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Abstract

Using spatial domain techniques developed by the authors and Myunghyun Oh in the context of parabolic conservation laws,
we establish under a natural set of spectral stability conditions nonlinear asymptotic stability with decay at Gaussian rate of
spatially periodic traveling waves of systems of reaction–diffusion equations. In the case that wave-speed is identically zero for all
periodic solutions, we recover and slightly sharpen a well-known result of Schneider obtained by renormalization/Bloch transform
techniques; by the same arguments, we are able to treat the open case of nonzero wave-speeds to which Schneider’s renormalization
techniques do not appear to apply.
© 2011 . .
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1. Introduction

In this paper, we study the nonlinear stability with respect to spatially localized perturbations of spatially periodic
traveling-wave solutions u(x, t) = ū(x − ct) of a system of reaction–diffusion equations of form ut = uxx + f (u),
where (x, t) ∈ R×R

+, u ∈ R
n, and f : R

n → R
n is sufficiently smooth: equivalently, spatially periodic standing-wave

solutions u(x, t) = ū(x) of

ut − cux = uxx + f (u). (1.1)

For the Allen–Cahn (variational) case f (u) = dF(u), the traveling-wave ODE becomes −cu′ = u′′ + dF(u), hence
for c �= 0 either increases or decreases a Hamiltonian

H := |u′|2
2

+ F(u),
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from which it follows that periodics exist only for speed c = 0. In this zero-speed case (not necessarily originating from
variational form), Schneider [10] proved nonlinear stability with decay at Gaussian (diffusive) rate by a combination of
weighted energy estimates, renormalization techniques, and a spectacular nonlinear cancellation estimate, all carried
out in the Bloch frequency domain. In the process, he showed that behavior is purely diffusive, with no associated
convection. See also [11,6] and references therein.

However, as described in [1], there exist many other cases for which there exist spatially periodic solutions of
varying speed, in which situation one expects asymptotic behavior driven by nonzero convection as well as diffusion.
In this case, the renormalization argument of [10] does not directly apply.

Meanwhile, motivated strongly by the work of Schneider, we and co-authors have carried out by somewhat different
methods stability of spatially periodic solutions of systems of parabolic conservation laws ut + h(u)x = uxx , for
which convection plays a major role [7,4]. Natural questions are (i) whether these alternative methods might be used
to reproduce the original results of Schneider in the zero-speed case, and (ii) whether, more, they might be able to
treat the nonzero-speed (convective) case left open up to now.

In this paper, we answer both questions in the affirmative, establishing stability and decay at Gaussian rate for the
general case, with no condition on the wave-speed; see Theorem 4.1 in Section 4. Moreover, our nonlinear iteration
method, based on spatial rather than (Bloch) frequency domain, permits an extremely brief and simple proof yielding
new insight even in the zero-speed case treated previously by Schneider.

Note. We have been informed by Björn Sandstede that a similar result has been obtained by different means in
[9] using a nonlinear decomposition of phase and amplitude variables as in [1], accommodating also nonlocalized
perturbations in the phase.3

2. Existence and spectral stability assumptions

Any standing wave solution of (1.1) clearly must be a solution of the ordinary differential equation

uxx + cux − f (u) = 0, (2.1)

which is commonly referred to as the profile equation or as the traveling-wave ODE corresponding to the original
system. The existence of periodic orbits of (2.1) is trivial in the case c = 0 where the equation is clearly Hamiltonian
and hence can be directly integrated by quadrature. When the wave-speed is nonzero, however, the existence of peri-
odic orbits is more delicate but still straightforward: it can be treated via ODE/implicit function theorem techniques
as familiar in the conservation law case. Indeed, writing (2.1) as a 2n × 2n system with 2n constraints (periodic-
ity) and two extra parameters (speed and period) yields, generically, a two-dimensional solution set. The techniques
presented in this paper apply regardless of whether c is nonzero and hence we study (2.1) for a general wave-speed
c ∈ R.

Throughout our analysis, we assume the existence of an X-periodic solution ū(x) of (2.1). It follows that generi-
cally one expects the periodic orbits to form a two-parameter family of solutions of the profile equation, parameterized
by the wave-speed c and a translation mode x0. More precisely, we make the following generic assumptions:

(H1) f ∈ CK(R) for some K � 3.
(H2) The set of periodic solutions of (2.1) in the vicinity of ū forms a smooth two-dimensional manifold {ūx0,s(x −

st + x0)} with x0, s ∈ R.

We begin our stability analysis by considering the linearization of (1.1) about the fixed periodic standing-wave so-
lution ū. Without loss of generality, we assume that ū is 1-periodic, i.e. that ū(x +1) = ū(x) for all x ∈ R. Considering
nearby solutions of the form

ū(x) + εv(x, t) + O
(
ε2),

3 In the notation of Theorem 4.1, data ũ0 with ‖ũ0(x + ψ0) − ū‖
L1(R)∩HK(R)

|, ‖∂xψ0‖HK(R) sufficiently small.
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where |ε| 	 1 and v(·, t) ∈ L2(R), corresponding to spatially localized perturbations, we see that v satisfies the linear
equation

vt = vxx + df (ū)v.

Since this equation is autonomous in time, we may seek separated solutions of the form

v(x, t) = eμtv(x)

which readily yields the spectral problem

μv = L[u]v := (
∂2
x + c∂x + df (ū)

)
v (2.2)

considered on the real Hilbert space L2(R), where here we are considering the linear operator L[u] as having dense
domain in H 2(R). As coefficients of L[u] are 1-periodic, Floquet theory implies the L2 spectrum is purely contin-
uous and corresponds to the union of the L∞ eigenvalues corresponding to considering the linearized operator with
boundary conditions v(x + T ) = eiκv(x) for all x ∈ R, where κ ∈ [−π,π] is referred to as the Floquet exponent and
is uniquely defined mod 2π . In particular, μ ∈ σ(L[u]) if and only if the spatially periodic spectral problem (2.2)
admits a bounded eigenfunction of the form

v(x) = eiξxw(x) (2.3)

where w(x + 1) = w(x).
Substitution of the Ansatz (2.3) into (2.2) motivates the use of the Fourier–Bloch decomposition of the spectral

problem. To this end, we follow [2,10] and define the one-parameter family of linear operators, referred to as Bloch
operators, by

Lξ [u] := e−iξxL[u]eiξx, ξ ∈ [−π,π],
operating on L2

per([0,1]). The L2 spectrum of the linearized operator L[u] is readily seen to be given by the union
of the spectra of the Bloch operators. By continuity of the spectrum on the Floquet parameter ξ , and the discreteness
of the spectrum of the elliptic operator L[u] on the compact domain [0,1], it follows that the spectra of L[u] may be
described as the union of countably many continuous surfaces μ(ξ).

Continuing with this functional setup, we recall that any function g ∈ L2(R) admits an inverse Bloch–Fourier
representation

g(x) = 1

2π

π∫
−π

eiξx ĝ(ξ, x) dξ

where ĝ(ξ, x) = ∑
j∈Z

e2πijx ĝ(ξ + 2πj) is a 1-periodic function of x, and ĝ(·) denoting with slight abuse of notation
the usual Fourier transform of the function g in the spatial variable x. Indeed, using the Fourier transform we have

2πg(x) =
∞∫

−∞
eiξx ĝ(ξ) dξ =

∑
j∈Z

π∫
−π

ei(ξ+2πj)x ĝ(ξ + 2πj)dξ =
π∫

−π

eiξx ĝ(ξ, x) dξ,

where the summation and integral can be interchanged for Schwarz functions g. By similar computations, it is also
seen by Parseval’s identity that the Bloch–Fourier transform g(x) → ĝ(ξ, x) is an isometry of L2(R), i.e.

‖g‖L2(R) =
π∫

−π

1∫
0

∣∣ĝ(ξ, x)
∣∣2

dx dξ =: ‖ĝ‖L2(ξ ;L2(x)). (2.4)

Moreover, the Bloch–Fourier transform diagonalizes the periodic-coefficient operator L[u], yielding the inverse
Bloch–Fourier transform representation
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eL[u]t g(x) = 1

2π

π∫
−π

eiξxeLξ [u]t ĝ(ξ, x) dξ (2.5)

relating the behavior of the linearized system to that of the diagonal operators Lξ [u].
We now discuss the spectral stability of the underlying solution u(x) in more detail. To begin, notice that by the

translation invariance of (1.1) the function u′(x) is a 1-periodic solution of the differential equation L[u]v = 0. Hence,
it follows that μ = 0 is an eigenvalue of the Bloch operator L0[u]. From the structure of the equation, it is natural to
assume that translation generates the only null direction of the operator L0[u]. Indeed, notice by (H2) and the secular
dependence of the periodic on the wave-speed c, that variation in the translation direction x0 is the only generator of
1-periodic null-directions of the linearized operator given by Noether’s theorem. With this in mind, following [10],
we make the following natural spectral stability assumptions:

(D1) μ = 0 is a simple eigenvalue of L0[u]. (Recall that ξ = 0 corresponds to co-periodic perturbations.)
(D2) �σ(Lξ [u]) � −θ |ξ |2 for some constant θ > 0.

Assumptions (D1)–(D2) correspond to “dissipativity” of the large-time behavior of the linearized system and are often
referred to as strong or diffusive spectral stability assumptions [4,7,10].

Remark 2.1. By standard spectral perturbation theory [5], (D1) implies that the eigenvalue μ(ξ) bifurcating from
μ = 0 at ξ = 0 is analytic at ξ = 0, with μ(ξ) = μ1ξ + μ2ξ

2 + O(|ξ |3), from which we find from the necessary
stability condition �μ(ξ) � 0 that �μ1 = 0 and �μ2 � 0. Assumption (D2) thus amounts to the nondegeneracy
condition �μ2 �= 0 together with the strict stability condition �σLξ < 0 for ξ �= 0. Condition (D2) is never satisfied
in the scalar case n = 1, by Sturm–Liouville considerations, hence the emphasis in the title on systems of reaction–
diffusion equations.

The goal of our analysis is to prove that the above spectral stability assumptions imply nonlinear L1 ∩ HK → HK

stability of the underlying periodic traveling wave. To this end, we use this spectral information to obtain bounds on
the linearized solution operator eL[u]t . As we will see, assumptions (D1)–(D2), along with (H1)–(H2), imply that the
solution operator decays (in a suitable sense) polynomially in time at a fast enough rate to prove the nonlinear stability
of the underlying spatially periodic solution. These bounds are established in the next section, after which we present
our nonlinear iteration scheme.

3. Linear estimates

In this section, we make use of the spectral stability assumptions of the previous section in order to prove bounds
on the solution operator S(t) := eL[u]t . These linearized estimates form the crux of the nonlinear analysis, presented
in the next section. To begin, notice that by standard spectral perturbation theory [5], assumption (D1) implies that
the total eigenprojection P(ξ) onto the eigenspace of Lξ [u] associated with the eigenvalue μ(ξ) bifurcating from the
(ξ,μ(ξ)) = (0,0) state is well defined and analytic in ξ for ξ sufficiently small, since the discreteness of the spectrum
of Lξ [u] implies that the eigenvalue μ(ξ) is separated at ξ = 0 from the remainder of the spectrum of L0[u]. In
particular, there exists an eigenfunction q(x, ξ) bifurcating from the q(x,0) = u′(x) state defined for |ξ | 	 1 such
that

Lξ [u]q(x, ξ) = μ(ξ)q(x, ξ) (3.1)

where, by assumption (D2), the function μ(ξ) satisfies the estimate

�(
μ(ξ)

)
� −θ |ξ |2 (3.2)

for some constant θ > 0.
Our strategy is to treat the high- and low-frequency parts of the full solution operator S(t) separately since, as is

typical, the low-frequency analysis is considerably more delicate than the corresponding high-frequency analysis. To
this end, we introduce a smooth cut-off function φ(ξ) such that
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φ(ξ) =
{

1, if |ξ | � ε,

0, if |ξ | � 2ε,

where ε > 0 is a sufficiently small parameter, and we split the solution operator S(t) into its low-frequency part

SI (t)g(x) := 1

2π

π∫
−π

eiξxφ(ξ)P (ξ)eLξ [u]t ĝ(ξ, x) dξ (3.3)

and high-frequency part

SII(t)g(x) := 1

2π

π∫
−π

eiξx
(
1 − φ(ξ)P (ξ)

)
eLξ [u]t ĝ(ξ, x) dξ,

by which one may readily check that S(t)g = (SI (t) + SII(t))g by (2.5). As the low-frequency analysis is more
delicate, we begin by deriving L2 → Lp bounds on SII(t).

Using the fact that Lξ [u] is a sectorial operator, and the spectral separation of μ(ξ) from the remaining spectrum
of Lξ [u], standard semigroup theory [3,8] trivially implies that the bounds∥∥eLξ [u]t(1 − φ(ξ)P (ξ)

)
g
∥∥

L2([0,1]) � e−θt‖g‖L2([0,1]),∥∥eLξ [u]t(1 − φ(ξ)P (ξ)
)
∂xg

∥∥
L2([0,1]) � t−1/2e−θt‖g‖L2([0,1]),∥∥∂xe

Lξ [u]t(1 − φ(ξ)P (ξ)
)
g
∥∥

L2([0,1]) � t−1/2e−θt‖g‖L2([0,1]), (3.4)

for all t > 0 and some constant θ > 0. Together with (2.4), this yields immediately the following estimate.

Proposition 3.1. Under assumptions (H1)–(H2) and (D1)–(D2), there exists a constant θ > 0 such that for all 2 �
p � ∞ and t > 0 we have∥∥SII(t)g

∥∥
Lp(R)

� t−
1
2 (1/2−1/p)e−θt‖g‖L2(R).

Proof. First, notice the bounds in (3.4) and the triangle inequality imply that

∥∥∂m
x SII(t)g

∥∥
L2(R)

�
π∫

−π

∥∥∂m
x

(
1 − φ(ξ)P (ξ)

)
eLξ [u]t ĝ(ξ, ·)∥∥

L2(x;[0,1]) dξ

� t−m/2e−θt

π∫
−π

∥∥ĝ(ξ, ·)∥∥
L2(x;[0,1]) dξ

= t−m/2e−θt‖g‖L2(R)

for either m = 0 or m = 1, where the final equality is justified by (2.4), thus justifying the first claim by taking m = 0.
To prove the second inequality, note when p = ∞ Sobolev embedding and the above L2 → L2 bound imply that∥∥SII(t)g

∥∥
L∞(R)

�
(∥∥SII(t)g

∥∥
L2(R)

· ∥∥∂xS
II(t)g

∥∥
L2(x;R)

)1/2 � t−1/4e−θt‖g‖L2(R).

The result for general 2 � p � ∞ now follows by Lp interpolation. �
In order to analyze the low-frequency part of the solution operator S(t), we find it convenient to introduce the

Green kernel

GI (x, t;y) := SI (t)δy(x)

associated with SI , and[
GI

ξ (x, t;y)
] := φ(ξ)P (ξ)eLξ [u]t[δy(x)

]
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the corresponding kernel appearing within the Bloch–Fourier representation of GI , where the brackets [·] denote the
periodic extensions of the given function onto the whole real line. Our first goal is to provide a useful representation for
GI which incorporates the spectral properties (D1)–(D2) of the previous section. To begin, we introduce/recall a bit of
notation. We denote by q(x, ξ) and q̃(x, ξ) the right and left eigenfunctions of the operator Lξ [u], respectively, asso-
ciated with the eigenvalue μ(ξ) bifurcating from the (ξ,μ(ξ)) = (0,0) state. Moreover, we assume the normalization
condition 〈q̃(·, ξ), q(·, ξ)〉L2([0,1]) = 1. Then we have the following representation for the Green kernel GI .

Lemma 3.2. Under assumptions (H1)–(H2) and (D1)–(D2), we have[
GI

ξ (x, t;y)
] = φ(ξ)eμ(ξ)t q(x, ξ)q̃(y, ξ),

GI (x, t;y) = 1

2π

∫
R

eiξ(x−y)
[
GI

ξ (x, t;y)
]
dξ = 1

2π

∫
R

eiξ(x−y)φ(ξ)eμ(ξ)t q(x, ξ)q̃(y, ξ) dξ. (3.5)

Proof. The first equality is immediate from the spectral decomposition of elliptic operators on compact spatial do-
mains. Moreover, using the fact that the Fourier transform (either continuous or discrete) of the delta function is unity
we have

δ̂y(ξ, x) =
∑
j∈Z

e2πijx δ̂y(ξ + 2πj) =
∑
j∈Z

e2πijxe−i(ξ+2πj)y

= e−iξy
∑
j∈Z

e2πij (x−y) = e−iξy
[
δy(x)

]
.

It follows that

GI (x, t;y) = 1

2π

π∫
−π

eiξxφ(ξ)P (ξ)eLξ [u]t δ̂y(ξ, x) dξ

= 1

2π

π∫
−π

eiξ(x−y)φ(ξ)P (ξ)eLξ [u]t[δy(x)
]
dξ

= 1

2π

π∫
−π

eiξ(x−y)
[
GI

ξ (x, t;y)
]
dξ,

which yields the second equality by recalling that φ is supported in [−π,π]. �
In order to obtain nonlinear stability in the present context, it turns out that one cannot simply use bounds as in

the previous section on the function GI : see Remark 3.1 below. Instead, we must take extra care in obtaining our
low-frequency linearized estimates by separating out the slow-decaying translation mode from the faster-decaying
“good” part of the solution operator. To this end, we define the function

ẽ(x, t;y) := 1

2π

∫
R

eiξ(x−y)φ(ξ)eμ(ξ)t q̃(y, ξ) dξ

and notice that

GI (x, t;y) = u′(x)ẽ(x, t;y) + 1

2π

∫
R

eiξ(x−y)φ(ξ)eμ(ξ)t
(
q(x, ξ) − u′(x)

)
q̃(y, ξ) dξ.

By the analyticity of q(x, ξ) in the variable ξ , we have that q(x, ξ)−u′(x) = O(|ξ |) for |ξ | 	 1 and hence we expect
the difference GI (x, t;y) − u′(x)e(x, t;y) to decay faster than the full Green kernel GI . This is the content of the
following proposition.
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Proposition 3.3. Under the hypotheses (H1)–(H2) and (D1)–(D2), the low-frequency Green kernel GI can be decom-
posed as

GI (x, t;y) = u′(x)ẽ(x, t;y) + G̃I (x, t;y)

where, for all t > 0, and 2 � p � ∞ we have the estimate

sup
y

∥∥G̃I (·, t;y)
∥∥

Lp(R)
� (1 + t)−

1
2 (1−1/p)− 1

2 . (3.6)

Moreover, for all t > 0, 0 � j, k, r, j + r � K + 1 we have the bound

sup
y

∥∥∂
j
x ∂k

t ∂r
y ẽ(x, t;y)

∥∥
Lp(x;R)

� (1 + t)−
1
2 (1−1/p)− (j+k)

2 . (3.7)

Proof. Using the analyticity of the function q(x, ξ) on the variable ξ , we have that

G̃I (x, t;y) = 1

2π

∫
R

eiξ(x−y)φ(ξ)eμ(ξ)t O
(|ξ |)q̃(y, ξ) dξ

and hence the triangle inequality and (D2) yield

sup
y

∥∥G̃I (·, t;y)
∥∥

L∞(R)
�

∥∥|ξ |e−θ |ξ |2t φ(ξ)
∥∥

L1(ξ ;R)

� (1 + t)−1.

Moreover, noting that (3.5) may be viewed itself as a Bloch–Fourier decomposition with respect to the variable
z := x − y, with y appearing as a parameter, we may use (2.4) to estimate

sup
y

∥∥G̃I (·, t;y)
∥∥

L2(R)
� sup

y

∥∥φ(ξ)eμ(ξ)t
(
q(x, ξ) − u′(x)

)
q̃(y, ξ)

∥∥
L2(x;L2(ξ))

� sup
y

∥∥φ(ξ)e−θ |ξ |2t |ξ |∥∥
L2(ξ ;[−π,π]) sup

y

∥∥q̃(y, ·)∥∥
L∞(ξ ;[−π,π])

� (1 + t)−3/4,

where we have used in a crucial way the boundedness of q̃ . By Lp interpolation then, we obtain the desired Lp bounds
on G̃I (x, t;y). Similar calculations yield the corresponding bound on ẽ(x, t;y) by noting that y-derivatives do not
improve decay while x- and t -derivatives improve decay by a factor of t−1/2 as above. �
Remark 3.1. It is important to note that the Green kernel GI does not decay fast enough in this one-dimensional
setting to close our nonlinear iteration argument presented in the next section. Indeed, using calculations as above (see
also [7]) one can verify that

sup
y

∥∥GI (·, t;y)
∥∥

Lp(R)
� (1 + t)−

1
2 (1−1/p)

for all t > 0 and 2 � p � ∞. Thus, by factoring out the translation mode from GI we gain an extra t−1/2 decay, which
will end up being sufficient to close our nonlinear iteration arguments.

We now combine the various bounds derived above to obtain estimates on the full Green kernel G(x, t;y). First
off, let χ(t) be a smooth cut-off function defined for t � 0 such that χ(t) = 0 for 0 � t � 1 and χ(t) = 1 for t � 2 and
define

e(x, t;y) := χ(t)ẽ(x, t;y).
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Corollary 3.4. Under the hypotheses (H1)–(H2) and (D1)–(D2), the Green kernel G(x, t;y) decomposes as

G(x, t;y) = u′(x)e(x, t;y) + G̃(x, t;y)

where for all t > 0, 2 � p � ∞, and 0 � j, k, r, j + r � K + 1, we have∥∥∥∥∥
∞∫

−∞
G̃(·, t;y)g(y) dy

∥∥∥∥∥
Lp(R)

� (1 + t)−
3
4 t−

1
2 (1/2−1/p)‖g‖L1(R)∩L2(R) (3.8)

and ∥∥∥∥∥
∞∫

−∞
∂

j
x ∂k

t ∂r
ye(·, t;y)g(y) dy

∥∥∥∥∥
Lp(R)

� (1 + t)−
1
2 (1−1/p)− j+k

2 ‖g‖L1(R). (3.9)

Proof. The bound (3.8) follows immediately by considering the cases 0 < t � 1 and t � 1 separately. Indeed, using
the L2 → Lp high-frequency bounds in Proposition 3.1 for short time and the Lp bound (3.6) of Proposition 3.3
together with the triangle inequality for large time yields the desired result. The bound (3.9) follows similarly, using
the Lp bound (3.7) of Proposition 3.3 together with the triangle inequality. �
4. Nonlinear stability

With the above linearized estimates in hand, we are in a suitable position to prove nonlinear stability of the periodic
traveling wave ū(x) of the system of reaction–diffusion equations (1.1). Our main result is as follows.

Theorem 4.1. Let ū be a periodic standing-wave solution of (1.1) and let ũ(x, t) be any solution of (1.1) such that
‖ũ− ū‖L1(R)∩HK(R) is sufficiently small. Then assuming (H1)–(H2) and (D1)–(D2), there exists a constant C > 0 and
a function ψ(·, t) ∈ WK,∞(R) such that for all t � 0 and p � 2 we have the estimates∥∥ũ

(· + ψ(·, t), t) − ū
∥∥

Lp(R)
(t) � C(1 + t)−

1
2 (1−1/p)− 1

2
∥∥ũ(·, t) − ū

∥∥
L1∩HK(R)

∣∣
t=0,∥∥ũ

(· + ψ(·, t), t) − ū
∥∥

HK(R)
(t) � C(1 + t)−

3
4
∥∥ũ(·, t) − ū

∥∥
L1(R)∩HK(R)

∣∣
t=0,∥∥(ψt ,ψx)(·, t)

∥∥
HK(R)

� C(1 + t)−
3
4
∥∥ũ(·, t) − ū

∥∥
L1(R)∩HK(R)

∣∣
t=0, (4.1)

and

‖ũ − ū‖Lp(R)(t),
∥∥ψ(·, t)∥∥

Lp(R)
� C(1 + t)−

1
2 (1−1/p)

∥∥ũ(·, t) − ū
∥∥

L1(R)∩HK(R)

∣∣
t=0. (4.2)

In particular, ū is nonlinearly asymptotically L1 ∩ HK → HK stable with estimate

‖ũ − ū‖HK(R)(t),
∥∥ψ(·, t)∥∥

HK(R)
� C(1 + t)−

1
4
∥∥ũ(·, t) − ū

∥∥
L1(R)∩HK(R)

∣∣
t=0 (4.3)

for all t � 0.

Remark 4.1. The regularity requirements stated here can be reduced to f ∈ C1 and smallness of the initial data
v0 := ũ − ū in L1 ∩ H 1 as described in Remark 4.2. This is to be compared with Schneider’s [10] assumptions
f ∈ C4 and v0 small in a weighted H 1/2+δ space (δ > 0) bounding ‖(1 + |x|2)v0‖L∞ , hence ‖v0‖L1∩L∞ , by Sobolev
embedding.

4.1. Nonlinear perturbation equations

Let ũ(x, t) be a solution of the system of reaction–diffusion equations

ut = uxx + f (u) + cux
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and define u(x, t) = ũ(x + ψ(x, t), t) for some unknown function ψ : R
2 → R to be determined later. Moreover, let

ū(x) be a stationary solution and define

v(x, t) = u(x, t) − ū(x) = ũ
(
x + ψ(x, t), t

) − ū(x). (4.4)

Lemma 4.2. For v, u as above, we have

ut − uxx − f (u) − cux = (∂t − L)ū′(x)ψ(x, t) + ∂xR

− (
∂t + ∂2

x

)
S + (

f ′(v(x, t) − ū(x)
) − df

(
ū(x)

))
ψx, (4.5)

where

R := vψt − vψxx + (
ūx(x) + vx(x, t)

) ψ2
x

1 + ψx

= O

(
|v|(|ψt | + |ψxx |

) +
( |ūx | + |vx |

1 − |ψx |
)

|ψx |2
)

and

S := vψx = O
(|v| · |ψx |

)
.

Proof. Using the fact that ũt − ũxx − f (ũ) − cũx = 0, it follows by a straightforward computation that

ut + f (u) − uxx − cux = ũxψt − ũtψx − (ũxψx)x + f (ũ)ψx, (4.6)

where it is understood that the argument of the function ũ and its derivatives appearing on the right-hand side are
evaluated at (x + ψ, t). Moreover, by another direct calculation, using the fact that

L
(
ū′(x)

) = (
∂2
x + c∂x + df (ū)

)
ū′(x) = 0

by translation invariance, we have

(∂t − L)ū′(x)ψ = ūxψt − (ūxψx)x − (cūx + ūxx)ψx = ūxψt − (ūxψx)x + df (ū)ψx.

Subtracting, and using the facts that, by differentiation of (ū + v)(x, t) = ũ(x + ψ, t),

ūx + vx = ũx(1 + ψx),

ūt + vt = ũt + ũxψt , (4.7)

so that

ũx − ūx − vx = −(ūx + vx)
ψx

1 + ψx

,

ũt − ūt − vt = −(ūx + vx)
ψt

1 + ψx

, (4.8)

we obtain

ut + f (u) − uxx = (∂t − L)ū′(x)ψ + vxψt − vtψx − (vxψx)x

+
(

(ūx + vx)
ψ2

x

1 + ψx

)
x

+ (
df (v + ū) − df (ū)

)
ψx,

yielding (4.5) by vxψt − vtψx = (vψt )x − (vψx)t and (vxψx)x = (vψx)xx − (vψxx)x . �
Corollary 4.3. The nonlinear residual v defined in (4.4) satisfies

(∂t − L)v = (∂t − L)ū′(x1)ψ + Q + Rx − (
∂t + ∂2

x

)
S + T , (4.9)

where
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Q := f
(
v(x, t) + ū(x)

) − f
(
ū(x)

) − df
(
ū(x)

)
v = O

(|v|2), (4.10)

R := vψt − vψxx + (ūx + vx)
ψ2

x

1 + ψx

, (4.11)

S := vψx = O
(|v||ψx |

)
, (4.12)

and

T := (
df (v + ū) − df (ū)

)
ψx = O

(|v||ψx |
)
. (4.13)

Proof. Straightforward Taylor expansion comparing (4.5) and ūt − f (ū) − ūxx − cux = 0. �
4.2. Integral representation/ψ -evolution scheme

Using Corollary 4.3 and applying Duhamel’s principle we obtain the integral (implicit) representation

v(x, t) = u′(x)ψ(x, t) +
∞∫

−∞
G(x, t;y)v0(y) dy

+
t∫

0

∞∫
−∞

G(x, t − s;y)
(
Q + Ry − (

∂s + ∂2
y

)
S + T

)
(y, s) dy ds

for the nonlinear perturbation v. Thus, if we define ψ implicitly via the formula

ψ(x, t) := −
∞∫

−∞
e(x, t;y)v0(y) dy

−
t∫

0

∞∫
−∞

e(x, t − s;y)
(
Q + Ry − (

∂s + ∂2
y

)
S + T

)
(y, s) dy ds,

we obtain the integral representation

v(x, t) =
∞∫

−∞
G̃(x, t;y)v0(y) dy

+
t∫

0

∞∫
−∞

G̃(x, t − s;y)
(
Q + Ry − (

∂s + ∂2
y

)
S + T

)
(y, s) dy ds. (4.14)

Moreover, differentiating and recalling that e(x, t;y) = 0 for 0 < t � 1 we obtain

∂k
t ∂m

x ψ(x, t) := −
∞∫

−∞
∂k
t ∂m

x e(x, t;y)v0(y) dy

−
t∫

0

∞∫
−∞

∂k
t ∂m

x e(x, t − s;y)
(
Q + Ry − (

∂s + ∂2
y

)
S + T

)
(y, s) dy ds. (4.15)

Together, these form a complete system in the variables (v, ∂k
t ψ, ∂m

x ψ), 0 � k � 1, 0 � m � K + 1. In particular,
given a solution of the system we may afterward recover the shift function ψ .

Now, from the original differential equation (4.9) together with (4.15), we readily obtain short-time existence and
continuity with respect to t of solution (v,ψt ,ψx) ∈ HK by a standard contraction-mapping argument treating the
linear df (ū)v term of the left-hand side along with Q, R, S, T , ψū′ terms of the right-hand side as sources in the heat
equation.
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4.3. Nonlinear iteration

Associated with the solution (u,ψt ,ψx) of the integral system (4.14)–(4.15), we define

η(t) := sup
0�s�t

∥∥(v,ψt ,ψx)
∥∥

HK(x;R)
(s)(1 + s)3/4. (4.16)

By short-time HK(R) existence theory, the quantity ‖(v,ψt ,ψx)‖HK(R) is continuous so long as it remains small.
Thus, η is a continuous function of t as long as it remains small. We now use the linearized estimates of Section 3 to
prove that if η is initially small then it must remain so.

Lemma 4.4. For all t � 0 for which η(t) is sufficiently small, we have the estimate

η(t) � C
(
E0 + η(t)2)

for some constant C > 0, so long as E0 := ‖v(·,0)‖L1(R)∩HK(R) is also sufficiently small.

Proof. To begin, notice that by the descriptions of Q, T , R, and S in Corollary 4.3 we have that

∥∥(Q,Rx,T )(·, t)∥∥
L1(R)∩L2(R)

�
∥∥(v, vx,ψt ,ψx)

∥∥2
H 1(x;R)

(t) + ∥∥(v, vx,ψt ,ψx)
∥∥2

H 2(x;R)
(t)

� η(t)2(1 + t)−3/2

so long as ‖(vx,ψx)(·, t)‖L∞(R) � ‖(v,ψx)‖HK(x;R)(t) � η(t) remains bounded, and likewise

∥∥(
∂t − ∂2

x

)
S(·, t)∥∥

L1(R)∩L2(R)
�

∥∥(v,ψx)
∥∥2

H 2(x;R)
(t) + ∥∥(v,ψx)

∥∥2
H 3(x;R)

(t)

� η(t)2(1 + t)−3/2.

Thus, applying the bound (3.8) of Corollary 3.4 to representations (4.14)–(4.15), we obtain for any 2 � p � ∞ the
bound

∥∥v(·, t)∥∥
Lp(R)

� (1 + t)−
1
2 (1−1/p)−1/2E0 + η2(t)

t∫
0

(1 + t − s)−3/4(t − s)−
1
2 (1/2−1/p)(1 + s)−3/2 ds

�
(
E0 + η(t)2)(1 + t)−min( 1

2 (1−1/p)+ 1
2 , 1

2 (1−1/p)+1)

�
(
E0 + η(t)2)(1 + t)−

1
2 (1−1/p)− 1

2 (4.17)

and similarly using (3.9) we have

∥∥(ψt ,ψx)(·, t)
∥∥

WK+1,p(R)
� (1 + t)−

1
2 (1−1/p)E0 + η(t)2

t∫
0

(1 + t − s)−
1
2 (1−1/p)− 1

2 (1 + s)−3/2 ds

�
(
E0 + η(t)2)(1 + t)−

1
2 (1−1/p)− 1

2 , (4.18)

yielding in particular that ‖(ψt ,ψx)‖HK+1 is arbitrarily small if E0 and η(t) are,4 thus verifying the hypothesis of
Proposition 4.5 below. By the nonlinear damping estimate given in Proposition 4.5, therefore, the size of v in HK(R)

can be controlled by its size in L2(R) together with HK estimates on the derivatives of the phase function ψ . In
particular, we have for some positive constants θ1 and θ2

4 Note that we have gained a necessary one degree of regularity in ψ , the regularity of ψ being limited only by the regularity of the coefficients
of the underlying PDE (2.1).
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∥∥v(·, t)∥∥2
HK(R)

� e−θ1tE2
0 + (

E0 + η(t)2)2
t∫

0

e−θ2(t−s)(1 + s)−3/2 ds

� e−θ1tE2
0 + (

E0 + η(t)2)2
(1 + t)−3/2

�
(
E0 + η(t)2)2

(1 + t)−3/2.

This estimate together with (4.18) in the case p = 2 completes the proof. �
Proposition 4.5. Let m � 1 be an integer. Assuming f ∈ Cm(R), let v(·,0) ∈ Hm(R) ( for v as in (4.4)) and suppose
that for some T > 0 the Hm(R) norm of v and the Hm+1(R) norms of ψt(·, t) and ψx(·, t) remain bounded by a
sufficiently small constant for all 0 � t � T . Then there are constants θ1 and θ2 such that

∥∥v(·, t)∥∥2
Hm(R)

� e−θ1t
∥∥v(·,0)

∥∥2
Hm(R)

+
t∫

0

e−θ2(t−s)
(∥∥v(·, s)∥∥2

L2(R)
+ ∥∥(ψt ,ψx)(·, s)

∥∥2
Hm(R)

)
ds

for all 0 � t � T .

Proof. Subtracting from Eq. (4.6) for u the equation for ū, we may write the nonlinear perturbation equation as

vt + (
f (v + ū) − f (ū)

) − vxx − cvx = ũxψt − ũtψx − (ũxψx)x + f (ũ)ψx, (4.19)

where it is understood that derivatives of ũ appearing on the right-hand side are evaluated at (x + ψ(x, t), t). Using
(4.8) to replace ũx and ũt respectively by ūx + vx − (ūx + vx)

ψx

1+ψx
and ūt + vt − (ūx + vx)

ψt

1+ψx
, and moving the

resulting vtψx term to the left-hand side of (4.19), we obtain

(1 + ψx)vt − vxx − cvx = (
f (v + ū) − f (ū)

) + (ūx + vx)ψt

− (
(ūx + vx)ψx

)
x

+
(

(ūx + vx)
ψ2

x

1 + ψx

)
x

+ f (ũ)ψx. (4.20)

Taking the L2 inner product in x of
∑m

j=0
(−1)j ∂

2j
x v

1+ψx
against (4.20), integrating by parts, and rearranging the resulting

terms, we arrive at the inequality

∂t

∥∥v(·, t)∥∥2
Hm(R)

� −θ
∥∥∂m+1

x v(·, t)∥∥2
L2(R)

+ C
(∥∥v(·, t)∥∥2

Hm(R)
+ ∥∥(ψt ,ψx)(·, s)

∥∥2
Hm(R)

)
,

for some θ > 0, C > 0, so long as ‖ũ‖Hm(R) remains bounded, and ‖v(·, t)‖Hm(R) and ‖(ψt ,ψx)(·, t)‖Hm+1(R) remain

sufficiently small. Using the Sobolev interpolation ‖g‖2
Hm(R)

� C̃−1‖∂m+1
x g‖2

L2(R)
+ C̃‖g‖2

L2(R)
for C̃ > 0 sufficiently

large, we obtain

∂t

∥∥v(·, t)∥∥2
Hm(R)

(t) � −θ̃
∥∥v(·, t)∥∥2

Hm(R)
+ C

(∥∥v(·, t)∥∥2
L2(R)

+ ∥∥(ψt ,ψx)(·, s)
∥∥2

Hm(R)

)
from which the desired estimate follows by Gronwall’s inequality. �
Proof of Theorem 4.1. Recalling that η(t) is continuous so long as it remains small, it follows by continuous in-
duction using Lemma 4.4 that η(t) � 2CE0 for all t � 0 provided that E0 < 1/4C and (as holds without loss of
generality) C � 1, yielding by (4.16) the result (4.1) in the case p = 2. Similarly, using (4.17) and (4.18), the result
(4.1) follows for any 2 � p � ∞ with uniform constant C > 0.

Finally, notice that by (4.4) we have

ũ(x, t) − ū(x) = v(x, t) + (
ũ(x, t) − ũ

(
x + ψ(x, t), t

))
(4.21)

and hence the size of ũ(x, t) − ū(x) in Lp or HK is controlled by the corresponding size of the function (v +
ũxψ)(x, t) in the respective norm, where we note that ‖ũx(·, t)‖L∞(R) � ‖ūx +vx(·, t)‖L∞(R). Therefore, using (4.17)
along with the estimate
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∥∥ψ(·, t)∥∥
Lp(R)

� E0(1 + t)−
1
2 (1−1/p) + η(t)2

t∫
0

(1 + t − s)−
1
2 (1−1/p)(1 + s)−

3
2 ds

�
(
E0 + η(t)2)(1 + t)−

1
2 (1−1/p),

which follows by (3.9) for all 2 � p � ∞, we obtain (4.2). Similarly we obtain (4.3), which completes the proof. �
Remark 4.2. Integrating by parts in representation formulae (4.14)–(4.15) to exchange the ∂y and (∂2

y +∂s) derivatives

on R and S for −∂y and (∂2
y − ∂s) derivatives on G̃, and noting that G̃y and (G̃yy + G̃s) satisfy Lp bounds equal

to the bounds obtained on G̃ times the time-integrable factor (1 + t)1/2t−1/2, we could have alternatively closed the
iteration entirely within the space H 1, obtaining Lp and H 1 bounds on (ũ(x + ψ, ·) − ū), ψx , ψt , and ψ with the
same rates given in Eqs. (4.1)–(4.3) of Theorem 4.1, for data merely small in L1 ∩ H 1.5 To obtain the Lp stability
bound (4.2) on (ũ − ū), we could then replace (4.21) with∥∥ũ(·, t) − ū

∥∥
Lp(R)

�
∥∥ũ

(· + ψ(·, t), t) − ū
(· + ψ(·, t))∥∥

Lp(R)

� ‖v‖Lp(R) + ∥∥ū
(· + ψ(·, t)) − ū

∥∥
Lp(R)

,

where we have used the fact that ‖ψx‖L∞(R) is small, in order to avoid controlling ũx(·, t) in L∞(R), and similarly
for the H 1 stability bound in (4.3).
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