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Abstract

It is proved the existence of solutions to the exterior Dirichlet problem for the minimal hypersurface equation in complete non-
compact Riemannian manifolds either with negative sectional curvature and simply connected or with nonnegative Ricci curvature
under a growth condition on the sectional curvature.
© 2011

1. Introduction

With the development of the Riemannian geometry many PDE results proved in the Euclidean geometry for the
class of geometric operators have been investigated in more general Riemannian manifolds. In the case of the Lapla-
cian equation, S.T. Yau proved that Liouville’s theorem (an entire nonconstant solution of the Laplace equation in R

n

is necessarily unbounded) is also true in a complete Riemannian manifold Mn with nonnegative Ricci curvature and
conjectured that if M is simply connected with sectional curvature satisfying −κ2

1 � KM � −κ2
2 < 0, for some con-

stants κ1, κ2, then there should exist bounded solutions of the Laplacian equation on M . This has been proved in the
80’s by Anderson and Sullivan (see [12]). Actually, they proved that on the compactified manifold M := M ∪ ∂∞M

one can solve the Dirichlet problem for the Laplace equation for any given continuous data on ∂∞M .
For the case of the minimal surface equation, it is known that Bernstein’s theorem is true in a complete noncompact

2-dimensional Riemannian manifold with nonnegative curvature: Any entire minimal graph in M2 is totally geodesic
in M2 × R [10]. As far as the authors know, if a similar result holds in higher dimensions is still an open question.
In the case of simply connected Riemannian manifolds with negative curvature one should expect a similar existence
result for minimal graphs as Anderson and Sullivan results for harmonic functions. In fact, in [4] the authors prove
the existence of entire solutions of the minimal hypersurface equation with any given smooth data at the asymptotic
boundary ∂∞M of M if M is complete, simply connected, with sectional curvature satisfying KM � −k2 < 0 and
such that isotropy subgroup of the isometry group of M at some point p of M acts transitively on the geodesic
spheres centered at p (this result has a similar harmonic counterpart due to H.I. Choi, see [2, Theorem 3.6]). In [6]
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A. Gálvez and H. Rosenberg prove the existence of solutions when dimM = 2 assuming only a negative upper bound
for the sectional curvature of M . A partial extension of this last result and an improvement of the one of [4] (and of
Theorem 3.6 of Choi [2] too) was obtained in [11], where an unified treatment for the harmonic and minimal case is
given. In [8] it is investigated the extension to a 2-dimensional Riemannian manifold of the classical result of Jenkins
and Serrin on the Dirichlet problem for the minimal surface equation on bounded domains with infinity boundary
value data.

Another result on minimal graphs, due to N. Kutev and F. Tomi, asserts the existence of solutions to the exterior
Dirichlet problem for the minimal surface equation, namely: If Ω ⊂ R

2 is a domain such that R
2 \Ω is bounded, then

there is a nonzero solution of the minimal surface equation in Ω assuming at ∂Ω any given boundary data with small
enough oscillation (see Theorem E of [7] for the precise statement). In the present article we investigate the extension
of Kutev and Tomi’s result to a Riemannian manifold in the case of vanishing boundary data. Precisely, we study the
existence of solutions to the following Dirichlet problem:⎧⎨

⎩
M(u) := div

(
gradu√

1 + |gradu|2
)

= 0 in Ω, u ∈ C2(Ω) ∩ C0(Ω),

u|∂Ω = 0
(1)

where Ω is an unbounded domain (open and connected) in a complete noncompact Riemannian manifold M such
that ∂Ω is compact; div and grad are the divergence and gradient in M.

We prove existence results of solutions of (1) in the cases that either M has nonnegative Ricci curvature or M is
simply connected and with sectional curvature KM satisfying KM � −k2 < 0 for some positive constant k. In the case
of negative curvature, we prove:

Theorem 1. Assume that M is simply connected and that the sectional curvature KM of M satisfies KM � −k2 < 0
for some positive constant k. We require that Ω is a domain of M satisfying the exterior sphere condition, namely,
given p ∈ ∂Ω, there is a geodesic sphere of M passing through p, tangent to ∂Ω at p which is the boundary of a
geodesic ball containing Ω.

Given any nonnegative real number s, there exists a bounded solution u ∈ C∞(Ω) ∩ C0(Ω) of (1) such that

lim
x→∂Ω

sup
∣∣gradu(x)

∣∣ = s

and

max
Ω

|u| � 2s

k
.

We next consider the case that M has nonnegative Ricci curvature. We prove:

Theorem 2. Let M be an n-dimensional, complete noncompact Riemannian manifold with nonnegative Ricci curva-
ture and with sectional curvature satisfying the growth condition

KM(x) � 4c2

(1 + 4c2ρ2(x))2
, x ∈ M,

for some constant c > 0, where ρ is the distance function to a totally geodesic submanifold S of M,

ρ(x) = inf
{
d(x, y)

∣∣ y ∈ S
}
,

d = Riemannian distance in M, and KM(x) is the maximum of the sectional curvature of M on planes of TxM

containing gradρ. Let Ω be an unbounded domain in M such that ∂Ω is compact and assume that ρ is smooth on Ω .
Then, for any given nonnegative real number s, there exists a solution u ∈ C∞(Ω) ∩ C0(Ω) of (1) such that

lim
x→∂Ω

sup
∣∣gradu(x)

∣∣ = sup
Ω

|gradu| = s. (2)

We observe that the existence of S is part of the hypothesis of Theorem 2. However, if M has nonnegative sectional
curvature the existence of S is guaranteed by the Soul Theorem of Cheeger and Gromoll [1]. We remark that Cheeger
and Gromoll’s theorem does not apply if it is only assumed that the Ricci curvature of M is nonnegative.
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We finally remark that the vanishing boundary data hypothesis of the exterior Dirichlet problem, at least in The-
orem 2, cannot be dispensed, since Theorem N of [7] proves the existence, when M = R

2, of continuous nonzero
boundary data with arbitrarily small C0 norm for which the exterior Dirichlet problem does not have a solution.

2. Some notations and preliminary results

It is assumed that M is a complete Riemannian manifold. We shall make use later of the following computa-
tion. Let N be any given smooth compact submanifold of M and denote by ζ the distance to N, that is,

ζ(x) = d(x,N) = min
{
d(x, y)

∣∣ y ∈ N
}

where d is the Riemannian distance in M. Given a function ϕ ∈ C2(R), set w = ϕ(ζ ). If ζ is differentiable in a
neighborhood of x ∈ M, considering an orthonormal basis in TxM containing grad ζ(x), we obtain

M(w) = div

(
gradw√

1 + |gradw|2
)

= div

(
ϕ′ grad ζ√
1 + (ϕ′)2

)
,

and, after some computations

M(w)(x) = (n − 1)ϕ′′(ζ(x)) + ϕ′(ζ(x))(1 + (ϕ′(ζ(x)))2)�ζ(x)

(n − 1)(1 + (ϕ′(ζ(x)))2)3/2
. (3)

The following result follows from Lemma 6 of [3]:

Lemma 3. Let Λ be a C2,α bounded open subset of M and u ∈ C2,α(Λ) a solution of M(u) = 0 in Λ. Assume that u

is bounded in Λ and that |gradu| is bounded on Γ = ∂Λ. Then |gradu| is bounded in Λ by a constant that depends
only on supΛ |u| and supΓ |gradu|.

In the case that M has nonnegative Ricci curvature we have in fact a maximum principle for the gradient. This
principle is fundamental for the proof of Theorem 2:

Lemma 4. Assume that the Ricci curvature of M is nonnegative. Let Λ be a C∞ bounded open subset of M. Then
any solution u ∈ C∞(Λ) of M(u) = 0 in Λ satisfies the gradient maximum principle

max
Λ

|gradu| = max
∂Λ

|gradu|.

Proof. Let η be a unit normal vector field orthogonal to the graph G of u such that 〈η, ∂t 〉 � 0, ∂t being the unit vector
in the R direction. Since RicM×R � 0 it follows from Proposition 1 of [5] that

�〈η, ∂t 〉 = −(
RicM×R(η) + ‖B‖2)〈η, ∂t 〉 � 0,

where ‖B‖ is the norm of the second fundamental form of G. The function 〈η, ∂t 〉 is then superharmonic on G so that

max
Λ

|gradu| = min
G

〈η, ∂t 〉 = min
∂G

〈η, ∂t 〉 = max
∂Λ

|gradu|. �
Notation. Under the hypothesis and notations of Theorem 1, we denote by γ the Riemannian distance in M to ∂Ω

restrict to Ω, namely

γ (p) = inf
{
d(p,q)

∣∣ q ∈ ∂Ω
}
, p ∈ Ω.

Moreover, we set Fr = γ −1(r), r � 0 and denote by HFr the normalized mean curvature of Fr with respect to the unit
vector field normal to Fr pointing to the bounded connected component of M \ Fr. Note that

�γ (x) = (n − 1)HFγ (x)
(x), (4)

x ∈ M.

In the next lemma we use the exterior sphere condition to estimate from below the mean curvature of the level
hypersurfaces Fr which is fundamental to the construction of low barriers for problem (1) in the case of Theorem 1:
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Lemma 5. If M is simply connected and with sectional curvature satisfying KM � −k2 < 0, k > 0, then

inf
Fr

HFr � k (5)

for any r > 0.

Proof. Given p ∈ Fr there is q ∈ ∂Ω and a minimizing geodesic α : [0, r] → M such that α(0) = q and α(r) = p.

Let Sl(p0) be a geodesic sphere of M with some radius l and some center p0 passing through q, which is tangent
to ∂Ω at q and such that ∂Ω ⊂ Bl(p0). Then, by Gauss Lemma, Sl+r (p0) passes to p, is tangent to Fr at p and
Fr ⊂ Bl+r (p0). It follows from the tangency principle for constant mean curvature hypersurfaces and the Hessian
Comparison Theorem that HFr � HSl+r (p0) � k. �
3. Proof of Theorem 1

We first assume that Ω is a C2,α domain, 0 < α < 1. Given s � 0, we look for constants a, b and c such that ϕ(r) =
(ar + b)/(r + c) determines a subsolution vs(x) := ϕ(γ (x)) satisfying vs |∂Ω = 0 and |gradvs |∂Ω = s. Obviously
b = 0 and |gradvs |∂Ω = ϕ′(0) = s implies that a = sc. Then ϕ′(r) � 0 and it follows from (3), (4) and (5) that vs is a
subsolution if

ϕ′′(r) + kϕ′(r)
(
1 + (

ϕ′(r)
)2)

= sc2

(c + r)6

(
kr4 + 2(2ck − 1)r3 + 6c(ck − 1)r2 + 2c2(2ck − 3)r + c3(kcs2 + kc − 2

))
� 0

which is valid if we choose c = 2/k since then all the coefficients of the quartic polynomial on r become positive. We
then proved that

vs(x) = ϕ
(
γ (x)

) = 2sγ (x)

kγ (x) + 2

is a subsolution satisfying vs |∂Ω = 0 and |gradvs |∂Ω = s. Moreover

lim
γ (x)→∞vs(x) = lim

r→∞ϕ(r) = 2s

k
.

Let m ∈ N be given, m � 1. Setting Ωm = Ω ∩ {x ∈ Ω | γ (x) < m}, we prove the existence of a solution wm ∈
C2,α(Ωm) of M = 0 in Ωm with wm|∂Ω = 0 and such that sup∂Ω |gradwm| = s. To this end, set

Tm =
{
t � 0

∣∣∣ ∃ut ∈ C2,α(Ωm) such that M(ut ) = 0, ut |∂Ω = 0, ut |Γm = t, sup
∂Ω

|gradut | � s
}

where Γm = ∂Ωm \ ∂Ω.

We have Tm �= ∅, since 0 ∈ Tm. We prove in the sequel that Tm is bounded, that the supremum of Tm is assumed
and, what is the most fundamental point, that if tm = supTm then sup∂Ω |gradutm | = s. We begin by proving that if
t ∈ Tm then

t � vs |Γm = 2sm

km + 2
. (6)

Given ε > 0, we first prove that t < vs+ε|Γm. By contradiction, assume that t � vs+ε|Γm. Since

|gradvs+ε|∂Ω = inf
∂Ω

|gradvs+ε| = s + ε > sup
∂Ω

|gradut |
there is a neighborhood U of ∂Ω in Ω such that ut (x) < vs+ε(x) for all x ∈ U \ ∂Ω. It follows that there exists a
domain U ⊂ V ⊂ Ωm such that ut |∂V = vs+ε|∂V , which is an absurd since vs+ε|V is a subsolution of M and hence
vs+ε|V � ut |V . Letting ε → 0 we have t � vs |Γm. It follows that Tm is bounded and we may set tm = supTm < ∞.

We will prove that tm ∈ Tm.

We first prove if t ∈ Tm, then

sup
∂Ωm

|gradut | � s. (7)

Assume that t ∈ Tm. By definition of Tm we have sup∂Ω |gradut | � s.
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Setting zm = vs |Γm we have, as proved above, that zm > t . Moreover, the function ws := vs − (zm − t) is a subso-
lution since vs is one, zm − t is constant and M(w) does not depend on w, but just on its first and second derivatives.
Also,

ws |∂Ω = −(zm − t) � 0 = ut |Ω,

ws |Γm = t = ut |Γm.

It follows that

ws � ut � t,

ws |Γm = t = ut |Γm

and we may conclude that

sup
Γm

|gradut | � sup
Γm

|gradws | = ϕ′(m) = 4s

(km + 2)2
� s

proving (7).
Consider now a sequence {τj } ⊂ Tm converging to tm as j goes to infinity. For each j, there is a function uj ∈

C2,α(Ωm) such that M(uj ) = 0, uj |∂Ω = 0 and uj |Γm = τj . Since, by the maximum principle,

sup
Ωm

|uj | � tm (8)

it follows from (7) and Lemma 3 that the sequence {uj } has the C1 norm uniformly bounded in Ωm. Since Ωm is a
compact C2,α domain, from elliptic PDE theory we have C2 compactness of {uj } in Ωm (see [9]). Hence, there is a
subsequence of {uj } that converges uniformly C2 in Ωm to a solution wm ∈ C2(Ωm) of M = 0 in Ωm. From PDE
elliptic regularity wm ∈ C2,α(Ωm).

The function wm is a solution of M = 0 in Ωm that satisfies wm|∂Ω = 0, wm|Γm = tm and sup∂Ωm
|gradwm| � s. It

follows that tm ∈ Tm, that is, wm = utm .
We now note that sup∂Ω |gradutm | = s. In fact: By contradiction, assume that sup∂Ω |gradutm | < s.

Consider a function φ ∈ C2,α(Ωm) such that φ|∂Ω = 0 and φ|Γm = tm, set

C
2,a
0 (Ωm) = {

ω ∈ C2,α(Ωm)
∣∣ ω|∂Ωm = 0

}
,

and define T : [0,2] × C
2,α
0 (Ωm) → Cα(Ωm) by

T (l,ω) = M(ω + lφ).

Then

T (1,ωm) = 0

where ωm = utm − φ. From elliptic PDE theory we have that the Fréchet derivative ∂2T (1,ωm) = dMwm is an iso-
morphism (this is clear since dMwm(h), h ∈ C

2,α
0 (Ωm), depends only on the first and second derivatives of h and not

on h and hence satisfies the maximum principle) so that, from the implicit function theorem, there exists a continuous
function (on the C2,α topology) i : (1 − ε,1 + ε) → C

2,α
0 (Ωm), with i(1) = ωm such that T (l, i(l)) = 0, l ∈ (1 − ε,

1+ε). Therefore, since |gradutm |∂Ω < s and wm = i(1)+φ, there exists l ∈ (1,1+ε) such that sup∂Ω |i(l)+ lφ| < s.

Since

0 = T
(
l, i(l)

) = M
(
i(l) + lφ

)
,

i(l) + lφ = 0 at ∂Ω and i(l) + lφ = ltm at Γm, we have that ltm ∈ Tm, contradiction since ltm > tm = supTm. Hence,
sup∂Ω |gradutm | = s.

Since, from (6), (7) and (8)

max
∂Ωm

|gradutm | � ϕ′(m) � s,

max |utm | = tm � vs |Γm � ϕ(m) � 2s
Ωm k
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are estimates that do not depend on m it follows from Lemma 4 that the sequence {utm} has uniform C1 estimates on
compacts of Ω which implies the existence of a subsequence of {utm} converging uniformly C2,α on compacts of Ω

to a solution us ∈ C2,α(Ω) of M = 0 in Ω satisfying us |∂Ω = 0 and

sup
∂Ω

|gradus | = s.

Moreover, it also follows from the above estimates that there is a constant C(s) depending only on s such that |us |1 �
C(s). If Ω is only a C0 domain one considers a sequence of C2,α domains Λm satisfying the exterior sphere condition
such that Ω ⊂ Λm+1 ⊂ Λm and Ω = ⋂

Λm. From what we have proved above, for each m there is a solution vm ∈
C2,α(Λm) of M(vm) = 0 such that vm|∂Λm = 0 and

sup
∂Ω

|gradvm| = s � |vm|1 � C(s). (9)

From the Arzela–Ascoli theorem we may assume that vm converges uniformly on compacts of Ω to a function
us ∈ C0(Ω) such that us |∂Ω = 0. If U ⊂ Ω is compact, U open, then we have uniform C1 estimates of vm|U and
then, from elliptic PDE theory, vm|U contains a subsequence converging C∞ to us on U so that us |U ∈ C∞(U) and
M(u) = 0 in U. By the diagonal method, we obtain the existence of subsequence of vm converging to a solution
us ∈ C∞(Ω) ∩ C0(Ω) of (1). It is immediate to prove from (9) that us satisfies (2). This concludes the proof of the
theorem.

4. Proof of Theorem 2

We first consider the case that Ω is a C∞ domain. Let s � 0 be given. For m > 0 set Bm = {ρ � m} and let m0 be
such that ∂Ω ⊂ Bm for all m � m0. Given m > m0, set Ωm = Ω ∩ Bm and Sm = ∂Ωm \ ∂Ω.

We will prove the existence of m1 > m0 such that, given m � m1, there is a solution um ∈ C∞(Ωm) of M = 0 in
Ωm with um|∂Ω = 0 and sup∂Ω |gradum| = s. To this end, given m > m0, set

Tm =
{
t � 0

∣∣∣ ∃ut ∈ C∞(Ωm) such that M(ut ) = 0, sup
Ωm

|gradut | � s, ut |∂Ω = 0, ut |Sm = t
}
.

It is clear that Tm is bounded and the uniform bound for the C1 norm of the solutions of M = 0 corresponding to
points of Tm imply that the supremum tm = supTm is attained. Moreover, we may make use of the implicit function
theorem, as in the previous theorem, to assert that the solution um ∈ C∞(Ωm) of M = 0 in Ωm such that um|Sm = tm
satisfies supΩm

|gradutm | = s.
The main part of the proof consists in proving that the maximum of |gradutm | is assumed at ∂Ω. To this end, we

construct barriers from above and from below to um which gradient less than or equal to s/2 at Sm.

Since wm := tm is a solution of M = 0 in Ωm and u|∂Ωm � wm|∂Ωm we have um � wm on Ωm and hence wm is an
upper barrier.

To construct a barrier from below for (1) we first consider the paraboloid P of R
n+1 obtained by acting the

rotational group of R
n+1, that leaves fixed the xn+1-axis, on the parabola (t,0, . . . ,0, ct2), t ∈ R. The sectional

curvature of P at y = (y1, y2, . . . , yn+1) ∈ P with respect to any plane through the origin of TyP that contains the
tangent vector of the geodesic passing through y and the vertex of P is given by

KP (y) = 4c2

(1 + 4c2r2(y))2

where r(y) =
√

y2
1 + · · · + y2

n.

Let x ∈ M and y ∈ P be such that ρ(x) = dP (y,0), where dP is the Riemannian distance in P and 0 is the origin
of R

n+1. Then

ρ(x) =
r(y)∫ √

1 + 4c2t2 dt � r(y),
0
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and, from the hypothesis, it follows that

KM(x) � 4c2

(1 + 4c2ρ2(x))2
� 4c2

(1 + 4c2r2(y))2
= KP (y).

We then obtain, from the Hessian Comparison Theorem [12, Theorem 1.1], that �ρ(x) � �ρP (y), where ρP (y) =
dP (y,0). Therefore, if ϕ is such that ϕ′ � 0 it follows from (3) that v(x) = ϕ(ρ(x)) is a subsolution of Q in Ω if

(n − 1)ϕ′′(ρP (y)
) + ϕ′(ρP (y)

)(
1 + (

ϕ′(ρP (y)
))2)

�ρP (y) � 0, (10)

for all y ∈ P .
We have

�ρP (y) = n − 1

r(y)
√

1 + 4c2r2(y)
. (11)

Introducing the notation

δ(r) =
r∫

0

√
1 + 4c2t2 dt

and ψ(r) = ϕ(δ(r)) we have

ϕ′(δ(r)) = ψ ′(r)
δ′(r)

,

ϕ′′(δ(r)) = 1

(δ′(r))3

[
δ′(r)ψ ′′(r) − ψ ′(r)δ′′(r)

]
.

Setting r = r(y) we have that the inequality (10) holds if and only if

1

(δ′(r))3

{
(n − 1)

[
ψ ′′(r)δ′(r) − ψ ′(r)δ′′(r)

] + ψ ′(r)
[(

δ′(r)
)2 + (

ψ ′(r)
)2]

�ρP

}
� 0. (12)

Since δ′(r) = √
1 + 4c2r2, δ′′(r) = 4c2r/

√
1 + 4c2r2, from (11) we have that (12) holds if, and only if,

(n − 1)

[
ψ ′′(r)

√
1 + 4c2r2 − 4c2rψ ′(r)√

1 + 4c2r2

]
+ ψ ′(r)

[
1 + 4c2r2 + (

ψ ′(r)
)2]

(n − 1)
1

r
√

1 + 4c2r2
� 0,

that is
(n − 1)

r
√

1 + 4c2r2

[
r
(
1 + 4c2r2)ψ ′′(r) − 4c2r2ψ ′(r) + ψ ′(r)

(
1 + 4c2r2) + (

ψ ′(r)
)3] � 0

or

r
(
1 + 4c2r2)ψ ′′(r) + ψ ′(r) + (

ψ ′(r)
)3 � 0.

We have that

ψa(r) = ψ(r) = √
a

r∫
√

a

2c
√

4−a

√
4c2t2 + 1√

4c2t2(4 − a) − a
dt

is a solution of

r
(
1 + 4c2r2)ψ ′′(r) + ψ ′(r) + (

ψ ′(r)
)3 = 0

for all a ∈ [0,4) and

r �
√

a

2c
√

4 − a
.

Moreover, ψa satisfies
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ψa

( √
a

2c
√

4 − a

)
= 0,

ψ ′
a

( √
a

2c
√

4 − a

)
= +∞. (13)

Let r0 be such that δ(r0) = m0 and a0 such that√
a0

2c
√

4 − a0
= r0,

that is,

a0 = 16c2r2
0

1 + 4c2r2
0

.

Set ϕ(δ(r)) = ψa0(r). Given m > m0, let rm be such that δ(rm) = m. Since

ϕ′(m) = ψ ′
a0

(rm)

δ′(rm)
=

√
a0√

4c2r2
m(4 − a0) − a0

we have ϕ′(m) � s/2 if and only if

√
a0√

4c2r2
m(4 − a0) − a0

� s

2
⇔ rm �

√
a0(1 + 4

s2 )

2c
√

4 − a0
.

Hence, if we choose m1 > m0 such that

rm1 �

√
a0(1 + 4

s2 )

2c
√

4 − a0
,

since rm increases with m we have ϕ′(m) � s/2 for all m � m1. It follows from (13) that, for all m � m1, vm(x) :=
ϕ(ρ(x)) is a “catenoid-like” subsolution of M on Ω ∩ (Bm \ Bm0). It satisfies at x ∈ M such that ρ(x) = m0:

vm(x) = 0,∣∣gradvm(x)
∣∣ = ∞

and, if ρ(x) = m,∣∣gradvm(x)
∣∣ � s

2
. (14)

Clearly vm + b is a subsolution of M on Bm \Bm0 for any constant b and there is b0 such that vm(x)+ b0 � um(x)

for all x ∈ Ω ∩ (Bm \ Bm0). Set

bm = max
{
b

∣∣ vm(x) + b � um(x), ∀x ∈ Bm \ Bm0

}
.

Since |gradvm(x)| = ∞ for x ∈ Sm0 = ∂Bm0 it follows from the maximum principle that vm(x) + bm = tm for x ∈ Sm

and um � vm on Bm \ Bm0 . Then

|gradum|Sm � max
{|gradvm|Sm, |gradwm|Sm

} = max

{
s

2
,0

}
= s

2
.

It follows by Lemma 4 that

sup
∂Ω

|gradutm | = s.

Now, letting m → ∞, the uniform C1 estimates of utm on compacts of Ω implies the existence of a subsequence
of {utm} converging uniformly on compacts of Ω to a solution us ∈ C∞(Ω) of M = 0 in Ω satisfying us |∂Ω = 0 and
sup∂Ω |gradus | = s. Note that for each m there is a point qm ∈ ∂Ω such that |gradutm(qm)| = s. Since ∂Ω is compact
a subsequence of qm converges to q ∈ ∂Ω. It follows that |gradus(q)| = s, so that us cannot be identically zero. If
Ω is only a C0 domain one considers a sequence of C∞ domains converging to Ω similarly to what was done in the
previous result. This concludes the proof of the theorem.
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