequence of Lemma 3.3 one gets the following estimate on the parameters:

t

v—v(T)| < c<e3 +ro]? —i—/ds (&2]r )| + aHr(s)H3Hl)), (3.15)

T

3

|E — E(T)

T = ¢~ 179, Indeed, it follows from (3.8) that for any /

w005 = e(EO)|5 + [r®];+ o).
P@) = P(r) +iv([e(EM) |3+ [r)]3) + O(&).

Combined with (3.11) this gives (3.15).
Consider the expression H(y(r)), where the functional  is defined by

HW)=HW) + Eollv 3.
One has

H(W' (1) = H(p(E) +r) — %”P(go(E) +7) + (Eo + v2/4) | 0 (E) + 3
=Ho(t) + (03 L(E)F, F) + Hi (1), (3.16)

where

Ho(t) = H(p(E®)) + (Eo +v20)/4) [0 (E®) |5
and H(¢) satisfies

[H1(0)] < C(e" + (Il + |E = Eol)Ir 30 + Ir3,0), VL,
or applying (3.2), (2.4)

[Hi0)] < C (e +&"2Ir7,0). (3.17)
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Notice also that due to (H2), (3.9)
Ir1%, < C((o3L(E)F,7) +&'). (3.18)

From (3.11) one has

d
THO|<ClT+E[r 0[5 +elr® 5]

Integrating this inequality and using (3.16)—(3.18) one gets

t

lr@) |5 < c<s3 + |Ho(t) = Ho(T)| + / ds (2 |r(s) |5 + SHr(s)Hz,)) (3.19)
T
For the difference Ho(t) — Ho(T) we have

[Ho(t) = Ho(T)| < C(|E@0) — E(D)|* + [v2() = v*(T)| + (| Eo — E(T)| + v*)|E(t) — E(T)
which by Lemma 2.1 implies

|Ho(t) — Ho(T)| < Ce(|E — E(T)| + |v(t) — v(T)]). (3.20)
Combining (3.20), (3.19), (3.15) one obtains finally

),

t

Ir@|5 < C<83 —i—/ds (€2]r )| + eHr(s)HfH])). (3.21)
T
To deduce (3.4) from (3.21) we use once more the bootstrap argument. Assume

Ir@) | ;0 <e. (3.22)
Note that by (3.2), (3.22) is verified for ¢ sufficiently close to T'. Under bootstrap assumption (3.22), (3.21) becomes

t

Ir )71 <C(e3+ezfds ||r(s>||21>

T
and gives the desired bound

|r(6)]| < C&¥/2eC™.
Combined with the standard continuity arguments this concludes the proof of Proposition 3.1.

3.2. Estimates of the trajectory

To finish the proof of Theorem 1.1 it remains to analyse the trajectory o (t). Combining (3.4), (3.15) one gets

|E(t) — E(T)|, |o(t) — v(T)| < C&3eC*™, (3.23)

9

which together with (2.12) implies

|E(t) — Eol, [v(t) — Vo| < Cé?, Vo = 2exk. (3.24)
Furthermore, from (2.7), (3.8), (3.4), (3.24), (2.12) one has
b —Vo|<Ce?,  |b(T) = VoT| < Ce'°,
/ / (vb)/ 2 1-6
B —By+——|<Ce’ B —po(D)| <Ce'™ (3.25)

Asa consequence,

|b(t) — Vot

3

B — Po(1)| < Ce?t, T <t<8e el (3.26)

which concludes the proof of Theorem 1.1.
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Appendix A. Proof of Proposition 1.1

The proof is by the standard fixed point arguments. We write the solution as the sum
v(t)=wo) +wi(@®) + x®),  wj®)=w(,0;®), j=0,1.
Then ¥ () = (;) solves

i X =—03%xx + V(o)X + N, (A1)
where
2 ’ 2 2 ’ 2 0 w%
V(wo) = (F(Jwol®) 4+ F'(lwol*) lwol*)o3 + F'(lwol) )

wy 0
N(x) = No(x) + Ni(x),

) — (iPoos V(Eo)eiiﬂ"@,

—wo — wj — X wi + X
+
- F(|w0|2)< o > — F(lw +x|2)< 1 X_>,
—Wo —wp — X
+
Ni(x) = F(lw +x|2)< ! X-) — F(|w1|2)( " )
—wir — X —wi

For yx satisfying || x || ;1 < C, one has

INoGO || 1 < C e +11x13,0).

INo(x1) = No(x2) | ;i < Clixt = xall g (8" + lxall g + llxall )

INLGO|| 1 < CE X + 1X1E,1)

ING) = NOD| 0 < Clixa = xall g (82 + Ixallz + x2llz),

(N1(x). 0370058 (Eg))| < Cee" + 11 x115,1)

(N1 (1) = N (x2), 03¢ O%E (Eo))| < Cllx1 — xall i (€7 + llxall gn + x2ll 1) (A2)
We rewrite (A.1) as an integral equation

t

x(O) =T =—i / dsU(t, s)N(x(s)),

—00

U, s) = £!Bo(1)o3 ,—i(t=s)L(Eo) ,~ifo(1)o3
and view J is a mapping in the space C((—oo, T], H h T <o, equipped with the norm

llxll = sup e | x ()| -
T
It follows from (1.10), (A.2) that

70O < K (14 e Tlx I +ellx ),
7D = TO || < Killxt — xali(e + &7 e T + 3T (Jlx1ll + llx2ll) )

provided | x|zt < C. This means that [J is a contraction of the ball ||x || < 2K into itself, provided both ¢ and
e3¢ are sufficiently small. Consequently, it has a unique fixed point x that satisfies

lx@®] 0 <Celer™, t<T.
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