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Abstract

We obtain the existence of global-in-time weak solutions for the Cauchy problem of a modified two-component Camassa—Holm
equation. The global weak solution is obtained as a limit of viscous approximation. The key elements in our analysis are the Helly
theorem and some a priori one-sided supernorm and space—time higher integrability estimates on the first-order derivatives of
approximation solutions.
© 2011 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.

Résumé

Nous obtenons I’existence globale en temps de solutions faibles pour le probleme de Cauchy d’une équation modifiée Camassa—
Holm a deux composantes. La solution faible globale est obtenue comme une limite de par approximation visqueuse. Les éléments
clé dans notre analyse sont le théoreme de Helly et certaines estimations a priori de supernorme d’un seul c6té et d’intégrabilité
dans I’espace-temps des dérivées premieres des solutions approchées.
© 2011 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
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1. Introduction

In this paper we consider the Cauchy problem of the following modified two-component Camassa—Holm equation:

my +umy +2muy = —ppy, t>0, xeR,

ot + (pu)x =0, t>0, x eR, 0
m(0, x) = mo(x), x eR, ’
0(0,x) = po(x), x eR,

where m = u — uy and p = (1 — 32)(p — po)-
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The Camassa—Holm equation has been recently extended to a two-component integrable system (CH2) by combing
its integrability property with compressibility, or free-surface elevation dynamics in its shallow-water interpreta-
tion [7,25]. Eq. (1.1) was recently introduced by Holm et al. in [40]. The modified two-component Camassa—Holm
equation (MCH?2) is written in terms of velocity # and locally averaged density p (or depth, in the shallow-water in-
terpretation) and pg is taken to be constant. MCH?2 is defined as geodesic motion on the semidirect product Lie group
with respect to a certain metric and is given as a set of Euler—Poincaré equations on the dual of the corresponding Lie
algebra [39].

For p =0, Eq. (1.1) becomes the Camassa—Holm equation, modeling the unidirectional propagation of shallow
water waves over a flat bottom. Here u(z, x) stands for the fluid velocity at time ¢ in the spatial x direction [5,14]. The
Camassa—Holm equation is also a model for the propagation axially symmetric waves in hyperelastic rods [27]. It has
a bi-Hamiltonian structure [9,32] and is completely integrable [5,12]. Its traveling waves (periodic as well as solitary)
are peaked [6], capturing thus the shape of solitary wave solutions to the governing equations for water waves [13,19].
The orbital stability of the peaked solutions is proved in [24]. The explicit interaction of the peaked solutions is given
in [2].

The Cauchy problem for the Camassa—Holm equation has been studied extensively [16,28,47,52]. It has been
shown that this equation is locally well posed [15,28,47,52] for initial data ug € H*(R), s > % More interesting,
it has global strong solutions [11,15] and also finite time blow-up solutions [11,15-17,28,47]. On the other hand, it
has global weak solutions in H 1 (R) [3,4,8,23,36-38,51]. Recently, it was claimed in [46] that the Camassa—Holm
equation might be relevant to the modeling of tsunamis (see also the discussion in [20]).

The advantage of the Camassa—Holm equation in comparison with the KdV equation lies in the fact that while
both KdV and Camassa—Holm equations are completely integrable Hamiltonian systems [10,22,30]; while the inverse
scattering approach was obtained in [18] (see also [33]), in addition to KdV the Camassa—Holm equation has peaked
solitons and models wave breaking [6,16] (by wave breaking we understand that the wave remains bounded while its
slop becomes unbounded in finite time [50]).

Recently, two types of 2-component Camassa—Holm equations have been studied in [7,25,31,34]. These works
have established the local well-posedness [25,31], derived precise blow-up scenarios [31], and proved the existence
of strong solutions which blow up in finite time [25,31,34]. More recently, the Cauchy problem of Eq. (1.1) has been
studied in [35].

However, the existence of global weak solutions to Eq. (1.1) has not been discussed yet. Our aim of this paper is to
prove the existence of global week solutions to Eq. (1.1) provided the initial data satisfying some certain conditions.
We hope that our result sheds some light on important physical phenomena of Eq. (1.1) such as wave breaking. Up to
now, we have no uniqueness result for the obtained global weak solutions to Eq. (1.1). This problem will be discussed
later on. Note that no global existence results for strong solutions to Eq. (1.1) are available so far. Thus, we have to
use the viscous approximation method to prove the existence of global weak solution to Eq. (1.1).

We now provide the framework in which we shall reformulate problem (1.1). Withm =u — u,,, p =y — yxx and
y = p — po, we can rewrite Eq. (1.1) as follows:

my +myu 4+ 2muy = —pyy, t>0, x €R,

o+ up)x =0, t>0, xeR, (12)
m(0,x) =up(x) —ugxx(x), x€R, '
00, x) = y0 — Yo,xx> xeR.

Note that if p(x) := %e"x‘, x € R, then (1 — Bf)’lf =px fforall feL*(R), pxm=u and p* p =y. Here we
denote by * the convolution. Using this identity, we can rewrite Eq. (1.2) as follows:

1 1 1
Uy + Uty = —0y p * uz+—u)2(+—y2——y,(2 , t>0, xeR,

2 2 2
Vi tuyy=—px* ((uxyx)x +ux)/)a t>0, xeR, (1.3)
u(0, x) =uo(x), x R,

V(va)ZVO(x), x eR.
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The main result of this paper is to give the existence of a globe-in-time weak solution z = (;) to the Cauchy

problem (1.1) with the initial data zg = (;’,8) € H'(R) x H'(R). Before giving the precise statement of the main
result, we first introduce the definition of a weak solution to the Cauchy problem (1.1).

Definition 1.1. z = (;f ) is said to be an admissible weak solution to the Cauchy problem (1.1) if
z2(t,x) € L™((0, 00); H'(R) x H'(R))
satisfies Eq. (1.3) and z(¢, -) — zo as t — OV in the sense of distributions, and for any 7 > 0,

”Z(tv .)”HI(R)XHI(R) < ”ZO”HI(]R)XHl(]R)‘

Notation. In our paper, the space of all Radon measures on R is denoted by M(R) and M™(R) denotes the set of all
positive Radon measures.

The main result of this paper can be stated as follows:

Theorem 1.1. Let zg = (';,g) e H'(R) x HY(R). If po = yo — Yo.xx € M1 (R), then Eq. (1.1) has an admissible weak
solution in the sense of Definition 1.1.

Our paper is organized as follows. In Section 2, we give the approximate solutions z, = (';:) to Eq. (1.1) and
derive the basic energy estimate on z.. In Section 3, the crucial uniform a priori one-side supernorm estimate and
local space—time higher integrability estimate for u, are derived. Moreover, using Helly theorem we get that 9, . is
convergent almost everywhere on R x R. Finally, the strong convergence of d,u. in leu (R x R) is carried out and
we conclude the proof of the main result in Section 4.

2. Viscous approximate solutions

ue(t,x)

In the section, we construct the approximate solution sequence z, = z¢(f, x) = ( Vet.x)
€\l

problem of Eq. (1.1), i.e.,

) as solutions to the viscous

1 1 1
Mr+uux+3xp*<u2+§u,2¢+§)/2—51/x2>=€um, t>0, x eR,
Ve Huyx + 0xp o (uxyx) + px(uxy) =0, t>0, x R, 2.1)
M(O,X) ZMG’O(X), X ER,
y(Ov-x) :VG,O(X)v X ER,

or the equivalent form:

_ 1 1 1
u,+uux=—8x(1—8f) 1(uz+§u)2c+—y2——yxz)+eu”, t>0, xeR,

2 2
—1
Ve +uye =—(1-92)" ((xyo)x +uxy), t>0, xR, (2.2)
u(0,x) = ue 0(x), xeR,
y(Ov-x) :VG,O(X)v X ER,

here ue,0(x) = (¢e * 10) (x), Ye,0(x) = (P * y0)(x) € H*(R), s > 2, and

e (x) 1= (/¢($)d§) g¢<§), xeR, >0,
R

where ¢ € C2°(R) is defined by

1/(x2-1) x| <1
e X<

b(x) = ) )
x) {O, x| > 1.
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Then, we have

lue,oll 1wy < Nluoll g1 (rys Ve ol ®) < lIvoll g (w)
and
Ue, 0 —> UQ, Yeo — 0, in H'(R).

u

Theorem 2.1. Assume 70 = (yg) € H'(R) x H'(R) and po = yo — yo.xx € MT(R). Then there exists a unique solu-
tion 7, = (';,:) € C(Ry; HS(R) x H*(R)) N C'(R4; L2(R) x L*(R)), s > 2, to the Cauchy problem (2.1). Moreover,
0,

foreacht >

t
uc Y. 2 e\ 82u. \?
2 2 € € € €
f(ue-i-)/e + (a) + < 8x> )(t,x)dx+2€//<< 8x> +(8x2> )(s,x)dxds
R 0 R
= lze.0l} < llzoll3 (2.3)
Ol Ry xHI(®R) = IR0 1R HI(R) :
or
2 ; u 2
€
||Z6(t’ .)”HI(R)XHI(R) +2€fH¥(s’ ) X ds = ”ZG’OHiI](R)XHl(R) g ”ZO”%"II(R)XHI(R)'
HI(R)
0

Before proving Theorem 2.1, we recall some useful lemmas.

Lemma 2.1. (See [44].) Let f € H*(R), s > 3. Then
| AT AT M)A | oy < el f @y, Il <s =1,

where M s is the operator of multiplication by f and c is a positive constant depending only onr,t.

Lemma 2.2. (See [43].) Let r, t be real numbers such that —r <t <r. Then

. 1
Ifelm @ < clflarliglu @, Fr> 5.

. 1
I7gl sclflar@lgla . ir <3

where c is a positive constant depending on r,t.

t+r— % (R)

Lemma 2.3. (See [26].) If X1 and X, are Banach spaces and A; € G(X;, 1, B), i = 1,2, then the operator

A= (fgl £2> € G(X) x X2, 1, B)
with D(A) = D(A;) x D(A2).

The strategy of the proof of Theorem 2.1 is rather routine. We use some lemmas to prove this theorem. For the
convenience of presentation, we will omit the subscripts in ze, u, Y. in the following proofs.

Lemma 2.4. Given 7o = (1;,3) € H*(R) x H*(R), s > 2, there exist a maximal T =T (||zoll gs R)x 5 (®)) > 0, and a
unique solution z = (;) to Eq. (2.1) such that

z=2(,20) € C([0, T); H*(R) x H*(R)).
0y —€0xx O A1(2)+A 0
Proof. Let A(z) = (M O6 uax) = ( : ZO 0 Al(Z)) and
—ac(1— 321w + Ju2 + 3y? — %yﬁ))

fa= ( —(1 =82 (e y)x + uxy)
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SetY = H(R) x H'(R), X = L*>(R) x L>(R), A = (1 — 33)% and Q = (/(‘; on ). Obviously, Q is an isomorphism of

H*(R) x H*(R) onto L?>(R) x L?(R) and A* is an isomorphism of H*(R) onto L>(R). In order to prove Lemma 2.4,
we use Kato’s semigroup approach [43].

We know that A1(z) € G(L*(R), 1, Bo(z)) in [52]. It is obvious that A is a densely defined closed linear operator
in X and is self-adjoint. For every u € D(Ag) = HZ(R),

(Aou, M)LZ(R) = —€(Oxxl, U)LZ(R) = €||ax“||iz(R)-

By Corollary 4.4 in Chapter 1 of [49] we have that — A is the infinitesimal generator of a Cy semigroup of contractions
on L2(R). By Ai(z) € G(L*(R), 1, Bo(z)), therefore —A(z) — B1 is dissipative for all 8 > By(z). Moreover, for every
y € D(Ay),

|—(A1@ + B 2y < Ml 18yl 2y + BV 2y
Using integration by parts, for every y € H>(R), we have

1953172y < IV z2r) 19x2 ¥l 2y

and

€ 1
|—(A1() +,31)YHL2(R) < E”axxyan(R) + Cliyll2w) = 5” — Aoyl + Cliylli2w)-

By Corollary 3.3.3 in [49], —Ag — A1(z) — BI is the infinitesimal generator of a Cp semigroup of contractions of
L?(R) for every B 2 Bo(z). Therefore, A1(z) + Ag € G(L*(R), 1, B(z)). Then, in view of Lemma 2.3 and A((z) €

GLA), 1, B(2)), we have A(z) = (10 € ) e GLAR) x LAR), 1, B(2)).

Now we prove that A(y) € L(H*(R) x H*(R), L>(R) x L*(R)) for y € H*(R) x H*(R) and we have that
(A — A@)w ||L2(R)><L2(R) S mlly = zll 2wy 2@ I Wil as @) < s (®) -

for y,z, w € H*(R) x H'(R).
Indeed, by the definition of A(z), we deduce that for all z, w € H*(R) x H*(R),

|AG@w]| LR)xLAR) S (121l 225 @@y 11 Ry + €) MWl E15 Ry 15 (R) -

Forall y,z,w € H*(R) x H*(R),

(A — A@)w ||L2(R)XL2(R) < (I8xwillzoey + Iz wallLoe) |y — 2l 2Ry x 12R)
<Y =zl 2yx 2wy lwll s ®) x Hs (R) -
Note that

B()y = QAR)Q 'y - AR)y = ([AS’“a)(c)]A‘Syl 0 )

[A%, ud ]JA™ y)
Let w € L2(R) x L?(R) and y, z € H*(R) x H*(R). Then we have

|(B»)w — Bz)w) ||L2(R)><L2(]R) <[ Gr = wdc JA™ wy ||L2(]R) +[A% G —wdk ] A w, ||L2(]R)
< H [AS’ - ”]Al_‘Y ”L(Lz(R))(”A_]axwlHLz(R) + ||A_laxw2”L2(R))
<cllyr — u”HS(R)||w||L2(R)><L2(R) <clly = zllas ®yx B (R) ”w”LZ(R)xLz(R)’

where we applied Lemma 2.1 with » =0, f =s — 1 in view of s > 2. Taking y = 0 in the above inequality, we obtain
that B(z) € L(L2(R) x L2(R)).
Finally, we have that (see [35])

”f()’) - f(Z)HH‘Y(]R)XHS(R) < M3”y _Z”Hs(R)XHS(R)a Vy’z S HS(R) X HS(R)

Thus, we only need to verify that
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”f()’) - f(Z) ” Lz(R)XLZ(R)

1

< ax(l —af)_1<(y12—u2) + E(ylz,x — Uy

)
~
+
N =
—_

<
()Y

|

<

[\S]
~—

|
N =
—
<
(S]]
=

|

[§)
v

+ ”(1 - 8)%)_1 ((yl,xyZ,x - Mxyx)x + Yixy2 — Mx)/)
L2(R)

1 1 1
< H OF =) + 507 —ud) + 503 =v?) = 305 = 77) .

| Orey2 —uryos +yieye —ucy | oo

¢
Syt —ullp2y iyt + ull o) + E”)’l,x —uxll g1 @) Iyrx + el g1 (w)

1 c
+ 5 ly2 = vllr2@ylly2 + ¥l Leor) + 3 Iy2, = Vel g1y 12,2 + Vel ps—1(w)
Flyixy2x = YixVel 1wy + IV — ux Vel g-1w)
Flyiey2 = yixYlg-1w + IVixy —uxy lg-1(w)

¢
<yt —ullp2wyllyn + ullzoor) + E”)’l,x —uxll g1y Iyix + xll gs-1(w)

+ %Ilyz = vYleewly2 +vileem + %”)72,): = Yelm-1@l1y2,x + Vel gs-1(w)
+ C||Y1,x ||Hsfl(]R) ||y2,x - Vx”Hfl(]R) + C||)’1,x — Ux ”H*I(R) ||Vx||HX71(]R)
+yixllgs—1@lly2 = vl g-1®) +cllyie —uxll g-1@ 1Y | gs-1(w)
= B+ 40) (Iyllas @)z ®) + 12l H5 ®)x s (®) 1y — Zll L2y L2 (R)
where we applied Lemma 2.2 with r =s — 1, t = —1. This proves Lemma 2.4. O

Lemma 2.5. Let zo € H°(R) x H°(R), s > 2 and let T > 0 be the maximal existence time of the corresponding
solution 7 = (;) to Eq. (2.1). Then (2.3) holds for every t € (0, T).

Proof. Applying Lemma 2.4 and a simple density argument, we only need to show that the above lemma holds for
some s > 2. Here we assume s = 3 to prove the lemma. Differentiating Eq. (2.1) with respect to x and using the
identity 8§p*f=p>kf — f, we have

{utx‘i‘uuxx‘i‘u%zeuxxx+f_P*f’ (2.4)

Yix +UxVx FUYxx = —0xp * ((uxyx)x +ux)/),
where f =u?+ %u% + %)/2 — %yxz Denote g = (uyyx)x +uxy and E(¢) = f(u2 +u)% +y2+ yxz) dx.Using Eq. (2.1)
and Eq. (2.4), and integrating by parts, we obtain

d
EE(I) = 2/(1,{14; +uxhyr + Y Ve + VaVar) dx
R

:2/[u(—uux —Bxp*f)+ux(—uuxx —ui-l—f—p*f)
R

+y(—uyx — p*g) + yx(—uxyx —uyxx — xp *g)] dx +2e /(’/”/‘xx +uyttyyy)dx
R

1 1
22/<_“3xp*f_Eui+“xf_“xp*f+§uxyz
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1
—Yp*8— Eux]/xz — YxOxp *g) dx —2e /(uﬁ + u)%x)(s,x)dx
R
=—2¢ /(ui +u?,)(s, x)dx.
R
Integrating the above equality over (0, 1), we get (2.3). O

If z€ H*(R) x H*(R), s > 2, then by the above lemma we have the following useful inequality
2 2 1 2 1 2
||I/t(l, ) ||LOO(R) + H)/(l, ) ||LOO(]R) < 5 ”u”Hl(R) + 5 ||)/||H1(R)

<1(|| 121 e + ll70112 )—in 12 (2.5)
X 2 uo HI(R) Yo Hl(R) - <0 H](R)XHI(R) .

2
forallr € [0, T).
Now we present the blow-up scenario for the strong solutions to Eq. (2.1).

Lemma 2.6. Let 79 = (1;,3) € H(R) x H*(R), s > 2 be given and assume that T is the maximal existence time of the

corresponding solution 7 = (;) of Eq. (2.1) with the initial data zg. Then the H*(R) x H* (R)-norm of z(t, -) blows
up if and only if

liirls;lp{ ||Mx(ts ')||L°0(R) + ” yx(t, .)”LOC(]R)} -

Proof. Let z = (;) be the solution to Eq. (2.1) with the initial data zo € H*(R) x H*(R), s > 2, and let T be the
maximal existence time of the corresponding solution z, which is guaranteed by Lemma 2.4. Throughout this proof,
¢ > 0 stands for a generic constant depending only on s.
Applying the operator A to the first equation in Eq. (2.2), multiplying by A%u, and integrating over R, we obtain
d
Tl gy = =2, 1)y = 2(u, £, ), + 26 e, w)s

where

fau,y)y=o.(1-02) " (u®+ L lyz — 1)/2

’ * x 2772 27 )

From the proof of Theorem 3.1 in [35], we know that

|, w)s | < cllull Loy el s )
and

|(F @ y)ou) | < ellwxlizoo + Ivelloe + 1zl gy m @) (1 12 + 1l e m)-
Note that 2€ (uxy, u)s = —2€||lux || ps®) < 0. Combining the above three inequalities, we get

d
Tl ey < oy + el @ + N2oll iy ) (17 sy + s ) (2.6)

From the proof of Theorem 3.1 in [35] again, we have

i 2 < 2 2 )
T Wi ey < el oy + v ey + 1200l et @) (1 Wps ey + s - 2.7
By (2.6) and (2.7), we obtain

d 2 2 2 2
E(HMHHS(R) + ||V||Hx(R)) < C(||ux||L°°(R) + ||Vx||L°°(R) + ||ZO||H1(R)><H1(R))(”V||H.v(]1§) + ”””HS(R))-

If there exists M > O such that limsup, 7 [lux(Z, )|z + [l¥x(#, )|, < M, then an application of Gronwall’s in-
equality and the assumption of the theorem yield

”“”%—IS R+ ||y||%{; Ry < exp(cht)(Iluoll%{: ®r T ||)/0||%1s R )
® ®) ®) ®
where M1 =M + |20l g Ry s 111 (R)-
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On the other hand, by Sobolev’s imbedding theorem, we see that if

- ’

li?ls}lp{ st ')”L“’(R) . ”LO%R)}

then the solution will blow up in finite time. This completes the proof of the lemma. O

Consider now the following initial value problem

{qul'{(t’q)v te[oa T)y

2.8
q0,x)=x, xeR, (2.8)

where u denotes the first component of the solution z to Eq. (1.1). The introduction of ¢ is suggested by working in the
Lagrangian framework, cf. [1] and [21] (see also [45]). Applying classical results in the theory of ordinary differential
equations, one can obtain the following result on ¢ which is crucial in the proof of blow-up scenarios.

Lemma 2.7. (See [11].) Letu € C([0, T); H*(R))NCL([0, T); H~'(R)), s > 2. Then Eq. (2.8) has a unique solution
g € C1([0, T) x R; R). Moreover, the map q(t, -) is an increasing diffeomorphism of R with

t

qx(t,x) = exp(/ Uy (s, q(s, x)) ds) >0, V(,x)el0,T)xR.

0

Lemma 2.8. Let 70 € H°(R) x H*(R), s > 2 and T > 0 be the maximal existence time of the corresponding solution
z= (;) to Eq. (2.1) guaranteed by Lemma 2.4. If po = Yo — Y0.xx does not change sign on R, then we have for all
tel0,7),

V2
et ) ooy <Ny ) | ooy < S 120l @y < - (2.9)

Moreover, if py € LY(R) we have
”V(fa .)HLI(R): ”p(tv ')”LI(R):”pO"Ll(R)ﬂ Vi el[0,T). (2.10)

Proof. Note that p = y — ;.. Then, form the second equation of (2.4) we have
pi + (up)x =0. (2.11)
By (2.8) and (2.11), we get

d
o (p(t,q(t, x))qx(t, X)) = (o + Pxq1)qx + gt = (1 + pxGr + pux)ge =0.

Thus, we obtain
p(t,q(t, x))gx(t, x) = po(x). (2.12)

In view of Lemma 2.7, if pg does not change sign on R, then for any ¢ € [0, T'), p(¢, x) and pp have the same sign
by (2.12). Since y = p % p where p = %e"x‘, we deduce

|7 [
|Vx|=§ e"/e‘yp(y)dy—e_x / e’p(y)dy
X —0o0
|7 [
<3 e"/e"’p(y)dy+e‘x / e’p(y)dy| =1yl
X —0o0

Then, by (2.5) we obtain (2.9).

In view of (2.12) and Lemma 2.7, if po does not change sign on R and pg € L' (R), by the relation y = p % p we
have that y (¢, -) does not change sign on R. Then, by Eq. (2.1) and (2.11) we obtain (2.10). This completes the proof
of the lemma. O
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From Lemmas 2.6 and 2.8, we obtain the following corollary.

Corollary 2.1. Let zp = (l;,g) € H'(R) x H*(R), s > 2 be given. Assume that T is the maximal existence time of the

corresponding solution z = (;f) to Eq. (2.1) with the initial data zo. If po = Yo — Yo.xx does not change sign on R,
then the H* x H*-norm of z(t, -) blows up on [0, T) if and only if

lim sup .z, ) | Lo®) —
t—>T

Lemma 2.9. Let zo € H'(R) x H(R), s > 2 and let T > 0 be the maximal existence time of the corresponding
solution 7 = (;ﬁ) to Eq. (2.1) guaranteed by Lemma 2.4. If po = Yo — Y0.xx does not change sign on R, then we have

(@, )] ooy < €1 +e), Vrel0,T), (2.13)
where C depends on € and ||zo|| g2 gy x n2(r), but does not depend on t.
Proof. By Lemma 2.5, for 7 € [0, T) we have that [|z(z, -) || g1 r)x 1 (r) < C. Differentiating the first equation in (2.4)
with respect to x and using the identity 8)% pxf=pxf— f,weget

Upxx + Ullyxx — €Uxxxx = 2Ully — 2Uxllyy + Y Vx — VaVax — Ox P * f, (2.14)
where f = u? +5 u2 +5 1,2 -5 yxz. By Lemma 2.5 and Holder’s inequality, we obtain

||axp * f”LZ(]R) < ”f”Ll(]R) < ”ZO”A;{I(R)XHI(R)’
where we have used [|9x pl 2(r) < 1. By (2.3), (2.5) and Lemma 2.8, in view of (2.14), we find

1d

VT, uixdx—i—e/ui”dx
R R

= / Uy (—Uxxx + 20ty — 2uxUyx + VYV — VaVax — 0P * f)dx

R
1
:2/uuxuxx dx +3/uuxxuxxx dx +/Vyxuxx dx + E/(yx)zuxxx dx _/uxxaxp* fdx
R R R R R
9”””200 Il 00
2 L®(R) 2 Yl ) 2
< "u”LOO(R) ””x ”HI(R) ”uxxx ”Lz(R) + T ”uxx ”LZ(R) + f (||)/x ”LZ(R) + ”uxx ”LZ(R))

€ 2 1 4
E(”“xx ”LZ(R) + ”ZOHHI(R)XHI(R)) E“l'txxx ”LZ(R) + E ||VX||L4(]R)

/ dx+c2+efu§mdx, (2.15)

R

here C; and C; only depend on € and [|zo|| g1 (r)x m1 (r)- Then, by (2.15) and Gronwall’s inequality, we have

s () 32y < €€ Ntt0 0 120 ) + Crt-
Combining this with (2.3) shows that there exists a positive constant C = C (e, ||zoll y2(r)x m2(r)) Such that
|, )] oy < C(e+e), Vielo,T),

which implies that |[u (¢, -)|| o) < C(t + ") forall t € [0, T). O

Combining Lemmas 2.3-2.9 and Corollary 2.1, using Kato’s semigroup approach we have that Eq. (2.1) has a
global strong solution and (2.3) holds true for all # > 0. This completes the proof of Theorem 2.1.
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3. Uniform a priori estimates

Let zo € H'(R) x H'(R) and let z¢ (¢, x) be the solution to (2.1). The long-time existence of z. (¢, x) is guaranteed
by Theorem 2.1. Moreover, it satisfies the energy identity (2.3). To obtain the compactness of this approximate solution
sequence {z¢(?,x)} in L? e Ry IOC(R) X IOC(R)) a priori estimates in addition to (2.3) are needed. In this section,
we derive the uniform one-sided supernorm estimate and the space—time higher integrability estimate on dyu(?, x),
which are essential for our compactness argument

We denote g, = BBL;G , e = By€ and pe = Ye — Ye.xx in the following text.

Remark 3.1. Note that po.e = ¢e * po = 0 and || po.ell 1) < llPoll M (wr), for all € > 0, provided pg € MT(R). Thus,
by Lemma 2.4 and Lemma 2.8, we have

V2 2
|72, )HLDO(R> e, )HLOO(R) > — 20l g1 Ryx oI R) < THZOHHI(]R)XH‘(R)‘ (3.1
Using Remark 3.1, we have the following uniform one-side supernorm estimate on ge (¢, x).
Lemma 3.1. If pg € M (R), then for each t > 0 and x € R, we have
ge(t, x) < % + V2l1z0ll i1 gy x 11 ) - (3.2)

Proof. By the first equation of (2.4), we have

9 P 1 1
%4_ 6%‘{' (qg)z_eaxx‘k=(u6)2+§(75)2_ E(ﬂe)z_[)*f’ (3-3)

where f = (ue) + %(qe)2 2)/6 — —JT . By Lemma 2.4, we get

1
| e, ')HLOO(R) + [ e, ')”LOO(R) < 5(””60 )“HI(R) + e, )||H1(R)) ”ZOHH'(R)XHI(R)’

and

1
((ue) +3 (qe) +5 )/e ——7T )(l )

[P * DY ooy < NPz
L(R)

1
2 2
X 5 ”Ze ”HI(R)XHI(R) < E ”Z()”HI(R)XH](R)’
where we have used || p|lLo®) = % Due to the above two inequalities, we obtain

aq aq
a; +u€8_€ + (Cle) GBXXQG < ”ZO”iIl(R)XHI(R)’ V(lsx) ER-‘r X R

Now, let F (1) = % + ﬁHZoIIHl(R)XHl(R). It is obvious that for any ¢ > 0,

dF 1 _, ) 2V20z0ll g1yt ) 2
E + EF = ”ZOHHI(]R)XHI(R) + t > ”ZOHHI(]R)XHI(]R)’

e (0, x) < |zoell g2 () x 2 (R)» @nd lim; o+ F (#) = +00. Then the comparison principle for parabolic equations yields
qe(t,x) < F(@), Vi>0, xeR.

Therefore, the estimate (3.2) is proven. O

Next, we derive the uniform local space—time higher integrability estimate for g.



C. Guan, Z. Yin / Ann. 1. H. Poincaré — AN 28 (2011) 623-641 633

Lemma3.2. LetO<a <1, T >0and a,b € R, a <b. Under the assumption of Theorem 1.1, there exists a positive
constant C depending only on |20l g1 (ryx 1 (r)> &> T’ a and b, but being independent of € such that

T b

/]

0 a

24«
dxdt <C. (3.4)

O (1)
, X
0x

Proof. Let y € C*°(R) be a cut-off function such that

1, xe€la,b],

<x < =
O\X\lv X(x) {0’ xE(—OO,Cl_l]U[b—i_l!oo)'

Consider the map 6(&¢) := &(J&] + 1)%, & € R, which was introduced in [8]. Obviously,

0'(&) = ((@+ DIEI+ 1) (&1 +1)*

0&)| <& +1El, 0<0'@) <@+ DIEI+1, [07(¢)] <20, 3.5)

1 1— o
£0(6) — 56%0/(6) > ——&2(Ig1+1)". (3.6)

Multiplying the first equation of (2.4) by x6’(ge), using the chain rule, and integrating over [ [, :=[0, T'] x R, we
get

/X(X)(Q(qe(T,X))—G(QG(O,X)))dx— /QGX(X)G(Qe)dth_/MGX/(X)O(Qe)dth

R [1r I1r
1 2q7 aqe / / aCIe 2 Vi
+ 5 X(x)qee (ge)dxdt +e€ EX (x)0'(ge)dxdt + € E X (x)0"(qe) dx dt
[1r [1r 17
2 1 2 1 /
= “e‘i'EVe —Eﬂe—Pe Xx(x)0°(ge)dx dt,

T

where Pe = p x (u2 + $q2 + $y2 — 1n2). Then

1
fxqe(?(qe)dxdt—5/q3x9'(qe)dxdt=/x(9(qe(T,x))—G(qs(O,x)))dx—/uex’(xw(qe)dxdt

[1r [1r R [1r
aqé / / 36]5 : 1
+E/—X (x)6 (qe)dxdt+€/ — ) x(x)0"(ge)dx dt
0x ax
T l_[T
2 1 2 1 2 /
— u; + 57/6 — Ené — P ) x(x)0"(ge)dx dt. (3.7

By (3.6), we have

1 1
/ X4cb(ge) dx di — 5 / g2 x (006" (ge) dx di = f x(x)(q&(qe) - 5q39/<q6>) dx di
[Tz [1r [r
l—«
= 5 / x(x)q3(|q5| +1)“dx dt. (3.8)
[1r
Using Holder’s inequality, the first part of (3.5) and Theorem 2.1, we obtain
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+1
f X (0)0(qe) dx < f X (1gel™™ + 1gel) dx <l xl para-ery e @ ) |2 + 102y 96 @) | 2 gy
R R
— 1
< (b —a + 2)(1 a)/2||zo||‘;t{4;(R)XHl(R)
+ b —a+2"lz0ll g1 @yxm @) (3.9)
and
’/usx’(xw(qe)dxdr <||ue||Loo/|x/<x>|(|qe|“+‘+|qe|)dxdr
Iy Iy
T
+1
||Z0||H1(R)><H1(R)/”X | 200 ~a)(R) lgect. )HZMR)
0

V2
+THZOHHI(R)XHI(R)/”X/”LZ(R) llge e, ')“LZ(R) dt

0
V21 +2 var oo
< T ”ZO”(IJ’;‘(R)XH'(R) || X/”Lz/(l—l)t)(R) + ? ”ZOHHI(R)XHI(R) ”X/ ”LZ(R)' (3.10)
Moreover, we get
0
€ f %X/(x)e’(qe)dx dt = —¢ / x”(x)8(ge) dx dt.
X
Iz Iz
Again by Holder’s inequality, (2.5) and the first part of (3.5), we have
’ / Ay w0 Godrai| < [ [/ Wl [otgo]dxd
[1r
< [ (et +lae)] " @) axar
[1r
T
+1
< /(HXN”Lz/“—“)(R) qu ) ”i%R) + HXN” L2(R) ”%(t’ ')HL2(R)) dt
0
+1
T(”XN ”LZ/(lfa)(R)”ZOH‘;II(R)XHI(R) + ”XU ”LZ(]R) ||Z0(t’ ')”HI(IR)le(R))' (3.11)
Using (2.3), (2.5) and the third part of (3.5), we deduce that
aqé 2 Vi aqe 2 2
E‘ /(a) X(.X)e (qE)dth <2,0[€ / E dth ga”ZO”Hl(R)XHI(R)' (312)

T [1r
Based on Lemma 3.2 and Remark 3.1, there exists a constant L > 0 depending only on [|2o| 71 (g« 51 () Such that
(e)? + 4 (ve)? — 372 — Pell L@, xR) < L. Using the second part of (3.5), we obtain

u2+1 —lnz—P 0'(q.) dx dt
€ 2ye 2 € X CIe

T

<L f X @)@+ Dlgel + 1) dx dr
iy
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T
< L/((oe + DlIxle@llge )| o g + XL w) d
0
SLT((@+ D0 —a+2)"2lz0ll g1 @ywm @ + & —a+2). (3.13)

From (3.7)-(3.13), we see that there exists a constant ¢ > 0 depending only on ”ZOHHI(]R)XHI(R)’ o, T >0,aand b,
but being independent of €, such that

l—«a
T/X(X)qu(lqu-l)adxdtéc.
[1r
Then

2+« 2C

—

Oe 1. x)
et x
0x

dxdt</x(x)qz(|6]e|+l)adxdt<1

T

T b
0/ a/
This completes the proof of the lemma. O

4. Precompactness and existence

With the basic energy estimate and sign condition with p. in Section 2 and the uniform a priori estimates in
Section 3, we are now ready to obtain the necessary compactness of the viscous approximate solutions z¢ (¢, x). We
start with the weak compactness in L¥ (R, H'(R) x H'(R)).

In this section we denote Pj = p * (ug + %q? + %yz — %nez), P> = p*(geme) and P3¢ = p * (geYe), Where
ge = OxUe, Te = 0y Ve as in Section 3.

Lemma 4.1. Under the assumption of Theorem 1.1, there exist a subsequence {z¢, (t,x), P1.¢ (t,x)} of the se-
quence {z¢(t,x), P1.c(t,x)} and some functions z(t,x), Pi(t,x) with z = (;) e LRy, H'(R) x H'(R)), P €
L®R,, WL2(R)), such that

2 =2 and P — P, ask— oo,

uniformly on any compact subset of R x R.

Proof. It follows from Theorem 2.1 that {z.(t,x)} is uniformly bounded in L®(R,, H'(R) x H'(R)). Also,
{0;z¢ (¢, x)} is uniformly bounded in L2([0,T] x R) x L%([0, T] x R) for T > 0. Indeed, by (2.3) and Eq. (2.1),
we get

|| Pi,E(ts .)”LZ(R) < ”p”LZ(R) HZe(l, .)”iI](]R)XHI(R) < ”ZO”%-II(R)XHI(R)’ (41)

|| ax Pi,E(tv ) ||L2(R) < ”axp”LZ(R) ||ZE (ta .)||§11(R)XH1(R) < ”ZOHiII(R)XHI(R)’ (42)

here i = 1,2,3. Thus, by Corollary 8.4 in [42], there exist z € C((0, T); L*°(R) x L*°(R)) and a subsequence
{z¢, (t, x)} such that {z¢, (r, x)} is weakly compact in C((0, T); L*°(R) x L*°(R)) and {z¢, (¢, x)} converges to z(t, x)
uniformly on each compact subset of R, x R as k — co. Moreover, z(¢,x) € C((0, T) x R) N L*°((0, T); Hl(R) X
H'(R)).

Next, we turn to the compactness of {P; ¢}. First, by (4.1) and (4.2), we have that { P ¢} is uniformly bounded in
L®(R,, H'(R)). Now we estimate 9, Pj . Note that

0P
ot

= p* Quediite + qe0tge + Ve Ot Ve — T 0rTTc)

1 1
=p* Queditte + YedrVe) + p * <QG <_MeaxQG - quz + 68§QS + M? + E)/e2 — — - Ple))

—DP* (ﬂé(_ueaxﬂe — P _axP3e)) =h+hL—-1I.
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By (2.3), (2.5) and Eq. (2.1), we obtain that I1 = p * (2uc e + Y 0:ye) is uniformly bounded in L2([0, T] x R) for
any T > 0. Since

1 1
—Ueqedrqe — 5(96)3 = _E(ueqz)x

and ge32qe = 3y (qedxqe) — (3xqc)?, it follows that

_ _ LS SPS SR SN S N
L=px|qc Ue0xge qu—i—eaxqg—i—ue—i—zy€ 27‘(E Pic

_ 1 2 _ 1 2 _ _ 2\ _ l 2 _
=p* | ge|uZ+ 5% e — Pie €(0xqe) P*| sUeq: — €GeOxqe | -
2 2 2 .

By (2.3), (2.5) and (3.1), we get

dt

1 2 1 2 2 :
ge Lt +2V€ _Eﬂg_Ple —€(Oxvqe)” (2, )

L'(R)
/Haxanz(R) ( eqe €ge xQe)(t )

(T» 120l 111 ey 1 ) )-

2 2
T / 1912,

2

dt
LI(R)

Next we estimate the last term. By (2.3), (2.5) and (3.1), in view of u w0, = %8)( (uenf) — %qenf, we have

2

dt
L1 (R)

1
”13”542((0,T)><]R) < / ”P“iz(]R) (ﬂe(_Pk — 0y P3¢) + EQeT[3> )

/Haxanz(R) ( )(t )

(T, lzoll 11 (ryx 11 (R)) -

dt
LI(R)

Thus we prove that 31;;,6 are uniformly bounded in L2((0, T) x R) for every T > 0. Consequently, by Corollary 8.4
in [42], there exist P; € C((0, T'); L (R) x L°°(IR)) and a subsequence { P ¢, (¢, x)} such that { P1 ¢, (¢, x)} is weakly
compact in C((0, T); L°(R) x L*°(R)) and {Pj ¢, (¢, x)} converges to P (¢, x) uniformly on each compact subset of
R4 x R as k — oo. Moreover, Pi(t,x) € C((0, T) x RyN L®((0, T); H'(R) x H'(R)).

By Holder’s inequality, we have

2
< EHZO”HI(R)XHl(]R)

1 1 1
HPle(t, ')”LOO(R) < ||P||L°°(R) (I/[ + 2Qe + 23/5 - _jT )(t )

L'(®)

and

|| axplé(t’ )”LOO(R) < ”axp”LOO(R)

1, 1 )
<M +2q€+2ye __T[ )(t ) \EHZOHHI(R)XHI(R)'

Thus, we have P; € L (R, W12 (R)). This completes the proof of the lemma. O

LI(R)

Next, we prove the stronger convergence result, i.e.

072
OxZe —> 0xz ase— 07 in Ly,

Ry x R) x Lloc(R+ x R).
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uo
Yo
Eq. (2.1) with initial data zeo = (
{me, } such that

Lemma 4.2. Assume zo = ( ) e HY(R) x HY(R) with PO =7Y0— V0oxx € MT@R). Let z. = (’;,:) be the solution to

(Pesug) (x)

(Gexyo) (x)) which is guaranteed by Theorem 2.1. Then, there exists a subsequence

e (t,x) > m(t,x) =y, x) ask—> ooae onRy xR, 4.3)

Proof. Note that pg = yp — ¥0.xx € MT(R). Then we have

00,6 :=Y0,e — Y0,e.xx = Pe ¥ po =0

and

lpo.ell iy < llpoll g, 0 <e <.
By Lemma 4.1, for fixed T > 0, we have

Yoo =y, inH! (I0,T]1xR), and yg — y, uniformlyin ACRy xR,
where A is an any compact subset of Ry x R. By Eq. (2.1), Lemma 2.8, (2.9)—(2.10) and (3.1), for fixed ¢ € (0, T),
we deduce that the sequence 7, (¢, -) € BV (R) with

V[re . )] = [ vexx @ )| gy < Ive@. )] 1y + 10 | 1@y < 200l My

and

V2 2
HJTe(f, ')”Loo(R) < ” Ye(t, ')HLOC(R) < THZO,e”Hl(R)XHl(R) < THZOHHI(R)XHI(R)-

Here BV (R) is the space of functions with bounded variation and V(f) is the total variation of f € BV (R),
cf. [41]. By Helly’s theorem (see [41, p. 222]), there exists a subsequence, denoted again {n, (¢, -)}, which con-
verges at every point to some function v(t, -) of finite variation with V(v(z, -)) < 2| poll m(r)- Since for almost all
t €(0,T), me, (t,) = yx(t,-) in D'(R), this enables us to identify v(¢, -) with yx (¢, ) for a.e. € (0, T'). Therefore
Te(t, x) = (1, x) = yy(t, x) ae. on Ry x R, and V(ye(t. ) = [Vex(t. ) may < 2000l mery. for ae. £ € (0. 7).
This completes the proof of the lemma. O

Remark 4.1. From Lemma 3.2 and Lemma 4.1, we can deduce that there exist two functions g € Ll’:) . R4 x R),
g% e L7 (R4 x R) such that

loc

ge —q inL) RixR), g2 —¢? inL (RyxR), (4.4)

forevery l < p<3,1<r< % Moreover,
G2 (t,x) <q2(t,x), ae. (t,x)eR; xR. (4.5)
In view of (4.4), we conclude that for any convex 7 € C!(R) with 5’ bounded, Lipschitz continuous on R, 7(0) = 0
and any 1 < p < 3, we have
n(ge) = n(q) inLp, Ry xR). (4.6)
By Lemma 2.8 and Lemmas 4.1-4.2, in view of (2.3), (2.5) and (4.4), we have

1 1 — .
(u@ + Ve~ yTe P1,6k>n<qe> — (hu.y.yx) — P)n(g) inL (Ry xR), 4.7)

where h(u, y, yx) = u?+ %)/2 — %yxz
Multiplying Eq. (3.3) by n'(ge), we get

9 3 B 1,
5,710qe) + 5(uen(qe)) =4en(qe) = 54em'(4e)

1 1
+ (“f + 53/3 - 5773 - PLe)ﬂ’(qe) — €3, (0'(qe)dxqe) — €n”(qe) (3xqe)*.
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Note that {\/€dge} is uniformly bounded in L>(R; x R) due to Theorem 2.1. Taking € — 0, due to the convexity
of n, by Lemma 4.1 and (4.6)—(4.7) we obtain that

5 15—
g(tq) +a_(un(q)) a1(@) = 54°0' @) + (h(w. y. v) = P1)1 (@), @

in the sense of distributions on Ry x R, here f is the limit of f., in the sense of distributions on R, x R.
Using (3.3) and Lemmas 4.1-4.2, and letting € — 0, we get

0 1
a—f+—(uq>-—q +h(u,y. o) — Py, 4.9)

in the sense of distributions on Ry x R.
The next lemma contains a renormalized formulation of (4.9).

Lemma 4.3. Forany n € C L(R) with n' bounded, Lipschitz continuous on R and n(0) =0, we have

an(q)
ot dx

1_
(un(q)) qn(q) + <5q2 - 612)17’(61) + (h(u, v, ve) — P)1' (@), (4.10)

in the sense of distributions on (R4 x R), where h(u, y, y,) = u* + %)/2 — %yxz

Proof. Denote g€ (¢, x) := (q(t, -) * ¢¢)(x). According to Lemma II.1 of [29], it follows from (4.9) that ¢€ solves

dg€ dg€ 1—
51; u%=(—q2+5q2) (h(t, v, y) — P) % e + e, @.11)

where the error 7. tends to zero in L lloc (R4 x R). Multiplying (4.10) by 1'(g¢), we get

an;fe) +%(""7(qe))= ((%q_z—qz) *¢€>"’(‘1€)+qn(q ) + (A, v, v2) = P) * pe + 1) (¢°)-

(4.12)

Using the boundedness of n, ', we can send € — 0 in (4.12) to obtain (4.11). O
For the strong convergence of d,u. we recall the following results.

Lemma 4.4. (See Appendix C of [48].) Let X be a separable reflexive Banach space and let f" be bounded in
L*°(0,T; X) for some T € (0, 00). We assume that f" € C([0, T]; Y) where Y is a Banach space such that X — Y,
Y’ is separable and dense in X'. Furthermore, (¢, " (t))y'xy is uniformly continuous in t € [0, T] and uniformly in
n 2 1. Then f" is relatively compact in C" ([0, T]; X), the space of continuous functions from [0, T'| with values in X
when the latter space is equipped with its weak topology.

Remark 4.2. If the conditions which f” satisfies in Lemma 4.4 are replaced by the following conditions:
freL®0,T; X), 9 f"eLP0,T;Y) forsome pc (1,00),

and

fn HLI’(()’T;y) < C, Vn > 1,

then the conclusion of Lemma 4.4 holds true.
Lemma 4.5. There holds

. 2 o ) _ 2
tgr(r)lJr/q (t,x)dx—tgr(r)1+/q (t,x)—/uoﬁx(x)dx. (4.13)
R R

R
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Proof. By Lemma 4.1 and Theorem 2.1, for any T > 0, we have u. € L*((0, T); H'(R)), ue,; uniformly bounded in
L%((0,T); L>*(R)) and u, € C([0, T]; H'(R)). Then in view of Lemma 4.4, Remark 4.2 and the proof of Lemma 4.1,
we have that {u.} contains a subsequence, we denote again by {u,}, which converges weakly in H L(R) uniformly
in 7. The limit function is u. This implies that u is weakly continuous from (0, T') into H'(R), i.e.

ueC([0,T; H' (R)).
Thus, we get

q(t,)—ug, inL*R)ast— 07,

Therefore
]iminf/qz(t,x)dx > /u%xdx.
t—0t ’
R R
Similarly,
liminf/ yf(t,x)dx}/yozxdx.
t—0t ’
R R
Then we have
limiEf/(qz(t,x) +y2(t,x))dx > /ugx + v, dx. (4.14)
t—0 ’ !
R R

On the other hand, from (2.3) we obtain

/(uz(t, X) 4 q2(t, %)+ Y2t x) + y2(, x)) dx
R

< liminf / (), ) + (e ) (1 X) + (Ve ) (6, 0) + (e ) (1)) dx
R

<timint [ (")’ @)+ ()’ + 00070 + (P (0) i
R

= /(u% +ug, + Yo + Vo) dx.
R

Again using the continuity of u, y and by Lemma 4.1, we have

lim (uz(t,x)+y2(t,x))dx=/(u(2)+)/02)dx-

t—>0t
R R
Hence
1imsup/(u_§(t,x) +y2(t,x))dx < /(u&x + V) dx. (4.15)
t—0%t
R

Clearly, by (4.5), (4.14)—(4.15) and Lemma 4.2, we get (4.13). This completes the proof of the lemma. O

By (4.8), (4.10), Lemma 3.1, Lemmas 4.1-4.2 and Lemma 4.5, in view of h(u, y, yx) € L (R4 x R), we can
obtain the following result.

Lemma 4.6. Under the assumption of Theorem 1.1, there holds

qe(t,x) = q(t,x) =u,(t,x) aeonRy xR. (4.16)
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The proof of Lemma 4.6 goes along the lines of the analogous results in [51] or [8], so, we omit here.

Proof of Theorem 1.1. By the above results we have

1 1 1 1 1 1
2 2 2 2 2 2 2 2
p * <u6k + Euék’x + Eyfk — EVGM> — p* (u + EM" + Ey — ny>,
P * (uek,xyek,x) — p*(Uxyy),

and

P * (uek,xyek) — px(Uxy),

in the sense of distributions on R4 x R. This implies that z is a global weak solution of (1.1). This completes the
proof of Theorem 1.1. O
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