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Abstract

We establish the uniqueness of the higher radial bound state solutions of

�u + f (u) = 0, x ∈ R
n. (P )

We assume that the nonlinearity f ∈ C(−∞,∞) is an odd function satisfying some convexity and growth conditions, and has one
zero at b > 0, is nonpositive and not-identically 0 in (0, b), positive in [b,∞), and is differentiable in (0,∞).
© 2011

1. Introduction and main results

In this paper we establish the uniqueness of higher bound state solutions to

�u + f (u) = 0, x ∈ R
n, (P )

in the radial situation. That is, we give conditions on f under which

u′′(r) + n − 1

r
u′(r) + f (u) = 0, r > 0, n � 2,

u′(0) = 0, lim
r→∞u(r) = 0, (1)

has at most two solutions, one with u(0) > 0 and one with u(0) < 0, having a certain number of zeros.
Any nonconstant solution to (1) is called a bound state solution. Bound state solutions such that u(r) > 0 for all

r > 0, are referred to as a first bound state solution, or a ground state solution. The uniqueness of the first bound state
solution of (1) or for the quasilinear situation involving the m-Laplacian operator ∇ · (|∇u|m−2∇u), m > 1, has been
exhaustively studied during the last thirty years, see for example the works [2–7,10,11,13–15,17–20].
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We will assume that the function f : R → R is continuous, and that f satisfies (f1)–(f2), where:

(f1) f is odd, f (0) = 0, and there exist β > b > 0 such that f (s) > 0 for s > b, f (s) � 0, f (s) �≡ 0 for s ∈ [0, b],1
F(β) = 0, and lims→∞ F(s) = ∞, where F(s) := ∫ s

0 f (t) dt .
(f2) f is continuous in [0,∞), continuously differentiable in (0,∞) and f ′ ∈ L1(0,1).

Our first result deals with the uniqueness of the k-th bound state in space dimension 2 � n � 4:

Theorem 1.1. Let 2 � n � 4, k ∈ N, and assume that f satisfies (f1)–(f2). If in addition f satisfies

(f∗) (F
f

)′(s) � n−2
2 for all s > β ,

then problem (1) has at most one solution satisfying u(0) > 0 which has exactly k sign changes in (0,∞). Moreover,
if there exists a solution with k > 1 sign changes, then there exists exactly one solution with j sign changes for
j = 1, . . . , k − 1 such that u(0) > 0.

Our second result is a strong improvement of the one in [8], where we established uniqueness of the second bound
state solution in the superlinear case. The uniqueness of the first bound state solution under more general assumptions
than those of Theorem 1.2 below is already known, see [10,20].

Theorem 1.2. Assume that f satisfies (f1)–(f2). If f satisfies

(f3) f (s) � f ′(s)(s − β), for all s � β , and
(f4) (F

f
)′(s) � n−2

2n
for all s > β ,

then problem (1) has at most one solution satisfying u(0) > 0 which has exactly one sign change in (0,∞). The same
conclusion holds if instead of (f3)–(f4), f satisfies

(f5)
sf ′(s)
f (s)

decreases for all s � β , and

(f6)
βf ′(β)
f (β)

� n
n−2 , when n > 2.

As will be seen in Section 4.2, the following result is an immediate consequence of Theorem 1.2:

Corollary 1.1. If f satisfies (f1)–(f2) and f ′ decreases in (β,∞), then problem (1) has at most one solution satisfying
u(0) > 0 which has exactly one sign change in (0,∞).

To the best of our knowledge, there is only one work (besides [8]) concerning the uniqueness of higher bound
states: Troy, see [21, Theorems 1.1, Theorem 1.3] studied the existence and uniqueness of the solution to (1) having
exactly one sign change in dimension n = 3 for

f (s) =
⎧⎨
⎩

s + 1, s � −1/2,

−s, s ∈ (−1/2,1/2),

s − 1, s � 1/2.

Note that in this case b = 1, β = 1 + √
2/2, and for s > β ,(

F

f

)′
(s) = 1

2
+ 1

4(s − 1)2
� 1

2
= n − 2

2

∣∣∣∣
n=3

for all s � β.

1 The oddness of f is not essential, this assumption can be relaxed to a sign condition: f (0) = 0, and there exist b+ > 0 > b− such that f (u) > 0
for u > b+ , f (u) < 0 for u < b− , and f (u) � 0, f (u) �≡ 0, for u ∈ (0, b+) and f (u) � 0, f (u) �≡ 0, for u ∈ (b−,0).
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Hence, according to our Theorem 1.1, in this case problem (1) has at most one solution with exactly k zeros in (0,∞)

for any k ∈ N. Other typical example of a function f satisfying the assumptions of Theorem 1.1 is

f (s) = sp − sq, p > q > 0,

with no other restriction if n = 2, and with p2 + q2 � 1 when n = 3. We note also that this function satisfies (f5)

for any p > q > 0, and satisfies (f6) if p + q � 2/(n − 2) (which reads p + q � 2 when n = 3). Hence from Theo-
rem 1.2 we obtain that problem (1) has at most one solution with exactly one sign change in (0,∞) when p + q � 2/

(n − 2).
The existence problem has been treated by several authors. We can mention the work of Berestycki and Lions [1],

where the existence of infinitely many radially symmetric solutions of our problem when f is an odd function is
established by using variational methods, and the work of Jones and Küpper [12] where the authors use a dynamical
systems approach and the Conley index. Also, we mention the work of McLeod, Troy and Weissler in [16], where
they established the existence of solutions with a prescribed number of zeros when f : R → R is locally Lipschitz
continuous and satisfies appropriate sign conditions and is of subcritical growth:

f (u) = C|u|p−1u + g(u), u > 0, 1 < p <
n + 2

n − 2
,

where C is a positive constant, and g(u) = o
(
up

)
as u → ∞, (2)

i.e., it is superlinear and subcritical. We will treat the existence problem in a forthcoming paper, where we will prove
existence of solutions having any prescribed number of sign changes under a more general asymptotic assumption
than the one contained in (2) and also for the sublinear case.

Finally we describe our approach. In order to prove our results we will study the behavior of the solutions to the
initial value problem

u′′(r) + n − 1

r
u′(r) + f (u) = 0, r > 0, n � 2,

u(0) = α, u′(0) = 0 (3)

for α ∈ (0,∞). As usual, we will denote by u(r,α) a C2 solution of (3).
Our theorems will follow after a series of comparison results between solutions to (3) with initial value in some

small neighborhood of α∗, where u(·, α∗) is a k-th bound state, that is, u(·, α∗) is a solution to (3) which has exactly
k − 1 sign changes in (0,∞) and limr→∞ u(r,α∗) = 0. The crucial property used to prove our uniqueness results is
the following:

Key Property. There exists a left neighborhood of α∗ such that for any α in this neighborhood, the solution u(·, α)

has exactly k − 1 simple zeros in (0,∞), and there exists a right neighborhood of α∗ such that for any α in this set,
the solution u(·, α) has exactly k simple zeros in (0,∞) (see Fig. 1).

In Section 3 we follow the ideas of Coffman, see [3], and use the function ϕ(r,α) = ∂
∂α

u(r,α) to study the behavior
of the solutions between two consecutive extremal points.

In Section 4.1 we prove that under the assumptions of Theorem 1.1, the Key Property holds for any k ∈ N. The main
tool we use is the functional

Q(s,α) = −4
F

f
(s)

r(s,α)

r ′(s, α)
− r2(s, α)

(r ′(s, α))2
− 2r2(s, α)F (s) + H(s), s �= b,

where H(s) is chosen appropriately so that

Q′(s, α) = ∂Q

∂s
(s,α) =

(
2(n − 2) − 4

(
F

f

)′
(s)

)
r(s,α)

r ′(s, α)
,

and the functional W defined by

W(s,α) = r(s,α)

√(
u′(r(s,α),α

))2 + 2F(s),

introduced in [10]. Here r(s,α) denotes the inverse of u between two consecutive extremal points.
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Fig. 1. Illustration of the Key Property for k = 2.

Section 4.2 is devoted to the proof of Theorem 1.2. We do so by considering the celebrated functional introduced
first by Erbe and Tang in [9]:

P(s,α) = −2n
F

f
(s)

rn−1(s, α)

r ′(s, α)
− rn(s,α)

(r ′(s, α))2
− 2rn(s,α)F (s), s �= b

(also used by [19,20] to establish uniqueness of the first bound state) and the functional W̃ (used also in [18]) defined
by

W̃ (s,α) = rn−1(s, α)

√(
u′(r(s,α),α

))2 + 2F(s),

where r(s,α) denotes the inverse of u before the first minimum point. Under the assumptions of Theorem 1.2 we can
prove the Key Property only for k = 2. (For k = 1 it is proved in [6] for the superlinear case.)

2. Preliminaries

The aim of this section is to establish several properties of the solutions to the initial value problem (3). Clearly,
this solution is unique at least until it reaches a double zero.

Proposition 2.1. Let f satisfy (f1)–(f2) and let u(·, α) be a solution of (3) which is defined in (0,∞). Then:

(i) There exists C(α) > 0 such that |u(r,α)| � C(α) for all r > 0.
(ii) If u(·, α) is monotone in some interval (r0,∞), then

lim
r→∞

∣∣u(r,α)
∣∣ = � where � is either b or 0, and lim

r→∞u′(r, α) = 0.

Proof. Let u(r,α) be any solution of (3) which is defined and of class C2(0,∞) and set

I (r,α) = (
u′(r, α)

)2 + 2F
(
u(r,α)

)
. (4)

A simple calculation yields

I ′(r, α) = −2(n − 1) (
u′(r, α)

)2
, (5)
r
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and therefore, as n � 2, we have that I is decreasing in r . Moreover, since F(s) is bounded below by F(b), we have
that

F(α) � F
(
u(r,α)

)
� F(b)

and thus (i) follows from the assumption that F(s) → ∞ as |s| → ∞.
Assume next that u is monotone in (r0,∞) for some r0 > 0. Then limr→∞ u(r,α) = L and from (i) L is finite. As

I decreases and F(u(r,α)) → F(L), we have that limr→∞ u′(r, α) = 0. Moreover, from the equation and applying
L’Hôpital’s rule twice, we conclude that

0 = lim
r→∞

u(r,α) − L

r2
= lim

r→∞
u′(r, α)

2r
= lim

r→∞
rn−1u′(r, α)

2rn
= lim

r→∞
−rn−1f (u)

2nrn−1
= −f (L)

2n
.

Hence L = 0,±b and (ii) follows. �
It can be seen that for α ∈ (b,∞), one has u(r,α) > 0 and u′(r, α) < 0 for r small enough, and thus we can define

the extended real number

Z1(α) := sup
{
r > 0

∣∣ u(s,α) > 0 and u′(s, α) < 0 for all s ∈ (0, r)
}
.

Following [17,18] we set

N1 = {
α > b: u

(
Z1(α),α

) = 0 and u′(Z1(α),α
)
< 0

}
,

G1 = {
α > b: u

(
Z1(α),α

) = 0 and u′(Z1(α),α
) = 0

}
,

P1 = {
α > b: u

(
Z1(α),α

)
> 0

}
.

If our problems have a solution, then N1 �= ∅. Let

F̃2 = {
α ∈ N1: u′(r, α) < 0 for all r > Z1(α)

}
.

For α /∈ F̃2 we define

T1(α) := inf
{
r > Z1(α): u′(r, α) = 0

}
,

and if α ∈ F̃2, we set T1(α) = ∞. Also, for α ∈ N1 \ F̃2 we can define the extended real number

Z2(α) := sup
{
r > T1(α)

∣∣ u(s,α) < 0 and u′(s, α) > 0 for all s ∈ (
T1(α), r

)}
.

Let now

F2 = {
α ∈ N1 \ F̃2: u

(
Z2(α),α

)
< 0

}
,

N2 = {
α ∈ N1 \ F̃2: u

(
Z2(α),α

) = 0 and u′(Z2(α),α
)
> 0

}
,

G2 = {
α ∈ N1 \ F̃2: u

(
Z2(α),α

) = 0 and u′(Z2(α),α
) = 0

}
,

P2 = F̃2 ∪ F2.

For k � 3, and if Nk−1 �= ∅, we set

F̃k = {
α ∈ Nk−1: (−1)ku′(r, α) < 0 for all r > Zk−1(α)

}
.

For α ∈ Nk−1 \ F̃k , we set

Tk−1(α) := inf
{
r > Zk−1(α): u′(r, α) = 0

}
,

and if α ∈ F̃k , we set Tk−1(α) = ∞. Next, for α ∈ Nk−1 \ F̃k , we define the extended real number

Zk(α) := sup
{
r > Tk−1(α)

∣∣ (−1)ku(s,α) < 0 and (−1)ku′(s, α) > 0 for all s ∈ (
Tk−1(α), r

)}
.

Finally we set
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Fk = {
α ∈ Nk−1 \ F̃k: (−1)ku

(
Zk(α),α

)
< 0

}
,

Nk = {
α ∈ Nk−1 \ F̃k: u

(
Zk(α),α

) = 0 and (−1)ku′(Zk(α),α
)
> 0

}
,

Gk = {
α ∈ Nk−1 \ F̃k: u

(
Zk(α),α

) = 0 and u′(Zk(α),α
) = 0

}
,

Pk = F̃k ∪ Fk.

Concerning the sets Nk and Pk we have:

Proposition 2.2. The sets Nk and Pk are open.

Proof. The proof that Nk is open is by continuity and follows as in [6] with obvious modifications, so we omit it.
The proof that Pk is open is based in the fact that the functional I defined in (4) is decreasing in r , and α ∈ Pk if

and only if α ∈ Nk−1 and I (r1, α) < 0 for some r1 ∈ (0,Zk(α)).
Let α ∈ Pk and assume first that Zk(α) = ∞. From Proposition 2.1, limr→∞ u(r,α) = ±b, implying that

lim
r→∞ I (r,α) = 2F(±b) < 0.

Assume next Zk(α) < ∞ and hence α ∈ Fk . Then Zk(α) is either a maximum point for u with u(Zk(α),α) < 0,
or a minimum point of u with u(Zk(α),α) > 0 implying that either

0 � −u′′(Zk(α),α
) = f

(
u
(
Zk(α),α

))
and hence −b < u(Zk(α),α) < 0, or

0 � −u′′(Zk(α),α
) = f

(
u
(
Zk(α),α

))
and thus 0 < u(Zk(α),α) < b (u(Zk(α),α) �= ±b from the uniqueness of the solutions and since u(0, α) = α). There-
fore

I
(
Zk(α),α

) = 2F
(
u
(
Zk(α),α

))
< 0.

Conversely, if α /∈ Pk and α ∈ Nk−1, then α ∈ Gk ∪ Nk , and thus the claim follows from the fact that I (r,α) �
I (Zk(α),α) � 0 for all r ∈ (0,Zk(α)). Hence the openness of Pk follows from the continuous dependence of solutions
to (3) in the initial value α and from the openness of Nk−1. �

Finally in this section we establish the existence of a neighborhood of α∗ ∈ Gk so that solutions with initial value
in this interval cannot be decreasing for all r > 0.

Proposition 2.3. Let α∗ ∈ Gk , k � 2. Then there exists δ0 > 0 such that (α∗ − δ0, α
∗ + δ0) ⊆ Nk−1 \ F̃k .

Proof. Since α∗ ∈ Gk, there exists τ > Tk−1(α
∗) such that (−1)ku′(τ,α∗) > 0. By continuity, there exists δ0 > 0 such

that

(−1)ku′(τ,α) > 0 for all α ∈ (
α∗ − δ0, α

∗ + δ0
)
,

implying that

Tk−1(α) < τ for all α ∈ (
α∗ − δ0, α

∗ + δ0
)
,

and thus(
α∗ − δ0, α

∗ + δ0
) ⊂ Nk−1 \ F̃k. �

Lemma 2.1. Assume that f satisfies (f1)–(f2) and let k ∈ N. If α∗ ∈ Gk and there exists η1 > 0 such that(
α∗, α∗ + η1

) ⊂ Nk, (6)

then there exists η2 > 0 such that (α∗, α∗ + η2) ⊂ Pk+1.
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Proof. Let α ∈ (α∗, α∗ + η1) so that Tk(αi) is defined. If Tk(α) = ∞, then α ∈ Pk+1 and we are done, so we may
assume that Tk(α) < ∞. Without loss of generality we may assume that u(·, α∗) is decreasing in (Tk−1(α

∗),Zk(α
∗))

so that Tk(α) is a minimum point for u(·, α) and therefore u(Tk(α),α) < 0 and

0 > −u′′(Tk(α),α
) = f

(
u
(
Tk(α),α

))
,

implying that u(Tk(α),α) < −b. Let us denote by r(·, α) the inverse of u(·, α) in (Tk−1(α), Tk(α)).
Let now ε > 0. Since

lim
r→Zk(α

∗)
I
(
r,α∗) = 0,

there exists r∗ > 0 such that

I
(
r∗, α∗) < ε, u

(
r∗, α∗) > 0,

and therefore by continuity, there exists η′
1 ∈ (0, η1) such that for all α ∈ (α∗, α∗ + η′

1), Zk(α) > r∗ (u(r∗, α) > 0)
and

I
(
r∗, α

)
< 2ε.

Since I is decreasing in r , we have that

I (r,α) < 2ε for all r � r∗ and all α ∈ (
α∗, α∗ + η′

1

)
,

hence

∣∣u′(r, α)
∣∣ �

√
2
∣∣F(b)

∣∣ + 2ε for all r � r∗,

and thus, from the mean value theorem we obtain that

r(−b,α) − r

(
−b

2
, α

)
� b

2K

for some positive constant K . Let now

E(r,α) = r2(n−1)I (r, α).

Then

E′(r, α) = 4(n − 1)r2n−3F
(
u(r,α)

)
,

implying that

E
(
r,α∗) ↓ L � 0

as r → Zk(α
∗) and thus we may assume that

E
(
Zk(α),α

)
� L + ε for i large enough.

Integrating E′ over (Zk(α), r(−b,α)), we find that

E
(
r(−b,α),α

) − E
(
Zk(α),α

) = −4(n − 1)

r(−b,α)∫
Zk(α)

t2n−3
∣∣F (

u(t, α)
)∣∣dt

and thus
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E
(
r(−b,α),α

)
� L + ε − 4(n − 1)

(
Zk(α)

)2n−3
r(−b,α)∫
Zk(α)

∣∣F (
u(t, α)

)∣∣dt

� L + ε − 4(n − 1)
(
Zk(α)

)2n−3
r(−b,α)∫

r(− b
2 ,α)

∣∣F (
u(t, α)

)∣∣dt

� L + ε − 4(n − 1)
(
Zk(α)

)2n−3
(

r

(
−b

2
, α

)
− r(−b,α)

)∣∣F(b)
∣∣

� L + ε − 2(n − 1)
(
Zk(α)

)2n−3 b

K

∣∣F(b)
∣∣.

If Zk(α
∗) = ∞, by taking η2 ∈ (0, η′

1) small enough, we conclude that E(r(−b,α),α) < 0 and thus α ∈ Pk+1 for all
α ∈ (α∗, α∗ + η2). If Zk(α

∗) < ∞, the same conclusion follows by observing that in this case L = 0 and Zk(α) is
bounded below by r̄/2, where r̄ the first value of r > 0 where u(·, α∗) takes the value β . �
3. Behavior of the function ϕ(r,α) = ∂

∂α u(r,α)

We will study the behavior of the solutions to the initial value problem (3). To this end, α∗ ∈ Gk is fixed and
α ∈ (α∗ − δ0, α

∗ + δ0), where δ0 > 0 is given in Proposition 2.3.
Under assumptions (f1)–(f2), the functions u(r,α) and u′(r, α) = ∂u

∂r
(r, α) are of class C1 in (0,∞)× (b,∞). We

set

ϕ(r,α) = ∂u

∂α
(r,α).

Then, for any r > 0 such that u(r) �= 0, ϕ satisfies the linear differential equation

ϕ′′(r, α) + n − 1

r
ϕ′(r, α) + f ′(u(r,α)

)
ϕ(r,α) = 0, n � 2,

ϕ(0, α) = 1, ϕ′(0, α) = 0, (7)

where ′ = ∂
∂r

.
Set

u(r) = u(r,α), ϕ(r) = ϕ(r,α).

Proposition 3.1. Let f satisfy (f1)–(f2). Then (i) between two consecutive zeros r1 < r2 of u′ there is at least one
zero r∗ ∈ (r1, r2) of ϕ. (ii) Furthermore, if α ∈ Gk , then ϕ has at least one zero in (Tk−1(α),Zk(α)).

Proof. Let r1 < r2 be two consecutive finite zeros of u′ (hence u has at most one zero in (r1, r2)) and assume by
contradiction that ϕ(r) does not change sign in (r1, r2). Since u ∈ C2(0,∞) and ϕ ∈ C1(0,∞), by differentiating the
equation in (1) we obtain that v = u′ and ϕ satisfy

v′′ + n − 1

r
v′ +

(
f ′(u) − n − 1

r2

)
v = 0, (8)

and

ϕ′′ + n − 1

r
ϕ′ + f ′(u)ϕ = 0, (9)

for all r such that u(r) �= 0. Hence multiplying (8) by rn−1ϕ and (9) by rn−1v and subtracting, we obtain(
rn−1(v′ϕ − vϕ′))′ = (n − 1)rn−3vϕ. (10)

Assume first that v,ϕ > 0 in (r1, r2). Integrating (10) over (r1, r2) we find that
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rn−1
2 v′(r2)ϕ(r2) > rn−1

1 v′(r1)ϕ(r1),

a contradiction with the fact that from our choice of the sign for v, it must be that v′(r2) < 0 and v′(r1) > 0. (If
u(r̄) = 0 for some r̄ ∈ (r1, r2), we integrate (10) over (r1, r̄ − ε) and over (r̄ + ε, r2), use the continuity of v, v′, ϕ

and ϕ′, and then let ε → 0 to obtain a contradiction.) Hence ϕ must have a first zero in (r1, r2). If either v or ϕ are
negative in (r1, r2) the proof follows with obvious modifications.

Let now α ∈ Gk . If Zk(α) < ∞, the claim follows from (i). If Zk(α) = ∞, assume by contradiction that ϕ does
not change sign in (Tk−1(α),∞). We may assume without loss of generality that u′(r) > 0 and ϕ(r) > 0 for all
r ∈ (Tk−1(α),∞). From u′(r) > 0 for all r ∈ (Tk−1(α),∞), and u(r) → 0 as r → ∞, we find that there exists
r0 > Tk−1(α) such that −b < u(r) < 0 for all r ∈ (r0,∞) implying(

rn−1u′)′ = −rn−1f (u) � 0.

Thus rn−1u′ decreases in (r0,∞) implying that

lim
r→∞ rn−1u′(r) = L ∈ [0,∞). (11)

From the equation we find that

u′′(r) = −n − 1

r
u′(r) − f

(
u(r)

)
< 0 for all r ∈ (r0,∞),

and thus v′ = u′′ < 0 for all r ∈ (r0,∞). On the other hand, integrating (10) over (Tk−1(α), r), for r ∈ (r0,∞), we
find that

rn−1(v′ϕ − vϕ′)(r) = (
Tk−1(α)

)n−1
v′(Tk−1(α)

)
ϕ
(
Tk−1(α)

) + (n − 1)

r∫
Tk−1(α)

tn−3v(t)ϕ(t) dt

� (n − 1)

r0∫
Tk−1(α)

tn−3v(t)ϕ(t) dt = c0 > 0

for some positive constant c0. Hence,

0 > rn−1v′(r)ϕ(r) > rn−1v(r)ϕ′(r) + c0,

which from (11) implies that ϕ′(r) � −c0/(r
n−1v(r)) � −c for some positive constant c and therefore

ϕ(r) � ϕ(r0) − c(r − r0) → −∞ as r → ∞,

a contradiction. �
In what follows, r(s,α) denotes the inverse of u(r,α) in the interval [0, T1(α)]. We have

Proposition 3.2. If f satisfies (f1)–(f3), then ϕ is strictly positive in (0, r(b,α)), where r(s,α) denotes the inverse
of u(r,α) in the interval [0, T1(α)].

Proof. Multiplying the equation in (7) by rn−1(u − β) and integrating by parts over (0, r), r � r(β,α), we have that

rn−1ϕ′(r)(u − β) −
r∫

0

rn−1u′(r)ϕ′(r) dr +
r∫

0

f ′(u(r)
)
ϕ(r)

(
u(r) − β

)
rn−1 dr = 0,

and a second integration by parts yields

r∫ (
f ′(u(t)

)(
u(t) − β

) − f
(
u(t)

))
ϕ(t)tn−1 dt = rn−1(u′(r)ϕ(r) − ϕ′(r)

(
u(r) − β

))
. (12)
0
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Using now that from (f3), f ′(u(r))(u(r) − β) − f (u(r)) � 0 for r ∈ (0, r(β,α)), we have that if ϕ(r) = 0 for the
first time at some r ∈ (0, r(β,α)), then −ϕ′(r)(u(r) − β) � 0, which is a contradiction since ϕ′(r) < 0 at such point.
Therefore ϕ(r) > 0 in [0, r(β,α)).

Let now f̃ be continuous in [0,∞), continuously differentiable in (0,∞) with f̃ ′ ∈ L1(0,1), satisfying (f1) with
b̃ = b, f̃ = f in (b,∞), and b < β̃ < β . Let us denote by ũ(·, α) the solution of the initial value problem (3) with f

replaced by f̃ . By the previous argument, ϕ̃(r) > 0 in [0, r(β̃, α)). Since ũ(·, α) = u(·, α) as long as they are greater
than b, and b < β̃ < β , we obtain that r(β̃, α) > r(β,α) and thus ϕ(r,α) = ϕ̃(r, α) > 0 in [0, r(β̃, α)). Since β̃ is any
number in (b,β), the result follows. �

Our next result is an improvement of [8, Lemma 3.1], where we proved it under an additional superlinear growth
assumption on f .

Proposition 3.3. Let f satisfy (f1)–(f2) and (f5)–(f6). If the first zero z > 0 of ϕ occurs in (0, r(β,α)], then ϕ(r) < 0
for r ∈ (z, r(b,α)) and ϕ′(r(b,α)) � 0.

Proof. The proof follows step by step the ideas in [8]. Let the first zero z > 0 of ϕ occur in (0, r(β,α)], set Uz := u(z)

and assume Uz � β . We will show that

Uzf
′(Uz)

f (Uz)
> 1.

If not, then by (f5) we have that

(s − Uz)f
′(s)

f (s)
<

sf ′(s)
f (s)

� 1 for all s � Uz,

and we can argue as in the proof of Proposition 3.2 (with β replaced by Uz) to obtain the contradiction

z∫
0

(
f ′(u(t)

)(
u(t) − Uz

) − f
(
u(t)

))
ϕ(t)tn−1 dt = zn−1(u′(z)ϕ(z) − ϕ′(z)

(
u(z) − Uz

)) = 0.

We conclude that there exists c > 0 such that

Uzf
′(Uz)

f (Uz)
= 1 + 2

c
.

Moreover, from (f5)–(f6), it must be that c � n − 2. Then, since by (f5), the function

r → c
u(r)f ′(u(r))

f (u(r))
− c − 2

is increasing in (0, r(b,α)), we have that

φ(r) := f
(
u(r)

)(
c
u(r)f ′(u(r))

f (u(r))
− c − 2

)
is nonpositive in (0, z) and nonnegative in (z, r(b,α)).

Let us set v(r) = ru′(r) + cu(r). Then v satisfies

v′′ + n − 1

r
v′ + f ′(u(r)

)
v = φ(r),

and, as long as ϕ(r) does not change sign in (z, r), with r ∈ (z, r(b,α)), we have

0 �
r∫

0

tn−1ϕ(t)φ(t) dt =
r∫

0

tn−1(ϕ�v − v�ϕ)dt

= rn−1(ϕ(r)v′(r) − ϕ′(r)v(r)
)
, (13)
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and therefore

ϕ(r)v′(r) − ϕ′(r)v(r) � 0, (14)

implying in particular that v(z) � 0. On the other hand, using that c � n − 2 we have that

v′(r) = ru′′(r) + (c + 1)u′(r) � ru′′(r) + (n − 1)u′(r) = −rf
(
u(r)

)
< 0

for all r ∈ (0, r(b,α)). Now we can prove that z is the only zero of ϕ in (0, r(b,α)). Indeed, if ϕ has a second zero
at z1 ∈ r(b,α), then from (14), it must be that v(z1) � 0, contradicting v′(r) < 0 in (0, r(b,α)). Hence ϕ has exactly
one zero in (0, r(b,α)].

Finally, evaluating (14) at r = r(b,α), we find that

ϕ
(
r(b,α)

)
v′(r(b,α)

) − ϕ′(r(b,α)
)
v
(
r(b,α)

)
� 0,

implying ϕ′(r(b,α)) � 0. �
4. Uniqueness of bound states

Assume that α∗ ∈ Gk . The following result deals with the existence of a neighborhood V of α∗ such that any
solution to (3) with α ∈ V has its minimum values satisfying U < −β and its maximum values satisfying U > β.

We observe that u(·, α) is invertible in each interval (Ti−1(α), Ti(α)), T0(α) = 0, i = 1,2, . . . , k−1, and we denote
by r(·, α) its inverse at the intervals where u decreases and by r̄(·, α) its inverse at intervals where u increases.

Lemma 4.1. Let f satisfy (f1)–(f2), and let α∗ ∈ Gk . Then, there exist a > 0 and δ1 > 0, such that for any α ∈
(α∗ − δ1, α

∗ + δ1), u(·, α) has exactly k extremal points in [0, Tk−1(α
∗) + a]. The extremal values E of u(·, α) satisfy

E < −β if E is a minimum value, while E > β if E is a maximum value. Moreover, if α1 < α2 are two values in
(α∗ − δ1, α

∗ + δ1), then

(i) the corresponding solutions u1 and u2 intersect between any two of their consecutive extremal points, and
(ii) there exists an intersection point in (Tk−1(α

∗),Zk(α
∗)).

Proof. Let δ0 be given as in Proposition 2.3. The assumption α∗ ∈ Gk implies that the functional defined in (4) satisfies

I
(
Zk

(
α∗), α∗) = 0,

and thus I (r,α∗) > 0 for all r ∈ (0,Zk(α
∗)). In particular, for any i = 1,2, . . . , k − 1, we have

2F
(
u
(
Ti

(
α∗), α∗)) = I

(
Ti

(
α∗), α∗) > 0,

implying that |u(Ti(α
∗), α∗)| > β . Hence, from the continuity of u and Ti(α) for α ∈ (α∗ − δ0, α

∗ + δ0), we conclude
that there exists δ̄1 < δ0 such that the first assertion of the lemma holds.

From Proposition 3.1, for each i = 1,2, . . . , k − 1, there exists r∗ ∈ (Ti−1(α
∗), Ti(α

∗)) such that ϕ(r∗, α∗) = 0.
Hence without loss of generality we may assume that there exist r− < r∗ < r+ such that ϕ(r+, α∗) < 0 < ϕ(r−, α∗).
By continuity, there exists δ1 ∈ (0, δ̄1) such that ϕ(r−, α) > 0 and ϕ(r+, α) < 0 for all α ∈ (α∗ − δ1, α

∗ + δ1). Since

u(r,α2) − u(r,α1) =
α2∫

α1

ϕ(r,α)dα,

which is positive at r = r− and negative at r = r+, and thus (i) is proved. (ii) follows in the same way. �
4.1. Proof of Theorem 1.1

In order to prove Theorem 1.1, we need to establish several properties of the solutions to (3) in the neighborhood
of a bound state solution. We recall that in Theorem 1.1, 2 � n � 4.
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Let m < M be such that r(s,α), the inverse of u(r,α), is defined and decreasing in [m,M]. For s ∈ [m,M] we set

Q(s,α) = −4
F

f
(s)

r(s,α)

r ′(s, α)
− r2(s, α)

(r ′(s, α))2
− 2r2(s, α)F (s) + H(s),

where r ′(s, α) = d
ds

r(s, α) and

H ′(s) = −4(n − 2)
F

f
(s).

Then,

Q′(s, α) = ∂Q

∂s
(s,α) =

(
2(n − 2) − 4

(
F

f

)′
(s)

)
r(s,α)

r ′(s, α)
. (15)

Similarly, for m < M such that r̄(s, α) the inverse of u(r,α), is defined and increasing in [m,M], we define

Q̄(s,α) = −4
F

f
(s)

r̄(s, α)

r̄ ′(s, α)
− r̄2(s, α)

(r̄ ′(s, α))2
− 2r̄2(s, α)F (s) + H̄ (s),

r̄ ′(s, α) = d
ds

r̄(s, α) and

H̄ ′(s) = −4(n − 2)
F

f
(s).

Note that if (f∗) holds, then Q′(s, α) � 0 for all s ∈ [m,M] and Q̄′(s, α) � 0 for all s ∈ [m,M].
Let now a and δ1 be as in Lemma 4.1, let α1, α2 ∈ (α∗ − δ,α∗ + δ), with α1 < α2, and for j = 1,2 set

uj (r) = u(r,αj ), rj (s) = r(s,αj ), and Qj(s) = Q(s,αj ).

Let

M1, m1 be the i-th consecutive local maximum and minumum values of u1,

and

M2, m2 be the i-th consecutive local maximum and minumum values of u2

for r ∈ [0, Tk−1(α
∗) + a]. The behavior of the solutions for r > Tk−1(α

∗) will be studied separately. We have

Proposition 4.1. Assume that f satisfies (f1)–(f2) and (f∗), and let α∗ ∈ Gk . Then, there exists δ2,i ∈ (0, δ1), with δ1
as in Lemma 4.1, such that for any α1, α2 ∈ (α∗ − δ2,i , α

∗ + δ2,i ) with α1 < α2 we have that if

M1 < M2 and Q1(M1) > Q2(M2),

then

m1 > m2 and Q1(m1) > Q2(m2).

In order to prove this result we need a separation lemma, so for j = 1,2 we consider the functional Wj defined
below, introduced in [10]:

Wj(s) = rj (s)

√(
u′

j

(
rj (s)

))2 + 2F(s), s ∈ [mj ,Mj ].
The functional Wj is well defined in this interval, since (u′

j (r))
2 + 2F(uj (r)) > 0 for r ∈ [0, Tk−1(α

∗) + a].

Lemma 4.2. Assume that f satisfies (f1)–(f2), and let α∗ ∈ Gk . Let α1, α2 ∈ (α∗ − δ1, α
∗ + δ1) with α1 < α2 and δ1

as in Lemma 4.1. Assume that there exists U ∈ [−β,β] such that

r1(U) � r2(U) and W1(U) < W2(U). (16)

Then

r1(s) > r2(s), W1(s) < W2(s), for all s ∈ [−β,U ].
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Proof. Clearly, |r ′
1(U)| > |r ′

2(U)|, and thus r1 > r2 in some small left neighborhood of U. Hence, there exists c ∈
[−β,U) such that

W1 � W2, r1 > r2, and r ′
1 < r ′

2 in [c,U).

Next, we will show that W1 −W2 is increasing in [c,U). This will imply that the infimum of such c is −β , proving
the lemma.

From the definition of Wj(s) we have

∂Wj

∂s
(s) = −2F(s) + (n − 2)(u′

j (rj (s)))
2

|u′
j (rj (s))|

√
(u′

j (rj (s)))
2 + 2F(s)

.

As F(s) � 0 for s ∈ [−β,β], we have that the function

h(p) = −2F(s)

p
√

p2 + 2F(s)
+ (n − 2)p√

p2 + 2F(s)
, p > 0,

is decreasing, and thus, for s ∈ [c,U), and using that |u′
1(r1(s))| < |u′

2(r2(s))|, we obtain(
∂W1

∂s
− ∂W2

∂s

)
(s) = h

(∣∣u′
1

(
r1(s)

)∣∣) − h
(∣∣u′

2

(
r2(s)

)∣∣) > 0

as we claimed. �
Proof of Proposition 4.1. We will first show that r1(M1) < r2(M1). As Q2 is strictly increasing, M1 < M2, and
Q1(M1) > Q2(M2), it holds that Q1(M1) > Q2(M1).

Let M∗ denote the i-th maximum value of u(·, α∗). Since u′(r(M∗, α∗), α∗) = 0 and 4F
f

(M∗) > 0, by continuity
there exists δ2,i < δ1 such that for any α1, α2 ∈ (α∗ − δ2,i , α

∗ + δ2,i ), we have

4
F

f
(M1) > −r2(M1)u

′
2

(
r2(M1)

)
,

and hence

4
F

f
(M1)r2(M1)u

′
2

(
r2(M1)

) + (
r2(M1)

)2(
u′

2

(
r2(M1)

))2
< 0.

Therefore,

0 < (Q1 − Q2)(M1)

= 4
F

f
(M1)r2(M1)u

′
2

(
r2(M1)

) + (
r2(M1)

)2(
u′

2

(
r2(M1)

))2 + 2F(M1)
(
r2

2 − r2
1

)
(M1)

< 2F(M1)
(
r2

2 − r2
1

)
(M1),

implying

r1(M1) < r2(M1)

as claimed.
From Lemma 4.1 there exists a greatest intersection point UI of r1 and r2 in [max{m1,m2},M1].
Let us set

U = min{−β,UI }.
We will show that

(Q1 − Q2)(U) > 0, and
r1
′ (U) <

r2
′ (U). (17)
|r1| |r2|
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We distinguish the following cases according to the position of UI :

Case 1. UI ∈ [β,M1]. We will prove first that

r1

|r ′
1|

(s) <
r2

|r ′
2|

(s), for all s ∈ [UI ,M1].

Indeed, since u′
1(r1(M1)) = 0, we have that this inequality holds for s = M1. Assume now that there exists t ∈

(UI ,M1) such that

r1

|r ′
1|

(s) <
r2

|r ′
2|

(s), for all s ∈ (t,M1) and
r1

|r ′
1|

(t) = r2

|r ′
2|

(t).

As

d

ds

(
r1

|r ′
1|

− r2

|r ′
2|

)
(t) = f (t)

(
r2

∣∣r ′
2

∣∣ − r1
∣∣r ′

1

∣∣)(t) = f (t)
|r ′

1|
r1

(t)
(
r2

2 − r2
1

)
(t) > 0,

we obtain a contradiction.
Assume next that there exists t ∈ [β,UI ) such that

r1

|r ′
1|

(s) <
r2

|r ′
2|

(s), for all s ∈ (t,M1) and
r1

|r ′
1|

(t) = r2

|r ′
2|

(t).

Then, from (f∗),

(Q1 − Q2)
′(s) = 4

(
r1

|r ′
1|

(s) − r2

|r ′
2|

(s)

)((
F

f

)′
(s) − n − 2

2

)
< 0, s ∈ (t,M1)

implying that

0 > −2F(t)
(
r2

1 (t) − r2
2 (t)

) = (Q1 − Q2)(t) > (Q1 − Q2)(M1) > 0,

a contradiction. We conclude that

(Q1 − Q2)(β) > (Q1 − Q2)(M1) > 0

implying

r1

|r ′
1|

(β) <
r2

|r ′
2|

(β) and r1(β) � r2(β).

Thus (16) in Lemma 4.2 is satisfied with U = β , and we conclude that r1(−β) > r2(−β) and W1(−β) < W2(−β),
implying (17) at U = −β .

Case 2. UI ∈ [−β,β]. In this case W1(UI ) < W2(UI ) and r1(UI ) = r2(UI ), hence by Lemma 4.2, we conclude
W1(−β) < W2(−β) implying that (17) holds.

Case 3. UI ∈ [max{m1,m2},−β]. In this case it is straightforward to verify that

(Q1 − Q2)(UI ) > 0,

and hence in this case (17) also holds.
To end the proof, assume that there exists τ ∈ (max{m1,m2},U ] such that

r1

|r ′
1|

(s) <
r2

|r ′
2|

(s), for all s ∈ (τ,U ],

and
r1

|r ′
1|

(τ ) = r2

|r ′
2|

(τ ).

Then,
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(Q1 − Q2)
′(s) = 4

(
r1

|r ′
1|

(s) − r2

|r ′
2|

(s)

)((
F

f

)′
(s) − n − 2

2

)
< 0, s ∈ (τ,U ]

implying that

0 > −2F(τ)
(
r2

1 (τ ) − r2
2 (τ )

) = (Q1 − Q2)(τ ) > (Q1 − Q2)(U) > 0,

a contradiction, and thus

r1

|r ′
1|

(s) <
r2

|r ′
2|

(s), for all s ∈ [
max{m1,m2},U

)
.

Therefore,

max{m1,m2} = m1, (Q1 − Q2)
′(s) > 0, for all s ∈ [m1,U),

which yields Q1(m1) > Q2(m1). Since Q2 increases and m1 > m2, it follows that Q1(m1) > Q2(m2), ending the
proof of the proposition. �

Similarly we set

m̄1, M̄1 the i-th consecutive local minumum and maximum of u1,

and

m̄2, M̄2 the i-th consecutive local minumum and maximum of u2,

for r ∈ [0, Tk−1(α
∗) + a].

We have the following result.

Proposition 4.2. Assume that f satisfies (f1)–(f2) and (f∗), and let α∗ ∈ Gk . Then, there exists δ̄2,i ∈ (0, δ1), with δ1
as in Lemma 4.1, such that for any α1, α2 ∈ (α∗ − δ̄2,i , α

∗ + δ̄2,i ) with α1 < α2 we have that if

m̄1 > m̄2 and Q̄1(m̄1) > Q̄2(m̄2),

then

M̄1 < M̄2 and Q̄1(M̄1) > Q̄2(M̄2).

Proof. It follows from Proposition 4.1 considering v(r,αj ) = −u(r,αj ). �
Combining Propositions 4.1 and 4.2 we obtain the following result.

Proposition 4.3. Assume that f satisfies (f1)–(f2) and (f∗), and let α∗ ∈ Gk . Let δ = mini{δ2,i , δ̄2,i}, and let α1, α2 ∈
(α∗ − δ,α∗ + δ).

(i) If k is even, then the k-th extremal points Tk−1(αj ) are minima,

m1 > m2 and Q1(m1) > Q2(m2),

where mj = uj (Tk−1(αj )), j = 1,2.
(ii) If k is odd, then the k-th extremal points Tk−1(αj ) are maxima,

M1 < M2 and Q1(M1) > Q2(M2),

where Mj = ui(Tk−1(αj )), j = 1,2.
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Proof. As T0(αj ) = 0 is the first extremal point of uj , we have

u1
(
T0(α1)

) = α1 < α2 = u2
(
T0(α2)

)
.

Moreover, as αj > β , H is decreasing in [β,∞) and therefore

Q1(α1) = H(α1) > H(α2) = Q2(α2).

Hence, for the first extremal points, the assumption of Proposition 4.1 holds and thus,

u1
(
T1(α1)

)
> u2

(
T1(α2)

)
, and Q1

(
u1

(
T1(α1)

))
> Q2

(
u2

(
T1(α2)

))
.

Applying alternatively Proposition 4.2 and Proposition 4.1 we obtain the result. �
We proceed now to our final step. To this end, we may assume without loss of generality that k is odd, so that

Tk−1(αj ) is a maximum point, and we fix δ as given in Proposition 4.3.

Proposition 4.4. Assume that f satisfies (f1)–(f2) and (f∗), and let α∗ ∈ Gk . Let α1, α2 ∈ (α∗ − δ,α∗ + δ) with
α1 < α2.

If α1 ∈ Gk ∪ Nk , then α2 ∈ Nk ,

Zk(α1) > Zk(α2) and
∣∣u′

1

(
Zk(α1)

)∣∣ <
∣∣u′

2

(
Zk(α2)

)∣∣. (18)

If α2 ∈ Gk , then α1 ∈ Fk .

In order to prove this result we need the following separation lemma which can be found in [8, Lemma 4.4.1]. Its
proof is very similar to that of Lemma 4.2 and thus we omit it. For j = 1,2, let

Sj := inf
{
s ∈ (

uj

(
Zk(αj )

)
,Mj

)
:

∣∣u′
j

(
rj (s)

)∣∣2 + 2F(s) > 0
}
,

where Mj = uj (Tk−1(αj )). We note that Sj = 0 if and only if αj ∈ Gk ∪ Nk .

Lemma 4.3. Assume that f satisfies (f1)–(f2), and let α∗ ∈ Gk . Let α1, α2 ∈ (α∗ − δ,α∗ + δ) with α1 < α2. Assume
that there exists U ∈ [0, β] such that

r1(U) � r2(U) and W1(U) < W2(U). (19)

Then, S1 � S2 and

r1(s) > r2(s), W1(s) < W2(s), and
∣∣u′

1

(
r1(s)

)∣∣ <
∣∣u′

2

(
r2(s)

)∣∣, s ∈ [S1,U).

Proof of Proposition 4.4. Let rI denote the first intersection point of u1 and u2 in (Tk−1(α
∗),Zk(α

∗)) guaranteed
by Lemma 4.1(ii) and UI = uj (rI ). Arguing as in the proof of Proposition 4.1, Cases 1 and 2, this time with U =
min{β,UI }, we obtain that (19) holds. Hence, by Lemma 4.3, we have S1 � S2,

r1(s) > r2(s), W1(s) < W2(s), and
∣∣u′

1

(
r1(s)

)∣∣ <
∣∣u′

2

(
r2(s)

)∣∣ for all s ∈ [S1,U).

If α1 ∈ Gk ∪ Nk , then S1 = 0 implying S2 = 0 and α2 ∈ Gk ∪ Nk . As Zk(α1) = r1(0) > r2(0) = Zk(α2) and
|u′

1(Zk(α1))| < |u′
2(Zk(α2))| we conclude that α2 ∈ Nk .

If α2 ∈ Gk , then S2 = 0. As |u′
2(Zk(α2))| = 0, we conclude that S1 > 0 implying α1 ∈ Fk . �

Proof of Theorem 1.1. Suppose α∗ ∈ G1. We will prove that N1 = (α∗,∞) and G1 = {α∗}. Indeed, assume that
(β,α∗) ∩ N1 �= ∅ and let

γ = sup
{
α ∈ (

β,α∗) ∣∣ α ∈ N1
}
.

By Proposition 4.4, γ < α∗. By Proposition 2.2, γ /∈ N1 and γ /∈ P1. Also, γ /∈ G1 by Proposition 4.4. Hence, N1 ⊂
(α∗,∞). Consider the set{

α > α∗ ∣∣ (
α∗, α

) ⊂ N1
}
.
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From Proposition 4.4, this set in nonempty. Let γ̄ denote its supremum. If γ̄ < ∞, by Proposition 2.2, γ̄ /∈ N1 and
γ̄ /∈ P1. Since γ̄ /∈ G1 by Proposition 4.4, we have a contradiction and hence, γ̄ = ∞ and N1 = (α∗,∞). Since this
holds for any α∗ ∈ G1, we conclude G1 = {α∗}.

Let k > 1 and let α∗ ∈ Gk . We will prove that Gk = {α∗} and Nk = (α∗,∞).
First we note that α∗ ∈ Gk implies α∗ ∈ Ni for i = 1,2, . . . , k − 1. Set

α∗
1 = sup

{
α ∈ [

β,α∗] ∣∣ α ∈ P1
}
.

Since β ∈ P1, α∗
1 is well defined. Moreover, as P1 is open and α∗ ∈ N1, we have that β < α∗

1 < α∗. As P1 and N1 are
open, α∗

1 /∈ N1 ∪ P1. Hence, α∗
1 ∈ G1, and arguing as above, we can prove that

G1 = {
α∗

1

}
and N1 = (

α∗
1 ,∞)

. (20)

If k > 2, we set

α∗
2 = sup

{
α ∈ [

α∗
1 , α∗] ∣∣ α ∈ P2

}
.

From (20) we can use Lemma 2.1 to obtain that the set {α ∈ [α∗
1 , α∗] | α ∈ P2} �= ∅ and thus α∗

2 is well defined and
α∗

1 < α∗
2 . Since k > 2, α∗ ∈ N2 and as N2 is open, we also have α∗

2 < α∗. Using again that N2 and P2 are open we
obtain α∗

2 /∈ N2 ∪ P2. Hence, as α∗
2 ∈ N1, we have that α∗

2 ∈ G2. Now we can argue as above we to prove that

β < α∗
1 < α∗

2 < α∗, G2 = {
α∗

2

}
and N2 = (

α∗
2 ,∞)

. (21)

Repeating this process, for i < k, we can define

α∗
i = sup

{
α ∈ [

α∗
i−1, α

∗] ∣∣ α ∈ Pi

}
,

and we have

β < α∗
1 < α∗

2 < · · · < α∗
i < α∗, Gi = {

α∗
i

}
, Ni = (

α∗
i ,∞)

.

For i = k, we set α∗
i = α∗, and arguing as above we conclude

Gk = {
α∗

k

}
and Nk = (

α∗
k ,∞)

. (22)

Hence, there exists at most one solution of (1) with exactly k − 1 sign changes in (0,∞). �
4.2. Proof of Theorem 1.2

In what follows we use the ideas of Pucci, Serrin and Tang in [19,20]. For s ∈ (u1(T1(α1)),−β] we set

P(s,α) = −2n
F

f
(s)

rn−1(s, α)

r ′(s, α)
− rn(s,α)

(r ′(s, α))2
− 2rn(s,α)F (s).

Then,

P ′(s, α) = ∂P

∂s
(s,α) =

(
n − 2 − 2n

(
F

f

)′
(s)

)
rn−1(s, α)

r ′(s, α)
. (23)

By (f4) it holds that P ′(s, α) � 0 for all s ∈ (u1(T1(α1)),−β].
In this case we can prove the analogue of Proposition 4.1 but only for the first maximal and minimal points of u1

and u2. Let now α1, α2 ∈ (α∗ − δ,α∗ + δ), with α1 < α2, and set

P1(s) = P(s,α1), P2(s) = P(s,α2),

m1 = u1
(
T1(α1)

)
, m2 = u2

(
T1(α2)

)
.

We have

Proposition 4.5. Assume that f satisfies (f1)–(f4), or (f1)–(f2) and (f5)–(f6), and let α∗ ∈ Gk . Then there exists
δ2 ∈ (0, δ1), δ1 as in Lemma 4.1, such that for any α1, α2 ∈ (α∗ − δ2, α

∗ + δ2) with α1 < α2 it holds that

m1 > m2 and P1(m1) > P2(m2). (24)
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In order to prove this result we need the following variations of Lemma 4.2, so for j = 1,2 we consider the
functional W̃j defined below,

W̃j (s) = rn−1
j (s)

√(
u′

j

(
rj (s)

))2 + 2F(s), s ∈ [mj ,αj ].
From Lemma 4.1, the solutions u1 and u2 intersect at a first rI > 0. Set UI = u1(rI ) = u2(rI ).

Lemma 4.4. Let f satisfy (f1)–(f2). Let α1, α2 ∈ (α∗ − δ1, α
∗ + δ1) with α1 < α2 and δ1 as in Lemma 4.1. If

UI ∈ [−β,β] then

r1(s) > r2(s) and W̃1(s) < W̃2(s), for all s ∈ [−β,UI ).

Proof. Clearly, |r ′
1(UI )| > |r ′

2(UI )|, and thus r1 > r2 in some small left neighborhood of UI . Hence, there exists
c ∈ [−β,UI ) such that

W̃1 � W̃2, r1 > r2, and r ′
1 < r ′

2 in [c,UI ).

Next, we will show that W̃1 −W̃2 is increasing in [c,UI ). This will imply that the infimum of such c is −β , proving
the theorem.

From the definition of W̃ (s,α) we have

∂W̃

∂s
(s,α) = 2(n − 1)rn−2(s, α)F (s)

u′(r(s,α),α)
√

(u′(r(s,α),α))2 + 2F(s)
,

and thus, for s ∈ [c,UI ),

1

2(n − 1)

(
∂W̃1

∂s
(s) − ∂W̃2

∂s
(s)

)

= F(s)

(
rn−2

1 (s)

u′
1(r1(s))

√
(u′

1(r1(s))2 + 2F(s)

− rn−2
2 (s)

u′
2(r2(s))

√
(u′

2(r2(s)))2 + 2F(s)

)

� rn−2
2 (s)

∣∣F(s)
∣∣( 1

|u′
1(r1(s))|

√
(u′

1(r1(s))2 + 2F(s)

− 1

|u′
2(r2(s))|

√
(u′

2(r2(s)))2 + 2F(s)

)

� 0. �
For the case when f satisfies (f5)–(f6) we use [8, Proposition 4.1.2]. Even though in this proposition we assumed

f superlinear, this assumption is not used in the proof, so we state it here without proof.

Lemma 4.5. Let f satisfy (f1)–(f2) and (f5)–(f6). Then there exists δ2 ∈ (0, δ1] such that for all α1, α2 ∈
(α∗ − δ2, α

∗ + δ2) with α1 < α2 it holds that

r1(s) > r2(s) and W̃1(s) < W̃2(s), for all s ∈ [−β,UbI ),

where UbI = b if UI > β , and UbI = UI if UI � β .

Proof of Proposition 4.5. Let δ2 be as in Lemma 4.5. As in [9,20], we set

S12(s) = rn−1
1 r ′

2

rn−1
2 r ′

1

(s).

Then

S′
12(s) = S12(s)f (s)

((
r ′

2(s)
)2 − (

r ′
1(s)

)2)
. (25)
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Let

U = min{−β,UI }.
We will prove first that m1 > m2 and that for all s ∈ [m1,U) we have

S12(s) < 1,
∣∣r ′

1(s)
∣∣ >

∣∣r ′
2(s)

∣∣, r1(s) > r2(s). (26)

If UI > −β then U = −β . If f satisfies (f3), then from Proposition 3.2(i), UI � β and from Lemma 4.4, using
that F(−β) = 0, we have that S12(U) � 1 and r1(U) > r2(U). If f satisfies (f5)–(f6), we use Lemma 4.5 to obtain
the same conclusion. Thus, |r ′

1(U)| > |r ′
2(U)|. On the other hand, if U = UI , we also have that S12(U) < 1 and

|r ′
1(U)| > |r ′

2(U)|.
From (25) we have that S12(s) is increasing as long as |r ′

1(s)| > |r ′
2(s)|, for s < U. If (26) does not hold for all s ∈

(max{m1,m2},U), then at the largest point s0 where it fails, we must have that |r ′
1(s0)| = |r ′

2(s0)| and r1(s0) > r2(s0)

implying that S12(s0) > 1, a contradiction. Thus (26) holds in (max{m1,m2},U), and hence m1 = max{m1,m2}.
Next we prove that P1 > P2 in [m1,U ]. From the definition of P1 and P2 we have

(P1 − P2)(U) =
(

rn
2

(r ′
2)

2
− rn

1

(r ′
1)

2

)
(U) + 2n

F

f
(U)

(
rn−1

1 (U)

|r ′
1(U)| − rn−1

2 (U)

|r ′
2(U)|

)

�
(

rn
2

(r ′
2)

2
− rn

1

(r ′
1)

2

)
(U)

=
(

rn
2

(r ′
2)

2

[
1 − S2

12
rn−2

2

rn−2
1

])
(U) > 0.

In order to finish our proof, we note that from the proof of [8, Proposition 4.2.1], it follows that (f5)–(f6) im-
ply (f4). Hence, from (f4) and (26),

(P1 − P2)
′(s) = (

S12(s) − 1
)(

n − 2 − 2n

(
F

f

)′
(s)

)
rn−1

2

r ′
2

(s) < 0,

implying that P1 > P2 in [m1,U ]. In particular, P1(m1) > P2(m1). Now, since P ′
2 > 0, we have that P2(m1) >

P2(m2), and thus P1(m1) > P2(m2), ending the proof of the proposition. �
The analogue of Lemma 4.3 for the case k = 2 can be found in [8, Lemma 4.4.1], we state it below for the sake of

completeness. For j = 1,2, we set

W̄j (s) = r̄j (s)

√(
u′

j

(
r̄j (s)

)2 + 2F(s)
)
, s ∈ [

m1(αj ), S̄j

)
,

where

S̄j := sup
{
s ∈ (

mj ,u2
(
Z2(αj )

))
:

(
u′

j

(
r̄j (s)

))2 + 2F(s) > 0
}
.

Lemma 4.6. Assume that f satisfies (f1)–(f2), and let α∗ ∈ G2. Let α1, α2 ∈ (α∗ − δ2, α
∗ + δ2) with α1 < α2 and δ2

as in Lemma 4.5. Assume that there exists U ∈ [−β,0] such that

r1(U) � r2(U) and W̄1(U) < W̄2(U). (27)

Then,

S̄1 � S̄2

and

r̄1(s) > r̄2(s), W̄1(s) < W̄2(s), and u′
1

(
r̄1(s)

)
< u′

2

(
r̄2(s)

)
, s ∈ (U, S̄1].
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We define

P̄ (s, α) = −2n
F

f
(s)

r̄n−1(s, α)

r̄ ′(s, α)
− r̄n(s, α)

(r̄ ′(s, α))2
− 2r̄n(s, α)F (s),

P̄ ′(s, α) =
(

n − 2 − 2n

(
F

f

)′
(s)

)
r̄n−1(s, α)

r̄ ′(s, α)
,

S̄12(s) = r̄n−1
1 r̄ ′

2

r̄n−1
2 r̄ ′

1

(s),

S̄′
12(s) = S̄12(s)f (s)

((
r̄ ′

2(s)
)2 − (

r̄ ′
1(s)

)2)
. (28)

Proposition 4.6. Assume that f satisfies (f1)–(f4), or (f1)–(f2) and (f5)–(f6), and let α∗ ∈ G2. Then there exists
δ ∈ (0, δ2) such that for α1, α2 ∈ (α∗ − δ,α∗ + δ) with α1 < α2 it holds that: if α1 ∈ G2 ∪ N2, then α2 ∈ N2,

Z2(α1) > Z2(α2) and
∣∣u′

1

(
Z2(α1)

)∣∣ <
∣∣u′

2

(
Z2(α2)

)∣∣, (29)

and if α2 ∈ G2, then α1 ∈ F2.

Proof. We prove the proposition only in the case that f satisfies (f1)–(f4), the other case corresponds to [8, Propo-
sition 4.4.1]. Let m∗ denote the minimum value of u(·, α∗). Since u′(r(m∗, α∗), α∗) = 0 and −2nF

f
(m∗) > 0, by

continuity we may choose δ ∈ (0, δ2) small enough so that

−2n
F

f
(m1) > r̄2(m1)u

′
2

(
r̄2(m1)

)
,

for all α1, α2 ∈ (α∗ − δ,α∗ + δ) and hence

−2n
F

f
(m1)

(
r̄2(m1)

)n−1
u′

2

(
r̄2(m1)

) − (
r̄2(m1)

)n(
u′

2

(
r̄2(m1)

))2
> 0. (30)

On the other hand, from (24) in Proposition 4.5, we have that P1(m1) > P2(m2) and thus, using m2 < m1 and the fact
that P̄2 decreases, we find that

P̄1(m1) = P1(m1) > P2(m2) = P̄2(m2) > P̄2(m1).

Therefore,

0 > (P̄2 − P̄1)(m1)

= −2n
F

f
(m1)

(
r̄2(m1)

)n−1
u′

2

(
r̄2(m1)

) − (
r̄2(m1)

)n(
u′

2

(
r̄2(m1)

))2 − 2F(m1)
(
r̄n

2 − r̄n
1

)
(m1)

implying, by (30),

r̄1(m1) < r̄2(m1).

From Lemma 4.1(ii), there exists an intersection point in (T1(α
∗),Z2(α

∗)). If r̄I denotes the first of such points
and if ŪI = u1(r̄I ) = u2(r̄I ), then ŪI ∈ (u1(T1(α

∗)),0]. Let us set

U = max{−β, ŪI }.
We will show that U satisfies (27) in Lemma 4.6, that is,

r̄1(U) � r̄2(U), and W̄1(U) < W̄2(U). (31)

We distinguish two cases:

Case 1. ŪI ∈ [m1,−β]. We will first prove

r̄n−1
1

r̄ ′ (s) <
r̄n−1

2

r̄ ′ (s) and P̄1(s) > P̄2(s) for all s ∈ [m1, ŪI ]. (32)

1 2
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Observe first that S̄12(m1) = 0 and S̄12(ŪI ) < 1. If there exists a point t ∈ (m1, ŪI ) such that S̄′
12(t) = 0, then

r̄ ′
1(t) = r̄ ′

2(t) and hence, from the definition of ŪI ,

S̄12(t) = r̄n−1
1

r̄n−1
2

(t) < 1,

implying S̄12(s) < 1 for s ∈ [m1, ŪI ].
On the other hand, from the second equation in (28), using that S̄12(s) < 1 and (f4), we obtain

(P̄1 − P̄2)
′(s) =

(
(S̄12 − 1)

(
n − 2 − 2n

(
F

f

)′) r̄n−1
2

r̄ ′
2

)
(s) > 0.

Hence, for all s ∈ (m1, ŪI ), P̄1(s) − P̄2(s) > P̄1(m1) − P̄2(m1) > 0.
Next we will prove that

r̄1(s) > r̄2(s), and
r̄1

r̄ ′
1
(s) <

r̄2

r̄ ′
2
(s) for all s ∈ (ŪI ,−β]. (33)

From the definition of ŪI , r̄1
r̄ ′
1

< r̄2
r̄ ′
2

at ŪI . Assume by contradiction that (33) does not hold. Then, there exists a first

point t ∈ (ŪI ,−β) such that

r̄1

r̄ ′
1
(t) = r̄2

r̄ ′
2
(t) and r̄1(s) > r̄2(s), for all s ∈ (ŪI , t],

implying

S̄12(t) =
(

r̄1(t)

r̄2(t)

)n−2

= D > 1.

From the definition of P̄1 and P̄2, we have that

(P̄1 − DP̄2)(t) = 2
(
Dr̄n

2 − r̄n
1

)
F(t) = 2r̄n−2

1

(
r̄2

2 − r̄2
1

)
F(t) < 0.

On the other hand, from (32), we have that (P̄1 − P̄2)(ŪI ) > 0. Since P̄2(m2) < 0 and P̄2 decreases in (m2,−β), we
have that P̄2(ŪI ) < 0. Hence, as D > 1, we conclude that

(P̄1 − DP̄2)(ŪI ) > 0.

From the last equation in (28) we obtain that S̄12 is increasing in (ŪI , t) implying that S̄12(s) < D. Finally, using (f4)

we deduce

(P̄1 − DP̄2)
′(s) =

(
(S̄12 − D)

(
n − 2 − 2n

(
F

f

)′) r̄n−1
2

r̄ ′
2

)
(s) > 0

for all s ∈ (ŪI , t) and thus

(P̄1 − DP̄2)(t) > 0,

a contradiction. Hence, (32) follows, and, since F(−β) = 0, also (31).

Case 2. ŪI ∈ [−β,0). In this case U = ŪI , and (31) trivially holds.
Hence, by Lemma 4.6, we have S̄1 � S̄2,

r1(s) > r2(s), W̄1(s) < W̄2(s), and u′
1

(
r1(s)

)
< u′

2

(
r2(s)

)
for all s ∈ (U,S1].

If α1 ∈ G2 ∪ N2, then S1 = 0 implying S2 = 0 and α2 ∈ G2 ∪ N2. As Z2(α1) = r̄1(0) > r̄2(0) = Z2(α2) and
u′

1(Z2(α1)) < u′
2(Z2(α2)) we conclude that α2 ∈ N2.

If α2 ∈ G2, then S̄2 = 0. As u′ (Z2(α2)) = 0, we conclude that S̄1 < 0 implying α1 ∈ F2. �
2



620 C. Cortázar et al. / Ann. I. H. Poincaré – AN 28 (2011) 599–621
Proof of Theorem 1.2. Let α∗ ∈ G2. Then, α∗ ∈ N1 and since β ∈ P1, we can set

α∗
1 = sup

{
α ∈ [

β,α∗] ∣∣ α ∈ P1
}
.

Arguing as in the proof of Theorem 1.1, we deduce that α∗
1 ∈ G1. Under assumptions (f1)–(f3), G1 = {α∗

1} by [10],
and under assumption (f1)–(f2) and (f5)–(f6), the same result holds by [20]. Hence N1 = (α∗

1 ,∞). Let

A = {
α > α∗:

(
α∗, α

) ⊂ N2
}
.

By Proposition 4.6, A is not empty. Let ᾱ = supA and assume ᾱ < ∞. Since P2 and N2 are open, ᾱ /∈ N2 ∪ P2,
hence, as N1 = (α∗

1 ,∞), we have that ᾱ ∈ G2. But from Proposition 4.6, there exists δ > 0 such that (ᾱ − δ, ᾱ) ⊂ P2
implying that ᾱ is not the supremum of A. Hence we conclude that ᾱ = ∞ and thus N2 ⊃ (α∗,∞). Since this is true
for any α∗ ∈ G2, we conclude that G2 = {α∗}. �

Finally, we prove Corollary 1.1.

Proof of Corollary 1.1. We only need to prove that if f ′ decreases in (β,∞), then (f3) and (f4) are satisfied. Indeed,
we have

f (s) � f (s) − f (β) =
s∫

β

f ′(t) dt � f ′(s)(s − β),

and (f3) is satisfied.
Since (f4) can equivalently written as

Ff ′

f 2
(s) � n + 2

2n
,

it follows that if f ′(s) < 0 for some s > β , (f4) holds at such point. Now, as

F(s) =
s∫

β

f (t) dt = f (s)(s − β) −
s∫

β

(t − β)f ′(t) dt � f (s)(s − β) − f ′(s) (s − β)2

2
,

if f ′(s) � 0, multiplying by f ′(s)/f 2(s) we obtain that

Ff ′

f 2
(s) � (s − β)f ′(s)

f (s)
− 1

2

(
(s − β)f ′(s)

f (s)

)2

� 1

2
� n + 2

2n
,

and thus (f4) is always satisfied.
Hence, from Theorem 1.2, problem (1) has at most one solution with exactly one sign change. �
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