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Abstract

In this paper we consider integral functionals of the form

F(v,Ω) =
∫
Ω

F
(
Dv(x)

)
dx

with convex integrand satisfying (p, q) growth conditions. We prove local higher differentiability results for bounded minimizers
of the functional F under dimension-free conditions on the gap between the growth and the coercivity exponents.

As a novel feature, the main results are achieved through uniform higher differentiability estimates for solutions to a class of
auxiliary problems, constructed adding singular higher order perturbations to the integrand.
© 2011

MSC: 49N15; 49N60; 49N99

1. Introduction and statement of results

We prove higher differentiability results for minimizers of the convex variational integrals

F(v,O) =
∫
O

F
(
Dv(x)

)
dx (1.1)

with integrands F satisfying (p, q) growth conditions. The functionals F are defined for Sobolev maps v ∈
W1,p(Ω,R

N) and open subsets O of a fixed bounded and open subset Ω of R
n. Our main concern is the multi-

dimensional vectorial case n, N � 2, but some of our results remain new also in the scalar case N = 1.
The integral in (1.1) is understood in the usual sense of Lebesgue integration. In fact, as is well known, for au-

tonomous convex integrands F there is no issue as to how one should define the functional F(v,O) for non-smooth
maps v. All reasonable definitions lead to the same result, (1.1) as a Lebesgue integral. The situation, as regards
to both existence and regularity of minimizers, is different and more delicate for non-autonomous or non-convex
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integrals. We refer the interested reader to [1,11,13,24–26,28,36,38,39] and the references therein. Our results here
are correspondingly stronger, and we obtain higher differentiability results for a priori bounded minimizers under
dimension-free conditions on the gap, namely q − p < 1 without any control on the second derivative F ′′ of the inte-
grand, and q − p < 2 with control on the second derivative. A special feature of our approach is that we establish the
higher differentiability results through uniform estimates for a family of auxiliary problems defined through singular
perturbation. In this connection a nonlinear Gagliardo–Nirenberg inequality is established and used in connection with
the a priori boundedness assumption on the minimizer. We hereby avoid the usual difference quotient method, and the
technicalities its use entails in the (p, q) growth setup.

In order to state the results precisely we shall briefly introduce and discuss our hypotheses.
It is convenient to express the convexity and growth conditions for the integrands in terms of two auxiliary functions

defined for all ξ ∈ R
N×n as

〈ξ〉 = 〈ξ 〉μ := (
μ2 + |ξ |2) 1

2 (1.2)

and

V (ξ) = Vp,μ(ξ) := (
μ2 + |ξ |2) p−2

4 ξ, (1.3)

where μ � 0 and p > 1 are parameters. Clearly, 〈ξ〉pμ is the p-Dirichlet integrand for μ = 0, whereas it is the reference
(non-degenerate) convex functional of p-growth for μ > 0. Indeed, as is well known, regardless of the dimensions
n, N , the minimizers for the corresponding variational integral

∫
Ω

〈Dv〉pμ are C∞ smooth in the case μ > 0 and C1,α

smooth for μ = 0, where α = α(n,N,p) < 1 (p �= 2), and in both cases these qualitative regularity results can be
expressed very efficiently in terms of estimates between various norms of the minimizers.

Let F : R
N×n → R be an integrand satisfying for exponents q � p � 2 and positive constants L, � > 0 and μ � 0,

the following growth and convexity hypotheses:

0 � F(ξ) � L〈ξ 〉qμ, (H1)

ξ 
→ F(ξ) − �〈ξ〉pμ is convex , (H2)

for all ξ ∈ R
N×n. Assumption (H2) is a uniform strong p-convexity condition for the function F , and is similar to the

one considered in [16]. In fact, when F is C2 then (H2) is equivalent to the following standard strong p-ellipticity
condition

F ′′(ξ)[η,η] � c〈ξ〉p−2
μ |η|2 (H3)

for all ξ , η ∈ R
N×n, where c is a positive constant of form c = c(p)�. It is well known that for convex C1 integrands,

the growth condition (H1) implies a Lipschitz condition:∣∣F ′(ξ)
∣∣ � c〈ξ〉q−1

μ (1.4)

for all ξ ∈ R
N×n, where we can use c = 2qL. In the sequel we shall mostly suppress the dependence on parameters

μ, p in the notation writing simply 〈ξ〉 and V (ξ) where the precise values of μ, p will be clear from the context.
Let us give the definition of local minimizer, where we emphasize the importance of the local integrability require-

ment on F(Du):

Definition 1. A mapping u ∈ W1,1
loc (Ω,R

N) is a local F -minimizer if F(Du) ∈ L1
loc(Ω) and∫

O

F(Du)dx �
∫
O

F(Dv)dx

for any O � Ω and any v ∈ W1,p
u (O,R

N).

The notation O � Ω signifies as usual that O is an open set whose closure, O , is compact and contained in Ω . Fur-
thermore, W1,p

u (O,R
N) denotes the Dirichlet class of Sobolev maps v such that v − u|O ∈ W1,p

(O,R
N), where the
0
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latter is defined as the closure of the space of smooth compactly supported test maps, C∞
c (O,R

N), in W1,p(O,R
N).

We shall adhere to standard notation for functions and function spaces, by and large following [40].
The assumptions (H1), (H2) (or (H3)) clearly entail a (p, q) growth condition, namely that there exists a constant

c = c(L/�,p, q,μ) > 0 such that

1

c
|ξ |p − c � F(ξ) � c

(|ξ |q + 1
)

(1.5)

for all ξ ∈ R
N×n.

The study of the regularity of minimizers of such functionals started with the celebrated papers by Marcellini (see
in particular [30–32]) and has since attracted much attention. From very early on it has been clear that no regularity
can be expected if the coercivity and growth exponents, denoted p and q , respectively, are too far apart (see [29,20]).
On the other hand, many regularity results are available if the ratio q/p is bounded above by a suitable constant
depending on the dimension n, and converging to 1 when n tends to infinity (incl. [2–7,13,14,17,22,33,34]).

We recall from [37] that even under hypotheses (H1) and (H3) with p = q = 2 vectorial F -minimizers might be
locally unbounded when n � 5, while they must be locally bounded when n � 4 by classical results (see [9,21,19]).
However, under additional structure conditions on the integrand and under assumptions (H1) and (H3) with p � q

it is possible to establish weak maximum principles that imply boundedness of minimizers provided the boundary
conditions are bounded (see [27]). For such bounded minimizers, it has been shown in [10], for integrands F of special
structure and with a growth condition on the second derivative F ′′, that the dimension-free condition q < p+1 implies
higher integrability for the gradient. We also recall that in [13], under the hypothesis p > n, higher integrability was
established without additional structure conditions on F provided q < p + 2 and the second derivative F ′′ has q − 2
growth. More recently, some refinements have been obtained in [8] by imposing various additional structure conditions
on the integrand, including so-called splitting type conditions, Uhlenbeck-structure and growth conditions on F ′′ as
in [10,13].

In all the above quoted papers, regularity of the minimizers is deduced by higher differentiability of the gradient
which is obtained by means of difference quotient methods. Let us also remark that in the context of non-standard
growth, higher integrability has been established by an argument involving a Gehring-type result only under very
severe structure conditions on the integrand, see [18]. Zhikov obtained Gehring-type higher integrability results under
p(x)-growth conditions for the integrand.

The first result in this paper is a higher differentiability result for the gradient of a locally bounded F -minimizer.
We do not require any structure assumptions for the integrand, merely that the growth exponent q satisfies q < p + 1,
independently of n. More precisely we have the following

Theorem 2. Let F : R
N×n → R be an integrand satisfying the assumptions (H1), (H2) with q < p + 1 and μ ∈ [0,1],

where 2 � p < n. If u ∈ W1,p

loc (Ω,R
N) ∩ L∞

loc(Ω,R
N) is a local F -minimizer, then

Vp,μ(Du) ∈ W1,2
loc

(
Ω,R

N×n
)

where we recall that

Vp,μ(Du) := (
μ2 + |Du|2) p−2

4 Du.

Furthermore, there exists a constant c = c(n,N,L/�,p,q) such that whenever B2R ⊂ Ω we have the Caccioppoli
inequality

∫
BR

∣∣D[
Vp,μ(Du)

]∣∣2 � c

R2

[
|B2R| +

((‖u‖L∞

R

) 2
p+1−q + 1

) ∫
B2R

〈Du〉pμ
]
. (1.6)

For p � n the conclusion persists for minimizers u ∈ W1,p

loc (Ω,R
N) under the weaker assumption q < p + p

n
provided

the term ‖u‖L∞/R in (1.6) is replaced by ‖Du‖Lp(B2R).

We remark that in the case p � n our result is not new. In [14] (see also [15]) it is shown that for integrands
satisfying (H1), (H2) with q < p + p the corresponding minimizers enjoy the above higher differentiability property.
n
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While aspects of our proof in this case are similar to that of [14] our approach via higher order singular perturbations
appears less involved.

When the integrand F is C2, satisfies (H3), and we strengthen the growth condition (H1) to∥∥F ′′(ξ)
∥∥ � Λ

(
μ2 + |ξ |2) q−2

2 , (H4)

we can improve Theorem 2 whose conclusion then still holds under the weaker assumption q < p + 2:

Theorem 3. Let F : R
N×n → R be a C2 integrand satisfying the conditions (H1), (H3) and (H4) with q < p + 2 and

μ ∈ [0,1], where 2 � p < n. If u ∈ W1,p

loc (Ω,R
N) ∩ L∞

loc(Ω,R
N) is a local F -minimizer, then

Vp,μ(Du) ∈ W1,2
loc

(
Ω,R

N×n
)

and (1.6) still holds.
For p � n the conclusion persists for minimizers u ∈ W1,p

loc (Ω,R
N) under the weaker assumption q < p + 2p

n
.

We remark that our result was known already in the case q < p + 2p
n

, see [13,12].
Our proof relies on an approximation procedure. This approach has features in common with [14], and also

[13,15,16], but differs in essence at one point: whereas the auxiliary problems in [14] are obtained by suitably ap-
proximating the integrand F by smooth integrands satisfying standard q-growth and q-convexity conditions, ours are
obtained by adding singular higher order perturbations. Next, we establish uniform higher differentiability estimates
for the solutions of the auxiliary problems, mainly through the use of a nonlinear Gagliardo–Nirenberg inequality
that is probably known to specialists, but as we could not find a reference in the literature we have included its proof
in Appendix A. It seems that, avoiding the use of the difference quotient method has the advantage of making the
ensuing calculations easier, as the solutions are smooth, and our calculations here follow at some points [16]. Finally,
we remark that because we do not impose any special structure conditions on the integrand we also have to add an
additional term in the auxiliary problems that allows us to exploit the a priori boundedness assumption on minimizers.

We remark that a byproduct of our proofs is that, under the assumptions of Theorem 2, the higher integrability
exponent of the gradient of a minimizer is at the least p + 2. That it is dimension-free is due to the fact that we
assume the minimizer is bounded when p < n. Dimension-free higher integrability exponents have been established
in [23] for the second gradient of the minimizer, but under much more severe growth conditions (viz. (H3), (H4) with
p = q = 2).

Remark 4. It is not difficult to check that the higher differentiability results of Theorems 2 and 3 can be extended
to minimizers of more general autonomous convex integrals of the form

∫
Ω

F(v,Dv). For instance, one possible
generalization of Theorem 2 would apply to minimizers of such integrals with integrands F : R

N × R
N×n → R that

instead of hypotheses (H1), (H2) satisfy

0 � F(y, ξ) � L
(
μ2 + |y|2 + |ξ |2) q

2 (H1′)

and

(y, ξ) 
→ F(y, ξ) − �
(
μ2 + |ξ |2) p

2 is convex. (H2′)

Note that we only require convexity in the y-variable, and not its strong variant. Under the conditions q < p + 1 and
u ∈ L∞

loc or p � n and q < p + p
n

, we have again that Vp,μ(Du) ∈ W
1,2
loc . We leave further detailed statements to the

interested reader. A brief sketch of the proof is given at the end of Section 3. Finally, we remark that without convexity
in the y-variables the situation is very different, and in particular is complicated by the appearance of the Lavrentiev
phenomenon. Using different methods it is however still possible to obtain a degree of higher differentiability when
p = q , see [24–26].

Remark 5. Moreover, with slight modifications, the higher differentiability results of Theorem 2 and Remark 4 still
hold for minimizers of general convex integrals of the form

∫
Ω

F(x, v,Dv)dx, provided if, for instance, we assume
(H1′), (H2′) hold uniformly in x and in addition that
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(y, ξ) 
→ F(x, y, ξ) ∈ C1(
R

N × R
N×n

)
and ∣∣F ′

(y,ξ)(x1, y, ξ) − F ′
(y,ξ)(x2, y, ξ)

∣∣ � L|x1 − x2|
(
μ2 + |y|2 + |ξ |2) q−1

2 .

It is worth pointing out that, under the Lipschitz dependence on the x-variable of the first derivative of F , the bound
q < p n+1

n
that we find in Theorem 2 in case p � n, cannot be improved, by virtue of a counterexample given in [15].

On the other hand, the bound q < p + 1 (which is clearly a better one when p < n) is obtained in case of a priori
bounded minimizers.

The plan of the paper is the following. We have collected standard preliminary material in Section 2, which at the
same time serves as our reference for notation. The proofs of the higher differentiability results stated in Theorems 2
and 3 are presented in Sections 3 and 4, respectively. Finally, Appendix A contains the proof of a nonlinear Gagliardo–
Nirenberg inequality.

2. Preliminaries

For matrices ξ , η ∈ R
N×n we write 〈ξ, η〉 := trace(ξT η) for the usual inner product of ξ and η, and |ξ | := 〈ξ, ξ 〉 1

2

for the corresponding Euclidean norm. When a ∈ R
N and b ∈ R

n we write a ⊗ b ∈ R
N×n for the tensor product

defined as the matrix that has the element arbs in its r-th row and s-th column. Observe that |a ⊗ b| = |a||b|, where
|a|, |b| denote the usual Euclidean norms of a in R

N , b in R
n, respectively.

When F : R
N×n → R is sufficiently differentiable we write

F ′(ξ)[η] := d

dt

∣∣∣∣
t=0

F(ξ + tη) and F ′′(ξ)[η,η] := d2

dt2

∣∣∣∣
t=0

F(ξ + tη)

for ξ , η ∈ R
N×n. Hereby we think of F ′(ξ) both as an N × n matrix and as the corresponding linear form on R

N×n,
though |F ′(ξ)| will always denote the Euclidean norm of the matrix F ′(ξ). The second derivative, F ′′(ξ), is a sym-
metric real bilinear form on R

N×n. We express growth conditions for the second derivative of the integrand in terms
of the operator norm on bilinear forms:∥∥F ′′(ξ)

∥∥ := sup
|η|�1, |ζ |�1

F ′′(ξ)[η, ζ ].

Lemma 6. Let Φ : [R
2 ,R] → R be a bounded nonnegative function on the interval [R

2 ,R] where R > 0. Assume that
for all R

2 � r < s � R we have

Φ(r) � ϑΦ(s) + A + B

(s − r)2
+ C

(s − r)α
+ D

(s − r)β

where ϑ ∈ (0,1), A,B,C,D � 0 and 0 < α < β are constants. Then there exists a constant c = c(ϑ,β) such that

Φ

(
R

2

)
� c

(
A + B

R2
+ C

Rα
+ D

Rβ

)
.

See for instance [21, pp. 191–192], for a proof that can easily be adapted to cover the above statement too.
For the proof of Theorem 2 (and Remark 4) we require the following approximation result that is well known to

specialists, and closely related to the approximation results established and used in [14] and [16].

Lemma 7. Let μ ∈ [0,1], 0 < � � L and 2 � p � q � p + 1. Assume that F : R
N × R

N×n → R satisfies

0 � F(y, ξ) � L
(
μ2 + |y|2 + |ξ |2) q

2 (2.1)

and

(y, ξ) 
→ F(y, ξ) − �
(
μ2 + |ξ |2) p

2 is convex. (2.2)
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Then there exist Fj : R
N × R

N×n → R that are C∞ smooth, and satisfy for a constant c = c(p)� > 0:

0 � Fj (y, ξ) � L
(
μ2 + |y|2 + |ξ |2) q

2 + 1

j

(
1 + |y|2 + |ξ |2) p

2 , (2.3)

F ′′
j (y, ξ)

[
(z, η), (z, η)

]
� c

(
μ2 + |ξ |2) p−2

2 |η|2 (2.4)

and

F(y, ξ) � Fj (y, ξ) � F(y, ξ) + 1

j

(
1 + |y|2 + |ξ |2) p

2 (2.5)

for all (y, ξ), (z, η) ∈ R
N × R

N×n and j ∈ N.

Proof. First note that (2.1) and convexity transpire to give local Lipschitz continuity with

∣∣F ′
(y,ξ)(y, ξ)

∣∣ � 2qL
(
μ2 + |y|2 + |ξ |2) q−1

2 (2.6)

for almost all (y, ξ) ∈ R
N × R

N×n. Next we use the following radially symmetric and smooth convolution kernel

Φ(y, ξ) :=
{

c exp( 1
|y|2+|ξ |2−1

) for |y|2 + |ξ |2 < 1,

0 for |y|2 + |ξ |2 � 1,

where the constant c = c(n,N) > 0 is chosen so
∫

RN×RN×n Φ = 1.
Put for each ε > 0, Φε(y, ξ) = ε−N(n+1)Φ(ε−1y, ε−1ξ). It is clear that the convolution Fε := Φε ∗F is C∞ smooth

and convex, and owing to the convexity of F and (2.6) we get in a routine manner

F(y, ξ) � Fε(y, ξ) � F(y, ξ) + c
(
μ2 + ε2 + |y|2 + |ξ |2) q−1

2 ε.

Now for ε ∈ (0,1] we estimate using that 0 � μ � 1, q � p + 1:

(
μ2 + ε2 + |y|2 + |ξ |2) q−1

2 � c
(
1 + |y|2 + |ξ |2) p

2 ,

hence

F(y, ξ) � Fε(y, ξ) � F(y, ξ) + c
(
1 + |y|2 + |ξ |2) p

2 ε

� L
(
μ2 + ε2 + |y|2 + |ξ |2) q

2 + c
(
1 + |y|2 + |ξ |2) p

2 ε.

By virtue of (2.2) we find some constant c = c(p)� > 0 such that (recall p � 2):

d2

dt2

∣∣∣∣
t=0

Fε(y + tz, ξ + tη) � c
(
μ2 + |ξ |2) p−2

2 |η|2.

The conclusion follows if we take ε = 1/cj and Fj := Fε . �
3. Proof of Theorem 2

Throughout this section u ∈ W1,p

loc (Ω,R
N) designates a local F -minimizer. For the sake of simplicity, we shall

give the proof in case the integrand F : R
N×n → R is C2 and satisfies the hypotheses (H1) and (H3), with q < p + 1

when p < n and q < p + p
n

when p � n. The general case can be treated by a combination of the arguments below
and the approximation result of Lemma 7. More precisely, disregarding the y-dependence, it yields C∞ integrands
Fj = Fj (ξ) that satisfy (2.3), (2.4) and (2.5) uniformly in j . Apart from the additional term (1 + |ξ |2) p

2 /j on the
right-hand side of (2.3), Fj satisfy (H1), (H3) uniformly in j and converges to F according to (2.5). As the additional
term appearing in (2.3) (and the term controlling the rate of approximation in (2.5)) is of p-th order it is under control.
Hence in the argument below we then simply replace F by Fj for suitably chosen j = j (ε). We skip the details of
this as it brings nothing new (except for additional bookkeeping of terms that are under control). Instead we shall as
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mentioned impose the conditions (H1), (H3) on F directly, and turn to the remaining parts of the proof. We start with
the case p < n, and assume that u ∈ L∞

loc(Ω,R
N).

Our aim is to show that V (Du) ∈ W1,2
loc (Ω), where we recall the definition of the auxiliary functions as

V (ξ) := 〈ξ 〉 p−2
2 ξ, 〈ξ〉 :=

√
μ2 + |ξ |2.

For later reference we note that for a C2 map w a routine calculation yields

∣∣D[
V (Dw)

]∣∣2 �
(

p − 2

2
+ 1

)2

〈Dw〉p−2
∣∣D2w

∣∣2
. (3.1)

Fix a subdomain with a smooth boundary Ω ′ � Ω . Take a subdomain Ω ′ � Ω ′′ � Ω and for u ∈ L∞
loc(Ω), choose

numbers a > ‖u‖L∞(Ω ′′) and k ∈ N, the latter so large that we have the continuous embedding Wk,2(Ω ′) ↪→ C2(Ω ′)
and, for technical reasons that will become clear later, also

2k > p + 2. (3.2)

For a smooth kernel φ ∈ C∞
c (B1(0)) with φ � 0 and

∫
B1(0)

φ = 1, we consider the corresponding family of mollifiers
(φε)ε>0 and put ũε := φε ∗ u on Ω ′ for each positive ε < dist(Ω ′, ∂Ω). We record that{

ũε → u as ε ↘ 0 strongly in W1,p
(
Ω ′),

‖ũε‖L∞(Ω ′) � ‖u‖L∞(Ω ′′) < a for 0 < ε < dist
(
Ω ′, ∂Ω ′′), (3.3)

and that for a suitable function ε̃ = ε̃(ε) with ε̃ ↘ 0 as ε ↘ 0, also

ε̃

∫
Ω ′

∣∣Dkũε

∣∣2 → 0 as ε ↘ 0. (3.4)

For large m ∈ N satisfying at the least

m > max

{
2,

2q − p

2(p + 1 − q)

}
(3.5)

and small ε > 0 we let uε ∈ Wk,2(Ω ′) ∩ W1,p

ũε
(Ω ′) denote a minimizer to the functional

v 
→
∫
Ω ′

(
F(Dv) + (|v|2 − a2)m

+ + ε̃

2

∣∣Dkv
∣∣2

)

on the Sobolev class Wk,2(Ω ′) ∩ W1,p

ũε
(Ω ′). Here t+ for a real number t denotes its nonnegative part, that is,

t+ := max{t,0}. The existence of uε is easily established by the direct method. Our next goal is the following:

Lemma 8. For each ϕ ∈ Wk,2(Ω ′) ∩ W1,p

0 (Ω ′),

0 =
∫
Ω ′

(〈
F ′(Duε),Dϕ

〉 + 2m
(|uε|2 − a2)m−1

+ uε · ϕ + ε̃
〈
Dkuε,D

kϕ
〉)
. (3.6)

Furthermore, uε ∈ W2k,2
loc (Ω ′).

Proof. The minimality of uε yields the weak form of the Euler–Lagrange system (3.6) by straightforward means
(regardless of the growth of F because our choice of k in particular means that Duε , Dϕ ∈ L∞(Ω ′)). The additional
regularity of uε then follows from standard elliptic regularity theory if we notice that (3.6) can be rewritten as

�kuε = (−1)k

ε̃

(
divF ′(Duε) − 2m

(|uε|2 − a2)m−1
+ uε

)
(3.7)

where the composition of k Laplacians on the left-hand side acts row-wise, and as usual is understood in the distribu-
tional sense on Ω ′. Since by our choice of k, uε ∈ C2(Ω ′), the right-hand side of (3.7) belongs in particular to L2(Ω ′)
from which we deduce uε ∈ W2k,2

loc (Ω ′). �
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Lemma 9. As ε ↘ 0, uε → u strongly in W1,p(Ω ′),∫
Ω ′

((|uε|2 − a2)m

+ + ε̃

2

∣∣Dkuε

∣∣2
)

→ 0 and
∫
Ω ′

F(Duε) →
∫
Ω ′

F(Du).

Proof. By minimality,∫
Ω ′

(
F(Duε) + (|uε|2 − a2)m

+ + ε̃

2

∣∣Dkuε

∣∣2
)

�
∫
Ω ′

(
F(Dũε) + (|ũε|2 − a2)m

+ + ε̃

2

∣∣Dkũε

∣∣2
)

(3.8)

for all 0 < ε � ε0 for some ε0 > 0. Now since F is convex and F(Du) ∈ L1
loc(Ω) we get by use of Jensen’s inequality

and standard properties of mollifiers that∫
Ω ′

F(Dũε) �
∫
Ω ′

φε ∗ F(Du) →
∫
Ω ′

F(Du)

as ε ↘ 0. Fatou’s lemma then allows us to conclude that∫
Ω ′

F(Dũε) →
∫
Ω ′

F(Du) as ε ↘ 0.

In view of (3.3), (3.4), estimate (3.8) implies

lim sup
ε↘0

∫
Ω ′

(
F(Duε) + (|uε|2 − a2)m

+ + ε̃

2

∣∣Dkuε

∣∣2
)

�
∫
Ω ′

F(Du). (3.9)

By virtue of the convexity condition (H3) we can find positive constants c1, c2 such that F(ξ) � c1|ξ |p − c2 for all ξ .
The family (Duε) is therefore in particular bounded in Lp(Ω ′) and since uε = ũε in the sense of trace on ∂Ω ′ a
standard lower semicontinuity result together with the minimality of u allow us to conclude that

lim inf
ε↘0

∫
Ω ′

F(Duε) �
∫
Ω ′

F(Du).

By virtue of (3.9) this implies that∫
Ω ′

((|uε|2 − a2)m

+ + ε̃

2

∣∣Dkuε

∣∣2
)

→ 0 (3.10)

and ∫
Ω ′

F(Duε) →
∫
Ω ′

F(Du)

as ε ↘ 0. In order to conclude the proof, it is sufficient to note that standard calculations, by virtue of (H3), imply that∫
Ω ′

(
μ2 + |Dũε|2 + |Duε|2

) p−2
2 |Dũε − Duε|2 � c

∫
Ω ′

(
F(Dũε) − F(Duε) − 〈

F ′(Duε),Dũε − Duε

〉)
.

Here we have by Lemma 8,∫
Ω ′

〈
F ′(Duε),Dũε − Duε

〉 = −2m

∫
Ω ′

(|uε|2 − a2)m−1
+ uε · (ũε − uε) − ε̃

∫
Ω ′

〈
Dkuε,D

kũε − Dkuε

〉
.

Thanks to (3.10) we have that

lim sup
ε↘0

∫
′
|uε|2m �

∣∣Ω ′∣∣a2m. (3.11)
Ω



M. Carozza et al. / Ann. I. H. Poincaré – AN 28 (2011) 395–411 403
Hence using the last formula together with Hölder’s inequality, (3.4) and (3.10), it follows that∫
Ω ′

(
μ2 + |Dũε|2 + |Duε|2

) p−2
2 |Dũε − Duε|2 → 0 as ε ↘ 0.

Because p � 2 we conclude by well-known means that uε → u strongly in W1,p(Ω ′,R
N). �

We are now ready to embark on the core of the proof of Theorem 2, where also the growth hypothesis (H1) will be
used.

Proof of Theorem 2. Fix B2R = B2R(x0) ⊂ Ω ′, radii R � r < s � 2R � 2 and a smooth cut-off function ρ satisfying
1Br � ρ � 1Bs and |Diρ| � ( 2

s−r
)i for each i ∈ N. Our choice of test map and the ensuing computation is inspired by

[16] and [14]. According to Lemma 8 we can test the Euler–Lagrange system with ϕ = ρ2kD2
j uε for each direction

1 � j � n:

0 =
∫
Ω ′

〈
F ′(Duε),D

2
jDuε

〉
ρ2k +

∫
Ω ′

〈
F ′(Duε),D

2
j uε ⊗ D

(
ρ2k

)〉

+
∫
Ω ′

2m
(|uε|2 − a2)m−1

+ uε · D2
j uερ

2k + ε̃

∫
Ω ′

〈
Dkuε,D

k
(
D2

j uερ
2k

)〉
=: I + II + III + IV. (3.12)

Integration by parts yields

I = −
∫
Ω ′

(
ρ2k

〈
Dj

(
F ′(Duε)

)
,DjDuε

〉 + 2kρ2k−1Djρ
〈
F ′(Duε),DjDuε

〉)

= −
∫
Ω ′

(
ρ2kF ′′(Duε)[DjDuε,DjDuε] + 2k

〈
ρk−1DjρF ′(Duε), ρ

kDjDuε

〉)

� −
∫
Ω ′

ρ2k〈Duε〉p−2|DjDuε|2

+
∫
Ω ′

(
4k2ρ2(k−1)|Djρ|2 |F ′(Duε)|2

〈Duε〉p−2
+ 1

4
ρ2k〈Duε〉p−2|DjDuε|2

)
,

where we used (H3) and Young’s inequality. Hence invoking (1.4) we arrive at the estimate

I � −3

4

∫
Ω ′

ρ2k〈Duε〉p−2|DjDuε|2 + c

∫
Ω ′

k2ρ2(k−1)|Djρ|2〈Duε〉2q−p. (3.13)

By virtue of (1.4) and Cauchy–Schwarz’ inequality,

II � c

∫
Ω ′

〈Duε〉q−1ρ2k−1|Dρ|∣∣D2
j uε

∣∣

� c

∫
Ω ′

〈Duε〉2q−pρ2(k−1)|Dρ|2 + 1

4

∫
Ω ′

ρ2k〈Duε〉p−2|DjDuε|2, (3.14)

where c is independent of m, ε. Integration by parts gives
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III = −2m

∫
Ω ′

ρ2kDj

[(|uε|2 − a2)m−1
+ uε

]
Djuε − 2m

∫
Ω ′

2k
(|uε|2 − a2)m−1

+ uερ
k−1Djρ · ρkDjuε

� −2m

∫
Ω ′

ρ2k
(
2(m − 1)

(|uε|2 − a2)m−2
+ (uε · Djuε)

2 + (|uε|2 − a2)m−1
+ |Djuε|2

)

+
∫
Ω ′

(|uε|2 − a2)m−1
+

(
1

2
|Djuε|2ρ2k + 32m2k2|uε|2ρ2(k−1)|Djρ|2

)

� −1

2

∫
Ω ′

ρ2k
(|uε|2 − a2)m−1

+ |Djuε|2 + 32m2k2
∫
Ω ′

(|uε|2 − a2)m−1
+ |uε|2|Djρ|2ρ2(k−1). (3.15)

For the estimation of IV we rewrite

IV = ε̃

∫
Ω ′

〈
Dkuε,DjD

k
(
ρ2kDjuε

) − Dk
(
Dj

(
ρ2k

)
Djuε

)〉

and integrating the first term by parts,

IV = −ε̃

∫
Ω ′

(〈
DjD

kuε,D
k
(
ρ2kDjuε

)〉 − ε̃

∫
Ω ′

〈
Dkuε,D

k
(
Dj

(
ρ2k

)
Djuε

)〉)

=: IV1 + IV2.

We estimate these terms by use of Cauchy–Schwarz’ inequality, Leibniz’ product formula and the assumed bounds
on Diρ (simplifying also by use of s − r � 1):

IV1 � −ε̃

∫
Ω ′

ρ2k
∣∣DjD

kuε

∣∣2 + ckε̃

(s − r)k

∫
Ω ′

ρk
∣∣DjD

kuε

∣∣ k−1∑
i=0

∣∣DiDjuε

∣∣

� −2ε̃

3

∫
Ω ′

ρ2k
∣∣DjD

kuε

∣∣2 + ckε̃

(s − r)2k

∫
B2R

(
k−1∑
i=0

∣∣DiDjuε

∣∣)2

� −2ε̃

3

∫
Ω ′

ρ2k
∣∣DjD

kuε

∣∣2 + ckε̃

(s − r)2k

∫
B2R

k−1∑
i=0

∣∣DiDjuε

∣∣2

for a (new) constant ck . Likewise,

IV2 � ε̃

3

∫
Ω ′

ρ2k
∣∣DjD

kuε

∣∣2 + ckε̃

(s − r)2k+2

∫
B2R

(
k−1∑
i=0

∣∣DiDjuε

∣∣2 + ∣∣Dkuε

∣∣2

)
,

where we remark that the increased power of the factor (s − r) is due to the presence of an additional Dj -derivative
on ρ2k in IV2. Collecting the above bounds and adjusting the constant ck we arrive at

IV � − ε̃

3

∫
Ω ′

ρ2k
∣∣DjD

kuε

∣∣2 + ckε̃

(s − r)2k+2

∫
B2R

(
k−1∑
i=0

∣∣DiDjuε

∣∣2 + ∣∣Dkuε

∣∣2

)
. (3.16)

Inserting the bounds (3.13), (3.14), (3.15), (3.16) in (3.12) and using the properties of ρ we get for each 1 � j � n:

1

2

∫
′
ρ2k〈Duε〉p−2|DjDuε|2 + 1

2

∫
′
ρ2k

(|uε|2 − a2)m−1
+ |Djuε|2 + ε̃

3

∫
′
ρ2k

∣∣DjD
kuε

∣∣2
Ω Ω Ω
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� c

(s − r)2

∫
Bs\Br

〈Duε〉2q−p + cm2

(s − r)2

∫
B2R

(|uε|2 − a2)m−1
+ |uε|2

+ cε̃

(s − r)2k+2

∫
B2R

(
k−1∑
i=0

∣∣DjD
iuε

∣∣2 + ∣∣Dkuε

∣∣2

)
.

Adding up these inequalities over j ∈ {1, . . . , n} and adjusting the constants we arrive at∫
Ω ′

ρ2k〈Duε〉p−2
∣∣D2uε

∣∣2 +
∫
Ω ′

ρ2k
(|uε|2 − a2)m−1

+ |Duε|2 + 2ε̃

3

∫
Ω ′

ρ2k
∣∣Dk+1uε

∣∣2

� c

(s − r)2

∫
Bs\Br

〈Duε〉2q−p + A(ε)

(s − r)2
+ B(ε)

(s − r)2k+2
,

where c is a constant depending only on n, N , q , k, L and where A(ε), B(ε) are independent of r , s and where by
virtue of Lemma 9, through the Gagliardo–Nirenberg interpolation inequality, for each fixed m

A(ε) → 0, B(ε) → 0 as ε ↘ 0.

Omitting the second and third terms on the left-hand side, the above inequality simplifies to∫
Ω ′

ρ2k〈Duε〉p−2
∣∣D2uε

∣∣2 � c

(s − r)2

∫
Bs\Br

〈Duε〉2q−p + A(ε)

(s − r)2
+ B(ε)

(s − r)2k+2
. (3.17)

Next, we invoke the following Gagliardo–Nirenberg-type inequality that we state as a lemma. The elementary proof
is deferred to Appendix A.

Lemma 10. For ψ ∈ C1
c(Ω

′) with ψ � 0 and C2 maps v : Ω ′ → R
N we have

∫
Ω ′

ψ
m

m+1 (p+2)|Dv| m
m+1 (p+2) � (p + 2)2

(∫
Ω ′

ψ
m

m+1 (p+2)|v|2m

) 1
m+1

×
[(∫

Ω ′
ψ

m
m+1 (p+2)|Dψ |2|Dv|p

) m
m+1 + n

(∫
Ω ′

ψ
m

m+1 (p+2)|Dv|p−2
∣∣D2v

∣∣2
) m

m+1
]

where p ∈ (1,∞) and m > 1.

In view of (3.2) the function ψ := ρ
2k m+1

m
1

p+2 is of class C1
c(Ω

′) and so is an admissible choice together with v = uε

in Lemma 10, which then yields (using p � 2 and properties of ρ)

∫
Br

|Duε| m
m+1 (p+2) � c

( ∫
B2R

|uε|2m

) 1
m+1

(∫
Ω ′

ρ2k〈Duε〉p−2
∣∣D2uε

∣∣2
) m

m+1

+ c

( ∫
B2R

|uε|2m

) 1
m+1

( ∫
Bs\Br

|Duε|p
(s − r)2

) m
m+1

for a constant c that only depends on n, p. In order to simplify notation we recall that by virtue of Lemma 9 (see in
particular (3.11)) we have for each ã > a that

(∫
′
|uε|2m

) 1
m+1

< ã2
Ω
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provided that ε � ε0(ã) and m � m0(ã), which we assume in the following. Hence

∫
Br

|Duε| m
m+1 (p+2) � cã2

(∫
Ω ′

ρ2k〈Duε〉p−2
∣∣D2uε

∣∣2
) m

m+1 + cã2

(s − r)2

( ∫
B2R

|Duε|p
) m

m+1

(3.18)

where we simplified with 1/(s − r)
2m

m+1 � 1/(s − r)2. Combining (3.17) and (3.18) we get (simplifying with
m/(m + 1) < 1 and (α + β)

m
m+1 � α

m
m+1 + β

m
m+1 ),

∫
Br

|Duε| m
m+1 (p+2) � cã2

(s − r)2

( ∫
B2R

|Duε|p
) m

m+1

+ cã2

(s − r)2

[( ∫
Bs\Br

〈Duε〉2q−p

) m
m+1 + A1(ε) + B1(ε)

(s − r)2k

]
, (3.19)

where A1(ε) := A(ε)
m

m+1 and B1(ε) := B(ε)
m

m+1 . In view of (3.5) we can write

1

2q − p
= θ

m
m+1 (p + 2)

+ 1 − θ

p
,

where, since q < p + 1,

θ = 2m(p + 2)

2m − p
× q − p

2q − p
∈ (0,1).

Hence by Hölder’s inequality

( ∫
Bs\Br

〈Duε〉2q−p

) m
m+1

�
( ∫

B2R

〈Duε〉p
) 2q−p

p
m

m+1 (1−θ)( ∫
Bs\Br

〈Duε〉 m
m+1 (p+2)

) 2q−p
p+2 θ

.

Observe that by virtue of (3.5)

2q − p

p + 2
θ = (q − p)

2m

2m − p
∈ (0,1).

Applying Young’s inequality with the exponents

d = 2m − p

2m
× 1

q − p
> 1 and d ′ = 2m − p

2m(p + 1 − q) − p

we find (abbreviating χm = m
m+1

2m(p+1−q)−2q+p
2m(p+1−q)−p

)

cã2

(s − r)2

( ∫
Bs\Br

〈Duε〉2q−p

) m
m+1

� cd ′
ã2d ′

(s − r)2d ′

( ∫
B2R

〈Duε〉p
)χm

+
∫

Bs\Br

〈Duε〉 m
m+1 (p+2).

Insert this bound in (3.19) and use 〈Duε〉 m
m+1 (p+2) � c(|Duε| m

m+1 (p+2) + μ
m

m+1 (p+2)) to get

∫
Br

〈Duε〉 m
m+1 (p+2) �

∫
Bs\Br

〈Duε〉 m
m+1 (p+2) + cμ

m
m+1 (p+2)|B2R| + cd ′

ã2d ′

(s − r)2d ′

( ∫
B2R

〈Duε〉p
)χm

+ cã2

(s − r)2

[( ∫
〈Duε〉p

) m
m+1 + A1(ε) + B1(ε)

(s − r)2k

]
.

B2R
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As this estimate is valid for all radii R � r < s � 2R we can apply the hole-filling method of Widman: add∫
Br

〈Duε〉 m
m+1 (p+2) to both sides of the inequality, normalize and note that we are in the situation of Lemma 6 with

ϑ = 1/2 (and A, B , C, D given by the obvious corresponding terms). Thus∫
BR

〈Duε〉 m
m+1 (p+2) � cμ

m
m+1 (p+2)|B2R| + cd ′

ã2d ′

R2d ′

( ∫
B2R

〈Duε〉p
)χm

+ cã2

R2

[( ∫
B2R

〈Duε〉p
) m

m+1 + A1(ε) + B1(ε)

R2k

]
, (3.20)

for some constant c = c(n,N,p,q,L, k). In particular it follows that (Duε) is bounded in L2q−p(BR,R
N×n) and so,

by the arbitrariness of the ball B2R(x0) ⊂ Ω ′ and a simple covering argument, we conclude that (Duε) is bounded
in L2q−p

loc (Ω ′,R
N×n). In view of (3.1) and (3.17) it then also follows that (V (Duε)) is bounded in W1,2

loc (Ω ′,R
N×n).

Therefore by passing to the limits (first ε ↘ 0, then m ↗ ∞ and then ã ↘ ‖u‖L∞ ) we infer that∫
BR

〈Du〉p+2 � cμ
m

m+1 (p+2)|B2R| +
((

c‖u‖L∞

R

) 2
p+1−q + 1

) ∫
B2R

〈Du〉p (3.21)

and hence∫
BR

∣∣D[
V (Du)

]∣∣2 � c

R2

[
μ

m
m+1 (p+2)|B2R| +

((‖u‖L∞

R

) 2
p+1−q + 1

) ∫
B2R

〈Du〉p
]

for a constant c = c(n,N,p,q,L, k). This concludes the proof for the case p < n.
Finally we shall indicate the necessary modifications when p � n and q < p + p

n
. In this situation we do not

assume that the minimizer u is bounded (it is of course bounded when p > n), and the resulting proof is a bit easier.
In the above notation we let uε ∈ Wk,2(Ω ′) ∩ W1,p

ũε
(Ω ′) denote a minimizer of the functional

v 
→
∫
Ω ′

(
F(Dv) + ε̃

2

∣∣Dkv
∣∣2

)

on the Sobolev class Wk,2(Ω ′) ∩ W1,p

ũε
(Ω ′).

With the obvious modifications both Lemmas 8 and 9 remain true, and so we can proceed along the lines of the
previous proof. Hereby we arrive at an estimate of the form (3.17). The proof is now completed using (3.1), Sobolev
embedding theorem and Hölder’s inequality exactly as in [14] (see (4.6), (4.7) there and proceed as in the subsequent
proof on pp. 260–262). �
Sketch of the proof of Remark 4. The proof is very similar to that of Theorem 2 and so we confine ourselves to
a very brief sketch, leaving details to the interested reader. First we remark that the general case is treated by use of
the approximation result in Lemma 7, and that we shall confine our comments to the case where F = F(y, ξ) is C∞
smooth and satisfies (H1′) and

F ′′(y, ξ)
[
(z, η), (z, η)

]
� c

(
μ2 + |ξ |2) p−2

2 |η|2. (H3′)
We now simply mimic the proof of Theorem 2. The Euler–Lagrange equation (3.6) reads: for each ϕ ∈ Wk,2(Ω ′) ∩
W1,p

0 (Ω ′),

0 =
∫
Ω ′

(〈
F ′(uε,Duε), (ϕ,Dϕ)

〉 + 2m
(|uε|2 − a2)m−1

+ uε · ϕ + ε̃
〈
Dkuε,D

kϕ
〉)
. (3.22)

Because of the joint convexity of F(y, ξ) the conclusions of Lemmas 8, 9 remain the same. The only complication
comes in the core part of the proof, which is slightly more cumbersome due to the additional terms resulting from the
y-dependence. However, as an interested reader can readily check, these terms are well-behaved lower order terms
that are easily estimated and controlled using a Poincaré inequality and that (uε) is bounded in W1,p . �
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4. Proof of Theorem 3

We only treat the points where the proof differs from the one of Theorem 2.

Proof of Theorem 3. Also here we start with the case p < n, where it is assumed that q < p + 2 and u ∈ L∞
loc(Ω).

Our starting point is the identity (3.12), where, thanks to assumption (H4), we can estimate integrals I and II in a
more efficient way. The estimates for III and IV remain as (3.15) and (3.16). More precisely, we proceed as follows

I + II = −
∫
Ω ′

ρ2k
〈
Dj

(
F ′(Duε)

)
,DjDuε

〉 − 2k

∫
Ω ′

ρ2k−1Djρ
〈
F ′(Duε),DjDuε

〉

− 2k

∫
Ω ′

ρ2k−1〈F ′(Duε),D
2
j uε ⊗ Djρ

〉

= −
∫
Ω ′

ρ2kF ′′(Duε)[DjDuε,DjDuε] − 2k

∫
Ω ′

〈
ρ2k−1DjρF ′(Duε),DjDuε

〉

− 2k

∫
Ω ′

ρ2k−1〈F ′(Duε),D
2
j uε ⊗ Djρ

〉
=: J + JJ + JJJ. (4.1)

In order to estimate JJ, we integrate by parts whereby

JJ = 2k

∫
Ω ′

〈
Dj

(
ρ2k−1DjρF ′(Duε)

)
,Duε

〉

= 2k

∫
Ω ′

ρ2k−1DjρF ′′(Duε)[DjDuε,Duε] + 2k

∫
Ω ′

〈
Dj

(
ρ2k−1Djρ

)
F ′(Duε),Duε

〉
.

In view of (H3) the bilinear form (ξ, η) 
→ F ′′(Duε(x))[ξ, η] defines for each x an inner product on R
N×n, and so we

have in particular by use of Cauchy–Schwarz’ inequality

F ′′(Duε)[DjDuε,Duε] � F ′′(Duε)[DjDuε,DjDuε] 1
2 F ′′(Duε)[Duε,Duε] 1

2

on Ω ′. Hence invoking Young’s inequality we arrive at

JJ � 1

4

∫
Ω ′

ρ2kF ′′(Duε)[DjDuε,DjDuε]

+ 16k2
∫
Ω ′

ρ2k−2|Dρ|2∣∣F ′′(Duε)
∣∣|Duε|2 + 4k2

∫
Ω ′

ρ2k−2
∣∣D2ρ

∣∣∣∣F ′(Duε)
∣∣|Duε|

� 1

4

∫
Ω ′

ρ2kF ′′(Duε)[DjDuε,DjDuε] + c

(s − r)2

∫
Ω ′

|Duε|q

where, in the last line, we used (1.4) and (H4). The integral JJJ can be estimated in exactly the same way, and then
(4.1) becomes

I + II � −
∫
Ω ′

ρ2kF ′′(Duε)[DjDuε,DjDuε] + 1

2

∫
Ω ′

ρ2kF ′′(Duε)[DjDuε,DjDuε] + c

(s − r)2

∫
Ω ′

|Duε|q

� −1

2

∫
′
ρ2k〈Duε〉p−2|DjDuε|2 + c

(s − r)2

∫
′
|Duε|q (4.2)
Ω Ω
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where we again used the ellipticity condition (H3). Inserting (4.2), (3.15) and (3.16) in (3.12), summing on j we
obtain∫

Ω ′
ρ2k〈Duε〉p−2

∣∣D2uε

∣∣2 � c

(s − r)2

∫
Bs\Br

〈Duε〉q + A(ε)

(s − r)2
+ B(ε)

(s − r)2k+2
, (4.3)

where c is a constant depending on n, N , q , k, L, Λ. Here A(ε), B(ε) are independent of r , s and, by virtue of
Lemma 9, for each fixed m

A(ε) → 0, B(ε) → 0 as ε ↘ 0.

Combining (4.3) and Lemma 10 we get

∫
Br

|Duε| m
m+1 (p+2) � c(a + 1)2

(s − r)2

( ∫
B2R

|Duε|p
) m

m+1

+ c(a + 1)2

(s − r)2

[( ∫
Bs\Br

〈Duε〉q
) m

m+1 + A1(ε) + B1(ε)

(s − r)2k

]
. (4.4)

Because q < p + 2 we have for m large enough that p < q < m
m+1 (p + 2), and hence we may write

1

q
= θ

m
m+1 (p + 2)

+ 1 − θ

p
,

where

θ = m(p + 2)

2m − p
× q − p

q
∈ (0,1).

Finally, by Hölder’s inequality

( ∫
Bs\Br

〈Duε〉q
) m

m+1

�
( ∫

B2R

〈Duε〉p
) q

p
m

m+1 (1−θ)( ∫
Bs\Br

〈Duε〉 m
m+1 (p+2)

) q
p+2 θ

,

and we observe that since m > p/(p + 2 − q) we have

q

p + 2
θ = (q − p)

m

2m − p
∈ (0,1).

In order to conclude the proof it suffices to use Young’s inequality and the hole filling method exactly as done in the
proof of Theorem 2. This completes the proof for the case p < n.

Finally in the remaining case p � n where we suppose q < p + 2p
n

(and no a priori boundedness condition on
the minimizer) the proof is completed using (3.1), the Sobolev embedding theorem and Hölder’s inequality along the
lines of [14] as in the proof of Theorem 2. �
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Appendix A

In order to conclude the proofs from the previous sections it only remains to prove Lemma 10. We note that it’s an
elementary variant of the more sophisticated interpolation inequality [35, Theorem 3.1]; whereas the latter is proved
by use of the H1–BMO duality we simply use Hölder’s inequality.

Proof of Lemma 10. It suffices to prove the result for a C2 function v : Ω ′ → R. Let t > 0 and denote 2t + 2 =
m

m+1 (p + 2). As in [35] we integrate by parts to get∫
Ω ′

ψ2t+2|Dv|2t+2 = −
∫
Ω ′

v · divw,

where w = ψ2t+2|Dv|2tDv. Here

divw = (2t + 2)ψ2t+1|Dv|2tDψ · Dv + 2tψ2t+2|Dv|2t−2
n∑

j=1

(Dv · DjDv)Djv + ψ2t+2|Dv|2t�v.

We may therefore estimate as follows∫
Ω ′

ψ2t+2|Dv|2t+2 � 2(t + 1)

∫
Ω ′

ψ2t+1|Dψ ||Dv|2t+1|v| + 2(t + 1)

n∑
j=1

∫
Ω ′

ψ2t+2|v||Dv|2t |DjDv|.

Considering |v||Dv|2t |DjDv| = |v||Dv|2t− p−2
2 × |Dv| p−2

2 |DjDv| and using Hölder’s inequality twice (with weight
ψ2t+2) we get∫

Ω ′
ψ2t+2|v||Dv|2t |DjDv|

�
(∫

Ω ′
ψ2t+2|v|2|Dv|4t−p+2

) 1
2
(∫

Ω ′
ψ2t+2|Dv|p−2|DjDv|2

) 1
2

�
(∫

Ω ′
ψ2t+2|v|2m

) 1
2m

(∫
Ω ′

ψ2t+2|Dv|2t+2
)m−1

2m
(∫

Ω ′
ψ2t+2|Dv|p−2|DjDv|2

) 1
2

,

where we used that 2t + 2 = (4t − p + 2) m
m−1 . Likewise Hölder’s inequality yields

∫
Ω ′

ψ2t+2|v||Dv|2t+1|Dψ | �
(∫

Ω ′
ψ2t+2|v|2m

) 1
2m

(∫
Ω ′

ψ2t+2|Dv|2t+2
)m−1

2m
(∫

Ω ′
ψ2t+2|Dv|p|Dψ |2

) 1
2

,

and collecting the bounds a routine estimation allows us to conclude. �
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