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The uniform Korn–Poincaré inequality in thin domains
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Abstract

We study the Korn–Poincaré inequality:

‖u‖W 1,2(Sh) � Ch

∥∥D(u)
∥∥
L2(Sh)

,

in domains Sh that are shells of small thickness of order h, around an arbitrary compact, boundaryless and smooth hypersurface S

in Rn. By D(u) we denote the symmetric part of the gradient ∇u, and we assume the tangential boundary conditions:

u · �nh = 0 on ∂Sh.

We prove that Ch remains uniformly bounded as h → 0, for vector fields u in any family of cones (with angle < π/2, uniform in h)
around the orthogonal complement of extensions of Killing vector fields on S.

We show that this condition is optimal, as in turn every Killing field admits a family of extensions uh, for which the ratio
‖uh‖W 1,2(Sh)/‖D(uh)‖L2(Sh) blows up as h → 0, even if the domains Sh are not rotationally symmetric.
© 2011

Résumé

On étudie l’inégalité de Korn–Poincaré :

‖u‖W 1,2(Sh) � Ch

∥∥D(u)
∥∥
L2(Sh)

,

dans les domaines Sh de type des coques d’épaisseurs d’ordre h autour d’une hypersurface compacte sans bord et regulière S

de Rn. Par D(u), on réfère à la partie symétrique du gradient ∇u et on suppose la condition au bord :

u · �nh = 0 on ∂Sh.

On démontre que Ch reste uniformément borné car h → 0, pour tout champ de vecteurs dans une famille de cônes donnée
(faisant un angle < π/2, uniforme en h) autour du complément orthogonal des extensions de champs de vecteurs de Killing
sur S.
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On montre que cette condition est optimale comme tout champ de Killling u sur S admet une famille d’extensions uh sur Sh pour
lesquelles le rapport ‖uh‖W 1,2(Sh)/‖D(uh)‖L2(Sh) tend à l’infini comme h → 0, même si les Sh ne possèdent pas de symmetrie
axiale.
© 2011 . .
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1. Introduction

The objective of this paper is to study the Korn–Poincaré inequality:

‖u‖W 1,2(Sh) � Ch

∥∥D(u)
∥∥

L2(Sh)
, (1.1)

under the tangential boundary conditions:

u · �nh = 0 on ∂Sh, (1.2)

in domains Sh that are shells of small thickness of order h, around an arbitrary compact, boundaryless and smooth
hypersurface S in Rn. By D(u) = 1

2 (∇u + (∇u)T ) we denote the symmetric part of the gradient ∇u.
Korn’s inequality was discovered in the early XXth century, in the context of the boundary value problem of linear

elastostatics [15,16]. There is by now an extensive literature on the subject, relating to various contexts and various
boundary conditions (see for example a review [11], and the references therein). If (1.2) is replaced by u = 0 on ∂Sh,
one can easily prove that ‖∇u‖L2 �

√
2‖D(u)‖L2 , and so (1.1) follows by the Poincaré inequality. In the absence

of this boundary condition, or with its weaker versions, the bound (1.1) requires an extra assumption to eliminate
pure rotations and translations, when D(u) = 0 but ∇u �= 0. In particular, (1.1) holds for all W 1,2(Sh) vector fields u

satisfying (1.2), which are L2-orthogonal to the space of those linear fields on Sh with skew-symmetric gradient that
are themselves tangent on the boundary.

We are interested in the behaviour of the constant Ch, as h → 0. It turns out that in general, Ch may blow up, even
if Sh are not rotationally symmetric (and so the aforementioned spaces are trivial). The correct way of looking at this
problem is to consider the asymptotic inequality as h → 0, i.e. the related Korn inequality on S (see also [2]):

‖v‖W 1,2(S) � C
∥∥D(v)

∥∥
L2(S)

. (1.3)

This inequality holds true for all tangent vector fields v on S, which are L2-orthogonal to the space of Killing fields
on S. A Killing field v is defined to be a smooth tangent vector field which generates a one-parameter family of
isometries on S. It is well known that the space of Killing fields on a given surface is a finite dimensional Lie algebra.
An equivalent characterisation is:

D(v) = 0, i.e.: τ∇v(x)τ = 0 ∀x ∈ S, ∀τ ∈ TxS. (1.4)

In this paper, we first notice that any v satisfying (1.4) admits a family of extensions vh :Sh → Rn, such that
the boundary conditions (1.2) hold and so that the ratio ‖vh‖W 1,2(Sh)/‖D(vh)‖L2(Sh) goes to infinity as h → 0. This
construction turns out to be the worst case scenario for the possible blow-up of Ch. Our main results state that the
constants Ch remain uniformly bounded for vector fields u inside any family of cones (with angle < π/2, uniform
in h) around the orthogonal complement of the space of extensions of all Killing fields on S.

Our main motivation in this work has been its application to dynamics of Navier–Stokes equations in thin 3-
dimensional domains. Thin domains are encountered in many problems in solid or fluid mechanics. For example, in
ocean dynamics, one is dealing with the fluid regions which are thin compared to the horizontal length scales. Other
examples include lubrication, meteorology, blood circulation, etc.; they are a part of a broader study of the behaviour
of various PDEs on thin n-dimensional domains, where n � 2 (for a review see [20]).

The study of the global existence and asymptotic properties of solutions to the Navier–Stokes equations in thin 3d
domains began with Raugel and Sell in [21]. They proved global existence of strong solutions for large initial data and
in presence of large forcing, for the sufficiently thin 3d product domain Ω = Q× (0, ε), with the boundary conditions
either purely periodical or combined periodic-Dirichlet. Further generalisations to other boundary conditions followed
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(see the references in [12]). Towards analysing thin domains other than simple product domains, Iftimie, Raugel and
Sell [12] treated domains of the type: Ω = {x ∈ R3; (x1, x2) ∈ Q, 0 < x3 < εg(x1, x2)}, with the mixed boundary
conditions: periodic on the lateral boundary and the Navier boundary conditions:

D(u)�nh ‖ �nh and u · �nh = 0 on ∂Sh (1.5)

on the top and on the bottom.
The Korn inequality arises naturally when one considers the incompressible flow subject to (1.5) (see [22]), for

the following reason. In order to define the relevant Stokes operator one uses the symmetric bilinear form B(u, v) =∫
D(u) : D(v) rather than the usual

∫ ∇u : ∇v. Hence the energy methods give suitable bounds for ‖D(uh)‖L2(Sh), for
a solution flow uh in Sh. On the other hand, in order to establish compactness in the limit problem as h → 0, one needs
bounds for the W 1,2 norm of uh, with constants independent of h. The inequality (1.1) (with uniform constants Ch)
provides thus a necessary uniform equivalence of the two norms ‖uh‖W 1,2 and ‖D(uh)‖L2 on Sh.

It is therefore hoped that we can apply the result of this paper to study the dynamics of the Navier–Stokes equations,
under the Navier boundary conditions, in thin shells with various geometries of the reference surface S and of the
boundaries of Sh.

Starting with the original papers of Korn [15,16], Korn’s inequality has also been widely used as a basic tool
for the existence of solutions of the linearised displacement-traction equations in elasticity [4,3,11]. In this context,
for a given displacement vector field u, the matrix field D(u) is the linearised strain, which measures the pointwise
deviation of the deformation Id + εu from a rigid motion, up to the first order terms in ε. Hence, Korn’s inequality
can be interpreted as a rigidity estimate for small displacement deformations: they are W 1,2 close to Id, by the error
given in the right-hand side of (1.1). A nonlinear version of this rigidity estimate, obtained recently in [5], has been
extensively applied to problems in nonlinear elasticity and plate theories (see e.g. [5,6]). Earlier, Korn’s inequalities in
thin neighbourhoods of flat surfaces have been discussed in series of papers by Kohn and Vogelius [14]. They derive
an estimate which degenerates as h → 0 for clamped boundary conditions at the side of the plate. An analogous result
in our setting is given in Theorem 2.3.

2. The main theorems

Let S be a smooth, closed hypersurface (a compact boundaryless manifold of co-dimension 1) in Rn. Consider a
family {Sh}h>0 of thin shells around S:

Sh = {
z = x + t �n(x); x ∈ S, −gh

1 (x) < t < gh
2 (x)

}
,

whose boundary is given by smooth positive functions gh
1 , gh

2 :S → R. We will use the following notation: �nh for the
outward unit normal to ∂Sh, �n(x) for the outward unit normal to S (seen as the boundary of some bounded domain
in Rn), TxS for the tangent space to S at a given x ∈ S. The projection onto S along �n will be denoted by π , so that,
for h sufficiently small:

π(z) = x ∀z = x + t �n(x) ∈ Sh.

The standard Korn inequality (see Theorem A.1 in Appendix A) on bounded Lipschitz domains implies that for
each u ∈ W 1,2(Sh,Rn) satisfying the orthogonality condition:∫

Sh

u(z) · (Az + b)dz = 0, ∀A ∈ so(n), ∀b ∈ Rn (2.1)

one has:

‖u‖W 1,2(Sh) � Ch

∥∥D(u)
∥∥

L2(Sh)
(2.2)

and the constant Ch depends only on the domain Sh, but not on u. Here, so(n) stands for the linear space of all n × n

skew-symmetric matrices:

so(n) = {
A ∈ Mn×n; A = −AT

} = {
A ∈ Mn×n; τT Aτ = 0 ∀τ ∈ Rn

}
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while by D(u) we mean the symmetric part of ∇u:

D(u) = 1

2

(∇u + (∇u)T
)
.

The same result is true for u satisfying additionally:

u · �nh = 0 on ∂Sh,

when in (2.1) we take only linear fields Az + b ∈ R∂ (S
h); with skew-symmetric gradient, and satisfying the same

boundary condition as u:

R∂

(
Sh

) = {
w = Az + b; A ∈ so(n), b ∈ Rn, w · �nh = 0 on ∂Sh

}
.

The standard proof by contradiction (see Theorem A.2 in Appendix A) shows that the constant Ch in (2.2) again does
not depend on u but it may depend on the geometry of Sh. In particular, as follows from the example in Section 4,
Ch may converge to infinity as the thickness of Sh (that is ‖gh

1 + gh
2 ‖L∞(S)) converges to 0. Our goal is to investigate

the behaviour of Ch in two frameworks, relating to the following hypotheses:

(H1) For some positive constants C1, C2 and C3, and all small h > 0 there holds:

C1h � gh
i (x) � C2h,

∣∣∇gh
i (x)

∣∣ � C3h ∀x ∈ S, i = 1,2.

(H2) For some smooth positive functions g1, g2 :S → R, there holds:

1

h
gh

i → gi in C 1(S) as h → 0, i = 1,2.

Clearly (H2) implies (H1) with:

C1 = 1/2 min
{
gi(x); x ∈ S, i = 1,2

}
, C2 = 2 max

i
‖gi‖L∞, C3 = max

i
‖∇gi‖L∞(S) + 1.

Before stating our main results, we need to recall the notion of a Killing vector field. The Lie algebra of smooth
Killing fields on S will be denoted by I(S). That is, v ∈ I(S) if and only if:

(i) v :S → Rn is smooth and v(x) ∈ Tx(S) for every x ∈ S,

(ii) ∂v
∂τ

(x) · τ = 0 for every x ∈ S and every τ ∈ TxS.

Here ∂v/∂τ(x) denotes the derivative of v in the tangent direction τ , i.e. if γ : (−ε, ε) → S is a C 1 curve with γ (0) = x

and γ ′(0) = τ , then ∂v/∂τ(x) = (v ◦ γ )′(0). Condition (ii) implies that

∂v

∂τ
(x) · η + ∂v

∂η
(x) · τ = 0 ∀τ, η ∈ TxS, ∀x ∈ S. (2.3)

Recall that Killing vector fields are infinitesimal generators of isometries on S, in the sense that if Φ is the flow
generated by v:

d

ds
Φ(s, x) = v

(
Φ(s, x)

)
, Φ(0, x) = x,

then for every fixed s the map S � x �→ Φ(s, x) ∈ S is an isometry. The linear space I(S) has finite dimension [13,19].
Also, any Killing field of class W 1,2 is in fact smooth (see Lemma C.1); we recall these facts in Appendix C.

For g1, g2 :S → R, define the subspace of I(S):

Ig1,g2(S) = {
v ∈ I(S); v(x) · ∇(g1 + g2)(x) = 0 for all x ∈ S

}
,

formed of those Killing fields v which satisfy limh→0 h−1v · (�nh+ + �nh−) = 0, where �nh+ and �nh− denote, respectively,
the outward normals to Sh at its boundary points x + gh(x) and x − gh(x).
2 1
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Our main results are the following:

Theorem 2.1. Assume (H1) and let α ∈ [0,1). Then, for all h > 0 sufficiently small and all u ∈ W 1,2(Sh,Rn) satisfying
one of the following tangency conditions:

u · �nh = 0 on ∂+Sh = {
x + gh

2 (x)�n(x); x ∈ S
}
,

or:

u · �nh = 0 on ∂−Sh = {
x − gh

1 (x)�n(x); x ∈ S
}
,

together with:∣∣∣∣ ∫
Sh

u(z)v
(
π(z)

)
dz

∣∣∣∣ � α‖u‖L2(Sh) · ‖vπ‖L2(Sh) ∀v ∈ I(S), (2.4)

there holds:

‖u‖W 1,2(Sh) � C
∥∥D(u)

∥∥
L2(Sh)

, (2.5)

where C is independent of u and of h.

Theorem 2.2. Assume (H2) and let α ∈ [0,1). Then for all h > 0 sufficiently small and all u ∈ W 1,2(Sh,Rn) satisfying
u · �nh = 0 on ∂Sh and:∣∣∣∣ ∫

Sh

u(z)v
(
π(z)

)
dz

∣∣∣∣ � α‖u‖L2(Sh) · ‖vπ‖L2(Sh) ∀v ∈ Ig1,g2(S), (2.6)

there holds (2.5) with C independent of u and of h.

The example constructed in Section 4 shows that conditions (2.4) (or (2.6)) are necessary for the bound (2.5). In
particular, any Killing field v on S generates a family of vector fields vh on Sh, satisfying the boundary condition
and such that ‖∇vh‖2

L2(Sh)
� Ch but ‖D(vh)‖2

L2(Sh)
� Ch3. Hence, if one naively assumes that u satisfies the angle

condition only with the space of generators of appropriate rotations on S, rather than the whole I(S), the constant Ch

has a blow-up rate of at least h−1, as h → 0. The following theorem shows that this is the actual blow-up rate, under
the above mentioned conditions.

More precisely, define:

R(S) = {
v :S → Rn; v(x) = Ax + b, A ∈ so(n), b ∈ Rn, v · �n = 0 on S

} ⊂ I(S),

Rg1,g2(S) = {
v ∈ R(S); v(x) · ∇(g1 + g2)(x) = 0 for all x ∈ S

} ⊂ Ig1,g2(S).

Theorem 2.3. Let α ∈ [0,1). Then, for all h sufficiently small and all u ∈ W 1,2(Sh,Rn), there holds:

‖u‖W 1,2(Sh) � Ch−1
∥∥D(u)

∥∥
L2(Sh)

, (2.7)

in any of the following situations:

(i) (H1) holds, u · �nh = 0 on ∂+Sh or u · �nh = 0 on ∂−Sh, and:∣∣∣∣ ∫
Sh

u(z)v
(
π(z)

)
dz

∣∣∣∣ � α‖u‖L2(Sh) · ‖vπ‖L2(Sh) ∀v ∈ R(S).

(ii) (H2) holds, u · �nh = 0 on ∂Sh, and:∣∣∣∣ ∫
Sh

u(z)v
(
π(z)

)
dz

∣∣∣∣ � α‖u‖L2(Sh) · ‖vπ‖L2(Sh) ∀v ∈ Rg1,g2(S).

Notice that (i) is implied by the hypotheses of Theorem 2.1 and (ii) by the hypotheses of Theorem 2.2, as the spaces
R(S) and Rg1,g2(S) are contained in I(S) or Ig1,g2(S), respectively. The bound (2.7) was obtained also in [14], but
in a different context of thin plates with clamped boundary conditions and rapidly varying thickness.
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3. Remarks and an outline of proofs

Remark 3.1. Conditions (2.4) and (2.6) may be understood in the following way: the cosine of the angle (in L2(Sh))
between u and its projection onto the linear space Wh ⊂ L2(Sh) of ‘trivial’ extensions vπ of certain Killing fields
v ∈ I(S) (or v ∈ Ig1,g2(S)) should be smaller than α.

Equivalently, one considers vector fields u ∈ W 1,2(Sh), which for a given constant β � 1 (related to α through:
β = (1 − α2)−1/2) satisfy:

‖u‖L2(Sh) � β‖u − vπ‖L2(Sh) ∀v ∈ I(S)
(
or ∀v ∈ Ig1,g2(S)

)
. (3.1)

That is, the distance of u from the space Wh controls (uniformly) the full norm ‖u‖L2(Sh).
By Theorems 2.1 and 2.2, inside each closed cone around (Wh)⊥, of fixed angle θ < π/2 in L2(Sh), the bound

(2.5) holds, with a constant C, that is uniform in u and h. One could therefore think that Wh is the kernel for the
uniform Korn–Poincaré inequality, in the same manner as the linear maps Az + b with skew gradients A ∈ so(n)

constitute the kernel for the standard Korn inequality (2.1), (2.2). This is not exactly the case, as the uniform Korn
inequality is true for the extensions vπ (see Remark 4.1). The role of the kernel is played by the space W̃h of ‘smart’
extensions vh of the Killing fields v (see the formula (4.3)).

Still, with vπ replaced by vh in (2.4) or (2.6), both Theorems 2.1 and 2.2 remain true. This is because the spaces
Wh and W̃h are asymptotically tangent at h = 0:∥∥vπ − vh

∥∥
L2(Sh)

� Ch‖vπ‖L2(Sh) ∀v ∈ I(S).

Hence, if |〈u,vh〉L2 | � α‖u‖L2 · ‖vh‖L2 for some α < 1, then |〈u,vπ〉L2 | � (α + Ch)‖u‖L2 · ‖vπ‖L2 , and the angle
conditions in main theorems hold, for h sufficiently small. The fact that we chose to work with ‘trivial’ extensions, in
Wh (giving a simpler condition), instead of the real kernel W̃h, is thus not restrictive.

In the particular case when ∂Sh is parallel to S, say gh
i = h, we have

�nh
(
x + g2(x)�n(x)

) = �n(x), �nh
(
x − g1(x)�n(x)

) = −�n(x),

I(S) = Ig1,g2(S).

If w ∈ R∂ (S
h) then w|S is tangent to S and, as shown in Appendix A (Theorem A.4) it generates a rotation on S.

Actually: w = (w|S)h ∈ W̃h and so by the preceding comment we see that the condition (2.1) is asymptotically
contained in (2.4) (or (2.6)).

Remark 3.2. A natural question is whether I(S) may contain other vector fields than the restrictions of generators
of rigid motions on the whole Rn. This is clearly the case when n = 2: any tangent vector field of constant length is
a Killing field. The same question for higher dimensions and even for n = 3 and general (nonconvex) hypersurfaces
is open, to our knowledge. It is closely related to other open problems: whether the class of rotationally symmetric
surfaces is closed under intrinsic isometries; or whether every intrinsic isometry on S is actually a restriction of some
isometry of R3. When S is convex, it is well known that the last property holds, while for non-convex surfaces it
does not. The answer to the same question, formulated for 1-parameter families of isometries is not known (see [23,
vol. 5]).

An outline of proofs of Theorems 2.1 and 2.2. The general strategy is as follows. Suppose that ‖D(u)‖L2(Sh) is
small. It is natural to study the map ū :S → Rn which is obtained by averaging u in the normal direction:

ū(x) =
gh

2 (x)

−
∫

−gh
1 (x)

u
(
x + t �n(x)

)
dt

(see e.g. [20,21,12,8–10]). By the boundary condition, one has ū · �n ≈ 0, i.e. ū is almost tangential to S. Moreover,
D(ū) is essentially bounded by the average of D(u). Hence if D(u) is small, by Korn’s inequality on surfaces, the
field ū must be close to a Killing field v. If v is not small, we will get a contradiction to the angle condition (2.4)
or (2.6). If v is small then we get good estimates for ū and ultimately for u.
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More precisely, the proof proceeds as follows. First (see Theorem 5.1), an application of Korn’s inequality to
cylinders of size h and an interpolation argument yield a smooth field R :S → so(n) such that:∫

Sh

|∇u − Rπ |2 � C

∫
Sh

∣∣D(u)
∣∣2

, (3.2)

∫
S

|∇R|2 � Ch−3
∫
Sh

∣∣D(u)
∣∣2

. (3.3)

From this we deduce (see Lemma 6.1):∫
S

|∇ū − Rtan|2 � Ch−1
∫
Sh

∣∣D(u)
∣∣2 + Ch

∫
Sh

|∇u|2, (3.4)

where Rtanτ = Rτ for all tangent fields τ and Rtan�n = 0.
Using the boundary conditions it is easy to show that (see Lemma 6.3):∫

S

|ū · �n|2 � Ch

∫
Sh

|∇u|2. (3.5)

It is thus natural to study the tangent field:

ūtan = ū − (ū · �n)�n.

Now Korn’s inequality on S implies that there exists a Killing field v such that:

‖ūtan − v‖W 1,2(S) � C
∥∥D(ūtan)

∥∥
L2(S)

.

By the angle condition, v must be small in L2(S), and hence in W 1,2(S) since the Killing fields form a finite dimen-
sional space. Thus, ‖ūtan‖W 1,2(S) is controlled, and by (3.5) ‖ū‖L2(S) is also controlled. Now the crucial step is to
combine (3.3) and (3.4) to deduce that:∫

S

∣∣∇(ū · �n)
∣∣2 + |R�n|2 � Ch−3/2

∥∥D(u)
∥∥

L2(Sh)
· ‖ū · �n‖L2(S) + harmless terms (3.6)

(see Lemma 6.4). From (3.6) and (3.5) we obtain control on ∇ū. By (3.4) this controls Rtan, hence R, and finally
(3.2) gives the estimate for ∇u. The actual argument is by contradiction, assuming that h−1/2‖uh‖W 1,2(Sh) = 1 and
h−1/2‖D(uh)‖Lh(Sh) → 0 (see Section 7).

Above and in all subsequent proofs, C denotes an arbitrary positive constant, depending on the geometry of S and
constants C1, C2, C3 in (H1) or the functions g1, g2 in (H2). The constant C may also depend on the choice of α, but
it is always independent of u and h.

4. An example where the constant Ch blows up

Let g1, g2 :S → R be some positive and smooth functions, and let gh
i = hgi , i = 1,2. Assume that on S there exists

a nonzero Killing vector field v such that:

v ∈ Ig1,g2(S). (4.1)

We are going to construct a family vh ∈ W 1,2(Sh,Rn) satisfying the boundary condition

vh · �nh = 0 on ∂Sh, (4.2)

for which the uniform bound (2.5) is not valid (after we take uh = vh).
By Π(x) = ∇�n(x) we denote the shape operator on S, that is, the (tangential) gradient of �n. For all x ∈ S and all

t ∈ (−hg1(x), hg2(x)) define:

vh
(
x + t �n(x)

) = (
Id + tΠ(x) + h�n(x) ⊗ ∇g2(x)

)
v(x). (4.3)
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Fig. 1. The vector fields vh and v.

By (4.1) we obtain:

vh
(
x + t �n(x)

) = hg1(x) + t

h(g1(x) + g2(x))
· (Id + hg2(x)Π(x) + h�n(x) ⊗ ∇g2(x)

)
v(x)

+ hg2(x) − t

h(g1(x) + g2(x))
· (Id − hg1(x)Π(x) − h�n(x) ⊗ ∇g1(x)

)
v(x),

which means that each vh is a linear interpolation between the push-forward of the vector field v from S onto the
external part ∂+Sh of the boundary of Sh and the other push-forward onto the internal part ∂−Sh of ∂Sh (see Fig. 1).
Indeed, the derivative of the map:

S � x �→ x ± hgi(x)�n(x)

is given through:

Id ± hgi(x)Π(x) ± h�n(x) ⊗ ∇gi(x).

In particular, we see that (4.2) holds.
Write now vh = w + (vh − w), with:

w(z) = (
Id + tΠ(x)

)
v(x), z = x + t �n(x).

We wish to estimate the order of different coefficients in ∇w and D(w). For every τ ∈ TxS, x ∈ S, there holds:

∂w

∂ �n (z) = Π(x)v(x),

∂w

∂τ
(z) = t

∂Π

∂((Id + tΠ(x))−1τ)
(x)v(x) + (

Id + tΠ(x)
)∇v(x)

(
Id + tΠ(x)

)−1
τ. (4.4)

Observe that:(
∂w

∂τ
· �n + ∂w

∂ �n · τ
)

(z) =
(

−∂ �n
∂τ

· w + ∂w

∂ �n · τ
)

(z)

= −(
Π(x)

(
Id + tΠ(x)

)−1
τ
) · (Id + tΠ(x)

)
v(x) + Π(x)v(x) · τ

= 0, (4.5)

because �n · w = 0 and the symmetric form Π(x) commutes with (Id + tΠ(x))−1. Likewise:(
∂w

∂ �n · �n
)

(z) = 0. (4.6)

To estimate ηT D(w)(z)τ , for τ, η ∈ TxS, notice that:∣∣ηT
(
Id +tΠ(x)

)∇v(x)
(
Id + tΠ(x)

)−1
τ − ηT

(
Id + tΠ(x)

)−1∇v(x)
(
Id + tΠ(x)

)−1
τ
∣∣ � Ct

∣∣∇v(x)
∣∣,
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because |(Id+ tΠ(x))− (Id+ tΠ(x))−1| � Ct . Above and in the sequel, C denotes any positive constant independent
of h. Since τ(Id + tΠ(x))−1 ∈ TxS, by (2.3) and (4.4) we obtain:∣∣ηT D(w)(z)τ

∣∣ � Ct
(∣∣v(x)

∣∣ + ∣∣∇v(x)
∣∣). (4.7)

We also have: |∇(vh − w)(z)| � Ch and by (4.5), (4.6) and (4.7): |D(w)(z)| � Ch for every z ∈ Sh. Hence:∥∥D
(
vh

)∥∥2
L2(Sh)

� Ch3.

On the other hand, inspecting the terms in (4.4) and recalling that v �= 0 (and therefore ∇v �= 0 as well) we see that:∥∥∇vh
∥∥2

L2(Sh)
� 1

2
‖∇v‖2

L2(Sh)
− Ch3 � Ch.

The two last inequalities imply that the uniform bound (2.5) is not valid, without the restriction (2.6). Even if S has
no rotational symmetry, the constants Ch in (2.2) become unbounded as h → 0.

Remark 4.1. The construction (4.3) is crucial for the counterexample to work. Indeed, one cannot simply take ‘trivial’
extensions vπ ∈ W 1,2(Sh) for the blow-up of Ch. The reason is that, for any τ ∈ TxS, one has:

∂(vπ)

∂τ
(z) · �n = −∂(�nπ)

∂τ
(z) · (vπ)(z) = −Π(x)

(
Id + tΠ(x)

)−1
τ · v(x) = O(1),

∂(vπ)

∂ �n (z) = 0,

and thus both ∇(vπ)(z) and D(vπ)(z) are of the order O(1). Hence, with a uniform constant C:∥∥∇(vπ)
∥∥2

L2(Sh)
� Ch‖v‖2

W 1,2(S)
� Ch � Ch‖v‖2

L2(S)
� C

∥∥D(vπ)
∥∥2

L2(Sh)
.

5. An approximation of ∇u

In this section we construct a smooth function R with skew-symmetric matrix values, approximating ∇u on Sh

with the error ‖D(u)‖L2(Sh). The construction relies on Appendix B, where for convenience of the reader we analyse
the constant in Korn’s inequality on a fixed, star-shaped with respect to a ball domain (Theorem B.1). We apply this
estimate locally and then use a mollification argument as in [5]. The same approximation result is independently
obtained in [10, Theorem 4.3], in the context of the unfolding method in the linearised elasticity.

As always, C denotes any uniform constant, independent of u and h.

Theorem 5.1. Assume (H1). For every u ∈ W 1,2(Sh,Rn) there exists a smooth map R :S → so(n) such that:

(i) ‖∇u − Rπ‖L2(Sh) � C‖D(u)‖L2(Sh),

(ii) ‖∇R‖L2(S) � Ch−3/2‖D(u)‖L2(Sh).

Proof. 1. For x ∈ S consider balls in S and ‘cylinders’ in Sh defined by:

Dx,h = B(x,h) ∩ S, Bx,h = π−1(Dx,h) ∩ Sh.

The main observation is that sets Bx,h are contained in a ball of radius (C2 + 1)h and are star-shaped with respect to a
ball of radius r(C1,C2,C3, S)h, when h is sufficiently small. Hence, an application of Korn’s inequality on Bx,h (see
Theorem B.1) yields a skew-symmetric matrix Ax,h ∈ so(n) such that:∫

Bx,h

∣∣∇u(z) − Ax,h

∣∣2 dz � C

∫
Bx,h

∣∣D(u)
∣∣2

. (5.1)

Indeed, recalling the assumption (H1) we see that for h sufficiently small, Bx,h are star-shaped with respect to x and
that both the Lipschitz constants of their boundaries and the ratios of their diameters have common bounds.



452 M. Lewicka, S. Müller / Ann. I. H. Poincaré – AN 28 (2011) 443–469
Our goal is to replace Ax,h by a matrix R(x) which depends smoothly on x. This will allow us to replace Ax,h

by R(πz) in (5.1). The desired estimate on Sh then follows by summing over a suitable family of cylinders. The
smoothness of R will also play essential role in the key estimate in Lemma 6.4.

2. To define R(x) consider a cut-off function ϑ ∈ C∞
c ([0,1)), with ϑ � 0, ϑ constant in a neighbourhood of 0, and∫ 1

0 ϑ = 1. For each x ∈ S define:

ηx(z) = ϑ(|πz − x|/h)∫
Sh ϑ(|πz − x|/h)dz

.

Then ηx(z) = 0 for z /∈ Bx,h and:∫
Sh

ηx(z)dz = 1, |ηx | � C

hn
, |∇xηx | � C

hn+1
.

Define R(x) as the average:

R(x) =
∫
Sh

ηx(z) skew
(∇u(z)

)
dz,

where skew(F ) = (F − FT )/2 denotes the skew-symmetric part of a given matrix F . Since
∫

ηx = 1, we have:

R(x) − Ax,h =
∫
Sh

ηx(z) skew
(∇u(z) − Ax,h

)
dz,

and by the Cauchy–Schwarz inequality, noting that | skew(F )| � C|F | we obtain:∣∣R(x) − Ax,h

∣∣2 � C

( ∫
Sh

ηx(z)
∣∣∇u(z) − Ax,h

∣∣dz

)2

� C

hn

∫
Bx,h

∣∣D(u)
∣∣2

. (5.2)

To estimate the derivative of R we use that:∫
Sh

∇xηx(z)dz = ∇x

( ∫
Sh

ηx(z)dz

)
= 0.

Thus:

∇R(x) =
∫
Sh

(∇xηx) skew(∇u) =
∫
Sh

(∇xηx) skew(∇u − Ax,h)

and by (5.1):∣∣∇R(x)
∣∣2 �

∫
Bx,h

|∇xηx |2 ·
∫

Bx,h

|∇u − Ax,h|2 � C

hn+2

∫
Bx,h

∣∣D(u)
∣∣2

. (5.3)

Similarly, we get for all x′ ∈ Dx,h:∣∣∇R
(
x′)∣∣2 � C

hn+2

∫
Bx′,h

∣∣D(u)
∣∣2 � C

hn+2

∫
2Bx,h

∣∣D(u)
∣∣2

, (5.4)

where 2Bx,h = π−1(Dx,2h) ∩ Sh. From this, by the fundamental theorem of calculus:∣∣R(
x′′) − R(x)

∣∣2 � C

hn

∫
2Bx,h

∣∣D(u)
∣∣2 ∀x′′ ∈ Dx,h.

In combination with (5.1) and (5.2) this yields:∫
B

∣∣∇u(z) − R(πz)
∣∣2

dz � C

∫
2B

∣∣D(u)
∣∣2

. (5.5)
x,h x,h
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Now cover Sh with a family {Bxi,h}N(h)
i=1 so that the covering number of {2Bxi,h}N(h)

i=1 is independent of h. A possible
argument for the existence of such a covering goes as follows. The surface S is contained in the finite union of
balls

⋃N(h)
i=1 B(xi, h/2) where ki ∈ (h

2 Z)n. Fix a one-to-one map ki �→ xi ∈ S ∩ B(ki, h/2), so that Sh = ⋃
i Bxi ,h.

Then, if z ∈ 2Bxi,h there must be π(z) ∈ B(xi,2h), so that |ki − π(z)| � |ki − xi | + |π(z) − xi | � 5h/2. Therefore
ki ∈ B(x,5h/2) ∩ (h

2 Z)n. The cardinality of this last set is bounded by 10n, which must as well be a covering number

for the family {2Bxi,h}N(h)
i=1 .

Summing (5.5) over i = 1, . . . ,N proves (i). Finally, integrating (5.4) on Dx,h we get:∫
Dx,h

∣∣∇R
(
x′)∣∣2 dx′ � C

h3

∫
2Bx,h

∣∣D(u)
∣∣2

,

and using the same covering as before we obtain (ii). �
Following the same argument, we will prove a uniform Poincaré inequality in thin domains – see Theorem D.1 in

Appendix D.

6. The key estimates

Let ū :S → Rn be the average of u in the normal direction:

ū(x) =
gh

2 (x)

−
∫

−gh
1 (x)

u
(
x + t �n(x)

)
dt ∀x ∈ S. (6.1)

In this section we will establish four useful estimates on various components of ū and their derivatives.
The first estimate on ∇ū is an extension of the previous Theorem 5.1:

Lemma 6.1. Assume (H1). For every u ∈ W 1,2(Sh,Rn) there holds:

‖∇ū − Rtan‖L2(S) � Ch1/2‖u‖W 1,2(Sh) + Ch−1/2
∥∥D(u)

∥∥
L2(Sh)

,

where the subscript ‘tan’ refers to the tangential components of the appropriate matrix valued function, that is:
Rtan(x)�n(x) = 0 and Rtan(x)τ = R(x)τ for all x ∈ S and τ ∈ TxS.

Proof. Through a direct calculation one checks that for every x ∈ S and τ ∈ TxS there holds:∣∣∣∣∣∂τ ū(x) −
gh

2 (x)

−
∫

−gh
1 (x)

∇u
(
x + t �n(x)

) · {τ + t∂τ �n(x)
}

dt

∣∣∣∣∣
� C

h

(∣∣∂τ g
h
1 (x)

∣∣ + ∣∣∂τ g
h
2 (x)

∣∣) ·
gh

2 (x)∫
−gh

1 (x)

∣∣∂�nu
(
x + t �n(x)

)∣∣dt � C

gh
2 (x)∫

−gh
1 (x)

|∇u|dt

and:

gh
2 (x)

−
∫

−gh
1 (x)

∣∣∇u
(
x + t �n(x)

) · (τ + t∂τ �n(x)
) − R(x)τ

∣∣dt

� C

gh
2 (x)∫

−gh(x)

|∇u|dt +
gh

2 (x)

−
∫

−gh(x)

∣∣∇u
(
x + t �n(x)

) − R(x)
∣∣dt.
1 1
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Hence, by Theorem 5.1(i):

‖∇ū − Rtan‖2
L2(S)

� C

∫
S

{
h

gh
2 (x)∫

−gh
1 (x)

|∇u|2 dt + h−1

gh
2 (x)

−
∫

−gh
1 (x)

|∇u − Rπ |2 dt

}
dx

� Ch‖∇u‖2
L2(Sh)

+ Ch−1
∥∥D(u)

∥∥2
L2(Sh)

. �
In order to estimate the normal part ū, we will use the following bounds:

Lemma 6.2. Recall that ∂Sh = ∂−Sh ∪ ∂+Sh, with:

∂−Sh = {
x − gh

1 (x)�n(x); x ∈ S
}
,

∂+Sh = {
x + gh

2 (x)�n(x); x ∈ S
}
. (6.2)

(i) If (H1) holds then |�nh(z) − �n(π(z))| � Ch for all z ∈ ∂+Sh and |�nh(z) + �n(π(z))| � Ch for all z ∈ ∂−Sh.
(ii) If (H2) holds then:∣∣�nh(z) + �n(

π(z)
) + ∇gh

1

(
π(z)

)∣∣ � Ch2 ∀z ∈ ∂−Sh,∣∣�nh(z) − �n(
π(z)

) + ∇gh
2

(
π(z)

)∣∣ � Ch2 ∀z ∈ ∂+Sh.

Let now u ∈ W 1,2(Sh,Rn).

(iii) |∂�n(u · �n)(z)| � |D(u)(z)| for all z ∈ Sh.
(iv) If (H1) holds and u · �nh = 0 on ∂+Sh, then:

‖u · �n‖L2(∂+Sh) � Ch1/2‖u‖W 1,2(Sh).

(v) If (H2) holds and u · �nh = 0 on ∂Sh:∫
S

∣∣u(
x − gh

1 (x)�n(x)
) · ∇gh

1 (x) + u
(
x + gh

2 (x)�n(x)
) · ∇gh

2 (x)
∣∣2 dx � Ch

∫
Sh

∣∣D(u)
∣∣2 + Ch3‖u‖2

W 1,2(Sh)
.

Proof. (i) is obvious. To prove (ii) observe, for example, that on ∂+Sh the normal �nh(z) is parallel to �n(π(z)) −
∇gh

2 (π(z)) + w, where |w| � C|gh
2 (π(x))∇gh

2 (π(z))| � Ch2. Normalising this vector we conclude the second in-
equality in (ii). The first one follows in the same manner.

(iii) follows from: ∂�n(u · �n) = D(u)�n · �n.
To prove (iv), use (i) and the trace theorem in Appendix D:

‖u · �n‖L2(∂+Sh) = ∥∥u · (�n − �nh
)∥∥

L2(∂+Sh)
� Ch1/2‖u‖W 1,2(Sh).

For (v), use (ii), (iii) and Theorem D.3:∫
S

∣∣u(
x + gh

2 (x)�n(x)
) · ∇gh

2 (x) + u
(
x − gh

1 (x)�n(x)
) · ∇gh

1 (x)
∣∣2 dx

�
∫
S

∣∣u(
x + gh

2 (x)�n(x)
) · �n(x) − u

(
x − gh

1 (x)�n(x)
) · �n(x)

∣∣2 dx + Ch4
∫

∂Sh

|u|2

=
∫
S

∣∣∣∣∣
gh

2 (x)∫
−gh

1 (x)

∂�n(u · �n)
(
x + t �n(x)

)
dt

∣∣∣∣∣
2

dx + Ch4
∫

∂Sh

|u|2

� Ch

∫
h

∣∣D(u)
∣∣2 + Ch3‖u‖2

W 1,2(Sh)
. �
S
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Lemma 6.3. Assume (H1) and let u ∈ W 1,2(Sh,Rn) satisfy u · �nh = 0 on ∂+Sh. Then:

‖ū · �n‖L2(S) � Ch1/2‖u‖W 1,2(Sh).

Proof. By Lemma 6.2(iv) and (i), for every z = x + t �n(x) ∈ Sh we obtain:∣∣u(
x + t �n(x)

) · �n(x)
∣∣2

�
(∣∣u(

x + gh
2 (x)�n(x)

) · �n(x)
∣∣ +

gh
2 (x)∫

−gh
1 (x)

∣∣D(u)
∣∣)2

� C · ∣∣u(
x + gh

2 (x)�n(x)
) · (�n(x) − �nh

(
x + gh

2 (x)�n(x)
))∣∣2 + Ch

gh
2 (x)∫

−gh
1 (x)

∣∣D(u)
∣∣2

� Ch2
∣∣u(

x + gh
2 (x)�n(x)

)∣∣2 + Ch

gh
2 (x)∫

−gh
1 (x)

∣∣D(u)
∣∣2

.

Hence by Theorem D.3:

‖ū · �n‖2
L2(S)

� C

h

∫
S

gh
2 (x)∫

−gh
1 (x)

∣∣u(
x + t �n(x)

) · �n(x)
∣∣2 dt dx

� C

h

(
h3‖u‖2

L2(∂Sh)
+ h2

∥∥D(u)
∥∥2

L2(Sh)

)
� Ch‖∇u‖2

L2(Sh)
. � (6.3)

The next, key estimate, is on the gradient of ū · �n. It is obtained using the divergence theorem on the surface S:

Lemma 6.4. Assume (H1) and let u ∈ W 1,2(Sh,Rn) satisfy u · �nh = 0 on ∂+Sh. Then:∥∥∇(ū · �n)
∥∥

L2(S)
+ ‖R�n‖L2(S)

� C
(‖ū‖L2(S) + ‖u‖W 1,2(Sh) + h−1/2

∥∥D(u)
∥∥

L2(Sh)

) + C
(
h−1‖u‖W 1,2(Sh) · ∥∥D(u)

∥∥
L2(Sh)

)1/2
.

Proof. First note that ‖R�n‖L2(S) = ‖�nT Rtan‖L2(S), since �nR�n = 0 and R ∈ so(n). To prove the desired estimate we
use the Hilbert space identity:

‖a‖2 + ‖b‖2 = ‖a − b‖2 + 2〈a, b〉
with a = ∇(ū · �n) and b = �nT Rtan.

Integration by parts shows that:

〈a, b〉 =
∣∣∣∣ ∫

S

(�nRtan) · ∇(ū · �n)

∣∣∣∣ � C‖ū · �n‖L2(S)

(‖R‖L2(S) + ∥∥∇(�nRtan)
∥∥

L2(S)

)
� C‖ū · �n‖L2(S)‖R‖W 1,2(S)

� C‖ū · �n‖L2(S)

(
h−3/2

∥∥D(u)
∥∥

L2(Sh)
+ h−1/2‖∇u‖L2(Sh)

)
� Ch−1‖u‖W 1,2(Sh) · ∥∥D(u)

∥∥
L2(Sh)

+ C‖u‖2
W 1,2(Sh)

, (6.4)

where we applied the divergence theorem, Theorem 5.1 and Lemma 6.3.
On the other hand a = �nT ∇ū + ū · ∇�n, so by Lemma 6.1:
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‖a − b‖ � C
(‖ū‖L2(S) + ‖∇ū − Rtan‖L2(S)

)
� C‖ū‖L2(S) + Ch1/2‖u‖W 1,2(Sh) + Ch−1/2

∥∥D(u)
∥∥

L2(Sh)
. (6.5)

Combining (6.4) and (6.5) proves the result. �
Finally, in presence of the stronger condition (H2), we have an additional bound:

Lemma 6.5. Assume (H2) and let u ∈ W 1,2(Sh,Rn), u · �nh = 0 on ∂Sh. Then:

1

h

∫
S

∣∣ū · ∇(
gh

1 + gh
2

)∣∣ � Ch1/2‖u‖W 1,2(Sh) + Ch−1/2
∥∥D(u)

∥∥
L2(Sh)

.

Proof. We have:

1

h

∫
S

∣∣ū · ∇(
gh

1 + gh
2

)∣∣
� 1

h

∫
S

∣∣u(
x − gh

1 (x)�n(x)
) · ∇gh

1 (x) + u
(
x + gh

2 (x)�n(x)
) · ∇gh

2 (x)
∣∣dx + C‖u − ūπ‖L1(∂Sh)

� Ch−1/2
∥∥D(u)

∥∥
L2(S)

+ Ch1/2‖u‖W 1,2(Sh) + Ch1/2‖∇u‖L2(Sh).

The last inequality follows from Lemma 6.2(v) and from an easy bound: ‖u − ūπ‖L1(∂Sh) � Ch1/2‖∇u‖L2(Sh). �
7. A proof of main theorems

In this section we will prove the uniform Korn’s estimate:

‖u‖W 1,2(Sh) � C
∥∥D(u)

∥∥
L2(Sh)

, (7.1)

under the angle constraints (2.4) or (2.6). We argue by contradiction; assume thus that (7.1) is not valid, for any
uniform constant C. Hence, there exist sequences hn → 0 and uhn ∈ W 1,2(Shn) (for simplicity we will write h instead
of hn) such that the assumptions of Theorem 2.1 or 2.2 are satisfied, but:

h−1/2
∥∥uh

∥∥
W 1,2(Sh)

= 1 and h−1/2
∥∥D

(
uh

)∥∥
L2(Sh)

→ 0 as h → 0. (7.2)

For the proof of Theorem 2.1 we will assume that uh · �nh = 0 on ∂+Sh. The case of the tangency condition on ∂−Sh

is proved exactly the same.
Notice that (7.2) immediately gives, through Lemmas 6.3, 6.1 and 6.4, that:

lim
h→0

(∥∥ūh · �n∥∥
L2(S)

+ ∥∥∇ūh − Rh
tan

∥∥
L2(S)

) = 0, (7.3)

lim
h→0

(∥∥∇(
ūh · �n)∥∥

L2(S)
+ ∥∥Rh�n∥∥

L2(S)

)
� C lim sup

h→0

∥∥ūh
∥∥

L2(S)
. (7.4)

Also, Lemma 6.5 implies that under the assumption (H2):

lim
h→0

∫
S

∣∣ūh · ∇(g1 + g2)
∣∣ = 0, (7.5)

where we used that the sequence ūh is bounded in L1(S), again in view of (7.2).
A contradiction will be derived in several steps. In particular, the tangential component of the average ū:

ūh
tan(x) = ūh(x) − (

ūh · �n) · �n(x) ∈ TxS

will be estimated using the Korn inequality on hypersurfaces (see Appendix C). The conditions (2.4) and (2.6) assumed
in Theorems 2.1 and 2.2 will be used in full (not just for rotations as in Theorem 2.3).
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Proof of Theorems 2.1 and 2.2. 1. Applying Theorem C.2 to each tangent vector field ūh
tan, we obtain a sequence

vh
0 ∈ I(S) such that:∥∥ūh

tan − vh
0

∥∥
W 1,2(S)

� C
∥∥D

(
ūh

tan

)∥∥
L2(S)

.

For every x ∈ S and τ ∈ TxS there holds:∣∣∂τ ū
h
tan(x) · τ ∣∣ = ∣∣∂τ ū

h(x) · τ − (
ūh · �n)

(x) · ∂τ �n(x)
∣∣

�
∣∣∂τ ū

h(x) − Rh(x)τ
∣∣ + C

∣∣(ūh · �n)
(x)

∣∣,
as Rh(x) ∈ so(n). Thus, by (7.3):∥∥D

(
ūh

tan

)∥∥
L2(S)

� C
(∥∥∇ūh − Rh

tan

∥∥
L2(S)

+ ∥∥ūh · �n∥∥
L2(S)

) → 0 as h → 0.

Therefore:

lim
h→0

∥∥ūh
tan − vh

0

∥∥
W 1,2(S)

= 0. (7.6)

2. Let P be the orthogonal projection (with respect to the L2(S) norm) of the space I(S) onto its subspace V ,
which we take to be the whole I(S) in case of Theorem 2.1 and Ig1,g2(S) in case of Theorem 2.2. Call vh

1 = Pvh
0 ∈ V

and vh
2 = vh

0 − vh
1 ∈ V ⊥. In both cases (3.1) implies:∥∥uh

∥∥
L2(Sh)

� C
∥∥uh − vh

1 π
∥∥

L2(Sh)
. (7.7)

We now prove that:

lim
h→0

∥∥vh
2

∥∥
L2(S)

= 0. (7.8)

In case of Theorem 2.1, when V ⊥ = {0}, (7.8) is trivial, so we concentrate on the case of Theorem 2.2. Notice that
then, (7.5) and (7.6) yield:∫

S

∣∣vh
2 · ∇(g1 + g2)

∣∣ =
∫
S

∣∣vh
0 · ∇(g1 + g2)

∣∣
� C

∥∥ūh
tan − vh

0

∥∥
L1(S)

+ C

∫
S

∣∣ūh · ∇(g1 + g2)
∣∣ → 0 as h → 0. (7.9)

Since all norms in the finitely dimensional space V ⊥ are equivalent, we have:∥∥vh
2

∥∥
L2(S)

� C

∫
S

∣∣vh
2 · ∇(g1 + g2)

∣∣. (7.10)

Indeed, the right-hand side of (7.10) provides a norm on the space in question. Now, (7.9) and (7.10) clearly im-
ply (7.8).

3. Using the Poincaré inequality on each segment [−gh
1 (x), gh

2 (x)], and by (7.2):

h−1/2
∥∥ūhπ − uh

∥∥
L2(Sh)

� Ch1/2
∥∥∇uh

∥∥
L2(Sh)

→ 0 as h → 0. (7.11)

We now obtain convergence to 0 of various quantities:

h−1/2
∥∥ūh

tanπ − uh
∥∥

L2(Sh)
� h−1/2

∥∥ūhπ − uh
∥∥

L2(Sh)
+ C

∥∥ūh · �n∥∥
L2(S)

→ 0 by (7.11) and (7.3),

h−1/2
∥∥vh

0 π − vh
1 π

∥∥
L2(Sh)

→ 0 by (7.8),

h−1/2
∥∥uh − vh

1 π
∥∥

L2(Sh)
→ 0 by (7.6) and convergences above.

Consequently, by (7.7):

lim h−1/2
∥∥uh

∥∥
L2(Sh)

= 0. (7.12)

h→0
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Hence:∥∥ūh
∥∥

L2(S)
→ 0, (7.13)∥∥∇(

ūh · �n)∥∥
L2(S)

+ ∥∥Rh�n∥∥
L2(S)

→ 0 by (7.4) and (7.13), (7.14)∥∥vh
0

∥∥
L2(S)

→ 0 by (7.6) and (7.13). (7.15)

Because of the equivalence of all norms on the finitely dimensional space I(S), (7.15) implies:

lim
h→0

∥∥vh
0

∥∥
W 1,2(S)

= 0. (7.16)

Now, we may estimate the quantity h−1/2‖∇uh‖L2(Sh) by the following norms: h−1/2‖∇uh − Rhπ‖L2(Sh),
‖Rh�n‖L2(S), ‖Rh

tan − ∇ūh‖L2(S), ‖∇(ūh · �n)‖L2(S), ‖∇ūh
tan − ∇vh

0 ‖L2(S), ‖∇vh
0 ‖L2(S), and use Theorem 5.1, (7.14),

(7.3), (7.6) and (7.16) to conclude that:

lim
h→0

h−1/2
∥∥∇uh

∥∥
L2(Sh)

= 0.

Together with (7.12) this contradicts (7.2). �
8. Estimates without Killing fields

In this section we prove Theorem 2.3. The first step is to give a bound for the distance of u from the generators of
rigid motions in Rn. This follows from Theorem 5.1 and the uniform Poincaré inequality in Theorem D.1:

Lemma 8.1. Assume (H1). For every u ∈ W 1,2(Sh,Rn) there exists a linear function v(z) = Az + b, A ∈ so(n),
b ∈ Rn, such that:

‖u − v‖W 1,2(Sh) � Ch−1
∥∥D(u)

∥∥
L2(Sh)

.

Proof. Recall the results of Theorem 5.1 and define:

A = −
∫
S

R(x)dx ∈ so(n).

By Theorem 5.1 and the Poincaré inequality on S, we obtain:∫
Sh

|∇u − A|2 � C

{ ∫
Sh

|∇u − Rπ |2 + h

∫
S

∣∣R(x) − A
∣∣2 dx

}

� C

{ ∫
Sh

∣∣D(u)
∣∣2 + h

∫
S

|∇R|2
}

� Ch−2
∫
Sh

∣∣D(u)
∣∣2

. (8.1)

We now apply Theorem D.1 to the function u(z) − Az, by which for some b ∈ Rn there holds:∫
Sh

∣∣u(z) − Az − b
∣∣2 dz � C

∫
Sh

|∇u − A|2 � Ch−2
∫
Sh

∣∣D(u)
∣∣2

. (8.2)

Now (8.1) and (8.2) imply the result. �
Proof of Theorem 2.3. The proof of part (i) will be carried out assuming that u · �nh = 0 on ∂+Sh. For the other case
(u · �nh = 0 on ∂−Sh) the argument is the same.

1. We argue by contradiction. If (2.7) was not true, then there would be sequences hn → 0 and uhn ∈ W 1,2(Shn)

satisfying the conditions in (i) or (ii) and such that:

h−1/2
∥∥uh

∥∥
W 1,2(Sh)

= 1, (8.3)

h−3/2
∥∥D

(
uh

)∥∥
2 h → 0 as h → 0 (8.4)
L (S )
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(to simplify the notation, we write h instead of hn). By Lemma 8.1, there exists a sequence vh(z) = Ahz + bh,
Ah ∈ so(n), bh ∈ Rn, such that:

h−1/2
∥∥uh − vh

∥∥
W 1,2(Sh)

→ 0 as h → 0. (8.5)

Because of (8.3), the sequence h−1/2vh is bounded in W 1,2(Sh) and so, without loss of generality, we may assume
that:

Ah → A ∈ so(n), bh → b ∈ Rn as h → 0. (8.6)

Moreover, by (8.3) and (8.5):

lim
h→0

h−1/2
∥∥vh

∥∥
W 1,2(Sh)

= lim
h→0

h−1/2
∥∥uh

∥∥
W 1,2(Sh)

= 1,

and therefore:

|A| + |b| �= 0. (8.7)

2. We now prove that if (H1) holds together with uh · �nh = 0 on ∂+Sh, then we must have Ax + b ∈ R(S). Indeed,
by Theorem D.3 and Lemma 6.2(iv):∥∥vh · �n∥∥

L2(∂+Sh)
�

∥∥uh − vh
∥∥

L2(∂+Sh)
+ ∥∥uh · �n∥∥

L2(∂+Sh)

� C
(
h−1/2

∥∥uh − vh
∥∥

W 1,2(Sh)
+ h1/2

∥∥uh
∥∥

W 1,2(Sh)

) → 0 as h → 0,

where the convergence above follows from (8.3) and (8.5). Thus:∫
S

∣∣(Ax + b) · �n(x)
∣∣2 dx = lim

h→0

∫
S

∣∣vh(x) · �n(x)
∣∣2 dx = lim

h→0

∥∥vh · �nπ
∥∥2

L2(∂+Sh)
= 0.

We now prove that if (H2) holds, together with uh · �nh = 0 on ∂Sh, then Ax + b ∈ Rg1,g2(S). By Theorem D.3 and
Lemma 6.2(v):

1

h2

∫
S

∣∣vh
(
x + gh

2 (x)�n(x)
) · ∇gh

2 (x) + vh
(
x − gh

1 (x)�n(x)
) · ∇gh

1 (x)
∣∣2 dx

� 1

h2

{
Ch2

∥∥vh − uh
∥∥2

L2(∂Sh)
+

∫
S

∣∣uh
(
x + gh

2 (x)�n(x)
) · ∇gh

2 (x) + uh
(
x − gh

1 (x)�n(x)
) · ∇gh

1 (x)
∣∣2 dx

}

� C

h

{∥∥vh − uh
∥∥

W 1,2(Sh)
+ ∥∥D

(
uh

)∥∥2
L2(Sh)

+ h2
∥∥uh

∥∥2
W 1,2(Sh)

} → 0 as h → 0, (8.8)

where (8.5) with (8.4) justify the convergence. Hence, by (8.8):∫
S

∣∣(Ax + b) · ∇(g1 + g2)(x)
∣∣2 dx = lim

h→0

1

h2

∫
S

∣∣vh · ∇(
gh

1 + gh
2

)∣∣2 = 0.

3. We see that in both cases (i) and (ii) there holds (using condition (3.1)):∥∥uh
∥∥

L2(Sh)
� C

∥∥uh − (
Aπ(z) + b

)∥∥
L2(Sh)

.

Thus, by (8.5) and (8.6):

h−1/2
∥∥uh

∥∥
L2(Sh)

� Ch−1/2
∥∥uh − (

Aπ(z) + b
)∥∥

L2(Sh)

� Ch−1/2
∥∥uh − vh

∥∥
L2(Sh)

+ Ch−1/2
∥∥vh − (

Aπ(z) + b
)∥∥

L2(Sh)
→ 0.

We deduce that limh→0 h−1/2‖vh‖L2(Sh) = 0 as well, which contradicts (8.7). �
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Appendix A. The Korn–Poincaré inequality in a fixed domain

In this section Ω ⊂ Rn is a fixed open, bounded domain with Lipschitz boundary. For x ∈ ∂Ω , by �nΩ(x) we denote
the outward unit normal to ∂Ω at x. We first recall the standard Korn inequality [3,7,5]:

Theorem A.1.

(i) There holds:{
u ∈ L2(Ω,Rn

); D(u) ∈ L2(Ω,Mn×n
)} = W 1,2(Ω,Rn

)
,

and the following equivalence of norms:

‖u‖W 1,2(Ω) � CΩ

(‖u‖L2(Ω) + ∥∥D(u)
∥∥

L2(Ω)

)
� C2

Ω‖u‖W 1,2(Ω).

(ii) For every u ∈ W 1,2(Ω,Rn) there exist A ∈ so(n) and b ∈ Rn so that:∥∥u − (Ax + b)
∥∥

W 1,2(Ω)
� CΩ

∥∥D(u)
∥∥

L2(Ω)
.

The constants CΩ above depend only on the domain Ω and not on u.

Notice that Theorem A.1(ii) implies that for each u ∈ W 1,2(Ω,Rn) satisfying the orthogonality condition:∫
Ω

u · v = 0 ∀v ∈ R(Ω) = {
Ax + b; A ∈ so(n), b ∈ Rn

}
one has:

‖u‖W 1,2(Ω) � CΩ

∥∥D(u)
∥∥

L2(Ω)
.

The same is true if we restrict our attention to vector fields tangential on ∂Ω . Define:

R∂ (Ω) = {
v ∈ R(Ω); v · �nΩ = 0 on ∂Ω

}
.

Theorem A.2. For every u ∈ W 1,2(Ω,Rn) such that u · �nΩ = 0 on ∂Ω and:∫
Ω

u · v = 0 ∀v ∈ R∂ (Ω), (A.1)

there holds:

‖u‖W 1,2(Ω) � CΩ

∥∥D(u)
∥∥

L2(Ω)
,

and the constant CΩ depends only on Ω .

Proof. We argue by contradiction, starting with a sequence un ∈ W 1,2(Ω) satisfying un · �nΩ = 0 on ∂Ω , (A.1) and:

‖un‖W 1,2(Ω) = 1,
∥∥D(un)

∥∥
L2(Ω)

→ 0 as n → ∞. (A.2)

Without loss of generality, un converges hence weakly to some u in W 1,2(Ω), and the convergence is strong in L2(Ω).
Clearly u · �nΩ = 0 on ∂Ω and (A.1) still holds. By Theorem A.1(ii), there exist sequences An ∈ so(n) and bn ∈ Rn so
that un − (Anx + bn) converges to 0 in W 1,2(Ω).

Therefore Anx + bn converges weakly to u in W 1,2(Ω) and we see that u ∈ R∂ (Ω). By (A.1) there hence must be
u = 0 and un converges then (strongly) to 0 in W 1,2(Ω). This contradicts the first condition in (A.2). �
Example A.3. Let Ω = B1 ⊂ R3. Since A ∈ so(3), there must be Ax = a × x, for some a ∈ R3 and we obtain:

R∂ (B1) = {
a × x; a ∈ R3}.
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Condition (A.1) reads:

0 =
∫
B1

(a × x) · u(x)dx = a ·
∫
B1

x × u(x)dx ∀a ∈ R3.

Thus the class of functions u for which the hypotheses of Theorem A.2 are satisfied is the following:{
u ∈ W 1,2(Ω); u · �nΩ = 0 on ∂B1,

∫
B1

x × u(x)dx = 0

}
.

As observed in the next result, condition (A.1) is not void if and only if our bounded domain Ω is rotationally
symmetric.

Theorem A.4. If R∂ (Ω) �= {0} then Ω must be rotationally symmetric.

Proof. Let v(x) = Ax + b ∈ R∂ (Ω). We will prove that the flow generated by the tangent vector field v|∂Ω is a
rotation.

Since A ∈ so(n) we have that Rn = Ker(A) ⊕ Im(A) is an orthogonal decomposition of Rn. Write b = bker + Ab0,
bker ∈ Ker(A), and consider the translated domain Ω0 = Ω + b0. Now:

Ax + b = A(x + b0) + bker ∀x ∈ Ω,

so y �→ Ay + bker is a tangent vector field on ∂Ω0. Consider the flow α which this field generates in Rn:{
α′(t) = Aα(t) + bker,

α(0) ∈ ∂Ω0.

Then α(t) = β(t) + δ(t), where:{
β ′(t) = Aβ(t), β(0) ∈ Im(A),

δ′(t) = bker, δ(0) ∈ Ker(A), β(0) + δ(0) = α(0).

Notice that:

d

dt

∣∣β(t)
∣∣2 = 2β(t) · Aβ(t) = 0,

so β(t) remains bounded, while δ(t) = δ(0) + tbker is unbounded for bker �= 0. Since α(t) ∈ ∂Ω0 for all t � 0, there
must be bker = 0. Hence the flow α is a rotation (generated by A ∈ so(n)) on ∂Ω0, which proves the claim. �

From the proof above it follows that each v ∈ R∂ (Ω) has the form v(x) = A(x + b0), A ∈ so(n), b0 ∈ Rn. We thus
obtain the following characterisation when Ω ⊂ R3:

R∂ (Ω) =
⎧⎨⎩

{0} if Ω has no rotational symmetry,

a 1-parameter family if Ω has one rotational symmetry,

a 3-parameter family if Ω = Br.

Appendix B. The uniform Korn inequality

Throughout this section we will make the following assumptions on Ω :

(ΩH)

⎡⎢⎢⎣
(i) Ω is an open, bounded subset of Rn, star-shaped with respect to the origin.

(ii) There exists L > 0 such that the following holds. For every x ∈ Ω \ {0}, denote by p(x) the
unique point on ∂Ω , with the property that the segment [0,p(x)] contains x. Then:∣∣p(x) − x

∣∣ � Ldist(x, ∂Ω).
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Our goal is to prove:

Theorem B.1. For every u ∈ W 1,2(Ω,Rn) there exists A ∈ so(n) such that:

‖∇u − A‖L2(Ω) � Cn,L

∥∥D(u)
∥∥

L2(Ω)
, (B.1)

and the constant Cn,L depends only on n and (in non-decreasing manner) on L.

Our proof is essentially a combination of the arguments in [18,17], where we need to keep track of the magnitude
of various constants, and of [5]. In [5], the L2 distance of ∇u from a single proper rotation is estimated in terms of
the L2 norm of the pointwise distance of ∇u from the space of proper rotations SO(n). Note that so(n) is the tangent
space to SO(n) at Id. Hence (B.1) can be seen as the “linear” version of the result in [5].

For convenience of the reader, we present the proof of Theorem B.1. A similar line of proof was adopted in [8]
where the constant Cn,L in (B.1) (or, more recently, its Lp counterpart in [10]) has been calculated explicitly, for
domains which are star-shaped with respect to a ball.

Lemma B.2. Let Ω be an open, bounded subset of Rn.

(i) If Br ⊂ Ω ⊂ BR and Ω is star-shaped with respect to Br , then (ΩH) holds with L = R/r .
(ii) Conversely, if Ω satisfies (ΩH) then it is star-shaped with respect to a ball Br such that, calling R = min{R̃;

Ω ⊂ B
R̃
}, the ratio R/r depends only on L, in non-decreasing manner.

Proof. (i) is immediate. To prove (ii), fix L sufficiently large. For each x ∈ Rn \ {0} define the ‘diamond’ Dx obtained
by rotating the right triangle with vertexes 0, a, x and angle � a0x = α, so that |x|/|a| = L, around its hypotenuse
[0, x]. The property (ΩH)(ii) can then be translated to: Dx ⊂ Ω for every x ∈ Ω .

Let x1 ∈ ∂Ω be such that |x1| = R. Then Dx1 ⊂ Ω . Let x2 = a from the construction of Dx1 . Clearly x2 ∈ Ω and
hence Dx2 ⊂ Ω . Proceed in this manner, constructing diamonds {Dxi

}Ni=1, with equal angles at the origin and all xi

in the same 2d subspace of R
n. After finitely many steps of this procedure we will have xN ∈ Dx1 and Br̃ ⊂ Ω with

r̃ = |xN | = R/LN−1, where N = [2π/α]. An easy argument now shows that Ω is star-shaped with respect to Br for
any r � r̃/L. Namely, taking x ∈ ∂Ω , the convex hull of Br ∪ {x} is contained in Dx ∪ Br̃ ⊂ Ω . Therefore, one can
take r = R/L(2π/α), so:

R

r
= L

2π
arccos(1/L) ,

which is a non-decreasing function of L. �
Lemma B.3. For every φ ∈ W 1,2(Ω) there holds:∫

Ω

|φ|2 � Cn,L

( ∫
Br

|φ|2 +
∫
Ω

|∇φ|2 dist2(x, ∂Ω)dx

)
.

Proof. Without loss of generality we may assume that φ ∈ C∞(Rn). We adopt the proof of Theorem 8.2 in [17]. Let
R and r be as in Lemma B.2.

Let θ : [0,∞) → [0,1] be a smooth non-decreasing function satisfying:

θ(s) = 0 for s � r

4
, θ(s) = 1 for s � r

2
,∣∣θ ′(s)

∣∣ � 8

r
for s � 0.

Fix a point p ∈ ∂Ω and consider the function θφ on the segment [0,p] joining the origin and p. Using Hardy’s
inequality [17] and condition (ΩH) we obtain:

|p|∫
|φ|2 d|x| �

|p|∫
|θφ|2 d|x| � 4

|p|∫ ∣∣∣∣∂(θφ)

∂|x|
∣∣∣∣2

· ∣∣|p| − |x|∣∣2 d|x|

r/2 0 0
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� 8L2

( r/2∫
r/4

∣∣θ ′∣∣2|φ|2 dist2(x, ∂Ω) +
|p|∫

r/4

|∇φ|2 dist2(x, ∂Ω)d|x|
)

� Cn,L,R/r

( r/2∫
r/4

|φ|2 +
|p|∫

r/4

|∇φ|2 dist2(x, ∂Ω)d|x|
)

.

Hence, also:

|p|∫
r/2

|x|n−1|φ|2 � Cn,L,R/r

( r/2∫
r/4

|x|n−1|φ|2 +
|p|∫

r/4

|x|n−1|∇φ|2 dist2(x, ∂Ω)

)
,

which after integration in spherical coordinates gives:∫
Ω\Br/2

|φ|2 dx � Cn,L,R/r

( ∫
Br/2\Br/4

|φ|2 +
∫

Ω\Br/4

|∇φ|2 dist2(x, ∂Ω)dx

)
. (B.2)

Since Cn,L,R/r = Cn,L in view of Lemma B.2, the result follows by (B.2). �
Theorem B.4. For every φ ∈ W 1,2(Ω) there exists a ∈ R such that:∫

Ω

|φ − a|2 � Cn,L

∫
Ω

|∇φ|2 dist2(x, ∂Ω)dx.

Proof. We adopt the method of proof from Theorem 3.1 in [5]. Again, let R and r be as in Lemma B.2. By the
Poincaré inequality we obtain:∫

Br/2

∣∣∣∣φ − −
∫
Br/2

φ

∣∣∣∣2

� Cnr
2

∫
Br/2

|∇φ|2 � Cn

∫
Br/2

|∇φ|2 dist2(x, ∂Ω)dx. (B.3)

Applying Lemma B.3 to the function φ − −
∫

Br/2
φ on Ω we therefore get:

∫
Ω

∣∣∣∣φ − −
∫
Br/2

φ

∣∣∣∣2

� Cn,L

( ∫
Br/2

∣∣∣∣φ − −
∫
Br/2

φ

∣∣∣∣2

+
∫
Ω

|∇φ|2 dist2(x, ∂Ω)dx

)

� Cn,L

∫
Ω

|∇φ|2 dist2(x, ∂Ω)dx,

where the last inequality follows from (B.3). �
We now recall the following result from [18]. For convenience of the reader, we reproduce its short proof.

Lemma B.5. Let φ ∈ W 1,2(Ω) be such that �φ = 0 in D′(Ω). Then:∫
Ω

|∇φ|2 dist2(x, ∂Ω)dx � 4
∫
Ω

|φ|2.

Proof. Fix a small ε > 0 and integrate the equation �φ = 0 against the scalar function (dist(x, ∂Ω) − ε)2φ, over the
set Ωε = {x ∈ Ω; dist(x, ∂Ω) > ε}. Integrating by parts we obtain:
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∫
Ωε

(
dist(x, ∂Ω) − ε

)2|∇φ|2 dx = −
∫
Ωε

2
(
dist(x, ∂Ω) − ε

)
φ(x)∇ dist(·, ∂Ω) · ∇φ dx

� 2
∫
Ωε

|φ|2 + 1

2

∫
Ωε

(
dist(x, ∂Ω) − ε

)2|∇φ|2 dx,

where we have used the binomial formula and the fact that |∇ dist(·, ∂Ω)| � 1. The above implies:∫
Ωε

(
dist(x, ∂Ω) − ε

)2|∇φ|2 dx � 4
∫
Ω

|φ|2,

and proves the lemma upon passing ε → 0. �
Proof of Theorem B.1. The left-hand side of (B.1) represents the distance in L2(Ω) of ∇u from the closed subspace
of constant functions A ∈ so(n). Since the distance function is continuous, we may without loss of generality assume
that u ∈ C∞(Rn,Rn).

1. Consider the problem:{
�v = �u in Ω,

v = 0 on ∂Ω.

Since:

�u = 2 div

{
D(u) − 1

2

(
trD(u)

) · Id

}
, (B.4)

we see that:∫
Ω

|∇v|2 = 2
∫
Ω

∇v :
(

D(u) − 1

2

(
trD(u)

) · Id

)
� 4‖∇v‖L2(Ω)

∥∥D(u)
∥∥

L2(Ω)
.

Therefore:

‖∇v‖L2(Ω) � 4
∥∥D(u)

∥∥
L2(Ω)

. (B.5)

2. The remaining part w = u − v is harmonic: �w = 0 in Ω . Hence, the components of D(w) are also harmonic,
and Lemma B.5 implies:∫

Ω

∣∣∇D(w)
∣∣2 dist2(x, ∂Ω)dx � 4

∫
Ω

∣∣D(w)
∣∣2

. (B.6)

Notice that the components of ∇2w are linear combinations of components of ∇D(w), namely: [∇2wk]ls =
∂

∂xl
[D(w)]ks + ∂

∂xs
[D(w)]kl − ∂

∂xk
[D(w)]ls . Applying now Theorem B.4 to the components of ∇w, we obtain

B ∈ Mn×n so that, in view of (B.6):∫
Ω

|∇w − B|2 � Cn,L

∫
Ω

∣∣∇2w
∣∣2 dist2(x, ∂Ω)dx � Cn,L

∫
Ω

∣∣D(w)
∣∣2

. (B.7)

Define A = (B − BT )/2 ∈ so(n) and notice that for every x ∈ Ω there holds:

|B − A| = distMn×n

(
B, so(n)

)
�

∣∣B − ∇w(x)
∣∣ + distMn×n

(∇w(x), so(n)
)

= ∣∣B − ∇w(x)
∣∣ + ∣∣D(w)(x)

∣∣.
Therefore:∫

Ω

|B − A|2 � Cn,L

∫
Ω

∣∣D(w)
∣∣2

. (B.8)

Now by (B.5), (B.7) and (B.8):
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‖∇u − A‖L2(Ω) � ‖∇v‖L2(Ω) + ‖∇w − B‖L2(Ω) + ‖B − A‖L2(Ω)

� Cn,L

(∥∥D(u)
∥∥

L2(Ω)
+ ∥∥D(w)

∥∥
L2(Ω)

)
� Cn,L

∥∥D(u)
∥∥

L2(Ω)
, (B.9)

the last inequality following from D(w) = D(u) − D(v) and the bound (B.5). �
Appendix C. The Killing fields and the Korn inequality on hypersurfaces

For a tangent vector field u ∈ W 1,2(S,Rn), define D(u) as the symmetric part of its tangential gradient:

D(u) = 1

2

[
(∇u)tan + (∇u)Ttan

]
.

That is, for x ∈ S, D(u)(x) is a symmetric bilinear form given through:

τT D(u)(x)η = 1

2

(
τ · ∂ηu(x) + η · ∂τ u(x)

) ∀τ, η ∈ TxS.

Recall that a smooth vector field u as above is a Killing field, provided that D(u) = 0 on S. We first prove that in
presence of this last condition, the regularity u ∈ W 1,2(S) actually implies that u is smooth. Further, we directly re-
cover a generalisation of Theorem A.1(ii) to the non-flat setting (Theorem C.2). Actually, the bound in Theorem A.1(i)
remains true also in the more general framework of Riemannian manifolds [2].

The following extension of u on the neighbourhood of S will be useful in the sequel:

ũ
(
x + t �n(x)

) = (
Id + tΠ(x)

)−1
u(x) ∀x ∈ S, ∀t ∈ (−h0, h0) (C.1)

for some small h0 > 0. Here Π(x) = ∇�n(x) is the shape operator on S. We have ũ ∈ W 1,2(S̃,Rn) where S̃ = Sh0 is
open in Rn. Notice that for each z = x + t �n(x) ∈ S̃ and τ1 ∈ TxS there holds:

∂τ1 ũ(z) = {∇[(
Id + tΠ(x)

)−1](Id + tΠ(x)
)−1

τ1
}
u(x) + (

Id + tΠ(x)
)−1∇u(x)

(
Id + tΠ(x)

)−1
τ1.

The first component above is bounded by C|tu(x)|. Taking the scalar product of the second component with any
τ2 ∈ TxS gives:((

Id + tΠ(x)
)−1

τ2
) · ∇u(x)

(
Id + tΠ(x)

)−1
τ1.

Since (Id + tΠ(x))(TxS) = TxS we obtain:

τT
2 D(ũ)(z)τ1 = ((

Id + tΠ(x)
)−1

τ2
) · D(u)(x)

(
Id + tΠ(x)

)−1
τ1 + Z(t, x) · u(x),∣∣Z(t, x)

∣∣ � C. (C.2)

On the other hand, �n(x) · ũ(z) = 0, so for any τ ∈ TxS:

�n · ∂τ ũ(z) = −(
Π(x)

(
Id + tΠ(x)

)−1
τ
) · ũ(z)

= −((
Id + tΠ(x)

)−1
Π(x)

(
Id + tΠ(x)

)−1
u(x)

) · τ = τ · ∂�nũ(z).

Hence:

�nT D(ũ)(z)τ = −((
Id + tΠ(x)

)−1
Π(x)

(
Id + tΠ(x)

)−1
u(x)

) · τ,
�nT D(ũ)(z)�n = 0. (C.3)

Lemma C.1. Let u ∈ W 1,2(S,Rn) be a tangent vector field such that D(u) = 0 almost everywhere on S. Then
u ∈ I(S).

Proof. We only need to prove that u is smooth. Consider the extension ũ ∈ W 1,2(S̃,Rn) as above. By (C.2), (C.3)
and the formula (B.4) we see that D(ũ) ∈ W 1,2(S̃) and hence:

�ũ ∈ L2(S̃).

The result follows now by the elliptic regularity and a bootstrap argument. �
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Theorem C.2. For every tangent vector field u ∈ W 1,2(S,Rn) there exists v ∈ I(S) such that:

‖u − v‖W 1,2(S) � CS

∥∥D(u)
∥∥

L2(S)

and the constant CS depends only on the surface S.

Proof. Since I(S) is a finitely dimensional subspace of the Banach space E of all W 1,2(S) tangent vector fields, its
orthogonal complement I(S)⊥ is a closed subspace of E. We will prove that:

‖u‖W 1,2(S) � CS

∥∥D(u)
∥∥

L2(S)
∀w ∈ I(S)⊥ (C.4)

which implies the theorem.
If (C.4) was not true, there would be a sequence un ∈ I(S)⊥ such that:

‖un‖W 1,2(S) = 1,
∥∥D(un)

∥∥
L2(S)

→ 0 as n → ∞.

Without loss of generality, un converge weakly in W 1,2(S) to some u ∈ I(S)⊥. Moreover D(u) = 0 by the second
condition above, so by Lemma C.1 we obtain that u ∈ I(S).

As the spaces I(S) and I(S)⊥ are orthogonal, there must be u = 0, and hence the sequence un converges to 0
(strongly) in L2(S). This contradicts ‖un‖W 1,2(S) = 1, because:

‖un‖W 1,2(S) � CS

(‖un‖L2(S) + ∥∥D(un)
∥∥

L2(S)

)
.

The last inequality results from Theorem A.1(i) applied to the extensions ũn ∈ W 1,2(S̃) as in (C.1). Indeed, by (C.2)
and (C.3) it follows that:

‖ũn‖L2(S̃)
≈ h

1/2
0 ‖un‖L2(S),

‖∇un‖L2(S) � Ch
−1/2
0 ‖ũn‖W 1,2(S̃)

,∥∥D(ũn)
∥∥

L2(S̃)
� Ch

1/2
0

(‖un‖L2(S) + ∥∥D(un)
∥∥

L2(S)

)
. �

We now gather a few remarks relating to the fact that the linear space I(S) of all Killing fields on S is of finite
dimension. This is a classical result [13], and it implies that in I(S) all norms are equivalent. In particular, one has:

∀u ∈ I(S) ‖∇u‖L2(S) � CS‖u‖L2(S), (C.5)

for some constant CS depending only on the hypersurface S.
The bound (C.5), together with an estimate of CS , can also be recovered directly, using the following identity [19],

valid for Killing vector fields u:

�S

(
1

2
|u|2

)
= |∇̃u|2 − Ric(u,u). (C.6)

Here �S is the Laplace–Beltrami operator on S, ∇̃u = (∇u)tan is the covariant derivative of u on S, and Ric stands
for the Ricci curvature form on S.

To calculate Ric(u,u) in our particular setting, notice that by Gauss’ Teorema Egregium [23, vol. 3], the Riemann
curvature 4-tensor on S satisfies:

∀x ∈ S, ∀τ, η, ξ,ϑ ∈ TxS R(τ, η)ξ · ϑ = (
Π(x)τ · ϑ)(

Π(x)η · ξ) − (
Π(x)τ · ξ)(

Π(x)η · ϑ)
.

Thus, seeing the Ricci curvature 2-tensor as an appropriate trace of R, we obtain:

∀x ∈ S, ∀η, ξ ∈ TxS Ric(η, ξ) = tr
(
τ �→ R(τ,η)ξ

)
= (

trΠ(x)
)
Π(x)η · ξ − Π(x)ξ · Π(x)η

= ((
trΠ(x)

)
Π(x) − Π(x)2)η · ξ. (C.7)

Integrating (C.6) on S and using (C.7) we arrive at:

‖∇̃u‖2
L2(S)

=
∫ ((

trΠ(x)
)
Π(x) − Π(x)2)u(x) · u(x). (C.8)
S
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Notice that in the special case of a 2×2 matrix Π , that is when n = 3 and S is a 2d surface in R3, the Cayley–Hamilton
theorem implies:

(trΠ)Π − Π2 = (detΠ) · Id,

and so:

‖∇̃u‖2
L2(S)

=
∫
S

detΠ(x)|u|2.

In this case detΠ(x) is the Gaussian curvature of S at x (see [19]).
To calculate the L2 norm of the full gradient ∇u on S, notice that:

‖∇u‖2
L2(S)

− ‖∇̃u‖2
L2(S)

=
∫
S

n−1∑
i=1

∣∣∣∣�n · ∂

∂τi

u

∣∣∣∣2

=
∫
S

n−1∑
i=1

∣∣u · Π(x)τi

∣∣2 =
∫
S

∣∣Π(x)u
∣∣2

.

Hence we arrive at:

‖∇u‖2
L2(S)

=
∫
S

(
trΠ(x)

)
Π(x)u(x) · u(x), (C.9)

which clearly implies (C.5).

Remark C.3. An equivalent way of obtaining the formula (C.9), but without using the language of Riemannian
geometry, is to look at ‘trivial’ extension of u:

w
(
x + t �n(x)

) = u(x) ∀x ∈ S, ∀t ∈ (−h0, h0).

Since ∂�nw = 0 and w · �n = 0 on the boundary of S̃ = Sh0 , by (B.4) one has:

‖∇w‖2
L2(S̃)

= −2
∫
S̃

divD(w) · w − ‖divw‖2
L2(S̃)

. (C.10)

Calculating
∫

divD(w) ·w in terms of Π(x), dividing both sides of (C.10) by 2h and passing to the limit with h → 0,
one may recover (C.9) directly.

Remark C.4. From the equivalence of the L2 and the W 1,2 norms on I(S), proved in (C.9), it follows that the linear
space I(S) is finitely dimensional.

For otherwise the space (I(S),‖ · ‖W 1,2(S)) would have a countable Hilbertian (orthonormal) base {ei}∞i=1 and thus
necessarily the sequence {ei} would converge to 0, weakly in W 1,2(S). But this implies that limh→0 ‖ei‖L2(S) = 0,
which by the norms equivalence gives the same convergence in W 1,2(S), and a contradiction.

Appendix D. The uniform Poincaré inequality and the trace theorem in thin domains

Theorem D.1. Assume (H1) and let h > 0 be sufficiently small. For every u ∈ W 1,2(Sh,R) there exists a constant
a ∈ R so that:

‖u − a‖L2(Sh) � C‖∇u‖L2(Sh)

and C is independent of h, a or u.

Proof. The argument is a combination of the proof of Theorem 5.1 and the Poincaré inequality on fixed surface S.
Let Dx,h, Bx,h, ηx be as in the proof of Theorem 5.1. Define a smooth function ã :S → R:

ã(x) =
∫
Sh

ηx(z)u(z)dz.

We will prove the theorem for a = −
∫

ã(x)dx.

S
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First, by Theorem B.4, the local estimate (5.1) can be in our new setting replaced by:∫
Bx,h

|u − ax,h|2 � Ch2
∫

Bx,h

|∇u|2,

with C, as usual, a uniform constant. Repeating the calculations leading to (5.2) and (5.3), we thus obtain:∣∣ã(x) − ax,h

∣∣2 � Ch2−n

∫
Bx,h

|∇u|2,

∣∣∇ã
(
x′)∣∣2 � Ch−n

∫
2Bx,h

|∇u|2 ∀x′ ∈ Dx,h,

which imply, exactly as in (5.5):∫
Sh

|u − ãπ |2 � Ch2
∫
Sh

|∇u|2,
∫
S

|∇ã|2 � Ch−1
∫
Sh

|∇u|2.

By the above inequalities and the standard Poincaré inequality on surfaces, it follows:∫
Sh

|u − a|2 � C

{ ∫
Sh

|u − ãπ |2 + h

∫
S

∣∣ã(x) − a
∣∣2 dx

}

� C

{
h2

∫
Sh

|∇u|2 + h

∫
S

|∇ã|2
}

� C

∫
Sh

|∇u|2,

proving the result. �
Remark D.2. Theorem D.1 provides a Poincaré inequality for sets Ω enjoying properties as in Appendix B. The
following is a more general result. Assume that Ω ⊂ Rn is open, star-shaped with respect to the origin and such that:

Br ⊂ Ω ⊂ BR.

Then for every u ∈ W 1,2(Ω,R) there holds:∥∥∥∥u − −
∫
Ω

u

∥∥∥∥
L2(Ω)

� Cn,R/rR · ‖∇u‖L2(Ω),

where the constant Cn,R/r depends only on the upper bound of the quantities n and R/r .
The proof follows from [1] where the first nonzero eigenvalue α1 of the Neumann problem for −� on Ω is

estimated from below by Cn · rn

Rn+2 , the constant Cn depending on n only. Recalling that the best Poincaré constant

equals to α
−1/2
1 , we obtain the result.

Theorem D.3. Assume (H1). For every u ∈ W 1,2(Sh,R) there holds:

‖u‖L2(S) � Ch−1/2‖u‖L2(Sh) + Ch1/2‖∇u‖L2(Sh), (D.1)

‖u‖L2(∂Sh) � Ch−1/2‖u‖L2(Sh) + Ch1/2‖∇u‖L2(Sh), (D.2)

where in the left-hand side we have norms of traces of u on S and ∂Sh, respectively. The constant C is independent of
u or h.

Proof. Since |gh
i (x)| � Ch, (D.1) will be implied by the same inequality for Sh with gh

1 = gh
2 = Ch. The latter one

can be obtained covering Sh with the cylinders Bx,h of size h and applying the scaled version of the usual trace
theorem to Bx,h.

Notice, that the constant C in (D.1) depends only on n and the Lipschitz constant of S. Since |∇gh
i (x)| � Ch and

|gh
i (x)| � Ch for each s ∈ S, we may use the same argument as before on {x − t �nh(x); x ∈ ∂Sh, t ∈ (0,Ch)} ⊂ Sh

to prove (D.2). �
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