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Abstract

We prove that the only domain Ω such that there exists a solution to the following problem �u + ω2u = −1 in Ω , u = 0 on
∂Ω , and 1

|∂Ω|
∫
∂Ω ∂nu = c, for a given constant c, is the unit ball B1, if we assume that Ω lies in an appropriate class of Lipschitz

domains.
© 2011 . .

1. Introduction

Let us consider the following problem: for ω ∈ R, is it true that the only domain Ω such that there exists a solution
u to the problem{

�u + ω2u = −1 in Ω,

u = 0 on ∂Ω,
(1.1)

with

∂nu = c on ∂Ω, (1.2)

is a ball? Here Ω is a sufficiently smooth bounded domain in R
N , N � 2, ∂nu is the external normal derivative to

the boundary ∂Ω , and c is a given constant. By using the Alexandrov method of moving planes J. Serrin [20] has
proved that if there exists a solution u to (1.1), (1.2), and if u has a sign in Ω , then Ω = B1 (for example for ω = 0,
by the maximum principle it follows that u is positive in Ω). For the particular case ω = 0 see also the proofs of
H. Weinberger [23], based on a Rellich-type identity and on the maximum principle, and M. Choulli, A. Henrot [7],
which use the technique of domain derivative. We point out that Serrin in [20] has studied the same type of problem
for more general nonlinear elliptic equations. For further references concerning symmetry (and non-symmetry) results
for overdetermined elliptic problems, see also [1–4,8–19,21,22]. All these results need hypothesis on the sign of u.
In [5] the authors have given a positive answer to the above question by supposing that
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(i) ω2 /∈ {λn}n�1 ({λn}n�1 being the sequence, in increasing order, of eigenvalues of −� in B1 with Dirichlet
boundary conditions),

(ii) ω /∈ Λ, where Λ is an enumerable set of R
+, whose limit points are the values λ1m, for some integer m � 1, λ1m

being the mth-zero of the first-order Bessel function I1,
(iii) Ω is such that the ker(� + ω2) = {0} in Ω ,
(iv) the boundary ∂Ω is a Lipschitz perturbation of the unit sphere ∂B1 of R

N .

We point out that in [5] no hypothesis are required on the sign of the solution u. We can say that paper [6] can be
considered as preparatory of [5] (in the sense that some ideas developed in [6] are used in [5]). In the present paper
we give a new proof of the result proved in [5], which let us permit to avoid hypothesis (i)–(iii) above.

We recall that if let us denote by (λn)n�1 the sequence, in increasing order, of eigenvalues of −� in B1 with
Dirichlet boundary conditions, we have that the eigenvalue λn, for some n ∈ N, coincides, for some integers � � 0
and m � 1, with λ2

�m. Here and in what follows λ�m will denote the mth-zero of the so-called N -dimensional �-order
Bessel function of the first kind I�, i.e. I�(λ�m) = 0 (see Section 2). We recall in particular that (see [5, Lemma 3.5])

I ′
0 = −I1 in R.

From these remarks it follows that the function u(0) given by

u(0)(x) = 1

ω2

(
I0(ωr)

I0(ω)
− 1

)
in B1, (1.3)

solves (1.1), (1.2) when Ω = B1. Here r = |x|, | · | denoting the Euclidean norm in R
N . We observe that if the constant

ω is smaller or equal than λ11, the solution u(0) is positive in B1, while if ω is bigger than λ11, then u(0) changes sign.
In the rest of the paper we will assume ω � 0. The same conclusions hold true for ω < 0, since the coefficient ω2 is
even in (1.1). We stress out that in order that (1.3) makes sense, in the rest of the paper we will suppose that

ω /∈ {λ0m}m�1.

Here and in what follows c = ∂nu(0) on ∂B1. By (1.3), we obtain that

c = I ′
0(ω)

ωI0(ω)
. (1.4)

In the present paper we prove the following

Theorem 1.1. For ω /∈ {λ0m}m�1, there exists a class D of C2,α-domains such that if u is a solution to (1.1) verifying

1

|∂Ω|
∫

∂Ω

∂nu = c,

with Ω ∈ D, and c given by (1.4), then Ω = B1, and u = u(0).

The idea underlying the proof of Theorem 1.1 is the following. Let E be the vector space of C2,α functions defined
on the unit sphere ∂B1, i.e.

E = {
k ∈ C2,α(∂B1)

}
,

0 < α < 1. For k ∈ E, let Ωk be the domain whose boundary ∂Ωk can be written as perturbation of ∂B1, i.e.

∂Ωk = {
x = (1 + k)y, y ∈ ∂B1

}
(in particular for k ≡ 0 on ∂B1, Ω0 = B1). We denote by Φ the following operator

Φ :E �→ R,

defined by

Φ(k) =
∫

∂nup − c

∫
,

∂Ωk ∂Ωk
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where up is a particular solution to (1.1), when Ω = Ωk (up will be defined in Section 3 below). We observe that Φ

has not a sign in a neighborhood of 0 in E (i.e. Φ is neither positive nor negative). In fact Φ(0) = 0 (since up = u(0)

when Ω = B1). Moreover since the unit sphere centered at the point x0 ∈ R
N is parametrized by

∂B1(x0) = {
x = (

1 + k′)y, y ∈ ∂B1
}
,

where k′ is given by

k′(y) = x0 · y − 1 +
√

1 + |x0 · y|2 − |x0|2, (1.5)

we have that Φ(k′) = 0, with

k′ → 0 in E, as x0 → 0.

So the best one can expect is that Φ is different to 0 in O \ {k ∈ E; k = k′}, for some neighborhood O of 0 in E. By
studying the behavior of the operator Φ at 0, we prove that if ω /∈ {λ�m}��2,m�1, with λ�m �= λ1m′ , for all m′ � 1, then
Φ is differentiable at zero in E. On the other hand if ω = λ�m, for some � � 2, and m � 1 (with λ�m �= λ1m′ , for all
m′ � 1), then Φ is differentiable at zero in the vector space

E� = {k ∈ E; k�q = 0, kpq ′ = 0,p ∈ I } (1.6)

of functions k ∈ E which don’t have either the frequency � or the frequency p, I being a (eventually empty) finite set
of positive integer such that Ip(λ�m) = 0 (the cardinality of I depending on the multiplicity of the eigenvalue λ2

�m, see
Section 2 for more details). Here and in what follows kst = 1

|∂B1|
∫
∂B1

kYst is the s-order (Fourier) coefficient of k, and
Yst is the spherical harmonic of degree s, with t = 1, . . . , ds . More precisely we have that the differential at zero in the
direction k has a sign if k0 �= 0 (see Lemma 3.3), k0 being the zeroth-order coefficient of k (i.e. k0 = 1

|∂B1|
∫
∂B1

k). We

can show then that there exists a neighborhood O of 0 in E such that Φ is positive in O ∩ E+, and Φ is negative in
O ∩ E−, where E+ and E− are two circular sectors respectively in the subset {k ∈ E; k0 < 0}, and {k ∈ E; k0 > 0}.
Now, since if there exists a solution u to (1.1), when Ω = Ωk , verifying 1

|∂Ωk |
∫
∂Ωk

∂nu = c, one can prove that

Φ(k) = 0, we obtain that k = 0, if we assume that k ∈ O ∩ (E+ ∪ E− ∪ {0}). Finally, since the operator Φ is invariant
up to isometries, we obtain that the class D in Theorem 1.1 is defined as

D = {
Ω; Ω = σ(Ωk)

}
,

for some σ ∈ Σ , and some Ωk ∈ G , where Σ is the set of isometries of R
N , and

G = {
Ωk; k ∈ O ∩ (

E+ ∪ E− ∪ {0})}.
We stress out that E through the paper is the space of functions of class C2,α on ∂B1 (this means that we consider only
regular perturbations of the unit sphere), but, up to obvious changes, the same conclusions hold true in the case where
E is the space of functions of class C0,1 on ∂B1, i.e. the boundary ∂Ωk is of Lipschitz class. The paper is organized
as follows: in the next section we give some notations used through the paper, in Section 3 we give the first-order
approximation of the operator Φ in a neighborhood of 0, and in Section 4 we prove Theorem 1.1, and we consider the
Lipschitz case. Finally in Section 5 counter-examples to Theorem 1.1 are given.

2. Preliminaries and notations

Let us denote by B1 the ball of radius 1 in R
N centered at zero. By B1 we define the Euclidean closure of B1. Let

us denote by I� the so-called N -dimensional �-order Bessel function of the first kind, i.e.

I�(r) = r−νJν+�(r),

where ν = N
2 − 1, and Jν+� is the well-known (ν + �)-order Bessel function of the first kind (we observe that for

N = 2, I� coincides with the �-order Bessel function of the first kind J�). I� solves the following Bessel equation

I ′′
� + N − 1

I ′
� +

(
1 − �(� + N − 2)

2

)
I� = 0 in R.
r r
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Let λ�m be the mth-zero of the �-order Bessel function I�. Let (λn)n�1 be the sequence, in increasing order, of
eigenvalues of −� in B1 with Dirichlet boundary conditions. An eigenvalue λn, for some n ∈ N, coincides, for some
integer � � 0, and m � 1, with λ2

�m. The corresponding eigenfunctions can be written as (in polar coordinates)

ϕ1 = I�(λ�mr)Y�1(θ),

...
...

...

ϕd�
= I�(λ�mr)Y�d�

(θ),

ϕpq = Ip(λ�mr)Ypq(θ),

where p ∈ I , and I is a (eventually empty) finite set (by Fredholm theorem) of integer such that Ip(λ�m) = 0, i.e.

I = {
p ∈ N, p �= �; Ip(λ�m) = 0

}
. (2.1)

Here Yst is the spherical harmonic of degree s, with t = 1, . . . , ds , and

ds =
{1 if s = 0,

(2s+N−2)(s+N−3)!
s!(N−2)! if s � 1.

We will use the following convention: we say that a function f has the frequency s, if the s-order coefficient of f , i.e.
fst = 1

|∂B1|
∫
∂B1

f Yst , is different to zero. And similarly we say that a function f doesn’t have the frequency s, if the
s-order coefficient of f vanishes.

Let k̃ be a C2,α-extension of k into B1. Let us call A the Jacobian matrix of change of variable

x = (
1 + k(y)

)
y, y ∈ B1 (2.2)

(where we denote k̃ by k). The matrix A is given by

Aij =

⎡
⎢⎢⎣

1 + k + y1∂1k y1∂2k · · · y1∂Nk

y2∂1k 1 + k + y2∂2k · · · y2∂Nk
...

...
...

...

yN∂1k · · · · · · 1 + k + yN∂Nk

⎤
⎥⎥⎦ .

Let G = AT A. The matrix G can be written as

G = IN + G(1) + o
(‖k‖),

where IN is the N -order identity matrix, and the matrix G(1) depends linearly on k and ∇k. Following [5], the matrix
G(1) is given by

G
(1)
ij = 2kIN +

⎡
⎢⎢⎣

2x1∂1k x1∂2k + x2∂1k · · · x1∂Nk + xN∂1k

x1∂2k + x2∂1k 2x2∂2k · · · x2∂Nk + xN∂2k
...

...
...

...

x1∂Nk + xN∂1k · · · · · · 2xN∂Nk

⎤
⎥⎥⎦ . (2.3)

3. The first-order expansion of the operator Φ

A function k ∈ E can be written, in Fourier series expansion, as

k = k0 +
∑
p�1

dp∑
q=1

kpqYpq on ∂B1.

We recall that problem (1.1) cannot have solutions or, if a solution exists, it cannot be unique. This happens all times
the kernel ker(� + ω2) �= {0} in Ω . More precisely by Fredholm theorem there exists a solution to (1.1) if and only if

−1 ∈ ker
(
� + ω2)⊥ in Ω.

We can write a solution u as

u = up + uh,
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where up is a particular solution to (1.1) such that

up ∈ ker
(
� + ω2)⊥ in Ω, (3.1)

and uh solves the corresponding homogeneous problem. We observe that up is unique and can be written as

up =
∑
p∈IC

np∑
q=1

αpqψpq,

where αpq =
∫
Ω ψpq

μ−λp
is the p-order Fourier coefficient of u. Here λp and ψpq are respectively the pth-eigenvalue

and a corresponding eigenfunction of −� in Ω (with Dirichlet boundary conditions), and np is the dimension of the
corresponding eigenspace. I is a finite set of integer (by Fredholm theorem), and IC is the complementary of I . On
the other hand if the kernel ker(� + ω2) = {0}, then a solution u exists and is unique. For example for ω = λ�m, for
some �,m � 1, then up = 1

λ2
�m

(
I0(λ�mr)
I0(λ�m)

− 1) is a particular solution to (1.1) when Ω = B1 (lying in the ker(�+λ2
�m)⊥

in B1), and uh has the form (in polar coordinates)

uh =
d�∑

q=1

α�qI�(λ�mr)Y�q(θ) +
∑
p∈I

dp∑
q=1

αpqIp(λ�mr)Ypq(θ),

where I is defined in (2.1), and α�1, . . . , α�d�
, αpq ∈ R. We denote by Φ the following operator

Φ :E �→ R,

defined by

Φ(k) :=
∫

∂Ωk

∂nup − c

∫
∂Ωk

,

where up is a particular solution to (1.1), verifying (3.1), when Ω = Ωk . The operator Φ is well-defined, since we
suppose that a solution u exists for k lying in some neighborhood of 0 in E. Using (2.2), we have that the function ũ

defined by

ũ(y) = u
(
(1 + k)y

)
in B1,

solves{
div(

√
gG−1∇ũ) + ω2√g ũ = −√

g in B1,

ũ = 0 on ∂B1,
(3.2)

where g = |detG|. Following [5], the external normal derivative of u at the point x = (1 + k)y ∈ ∂Ωk is given by

∂nu
(
(1 + k)y

) = (
G−1y · y)−1/2

G−1∇ũ · y.

The operator Φ then becomes

Φ(k) =
∫

∂B1

(
G−1y · y)−1/2

G−1∇ũp · y√
g̃ − c

∫
∂B1

√
g̃,

where ũp(y) = up((1 + k)y), and
√

g̃ is the surface element of the new variable y. Let us denote ũp by up , and y

by x. We begin by proving the following

Lemma 3.1. We have

up → u(0) as k → 0.

Proof of Lemma 3.1. Let z = up − u(0). By writing the matrix
√

gG−1 in (3.2) as
√

gG−1 = IN + K, (3.3)
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it follows that z solves{
�w + ω2w = (1 − √

g)(ω2up + 1) − div(K∇up) in B1,

w = 0 on ∂B1.
(3.4)

Let assume that the ker(� + ω2) = {0} in B1. The solution w to (3.4) can be written as

w =
+∞∑
p=1

np∑
q=1

αpqψpq,

where the p-order Fourier coefficient

αpq =
∫
B1

((1 − √
g)(ω2up + 1) − div(K∇up))ψpq

ω2 − λp

.

Since
√

g = 1 + Nk + x · ∇k + o
(‖k‖), (3.5)

we obtain

w → 0 as k → 0.

On the other hand, if the ker(� + ω2) �= {0} in B1, i.e. ω2 = λn, for some n � 2 (we recall that λn /∈ {λ2
0m}m�1), then

a solution w to (3.4) can be written as

w = wp + wh,

where

wp =
∑
p∈IC

np∑
q=1

αpqψpq.

We claim that wp = z. We have that the function wp − z solves{
�(wp − z) + λn(wp − z) = 0 in B1,

wp − z = 0 on ∂B1.

So we obtain

wp − z =
∑
p∈I

np∑
q=1

βpqψpq,

i.e.

up = u(0) + wp +
∑
p∈I

np∑
q=1

βpqψpq,

for all βpq ∈ R. Since up is a solution to (3.2), it follows that

−√
g = div

(√
gG−1∇up

) + λn
√

gup

= div
(√

gG−1∇(
u(0) + wp

)) + λn
√

g
(
u(0) + wp

)
+

∑
p∈I

np∑
q=1

βpq div
(√

gG−1∇ψpq

) + λn
√

g
∑
p∈I

np∑
q=1

βpqψpq

= −√
g +

∑ np∑
βpq

(
div

(√
gG−1∇ψpq

) + λn
√

gψpq

)
.

p∈I q=1
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In particular we obtain

βpq

(
div

(√
gG−1∇ψpq

) + λn
√

gψpq

) = 0.

We claim that

div
(√

gG−1∇ψpq

) + λn
√

gψpq �≡ 0 in B1.

By contradiction let assume that there exists a p ∈ I and a q ∈ {1, . . . , np} such that

div
(√

gG−1∇ψpq

) + λn
√

gψpq = 0 in B1.

By defining by y = y(x) the inverse of the change of variable (2.2), we obtain that

ψ̃pq(x) = ψpq

(
y(x)

)
, x ∈ Ωk,

solves

�ψ̃pq + λnψ̃pq = 0 in Ωk, ψ̃pq = 0 on ∂Ωk.

This implies that λn is an eigenvalue of −� in Ωk . Then up doesn’t lie in ker(� + λn)
⊥ in Ωk , which yields a

contradiction. This yields that βpq = 0, for all p ∈ I , and q = 1, . . . , np , and then up = u(0) + wp . �
By (3.3) it follows that

√
gIN − G = KG = (

K(1) + o
(‖k‖))(IN + G(1) + o

(‖k‖)),
where K(1) denotes the one-order term of the matrix K (the matrix G(1) is given by (2.3)). In particular the matrix

K(1) = g(1)IN − G(1), (3.6)

where g(1), the one-order term of
√

g, is given by

g(1) = Nk + x · ∇k. (3.7)

By (3.5) we have

1√
g

= 1 − Nk − x · ∇k + o
(‖k‖),

and by (3.3), (3.6), and (3.7), we obtain

G−1 = IN√
g

+ 1√
g

K(1) + · · ·

= IN − G(1) + o
(‖k‖). (3.8)

Lemma 3.2. If ω /∈ {λ�m}��2,m�1, with λ�m �= λ1m′ , for all m′ � 1, then up has the form

up = u(0) + u(1) + o
(‖k‖) in E, (3.9)

where u(1) solves{
�u(1) + ω2u(1) = f (1) in B1,

u(1) = 0 on ∂B1,
(3.10)

and f (1) is given by

f (1) = −(Nk + x · ∇k)
(
1 + ω2u(0)

) − div
(
K(1)∇u(0)

)
.

If ω = λ�m, for some � � 2, and m � 1 (with λ�m �= λ1m′ , for all m′ � 1), the same holds true by changing E with E�,
where E� is defined in (1.6).
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To prove Lemma 3.2, we observe that if the ker(� + ω2) = {0} in B1, then up admits a one-order expansion
in E. The same holds true if the ker(� + ω2) �= {0} in B1, with ω = λ1m, for some m � 1. On the other hand, if the
ker(�+ω2) = {0} in B1, i.e. ω = λ�m, for some � � 2, and m � 1, then up admits a one-order expansion in the vector
space E� of functions k ∈ E which don’t have either the frequency � or the frequency p, with p ∈ I , the set I being
defined in (2.1).

Proof of Lemma 3.2. Let ω /∈ {λ�m}��2,m�1, with λ�m �= λ1m′ , for all m′ � 1. Let assume that up can be written as
in (3.9). Then up solves{

�up + div(K∇up) + ω2√gup = −√
g in B1,

up = 0 on ∂B1.
(3.11)

We have

div(K∇up) + √
g
(
ω2up + 1

) = div
(
K(1)

(∇u(0) + ∇u(1)
))

+ (1 + Nk + x · ∇k)
(
ω2(u(0) + u(1)

) + 1
) + · · · . (3.12)

The one-order terms in (3.12) are given by

(Nk + x · ∇k)
(
1 + ω2u(0)

) + ω2u(1) + div
(
K(1)∇u(0)

)
.

By taking the one-order terms in (3.11), we obtain that u(1) solves (3.10). By a direct calculation u(1) has the form

u(1) = I ′
0(λ1mr)

λ1mI0(λ1m)
rk,

if ω = λ1m, since I ′
0 = −I1. Otherwise, for ω �= λ1m, then u(1) has the form

u(1) = I ′
0(ωr)

ωI0(ω)
rk + u,

where u solves{
�u + ω2u = 0 in B1,

u = I1(ω)
ωI0(ω)

k on ∂B1.

The solution u (in polar coordinates) can be written as

u(r, θ) = −c

(
k0I0(ωr)/I0(ω) +

∑
p�1

dp∑
q=1

kpqIp(ωr)/Ip(ω)Ypq(θ)

)
. (3.13)

Now obviously (3.13) is well-defined for all ω /∈ {λ�m}��2,m�1. Let us define by

w = up − u(0) − u(1).

The function w solves{
�w + ω2w = (1 − √

g)(ω2up + 1) − div(K∇up) − f (1) in B1,

w = 0 on ∂B1.

By writing up as

up = u(0) + f,

with f (k) = o(1) as k → 0 in E, we obtain

(1 − √
g)

(
ω2up + 1

) − div(K∇up) − f (1) = o
(‖k‖).

By standard C2,α-estimates we obtain

‖w‖C2,α(B1)
= o

(‖k‖).
Now if ω = λ�m, for some � � 2, and m � 1, then (3.13) makes sense if and only if k ∈ E�, and the same above
conclusions hold true, by substituting E with E�. �
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Lemma 3.3. If ω /∈ {λ�m}��2,m�1, with λ�m �= λ1m′ , for all m′ � 1, then the operator Φ is differentiable at 0 in E,
and 〈

dΦ(0) | k〉 = −k0

(
I ′

1(ω)

I0(ω)
+ I ′

0(ω)2

I0(ω)2

)
|∂B1|.

Otherwise if ω = λ�m, for some � � 2, and m � 1, the same holds true by changing E with E�.

The previous lemma means that if ω = λ�m, for some � � 2, and m � 1, then Φ is not differentiable at 0 in k, with
k having the form

k =
d�∑

m=1

k�mY�m(θ) +
∑
p∈I

dp∑
q=1

kpqYpq(θ). (3.14)

Proof of Lemma 3.3. By (2.3), (3.8), and (3.9), we obtain

Φ(k) =
∫

∂B1

(
G−1x · x)−1/2

G−1∇up · x√
g̃ − c

∫
∂B1

√
g̃

=
∫

∂B1

(
G−1x · x)−1/2

G−1∇u(0) · x√
g̃ − c

∫
∂B1

√
g̃ +

∫
∂B1

(
G−1x · x)−1/2

G−1∇u(1) · x√
g̃ + · · ·

= c

∫
∂B1

(1 − 2k − 2∂nk)1/2
√

g̃ − c

∫
∂B1

√
g̃

+
∫

∂B1

(1 − 2k − 2∂nk)−1/2(∂nu(1) − G(1)∇u(1) · x)√
g̃ + · · · . (3.15)

Since the surface element
√

g̃ can be written as√
g̃ = 1 + o

(‖k‖),
by taking the one-order terms in (3.15), we obtain〈

dΦ(0) | k〉 = −c

∫
∂B1

(k + ∂nk) +
∫

∂B1

∂nu(1).

Since

∂nu(1) =
(

I ′′
0 (ω)

I0(ω)
+ c

)
k + c∂nk + ∂nu,

and

∂nu = −cω

(
k0I

′
0(ω)/I0(ω) +

∑
p�1

dp∑
q=1

kpqI ′
p(ω)/Ip(ω)Ypq(θ)

)
,

we obtain〈
dΦ(0) | k〉 = −c

∫
∂B1

(k + ∂nk) +
(

c − I ′
1(ω)

I0(ω)

) ∫
∂B1

k + c

∫
∂B1

∂nk +
∫

∂B1

∂nu

= −I ′
1(ω)

I0(ω)

∫
∂B1

k − cω
I ′

0(ω)

I0(ω)
k0|∂B1|

= −k0

(
I ′

1(ω)

I0(ω)
+ I ′

0(ω)2

I0(ω)2

)
|∂B1|,

being c = I ′
0(ω)

. �

ωI0(ω)
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Lemma 3.4. The number

I ′
1(ω)

I0(ω)
+ I ′

0(ω)2

I0(ω)2
> 0. (3.16)

Proof of Lemma 3.4. We have

Φ(k0) =
∫

∂B1+k0

∂nup − c

∫
∂B1+k0

=
(

I ′
0((1 + k0)ω)

I0((1 + k0)ω)
− I ′

0(ω)

I0(ω)

) |∂B1+k0 |
ω

.

Now since the function

I ′
0(ω)

I0(ω)

is decreasing in ω, it follows that for k0 > 0 sufficiently small, the function

I ′
0((1 + k0)ω)

I0((1 + k0)ω)
− I ′

0(ω)

I0(ω)
< 0.

So Φ is decreasing in the direction tk0, for some t ∈ I , and then〈
dΦ(0) | k0

〉
< 0,

which yields (3.16). �
4. Proof of Theorem 1.1

Before proceeding with the proof of Theorem 1.1, we need the following

Lemma 4.1. There exists a neighborhood O of the origin in E, such that if k ∈ O ∩ EC
1 , then the mass center x of Ωk

is different to zero.

Here E1 is the vector space

E1 = {k ∈ E; k1q = 0},
of functions k ∈ E which don’t have the frequency 1, and

EC
1 = {k ∈ E; k1q �= 0 for some q = 1, . . . ,N},

the complementary of E1, is the set of functions k which have the frequency 1. We recall that the mass center of a
domain Ω is the point x of coordinates

xi = 1

|Ω|
∫
Ω

xi, i = 1, . . . ,N.

Proof of Lemma 4.1. For i = 1, . . . ,N , let us denote by Fi the following operator

Fi :E → R,

defined by

Fi(k) = 1

|Ωk|
∫
Ωk

xi,

i.e. the operator Fi associates to k the ith component of the mass center x of the domain Ωk . By the change of
variable (2.2), we obtain
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Fi(k) = 1

|Ωk|
∫
Ωk

xi = 1∫
B1

√
g

∫
B1

(1 + k)xi
√

g

=
∫
B1

(1 − Nk − x · ∇k + · · ·)
∫
B1

(
xi + (N + 1)kxi + x · ∇kxi + · · ·)

=
∫
B1

(1 − Nk − x · ∇k + · · ·)
∫
B1

(
(N + 1)kxi + x · ∇kxi + · · ·).

By taking the one-order terms, we have that the differential of Fi at zero in k is given by

〈
dFi(0) | k〉 = (N + 1)

∑
p�1

dp∑
q=1

kpq

1∫
0

rp+N

∫
∂B1

YpqY1i +
∑
p�1

dp∑
q=1

pkpq

1∫
0

rp+N−1
∫

∂B1

YpqY1i

= (N + 1)k1i

1∫
0

rN+1 + k1i

1∫
0

rN

=
(

1 + 1

(N + 2)(N + 1)

)
k1i .

Let k ∈ EC
1 . Then there exists at least a q ∈ {1, . . . ,N} such that k1q �= 0. So there exists a neighborhood O of the

origin in E such that Fq is increasing (or decreasing) in O ∩ EC
1 . Now, since Fi(0) = 0, we obtain that xq �= 0. �

The previous lemma implies in particular that if the mass center of Ωk is at the point zero, then k doesn’t have the
frequency 1, i.e. k1q = 0 for all q = 1, . . . ,N . This means that a domain Ωk , with k ∈ O ∩ E1 is either a domain with
mass center at 0, or Ωk = σ(Ω

k̃
), for some σ ∈ Σ , and some domain Ω

k̃
, where Σ is the set of isometries of R

N ,
and Ω

k̃
has mass center at zero. Now since the operator Φ is invariant up to isometries, we obtain that Φ has a sign

in a neighborhood O of 0 in E, if Φ has a sign in O ∩ E1. For this reason in what follows we will concentrate our
attention on the space E1. We observe for example that the function

k′ = x0 · y − 1 +
√

1 + |x0 · y|2 − |x0|2,
which parametrizes the sphere ∂B1(x0) centered at x0, has the frequency 1, which is equal to x0, i.e. k′ ∈ EC

1 . In fact
the function

h(y) =
√

1 + |x0 · y|2 − |x0|2

is even in the variable y, and then the function hY1m is odd, which implies that
∫
∂B1

hY1m = 0, for all m = 1, . . . ,N .

Proof of Theorem 1.1. Step 1. Let assume that ω /∈ {λ�m}��2,m�1, with λ�m �= λ1m′ , for all m′ � 1. Let us define
by

E+
ε = {

k ∈ E1; ‖k‖ = 1, k0 � −ε
}
,

and by

E−
ε = {

k ∈ E1; ‖k‖ = 1, k0 � ε
}
,

for some positive constant ε < 1. We have〈
dΦ(0) | k〉

� εC|∂B1| for all k ∈ E+
ε ,

and 〈
dΦ(0) | k〉

� −εC|∂B1| for all k ∈ E−
ε ,
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where C = I ′
1(ω)

I0(ω)
+ I ′

0(ω)2

I0(ω)2 . So there exists a sufficiently small interval I of 0 in R
+ such that Φ is positive in

E+ = {
tk; t ∈ I, k ∈ E+

ε

}
, (4.1)

and Φ is negative in

E− = {
tk; t ∈ I, k ∈ E−

ε

}
. (4.2)

Let O be a neighborhood of 0 in E such that O ∩ E+ ∪ {0} is contained in E+ ∪ {0}, and O ∩ E− ∪ {0} is contained
in E− ∪ {0}. Now if ω = λ�m, for some � � 2, and m � 1, the same above conclusions hold true by changing E1 with
the subspace

E� = {k ∈ E1; k�q = 0, kpq ′ = 0, p ∈ I }
of E1. Now since for example Φ is positive in E+ ∩ E� and is continuous in E+, and E� is finite dimensional, it
follows that Φ is positive in E+.

Step 2. Let D be the class of C2,α-domains defined as

D = {
Ω; Ω = σ(Ωk)

}
,

for some σ ∈ Σ , and some Ωk ∈ G , where Σ is the set of isometries of R
N , and

G = {
Ωk; k ∈ O ∩ (

E+ ∪ E− ∪ {0})}.
Let assume that there exists a Ω ∈ D such that 1

|∂Ω|
∫
∂Ω

∂nu = c. Since the problem is invariant up to isometries we

have that 1
|∂Ωk |

∫
∂Ωk

∂nu = c, for some k ∈ O ∩ (E+ ∪ E− ∪ {0}).
Step 3. Let assume that the kernel ker(� + ω2) = {0} in Ωk . Then u coincides with up , and

Φ(k) = 0.

Let assume that k ∈ O ∩ E+ ∪ {0}. This yields that k = 0, since Φ is positive in O ∩ E+. Now if the kernel
ker(� + ω2) �= {0} in Ωk , then u can be written as

u = up + uh in Ωk.

Since by Fredholm theorem −1 ∈ ker(� + ω2)⊥, by divergence theorem we obtain

0 =
∫
Ωk

uh = − 1

ω2

∫
Ωk

�uh = − 1

ω2

∫
∂Ωk

∂nuh.

Then we have

Φ(k) =
∫

∂Ωk

∂nup − c

∫
∂Ωk

=
∫

∂Ωk

∂nu − c

∫
∂Ωk

= 0. �

We conclude this section by examining briefly the Lipschitz case. Let us define by

E = {
k ∈ C0,1(∂B1)

}
.

Let u ∈ H 1(Ωk) be a weak solution to (1.1), when Ω = Ωk , and k ∈ E. Then u solves∫
Ωk

∇u · ∇φ − ω2
∫
Ωk

uφ =
∫
Ωk

φ,

for all φ ∈ C∞
c (Ωk). Since, by regularity results, u ∈ C0,1(Ωk), the operator Φ is well-defined in E. By repeating the

same arguments as in the regular case, one can prove the following
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Theorem 4.2. For ω /∈ {λ0m}m�1, there exists a class D of Lipschitz domains, such that if u ∈ H 1(Ω) is a weak
solution to (1.1) verifying

1

|∂Ω|
∫

∂Ω

∂nu = c,

with Ω ∈ D, and c given by (1.4), then Ω = B1, and u = u(0).

5. Concluding remark

We recall that by the proof of Theorem 1.1 it follows that Φ is positive in the circular sector E+ in {k ∈ E; k0 < 0},
and is negative in the circular sector E− in {k ∈ E; k0 > 0}. So the operator Φ must vanish somewhere. In fact let
ε > 0 be fixed. Let k ∈ E−. Then Φ(k) is negative. Now the domain Ω̃k , whose boundary is given by

∂Ω̃k = {
x = (

1 + (a + k)
)
y, y ∈ ∂B1

}
,

with −1 < a < 0, is a contraction of the domain Ωk . We can find then a value a such that a + k ∈ E+. But Φ(a + k) is
positive. Then there exists a k such that Φ(k) = 0. By repeating the same argument for all ε > 0, and for all k ∈ E−,
we can find a variety M in E1 (whose tangent space at 0 is contained or coincides with E0 = {k; k0 = 0}), such that
Φ vanishes identically on M. In particular we obtain that all domains Ω lying in the class

D = {
Ω; Ω = σ(Ωk)

}
,

for some σ ∈ Σ , and some k ∈ M, are counter-examples to Theorem 1.1.

References

[1] A. Aftalion, J. Busca, W. Reichel, Approximate radial symmetry for overdetermined boundary value problems, Adv. Differential Equa-
tions 4 (6) (1999) 907–932.

[2] G. Alessandrini, A symmetry theorem for condensers, Math. Methods Appl. Sci. 15 (1992) 315–320.
[3] E. Berchio, F. Gazzola, T. Weth, Radial symmetry of positive solutions to nonlinear polyharmonic Dirichlet problems, J. Reine Angew.

Math. 620 (2008) 165–183.
[4] F. Brock, A. Henrot, A symmetry result for an overdetermined elliptic problem using continuous rearrangement and domain derivative, Rend.

Circ. Mat. Palermo 51 (2002) 375–390.
[5] B. Canuto, D. Rial, Local overdetermined linear elliptic problems in Lipschitz domains with solutions changing sign, Rend. Istit. Mat. Univ.

Trieste XL (2009) 1–27.
[6] B. Canuto, D. Rial, Some remarks on solutions to an overdetermined elliptic problem in divergence form in a ball, Ann. Mat. Pura Appl. 186

(2007) 591–602.
[7] M. Choulli, A. Henrot, Use of the domain derivative to prove symmetry results in partial differential equations, Math. Nachr. 192 (1998)

91–103.
[8] A. Farina, B. Kawohl, Remarks on an overdetermined boundary value problem, Calc. Var. Partial Differential Equations 31 (2008) 351–

357.
[9] I. Fragalà, F. Gazzola, J. Lamboley, M. Pierre, Counterexamples to symmetry for partially overdetermined elliptic problems, Analysis

(Munich) 29 (2009) 85–93.
[10] I. Fragalà, F. Gazzola, Partially overdetermined elliptic boundary value problems, J. Differential Equations 245 (2008) 1299–1322.
[11] I. Fragalà, F. Gazzola, B. Kawohl, Overdetermined problems with possibly degenerate ellipticity, a geometric approach, Math. Z. 254 (2006)

117–132.
[12] N. Garofalo, J.L. Lewis, A symmetry result related to some overdetermined boundary value problems, Amer. J. Math. 111 (1989) 9–33.
[13] F. Gazzola, No geometric approach for general overdetermined elliptic problems with nonconstant source, Matematiche (Catania) 60 (2005)

259–268.
[14] A. Greco, Radial symmetry and uniqueness for an overdetermined problem, Math. Methods Appl. Sci. 24 (2001) 103–115.
[15] L.E. Payne, G.A. Philippin, On two free boundary problems in potential theory, J. Math. Anal. Appl. 161 (2) (1991) 332–342.
[16] G.A. Philippin, On a free boundary problem in electrostatics, Math. Methods Appl. Sci. 12 (1990) 387–392.
[17] G.A. Philippin, L.E. Payne, On the conformal capacity problem, in: G. Talenti (Ed.), Geometry of Solutions to Partial Differential Equations,

Academic, London, 1989.
[18] J. Prajapat, Serrin’s result for domains with a corner or cusp, Duke Math. J. 91 (1998) 29–31.
[19] W. Reichel, Radial symmetry for elliptic boundary value problems on exterior domains, Arch. Rat. Mech. Anal. 137 (1997) 381–394.
[20] J. Serrin, A symmetry problem in potential theory, Arch. Rat. Mech. Anal. 43 (1971) 304–318.



564 B. Canuto / Ann. I. H. Poincaré – AN 28 (2011) 551–564
[21] B. Sirakov, Symmetry for exterior elliptic problems and two conjectures in potential theory, Ann. Inst. H. Poincaré, Anal. Non Linéaire 18
(2001) 135–156.

[22] A.L. Vogel, Symmetry and regularity for general regions having solutions to certain overdetermined boundary value problems, Atti Sem.
Mat. Fis. Univ. Modena 40 (1992) 443–484.

[23] H. Weinberger, Remark on the preceding paper by Serrin, Arch. Rat. Mech. Anal. 43 (1971) 319–320.


	A local symmetry result for linear elliptic problems  with solutions changing sign
	Introduction
	Preliminaries and notations
	The ﬁrst-order expansion of the operator Φ
	Proof of Theorem 1.1
	Concluding remark
	References


