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Abstract

We obtain the existence of global-in-time weak solutions for the Cauchy problem of a modified two-component Camassa–Holm
equation. The global weak solution is obtained as a limit of viscous approximation. The key elements in our analysis are the Helly
theorem and some a priori one-sided supernorm and space–time higher integrability estimates on the first-order derivatives of
approximation solutions.
© 2011

Résumé

Nous obtenons l’existence globale en temps de solutions faibles pour le problème de Cauchy d’une équation modifiée Camassa–
Holm à deux composantes. La solution faible globale est obtenue comme une limite de par approximation visqueuse. Les éléments
clé dans notre analyse sont le théorème de Helly et certaines estimations a priori de supernorme d’un seul côté et d’intégrabilité
dans l’espace-temps des dérivées premières des solutions approchées.
© 2011
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1. Introduction

In this paper we consider the Cauchy problem of the following modified two-component Camassa–Holm equation:⎧⎪⎪⎨
⎪⎪⎩

mt + umx + 2mux = −ρρx, t > 0, x ∈ R,

ρt + (ρu)x = 0, t > 0, x ∈ R,

m(0, x) = m0(x), x ∈ R,

ρ(0, x) = ρ0(x), x ∈ R,

(1.1)

where m = u − uxx and ρ = (1 − ∂2
x )(ρ − ρ0).
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The Camassa–Holm equation has been recently extended to a two-component integrable system (CH2) by combing
its integrability property with compressibility, or free-surface elevation dynamics in its shallow-water interpreta-
tion [7,25]. Eq. (1.1) was recently introduced by Holm et al. in [40]. The modified two-component Camassa–Holm
equation (MCH2) is written in terms of velocity u and locally averaged density ρ (or depth, in the shallow-water in-
terpretation) and ρ0 is taken to be constant. MCH2 is defined as geodesic motion on the semidirect product Lie group
with respect to a certain metric and is given as a set of Euler–Poincaré equations on the dual of the corresponding Lie
algebra [39].

For ρ ≡ 0, Eq. (1.1) becomes the Camassa–Holm equation, modeling the unidirectional propagation of shallow
water waves over a flat bottom. Here u(t, x) stands for the fluid velocity at time t in the spatial x direction [5,14]. The
Camassa–Holm equation is also a model for the propagation axially symmetric waves in hyperelastic rods [27]. It has
a bi-Hamiltonian structure [9,32] and is completely integrable [5,12]. Its traveling waves (periodic as well as solitary)
are peaked [6], capturing thus the shape of solitary wave solutions to the governing equations for water waves [13,19].
The orbital stability of the peaked solutions is proved in [24]. The explicit interaction of the peaked solutions is given
in [2].

The Cauchy problem for the Camassa–Holm equation has been studied extensively [16,28,47,52]. It has been
shown that this equation is locally well posed [15,28,47,52] for initial data u0 ∈ Hs(R), s > 3

2 . More interesting,
it has global strong solutions [11,15] and also finite time blow-up solutions [11,15–17,28,47]. On the other hand, it
has global weak solutions in H 1(R) [3,4,8,23,36–38,51]. Recently, it was claimed in [46] that the Camassa–Holm
equation might be relevant to the modeling of tsunamis (see also the discussion in [20]).

The advantage of the Camassa–Holm equation in comparison with the KdV equation lies in the fact that while
both KdV and Camassa–Holm equations are completely integrable Hamiltonian systems [10,22,30]; while the inverse
scattering approach was obtained in [18] (see also [33]), in addition to KdV the Camassa–Holm equation has peaked
solitons and models wave breaking [6,16] (by wave breaking we understand that the wave remains bounded while its
slop becomes unbounded in finite time [50]).

Recently, two types of 2-component Camassa–Holm equations have been studied in [7,25,31,34]. These works
have established the local well-posedness [25,31], derived precise blow-up scenarios [31], and proved the existence
of strong solutions which blow up in finite time [25,31,34]. More recently, the Cauchy problem of Eq. (1.1) has been
studied in [35].

However, the existence of global weak solutions to Eq. (1.1) has not been discussed yet. Our aim of this paper is to
prove the existence of global week solutions to Eq. (1.1) provided the initial data satisfying some certain conditions.
We hope that our result sheds some light on important physical phenomena of Eq. (1.1) such as wave breaking. Up to
now, we have no uniqueness result for the obtained global weak solutions to Eq. (1.1). This problem will be discussed
later on. Note that no global existence results for strong solutions to Eq. (1.1) are available so far. Thus, we have to
use the viscous approximation method to prove the existence of global weak solution to Eq. (1.1).

We now provide the framework in which we shall reformulate problem (1.1). With m = u − uxx , ρ = γ − γxx and
γ = ρ − ρ0, we can rewrite Eq. (1.1) as follows:

⎧⎪⎪⎨
⎪⎪⎩

mt + mxu + 2mux = −ργx, t > 0, x ∈ R,

ρt + (uρ)x = 0, t > 0, x ∈ R,

m(0, x) = u0(x) − u0,xx(x), x ∈ R,

ρ(0, x) = γ0 − γ0,xx, x ∈ R.

(1.2)

Note that if p(x) := 1
2e−|x|, x ∈ R, then (1 − ∂2

x )−1f = p ∗ f for all f ∈ L2(R), p ∗ m = u and p ∗ ρ = γ . Here we
denote by ∗ the convolution. Using this identity, we can rewrite Eq. (1.2) as follows:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ut + uux = −∂xp ∗
(

u2 + 1

2
u2

x + 1

2
γ 2 − 1

2
γx

2
)

, t > 0, x ∈ R,

γt + uγx = −p ∗ (
(uxγx)x + uxγ

)
, t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R,

(1.3)
γ (0, x) = γ0(x), x ∈ R.
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The main result of this paper is to give the existence of a globe-in-time weak solution z = ( u
γ

)
to the Cauchy

problem (1.1) with the initial data z0 = ( u0
γ0

) ∈ H 1(R) × H 1(R). Before giving the precise statement of the main
result, we first introduce the definition of a weak solution to the Cauchy problem (1.1).

Definition 1.1. z = ( u
γ

)
is said to be an admissible weak solution to the Cauchy problem (1.1) if

z(t, x) ∈ L∞(
(0,∞);H 1(R) × H 1(R)

)
satisfies Eq. (1.3) and z(t, ·) → z0 as t → 0+ in the sense of distributions, and for any t > 0,∥∥z(t, ·)∥∥

H 1(R)×H 1(R)
� ‖z0‖H 1(R)×H 1(R).

Notation. In our paper, the space of all Radon measures on R is denoted by M(R) and M+(R) denotes the set of all
positive Radon measures.

The main result of this paper can be stated as follows:

Theorem 1.1. Let z0 = ( u0
γ0

) ∈ H 1(R) × H 1(R). If ρ0 = γ0 − γ0,xx ∈ M+(R), then Eq. (1.1) has an admissible weak
solution in the sense of Definition 1.1.

Our paper is organized as follows. In Section 2, we give the approximate solutions zε = ( uε

γε

)
to Eq. (1.1) and

derive the basic energy estimate on zε . In Section 3, the crucial uniform a priori one-side supernorm estimate and
local space–time higher integrability estimate for uε are derived. Moreover, using Helly theorem we get that ∂xγε is
convergent almost everywhere on R+ ×R. Finally, the strong convergence of ∂xuε in L2

loc(R+ ×R) is carried out and
we conclude the proof of the main result in Section 4.

2. Viscous approximate solutions

In the section, we construct the approximate solution sequence zε = zε(t, x) = ( uε(t,x)

γε(t,x)

)
as solutions to the viscous

problem of Eq. (1.1), i.e.,⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ut + uux + ∂xp ∗
(

u2 + 1

2
u2

x + 1

2
γ 2 − 1

2
γx

2
)

= εuxx, t > 0, x ∈ R,

γt + uγx + ∂xp ∗ (uxγx) + p ∗ (uxγ ) = 0, t > 0, x ∈ R,

u(0, x) = uε,0(x), x ∈ R,

γ (0, x) = γε,0(x), x ∈ R,

(2.1)

or the equivalent form:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ut + uux = −∂x

(
1 − ∂2

x

)−1
(

u2 + 1

2
u2

x + 1

2
γ 2 − 1

2
γx

2
)

+ εuxx, t > 0, x ∈ R,

γt + uγx = −(
1 − ∂2

x

)−1(
(uxγx)x + uxγ

)
, t > 0, x ∈ R,

u(0, x) = uε,0(x), x ∈ R,

γ (0, x) = γε,0(x), x ∈ R,

(2.2)

here uε,0(x) = (φε ∗ u0)(x), γε,0(x) = (φε ∗ γ0)(x) ∈ Hs(R), s > 2, and

φε(x) :=
(∫

R

φ(ξ) dξ

)−1 1

ε
φ

(
x

ε

)
, x ∈ R, ε > 0,

where φ ∈ C∞
c (R) is defined by

φ(x) =
{

e1/(x2−1), |x| < 1,
0, |x| � 1.
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Then, we have

‖uε,0‖H 1(R) � ‖u0‖H 1(R), ‖γε,0‖H 1(R) � ‖γ0‖H 1(R),

and

uε,0 → u0, γε,0 → γ0, in H 1(R).

Theorem 2.1. Assume z0 = ( u0
γ0

) ∈ H 1(R) × H 1(R) and ρ0 = γ0 − γ0,xx ∈ M+(R). Then there exists a unique solu-

tion zε = ( uε

γε

) ∈ C(R+;Hs(R) × Hs(R)) ∩ C1(R+;L2(R) × L2(R)), s > 2, to the Cauchy problem (2.1). Moreover,
for each t � 0,

∫
R

(
u2

ε + γ 2
ε +

(
∂uε

∂x

)2

+
(

∂γε

∂x

)2)
(t, x) dx + 2ε

t∫
0

∫
R

((
∂uε

∂x

)2

+
(

∂2uε

∂x2

)2)
(s, x) dx ds

= ‖zε,0‖2
H 1(R)×H 1(R)

� ‖z0‖2
H 1(R)×H 1(R)

, (2.3)

or

∥∥zε(t, ·)
∥∥2

H 1(R)×H 1(R)
+ 2ε

t∫
0

∥∥∥∥∂uε

∂x
(s, ·)

∥∥∥∥
2

H 1(R)

ds = ‖zε,0‖2
H 1(R)×H 1(R)

� ‖z0‖2
H 1(R)×H 1(R)

.

Before proving Theorem 2.1, we recall some useful lemmas.

Lemma 2.1. (See [44].) Let f ∈ Hs(R), s > 3
2 . Then∥∥Λ−r

[
Λr+t+1,Mf

]
Λ−t

∥∥
L2(R)

� c‖f ‖Hs(R), |r|, |t | � s − 1,

where Mf is the operator of multiplication by f and c is a positive constant depending only on r, t .

Lemma 2.2. (See [43].) Let r, t be real numbers such that −r < t � r . Then

‖fg‖Ht (R) � c‖f ‖Hr ‖g‖Ht (R), if r >
1

2
,

‖fg‖
H

t+r− 1
2 (R)

� c‖f ‖Hr(R)‖g‖Ht (R), if r <
1

2
,

where c is a positive constant depending on r, t .

Lemma 2.3. (See [26].) If X1 and X2 are Banach spaces and Ai ∈ G(Xi,1, β), i = 1,2, then the operator

A =
(

A1 0
0 A2

)
∈ G(X1 × X2,1, β)

with D(A) = D(A1) × D(A2).

The strategy of the proof of Theorem 2.1 is rather routine. We use some lemmas to prove this theorem. For the
convenience of presentation, we will omit the subscripts in zε, uε, γε in the following proofs.

Lemma 2.4. Given z0 = ( u0
γ0

) ∈ Hs(R) × Hs(R), s > 2, there exist a maximal T = T (‖z0‖Hs(R)×Hs(R)) > 0, and a

unique solution z = ( u
γ

)
to Eq. (2.1) such that

z = z(·, z0) ∈ C
([0, T );Hs(R) × Hs(R)

)
.

Proof. Let A(z) = ( u∂x−ε∂xx 0
0 u∂x

) = ( A1(z)+A0 0
0 A1(z)

)
and

f (z) =
(−∂x(1 − ∂2

x )−1(u2 + 1
2u2

x + 1
2γ 2 − 1

2γx
2)

2 −1

)
.
−(1 − ∂x ) ((uxγx)x + uxγ )
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Set Y = Hs(R)×Hs(R), X = L2(R)×L2(R), Λ = (1 − ∂2
x )

1
2 and Q = (

Λs 0
0 Λs

)
. Obviously, Q is an isomorphism of

Hs(R)×Hs(R) onto L2(R)×L2(R) and Λs is an isomorphism of Hs(R) onto L2(R). In order to prove Lemma 2.4,
we use Kato’s semigroup approach [43].

We know that A1(z) ∈ G(L2(R),1, β0(z)) in [52]. It is obvious that A0 is a densely defined closed linear operator
in X and is self-adjoint. For every u ∈ D(A0) = H 2(R),

(A0u,u)L2(R) = −ε(∂xxu,u)L2(R) = ε‖∂xu‖2
L2(R)

.

By Corollary 4.4 in Chapter 1 of [49] we have that −A0 is the infinitesimal generator of a C0 semigroup of contractions
on L2(R). By A1(z) ∈ G(L2(R),1, β0(z)), therefore −A1(z)−βI is dissipative for all β � β0(z). Moreover, for every
y ∈ D(A1),∥∥−(

A1(z) + βI
)
y
∥∥

L2(R)
� ‖u‖L∞‖∂xy‖L2(R) + β‖y‖L2(R).

Using integration by parts, for every y ∈ H 2(R), we have

‖∂xy‖2
L2(R)

� ‖y‖L2(R)‖∂xxy‖L2(R)

and ∥∥−(
A1(z) + βI

)
y
∥∥

L2(R)
� ε

2
‖∂xxy‖L2(R) + C‖y‖L2(R) = 1

2
‖ − A0y‖L2(R) + C‖y‖L2(R).

By Corollary 3.3.3 in [49], −A0 − A1(z) − βI is the infinitesimal generator of a C0 semigroup of contractions of
L2(R) for every β � β0(z). Therefore, A1(z) + A0 ∈ G(L2(R),1, β(z)). Then, in view of Lemma 2.3 and A1(z) ∈
G(L2(R),1, β(z)), we have A(z) = ( A1(z)+A0 0

0 A1(z)

) ∈ G(L2(R) × L2(R),1, β(z)).

Now we prove that A(y) ∈ L(Hs(R) × Hs(R),L2(R) × L2(R)) for y ∈ Hs(R) × Hs(R) and we have that∥∥(
A(y) − A(z)

)
w

∥∥
L2(R)×L2(R)

� μ1‖y − z‖L2(R)×L2(R)‖w‖Hs(R)×Hs(R),

for y, z,w ∈ Hs(R) × Hs(R).
Indeed, by the definition of A(z), we deduce that for all z,w ∈ Hs(R) × Hs(R),∥∥A(z)w

∥∥
L2(R)×L2(R)

�
(‖z‖Hs(R)×Hs(R) + ε

)‖w‖Hs(R)×Hs(R).

For all y, z,w ∈ Hs(R) × Hs(R),∥∥(
A(y) − A(z)

)
w

∥∥
L2(R)×L2(R)

�
(‖∂xw1‖L∞(R) + ‖∂xw2‖L∞(R)

)‖y − z‖L2(R)×L2(R)

� ‖y − z‖L2(R)×L2(R)‖w‖Hs(R)×Hs(R).

Note that

B(z)y = QA(z)Q−1y − A(z)y =
( [Λs,u∂x]Λ−sy1 0

0 [Λs,u∂x]Λ−sy2

)
.

Let w ∈ L2(R) × L2(R) and y, z ∈ Hs(R) × Hs(R). Then we have∥∥(
B(y)w − B(z)w

)∥∥
L2(R)×L2(R)

�
∥∥[

Λs, (y1 − u)∂x

]
Λ−sw1

∥∥
L2(R)

+ ∥∥[
Λs, (y1 − u)∂x

]
Λ−sw2

∥∥
L2(R)

�
∥∥[

Λs,y1 − u
]
Λ1−s

∥∥
L(L2(R))

(∥∥Λ−1∂xw1
∥∥

L2(R)
+ ∥∥Λ−1∂xw2

∥∥
L2(R)

)
� c‖y1 − u‖Hs(R)‖w‖L2(R)×L2(R) � c‖y − z‖Hs(R)×Hs(R)‖w‖L2(R)×L2(R),

where we applied Lemma 2.1 with r = 0, t = s − 1 in view of s > 2. Taking y = 0 in the above inequality, we obtain
that B(z) ∈ L(L2(R) × L2(R)).

Finally, we have that (see [35])∥∥f (y) − f (z)
∥∥

Hs(R)×Hs(R)
� μ3‖y − z‖Hs(R)×Hs(R), ∀y, z ∈ Hs(R) × Hs(R).

Thus, we only need to verify that
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∥∥f (y) − f (z)
∥∥

L2(R)×L2(R)

�
∥∥∥∥∂x

(
1 − ∂2

x

)−1
((

y2
1 − u2) + 1

2

(
y2

1,x − u2
x

) + 1

2

(
y2

2 − γ 2) − 1

2

(
y2

2,x − γ 2
x

))∥∥∥∥
L2(R)

+
∥∥∥∥(

1 − ∂2
x

)−1(
(y1,xy2,x − uxγx)x + y1,xy2 − uxγ

)∥∥∥∥
L2(R)

�
∥∥∥∥(

y2
1 − u2) + 1

2

(
y2

1,x − u2
x

) + 1

2

(
y2

2 − γ 2) − 1

2

(
y2

2,x − γ 2
x

)∥∥∥∥
H−1(R)

+ ∥∥(y1,xy2,x − uxγx)x + y1,xy2 − uxγ
∥∥

H−2(R)

� ‖y1 − u‖L2(R)‖y1 + u‖L∞(R) + c

2
‖y1,x − ux‖H−1(R)‖y1,x + ux‖Hs−1(R)

+ 1

2
‖y2 − γ ‖L2(R)‖y2 + γ ‖L∞(R) + c

2
‖y2,x − γx‖H−1(R)‖y2,x + γx‖Hs−1(R)

+ ‖y1,xy2,x − y1,xγx‖H−1(R) + ‖y1,xγx − uxγx‖H−1(R)

+ ‖y1,xy2 − y1,xγ ‖H−1(R) + ‖y1,xγ − uxγ ‖H−1(R)

� ‖y1 − u‖L2(R)‖y1 + u‖L∞(R) + c

2
‖y1,x − ux‖H−1(R)‖y1,x + ux‖Hs−1(R)

+ 1

2
‖y2 − γ ‖L2(R)‖y2 + γ ‖L∞(R) + c

2
‖y2,x − γx‖H−1(R)‖y2,x + γx‖Hs−1(R)

+ c‖y1,x‖Hs−1(R)‖y2,x − γx‖H−1(R) + c‖y1,x − ux‖H−1(R)‖γx‖Hs−1(R)

+ ‖y1,x‖Hs−1(R)‖y2 − γ ‖H−1(R) + c‖y1,x − ux‖H−1(R)‖γ ‖Hs−1(R)

= (3 + 4c)
(‖y‖Hs(R)×Hs(R) + ‖z‖Hs(R)×Hs(R)

)‖y − z‖L2(R)×L2(R),

where we applied Lemma 2.2 with r = s − 1, t = −1. This proves Lemma 2.4. �
Lemma 2.5. Let z0 ∈ Hs(R) × Hs(R), s > 2 and let T > 0 be the maximal existence time of the corresponding
solution z = ( u

γ

)
to Eq. (2.1). Then (2.3) holds for every t ∈ (0, T ).

Proof. Applying Lemma 2.4 and a simple density argument, we only need to show that the above lemma holds for
some s > 2. Here we assume s = 3 to prove the lemma. Differentiating Eq. (2.1) with respect to x and using the
identity ∂2

xp ∗ f = p ∗ f − f , we have{
utx + uuxx + u2

x = εuxxx + f − p ∗ f,

γtx + uxγx + uγxx = −∂xp ∗ (
(uxγx)x + uxγ

)
,

(2.4)

where f = u2 + 1
2u2

x + 1
2γ 2 − 1

2γ 2
x . Denote g = (uxγx)x +uxγ and E(t) = ∫

(u2 +u2
x +γ 2 +γ 2

x ) dx. Using Eq. (2.1)
and Eq. (2.4), and integrating by parts, we obtain

d

dt
E(t) = 2

∫
R

(uut + uxuxt + γ γt + γxγxt ) dx

= 2
∫
R

[
u(−uux − ∂xp ∗ f ) + ux

(−uuxx − u2
x + f − p ∗ f

)

+ γ (−uγx − p ∗ g) + γx(−uxγx − uγxx − ∂xp ∗ g)
]
dx + 2ε

∫
R

(uuxx + uxuxxx) dx

= 2
∫ (

−u∂xp ∗ f − 1

2
u3

x + uxf − uxp ∗ f + 1

2
uxγ

2

R
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− γp ∗ g − 1

2
uxγ

2
x − γx∂xp ∗ g

)
dx − 2ε

∫
R

(
u2

x + u2
xx

)
(s, x) dx

= −2ε

∫
R

(
u2

x + u2
xx

)
(s, x) dx.

Integrating the above equality over (0, t), we get (2.3). �
If z ∈ Hs(R) × Hs(R), s > 2, then by the above lemma we have the following useful inequality∥∥u(t, ·)∥∥2

L∞(R)
+ ∥∥γ (t, ·)∥∥2

L∞(R)
� 1

2
‖u‖2

H 1(R)
+ 1

2
‖γ ‖2

H 1(R)

� 1

2

(‖u0‖2
H 1(R)

+ ‖γ0‖2
H 1(R)

) = 1

2
‖z0‖2

H 1(R)×H 1(R)
(2.5)

for all t ∈ [0, T ).
Now we present the blow-up scenario for the strong solutions to Eq. (2.1).

Lemma 2.6. Let z0 = ( u0
γ0

) ∈ Hs(R) × Hs(R), s > 2 be given and assume that T is the maximal existence time of the

corresponding solution z = ( u
γ

)
of Eq. (2.1) with the initial data z0. Then the Hs(R) × Hs(R)-norm of z(t, ·) blows

up if and only if

lim sup
t→T

{∥∥ux(t, ·)
∥∥

L∞(R)
+ ∥∥γx(t, ·)

∥∥
L∞(R)

} = ∞.

Proof. Let z = ( u
γ

)
be the solution to Eq. (2.1) with the initial data z0 ∈ Hs(R) × Hs(R), s > 2, and let T be the

maximal existence time of the corresponding solution z, which is guaranteed by Lemma 2.4. Throughout this proof,
c > 0 stands for a generic constant depending only on s.

Applying the operator Λs to the first equation in Eq. (2.2), multiplying by Λsu, and integrating over R, we obtain

d

dt
‖u‖2

Hs(R) = −2(uux,u)s − 2
(
u,f (u, γ )

)
s
+ 2ε(uxx, u)s

where

f (u, γ ) = ∂x

(
1 − ∂2

x

)−1
(

u2 + 1

2
u2

x + 1

2
γ 2 − 1

2
γ 2
x

)
.

From the proof of Theorem 3.1 in [35], we know that∣∣(uux,u)s
∣∣ � c‖ux‖L∞(R)‖u‖2

Hs(R)

and ∣∣(f (u, γ ),u
)
s

∣∣ � c
(‖ux‖L∞(R) + ‖γx‖L∞(R) + ‖z0‖H 1(R)×H 1(R)

)(‖γ ‖2
Hs(R) + ‖u‖2

Hs(R)

)
.

Note that 2ε(uxx, u)s = −2ε‖ux‖Hs(R) � 0. Combining the above three inequalities, we get

d

dt
‖u‖2

Hs(R) � c
(‖ux‖L∞(R) + ‖γx |L∞(R) + ‖z0‖H 1(R)×H 1(R)

)(‖γ ‖2
Hs(R) + ‖u‖2

Hs(R)

)
. (2.6)

From the proof of Theorem 3.1 in [35] again, we have

d

dt
‖γ ‖2

Hs(R) � c
(‖ux‖L∞(R) + ‖γx‖L∞(R) + ‖z0‖H 1(R)×H 1(R)

)(‖γ ‖2
Hs(R) + ‖u‖2

Hs(R)

)
. (2.7)

By (2.6) and (2.7), we obtain

d

dt

(‖u‖2
Hs(R) + ‖γ ‖2

Hs(R)

)
� c

(‖ux‖L∞(R) + ‖γx‖L∞(R) + ‖z0‖H 1(R)×H 1(R)

)(‖γ ‖2
Hs(R) + ‖u‖2

Hs(R)

)
.

If there exists M > 0 such that lim supt→T ‖ux(t, ·)‖L∞ + ‖γx(t, ·)‖L∞ � M , then an application of Gronwall’s in-
equality and the assumption of the theorem yield

‖u‖2
Hs(R) + ‖γ ‖2

Hs(R) � exp(cM1t)
(‖u0‖2

Hs(R) + ‖γ0‖2
Hs(R)

)
,

where M1 = M + ‖z0‖H 1(R)×H 1(R).
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On the other hand, by Sobolev’s imbedding theorem, we see that if

lim sup
t→T

{∥∥ux(t, ·)
∥∥

L∞(R)
+ ∥∥γx(t, ·)

∥∥
L∞(R)

} = ∞,

then the solution will blow up in finite time. This completes the proof of the lemma. �
Consider now the following initial value problem{

qt = u(t, q), t ∈ [0, T ),

q(0, x) = x, x ∈ R,
(2.8)

where u denotes the first component of the solution z to Eq. (1.1). The introduction of q is suggested by working in the
Lagrangian framework, cf. [1] and [21] (see also [45]). Applying classical results in the theory of ordinary differential
equations, one can obtain the following result on q which is crucial in the proof of blow-up scenarios.

Lemma 2.7. (See [11].) Let u ∈ C([0, T );Hs(R))∩C1([0, T );Hs−1(R)), s � 2. Then Eq. (2.8) has a unique solution
q ∈ C1([0, T ) × R;R). Moreover, the map q(t, ·) is an increasing diffeomorphism of R with

qx(t, x) = exp

( t∫
0

ux

(
s, q(s, x)

)
ds

)
> 0, ∀(t, x) ∈ [0, T ) × R.

Lemma 2.8. Let z0 ∈ Hs(R) × Hs(R), s > 2 and T > 0 be the maximal existence time of the corresponding solution
z = ( u

γ

)
to Eq. (2.1) guaranteed by Lemma 2.4. If ρ0 = γ0 − γ0,xx does not change sign on R, then we have for all

t ∈ [0, T ),

∥∥γx(t, ·)
∥∥

L∞(R)
�

∥∥γ (t, ·)∥∥
L∞(R)

�
√

2

2
‖z0‖H 1(R)×H 1(R). (2.9)

Moreover, if ρ0 ∈ L1(R) we have∥∥γ (t, ·)∥∥
L1(R)

= ∥∥ρ(t, ·)∥∥
L1(R)

= ‖ρ0‖L1(R), ∀t ∈ [0, T ). (2.10)

Proof. Note that ρ = γ − γxx . Then, form the second equation of (2.4) we have

ρt + (uρ)x = 0. (2.11)

By (2.8) and (2.11), we get

d

dt

(
ρ
(
t, q(t, x)

)
qx(t, x)

) = (ρt + ρxqt )qx + ρqxt = (ρt + ρxqt + ρux)qx = 0.

Thus, we obtain

ρ
(
t, q(t, x)

)
qx(t, x) = ρ0(x). (2.12)

In view of Lemma 2.7, if ρ0 does not change sign on R, then for any t ∈ [0, T ), ρ(t, x) and ρ0 have the same sign
by (2.12). Since γ = p ∗ ρ where p = 1

2e−|x|, we deduce

|γx | = 1

2

∣∣∣∣∣ex

∞∫
x

e−yρ(y) dy − e−x

x∫
−∞

eyρ(y) dy

∣∣∣∣∣
� 1

2

∣∣∣∣∣ex

∞∫
x

e−yρ(y) dy + e−x

x∫
−∞

eyρ(y) dy

∣∣∣∣∣ = |γ |.

Then, by (2.5) we obtain (2.9).
In view of (2.12) and Lemma 2.7, if ρ0 does not change sign on R and ρ0 ∈ L1(R), by the relation γ = p ∗ ρ we

have that γ (t, ·) does not change sign on R. Then, by Eq. (2.1) and (2.11) we obtain (2.10). This completes the proof
of the lemma. �
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From Lemmas 2.6 and 2.8, we obtain the following corollary.

Corollary 2.1. Let z0 = ( u0
γ0

) ∈ Hs(R) × Hs(R), s > 2 be given. Assume that T is the maximal existence time of the

corresponding solution z = ( u
γ

)
to Eq. (2.1) with the initial data z0. If ρ0 = γ0 − γ0,xx does not change sign on R,

then the Hs × Hs -norm of z(t, ·) blows up on [0, T ) if and only if

lim sup
t→T

∥∥ux(t, ·)
∥∥

L∞(R)
= ∞.

Lemma 2.9. Let z0 ∈ Hs(R) × Hs(R), s > 2 and let T > 0 be the maximal existence time of the corresponding
solution z = ( u

γ

)
to Eq. (2.1) guaranteed by Lemma 2.4. If ρ0 = γ0 − γ0,xx does not change sign on R, then we have∥∥ux(t, ·)

∥∥
L∞(R)

� C
(
t + eCt

)
, ∀t ∈ [0, T ), (2.13)

where C depends on ε and ‖z0‖H 2(R)×H 2(R), but does not depend on t .

Proof. By Lemma 2.5, for t ∈ [0, T ) we have that ‖z(t, ·)‖H 1(R)×H 1(R) � C. Differentiating the first equation in (2.4)
with respect to x and using the identity ∂2

xp ∗ f = p ∗ f − f , we get

utxx + uuxxx − εuxxxx = 2uux − 2uxuxx + γ γx − γxγxx − ∂xp ∗ f, (2.14)

where f = u2 + 1
2u2

x + 1
2γ 2 − 1

2γ 2
x . By Lemma 2.5 and Hölder’s inequality, we obtain

‖∂xp ∗ f ‖2
L2(R)

� ‖f ‖2
L1(R)

� ‖z0‖4
H 1(R)×H 1(R)

,

where we have used ‖∂xp‖L2(R) � 1. By (2.3), (2.5) and Lemma 2.8, in view of (2.14), we find

1

2

d

dt

∫
R

u2
xx dx + ε

∫
R

u2
xxx dx

=
∫
R

uxx(−uuxxx + 2uux − 2uxuxx + γ γx − γxγxx − ∂xp ∗ f )dx

= 2
∫
R

uuxuxx dx + 3
∫
R

uuxxuxxx dx +
∫
R

γ γxuxx dx + 1

2

∫
R

(γx)
2uxxx dx −

∫
R

uxx∂xp ∗ f dx

� ‖u‖L∞(R)‖ux‖2
H 1(R)

+ ε

2
‖uxxx‖2

L2(R)
+ 9‖u‖2

L∞(R)

2ε
‖uxx‖2

L2(R)
+ ‖γ ‖L∞(R)

2

(‖γx‖2
L2(R)

+ ‖uxx‖2
L2(R)

)
+ 1

2

(‖uxx‖2
L2(R)

+ ‖z0‖4
H 1(R)×H 1(R)

) + ε

2
‖uxxx‖2

L2(R)
+ 1

4ε
‖γx‖4

L4(R)

� C1

∫
R

u2
xx dx + C2 + ε

∫
R

u2
xxx dx, (2.15)

here C1 and C2 only depend on ε and ‖z0‖H 1(R)×H 1(R). Then, by (2.15) and Gronwall’s inequality, we have∥∥uxx(t, ·)
∥∥2

L2(R)
� eC1t‖u0,xx‖2

L2(R)
+ C2t.

Combining this with (2.3) shows that there exists a positive constant C = C(ε,‖z0‖H 2(R)×H 2(R)) such that∥∥u(t, ·)∥∥
H 2(R)

� C
(
t + eCt

)
, ∀t ∈ [0, T ),

which implies that ‖ux(t, ·)‖L∞(R) � C(t + eCt ) for all t ∈ [0, T ). �
Combining Lemmas 2.3–2.9 and Corollary 2.1, using Kato’s semigroup approach we have that Eq. (2.1) has a

global strong solution and (2.3) holds true for all t � 0. This completes the proof of Theorem 2.1.
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3. Uniform a priori estimates

Let z0 ∈ H 1(R)×H 1(R) and let zε(t, x) be the solution to (2.1). The long-time existence of zε(t, x) is guaranteed
by Theorem 2.1. Moreover, it satisfies the energy identity (2.3). To obtain the compactness of this approximate solution
sequence {zε(t, x)} in L2

loc(R+;H 1
loc(R) × H 1

loc(R)), a priori estimates in addition to (2.3) are needed. In this section,
we derive the uniform one-sided supernorm estimate and the space–time higher integrability estimate on ∂xuε(t, x),
which are essential for our compactness argument.

We denote qε = ∂uε

∂x
, πε = ∂γε

∂x
and ρε = γε − γε,xx in the following text.

Remark 3.1. Note that ρ0,ε = φε ∗ ρ0 � 0 and ‖ρ0,ε‖L1(R) � ‖ρ0‖M(R), for all ε > 0, provided ρ0 ∈ M+(R). Thus,
by Lemma 2.4 and Lemma 2.8, we have

∥∥πε(t, ·)
∥∥

L∞(R)
�

∥∥γε(t, ·)
∥∥

L∞(R)
�

√
2

2
‖z0,ε‖H 1(R)×H 1(R) �

√
2

2
‖z0‖H 1(R)×H 1(R). (3.1)

Using Remark 3.1, we have the following uniform one-side supernorm estimate on qε(t, x).

Lemma 3.1. If ρ0 ∈ M+(R), then for each t > 0 and x ∈ R, we have

qε(t, x) � 2

t
+ √

2‖z0‖H 1(R)×H 1(R). (3.2)

Proof. By the first equation of (2.4), we have

∂qε

∂t
+ uε

∂qε

∂x
+ 1

2
(qε)

2 − ε∂xxqε = (uε)
2 + 1

2
(γε)

2 − 1

2
(πε)

2 − p ∗ f, (3.3)

where f = (uε)
2 + 1

2 (qε)
2 + 1

2γ 2
ε − 1

2π2
ε . By Lemma 2.4, we get

∥∥(uε)
2(t, ·)∥∥

L∞(R)
+ ∥∥(γε)

2(t, ·)∥∥
L∞(R)

� 1

2

(∥∥uε(t, ·)
∥∥2

H 1(R)
+ ∥∥γε(t, ·)

∥∥2
H 1(R)

)
� 1

2
‖z0‖2

H 1(R)×H 1(R)
,

and

∥∥(p ∗ f )(t, ·)∥∥
L∞(R)

� ‖p‖L∞(R)

∥∥∥∥
(

(uε)
2 + 1

2
(qε)

2 + 1

2
γ 2
ε − 1

2
π2

ε

)
(t, ·)

∥∥∥∥
L1(R)

� 1

2
‖zε‖2

H 1(R)×H 1(R)
� 1

2
‖z0‖2

H 1(R)×H 1(R)
,

where we have used ‖p‖L∞(R) = 1
2 . Due to the above two inequalities, we obtain

∂qε

∂t
+ uε

∂qε

∂x
+ 1

2
(qε)

2 − ε∂xxqε � ‖z0‖2
H 1(R)×H 1(R)

, ∀(t, x) ∈ R+ × R.

Now, let F(t) = 2
t
+ √

2‖z0‖H 1(R)×H 1(R). It is obvious that for any t > 0,

dF

dt
+ 1

2
F 2 = ‖z0‖2

H 1(R)×H 1(R)
+ 2

√
2‖z0‖H 1(R)×H 1(R)

t
> ‖z0‖2

H 1(R)×H 1(R)
,

qε(0, x) � ‖z0ε‖H 2(R)×H 2(R), and limt→0+ F(t) = +∞. Then the comparison principle for parabolic equations yields

qε(t, x) � F(t), ∀t > 0, x ∈ R.

Therefore, the estimate (3.2) is proven. �
Next, we derive the uniform local space–time higher integrability estimate for qε .
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Lemma 3.2. Let 0 < α < 1, T > 0 and a, b ∈ R, a < b. Under the assumption of Theorem 1.1, there exists a positive
constant C depending only on ‖z0‖H 1(R)×H 1(R), α,T , a and b, but being independent of ε such that

T∫
0

b∫
a

∣∣∣∣∂uε

∂x
(t, x)

∣∣∣∣
2+α

dx dt � C. (3.4)

Proof. Let χ ∈ C∞(R) be a cut-off function such that

0 � χ � 1, χ(x) =
{

1, x ∈ [a, b],
0, x ∈ (−∞, a − 1] ∪ [b + 1,∞).

Consider the map θ(ξ) := ξ(|ξ | + 1)α , ξ ∈ R, which was introduced in [8]. Obviously,

θ ′(ξ) = (
(α + 1)|ξ | + 1

)(|ξ | + 1
)α−1

,∣∣θ(ξ)
∣∣ � |ξ |α+1 + |ξ |, 0 < θ ′(ξ) � (α + 1)|ξ | + 1,

∣∣θ ′′(ξ)
∣∣ � 2α, (3.5)

ξθ(ξ) − 1

2
ξ2θ ′(ξ) � 1 − α

2
ξ2(|ξ | + 1

)α
. (3.6)

Multiplying the first equation of (2.4) by χθ ′(qε), using the chain rule, and integrating over
∏

T := [0, T ] × R, we
get ∫

R

χ(x)
(
θ
(
qε(T , x)

) − θ
(
qε(0, x)

))
dx −

∫
∏

T

qεχ(x)θ(qε) dx dt −
∫

∏
T

uεχ
′(x)θ(qε) dx dt

+ 1

2

∫
∏

T

χ(x)q2
ε θ ′(qε) dx dt + ε

∫
∏

T

∂qε

∂x
χ ′(x)θ ′(qε) dx dt + ε

∫
∏

T

(
∂qε

∂x

)2

χ(x)θ ′′(qε) dx dt

=
∫

∏
T

(
u2

ε + 1

2
γ 2
ε − 1

2
πε − Pε

)
χ(x)θ ′(qε) dx dt,

where Pε = p ∗ (u2
ε + 1

2q2
ε + 1

2γ 2
ε − 1

2π2
ε ). Then∫

∏
T

χqεθ(qε) dx dt − 1

2

∫
∏

T

q2
ε χθ ′(qε) dx dt =

∫
R

χ
(
θ
(
qε(T , x)

) − θ
(
qε(0, x)

))
dx −

∫
∏

T

uεχ
′(x)θ(qε) dx dt

+ ε

∫
∏

T

∂qε

∂x
χ ′(x)θ ′(qε) dx dt + ε

∫
∏

T

(
∂qε

∂x

)2

χ(x)θ ′′(qε) dx dt

−
∫

∏
T

(
u2

ε + 1

2
γ 2
ε − 1

2
π2

ε − Pε

)
χ(x)θ ′(qε) dx dt. (3.7)

By (3.6), we have∫
∏

T

χqεθ(qε) dx dt − 1

2

∫
∏

T

q2
ε χ(x)θ ′(qε) dx dt =

∫
∏

T

χ(x)

(
qεθ(qε) − 1

2
q2
ε θ ′(qε)

)
dx dt

� 1 − α

2

∫
∏

T

χ(x)q2
ε

(|qε | + 1
)α

dx dt. (3.8)

Using Hölder’s inequality, the first part of (3.5) and Theorem 2.1, we obtain
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∫
R

χ(x)θ(qε) dx �
∫
R

χ(x)
(|qε |α+1 + |qε |

)
dx � ‖χ‖L2/(1−α)(R)

∥∥qε(t, ·)
∥∥α+1

L2(R)
+ ‖χ‖L2(R)

∥∥qε(t, ·)
∥∥

L2(R)

� (b − a + 2)(1−α)/2‖z0‖α+1
H 1(R)×H 1(R)

+ (b − a + 2)1/2‖z0‖H 1(R)×H 1(R), (3.9)

and ∣∣∣∣
∫

∏
T

uεχ
′(x)θ(qε) dx dt

∣∣∣∣ � ‖uε‖L∞
∫

∏
T

∣∣χ ′(x)
∣∣(|qε |α+1 + |qε |

)
dx dt

�
√

2

2
‖z0‖H 1(R)×H 1(R)

T∫
0

∥∥χ ′∥∥
L2/(1−α)(R)

∥∥qε(t, ·)
∥∥α+1

L2(R)
dt

+
√

2

2
‖z0‖H 1(R)×H 1(R)

T∫
0

∥∥χ ′∥∥
L2(R)

∥∥qε(t, ·)
∥∥

L2(R)
dt

�
√

2T

2
‖z0‖α+2

H 1(R)×H 1(R)

∥∥χ ′∥∥
L2/(1−α)(R)

+
√

2T

2
‖z0‖2

H 1(R)×H 1(R)

∥∥χ ′∥∥
L2(R)

. (3.10)

Moreover, we get

ε

∫
∏

T

∂qε

∂x
χ ′(x)θ ′(qε) dx dt = −ε

∫
∏

T

χ ′′(x)θ(qε) dx dt.

Again by Hölder’s inequality, (2.5) and the first part of (3.5), we have∣∣∣∣
∫

∏
T

∂qε

∂x
χ ′(x)θ ′(qε) dx dt

∣∣∣∣ �
∫

∏
T

∣∣χ ′′(x)
∣∣∣∣θ(qε)

∣∣dx dt

�
∫

∏
T

(|qε |α+1 + |qε |
)∣∣χ ′′(x)

∣∣dx dt

�
T∫

0

(∥∥χ ′′∥∥
L2/(1−α)(R)

∥∥qε(t, ·)
∥∥α+1

L2(R)
+ ∥∥χ ′′∥∥

L2(R)

∥∥qε(t, ·)
∥∥

L2(R)

)
dt

� T
(∥∥χ ′′∥∥

L2/(1−α)(R)
‖z0‖α+1

H 1(R)×H 1(R)
+ ∥∥χ ′′∥∥

L2(R)

∥∥z0(t, ·)
∥∥

H 1(R)×H 1(R)

)
. (3.11)

Using (2.3), (2.5) and the third part of (3.5), we deduce that

ε

∣∣∣∣
∫

∏
T

(
∂qε

∂x

)2

χ(x)θ ′′(qε) dx dt

∣∣∣∣ � 2αε

∣∣∣∣
∫

∏
T

(
∂qε

∂x

)2

dx dt

∣∣∣∣ � α‖z0‖2
H 1(R)×H 1(R)

. (3.12)

Based on Lemma 3.2 and Remark 3.1, there exists a constant L > 0 depending only on ‖z0‖H 1(R)×H 1(R), such that

‖(uε)
2 + 1

2 (γε)
2 − 1

2π2
ε − Pε‖L∞(R+×R) � L. Using the second part of (3.5), we obtain∫

∏
T

(
u2

ε + 1

2
γ 2
ε − 1

2
π2

ε − Pε

)
χθ ′(qε) dx dt

� L

∫
∏ χ(x)

(
(α + 1)|qε | + 1

)
dx dt
T
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� L

T∫
0

(
(α + 1)‖χ‖L2(R)

∥∥qε(t, ·)
∥∥

L2(R)
+ ‖χ‖L1(R)

)
dt

� LT
(
(α + 1)(b − a + 2)1/2‖z0‖H 1(R)×H 1(R) + (b − a + 2)

)
. (3.13)

From (3.7)–(3.13), we see that there exists a constant c > 0 depending only on ‖z0‖H 1(R)×H 1(R), α, T > 0, a and b,
but being independent of ε, such that

1 − α

2

∫
∏

T

χ(x)q2
ε

(|qε | + 1
)α

dx dt � c.

Then
T∫

0

b∫
a

∣∣∣∣∂uε

∂x
(t, x)

∣∣∣∣
2+α

dx dt �
∫

∏
T

χ(x)q2
ε

(|qε | + 1
)α

dx dt � 2c

1 − α
.

This completes the proof of the lemma. �
4. Precompactness and existence

With the basic energy estimate and sign condition with ρε in Section 2 and the uniform a priori estimates in
Section 3, we are now ready to obtain the necessary compactness of the viscous approximate solutions zε(t, x). We
start with the weak compactness in L∞(R+,H 1(R) × H 1(R)).

In this section we denote P1,ε = p ∗ (u2
ε + 1

2q2
ε + 1

2γ 2
ε − 1

2π2
ε ), P2,ε = p ∗ (qεπε) and P3,ε = p ∗ (qεγε), where

qε = ∂xuε , πε = ∂xγε as in Section 3.

Lemma 4.1. Under the assumption of Theorem 1.1, there exist a subsequence {zεk
(t, x),P1,εk

(t, x)} of the se-
quence {zε(t, x),P1,ε(t, x)} and some functions z(t, x),P1(t, x) with z = ( u

γ

) ∈ L∞(R+,H 1(R) × H 1(R)), P1 ∈
L∞(R+,W 1,∞(R)), such that

zεk
→ z and P1,εk

→ P1, as k → ∞,

uniformly on any compact subset of R+ × R.

Proof. It follows from Theorem 2.1 that {zε(t, x)} is uniformly bounded in L∞(R+,H 1(R) × H 1(R)). Also,
{∂t zε(t, x)} is uniformly bounded in L2([0, T ] × R) × L2([0, T ] × R) for T > 0. Indeed, by (2.3) and Eq. (2.1),
we get∥∥Pi,ε(t, ·)

∥∥
L2(R)

� ‖p‖L2(R)

∥∥zε(t, ·)
∥∥2

H 1(R)×H 1(R)
� ‖z0‖2

H 1(R)×H 1(R)
, (4.1)∥∥∂xPi,ε(t, ·)

∥∥
L2(R)

� ‖∂xp‖L2(R)

∥∥zε(t, ·)
∥∥2

H 1(R)×H 1(R)
� ‖z0‖2

H 1(R)×H 1(R)
, (4.2)

here i = 1,2,3. Thus, by Corollary 8.4 in [42], there exist z ∈ C((0, T );L∞(R) × L∞(R)) and a subsequence
{zεk

(t, x)} such that {zεk
(t, x)} is weakly compact in C((0, T );L∞(R) × L∞(R)) and {zεk

(t, x)} converges to z(t, x)

uniformly on each compact subset of R+ × R as k → ∞. Moreover, z(t, x) ∈ C((0, T ) × R) ∩ L∞((0, T );H 1(R) ×
H 1(R)).

Next, we turn to the compactness of {P1,ε}. First, by (4.1) and (4.2), we have that {P1,ε} is uniformly bounded in
L∞(R+,H 1(R)). Now we estimate ∂tP1,ε . Note that

∂P1ε

∂t
= p ∗ (2uε∂tuε + qε∂tqε + γε∂tγε − πε∂tπε)

= p ∗ (2uε∂tuε + γε∂tγε) + p ∗
(

qε

(
−uε∂xqε − 1

2
q2
ε + ε∂2

xqε + u2
ε + 1

2
γ 2
ε − 1

2
π2

ε − P1ε

))
− p ∗ (

πε(−uε∂xπε − P2ε − ∂xP3ε)
) = I1 + I2 − I3.
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By (2.3), (2.5) and Eq. (2.1), we obtain that I1 = p ∗ (2uε∂tuε + γε∂tγε) is uniformly bounded in L2([0, T ] × R) for
any T > 0. Since

−uεqε∂xqε − 1

2
(qε)

3 = −1

2

(
uεq

2
ε

)
x

and qε∂
2
xqε = ∂x(qε∂xqε) − (∂xqε)

2, it follows that

I2 = p ∗
(

qε

(
−uε∂xqε − 1

2
q2
ε + ε∂2

xqε + u2
ε + 1

2
γ 2
ε − 1

2
π2

ε − P1ε

))

= p ∗
(

qε

(
u2

ε + 1

2
γ 2
ε − 1

2
π2

ε − P1ε

)
− ε(∂xqε)

2
)

− p ∗
(

1

2
uεq

2
ε − εqε∂xqε

)
x

.

By (2.3), (2.5) and (3.1), we get

‖I2‖2
L2((0,T )×R)

�
T∫

0

‖p‖2
L2(R)

∥∥∥∥
(

qε

(
u2

ε + 1

2
γ 2
ε − 1

2
π2

ε − P1ε

)
− ε(∂xqε)

2
)

(t, ·)
∥∥∥∥

2

L1(R)

dt

+
T∫

0

‖∂xp‖2
L2(R)

∥∥∥∥
(

1

2
uεq

2
ε − εqε∂xqε

)
(t, ·)

∥∥∥∥
2

L1(R)

dt

� C
(
T ,‖z0‖H 1(R)×H 1(R)

)
.

Next we estimate the last term. By (2.3), (2.5) and (3.1), in view of uεπε∂xπε = 1
2∂x(uεπ

2
ε ) − 1

2qεπ
2
ε , we have

‖I3‖2
L2((0,T )×R)

�
T∫

0

‖p‖2
L2(R)

∥∥∥∥
(

πε(−P2ε − ∂xP3ε) + 1

2
qεπ

2
ε

)
(t, ·)

∥∥∥∥
2

L1(R)

dt

+
T∫

0

‖∂xp‖2
L2(R)

∥∥∥∥
(

−1

2
uεπ

2
ε

)
(t, ·)

∥∥∥∥
2

L1(R)

dt

� C
(
T ,‖z0‖H 1(R)×H 1(R)

)
.

Thus we prove that ∂P1,ε

∂t
are uniformly bounded in L2((0, T ) × R) for every T > 0. Consequently, by Corollary 8.4

in [42], there exist P1 ∈ C((0, T );L∞(R)×L∞(R)) and a subsequence {P1,εk
(t, x)} such that {P1,εk

(t, x)} is weakly
compact in C((0, T );L∞(R) × L∞(R)) and {P1,εk

(t, x)} converges to P1(t, x) uniformly on each compact subset of
R+ × R as k → ∞. Moreover, P1(t, x) ∈ C((0, T ) × R) ∩ L∞((0, T );H 1(R) × H 1(R)).

By Hölder’s inequality, we have

∥∥P1ε(t, ·)
∥∥

L∞(R)
� ‖p‖L∞(R)

∥∥∥∥
(

u2
ε + 1

2
q2
ε + 1

2
γ 2
ε − 1

2
π2

ε

)
(t, ·)

∥∥∥∥
L1(R)

� 1

2
‖z0‖2

H 1(R)×H 1(R)

and ∥∥∂xP1ε(t, ·)
∥∥

L∞(R)
� ‖∂xp‖L∞(R)

∥∥∥∥
(

u2
ε + 1

2
q2
ε + 1

2
γ 2
ε − 1

2
π2

ε

)
(t, ·)

∥∥∥∥
L1(R)

� 1

2
‖z0‖2

H 1(R)×H 1(R)
.

Thus, we have P1 ∈ L∞(R+,W 1,∞(R)). This completes the proof of the lemma. �
Next, we prove the stronger convergence result, i.e.

∂xzε → ∂xz as ε → 0+ in L2
loc(R+ × R) × L2

loc(R+ × R).
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Lemma 4.2. Assume z0 = ( u0
γ0

) ∈ H 1(R) × H 1(R) with ρ0 = γ0 − γ0,xx ∈ M+(R). Let zε = ( uε

γε

)
be the solution to

Eq. (2.1) with initial data zε,0 = ( (φε∗u0)(x)

(φε∗γ0)(x)

)
which is guaranteed by Theorem 2.1. Then, there exists a subsequence

{πεk
} such that

πεk
(t, x) → π(t, x) = γx(t, x) as k → ∞ a.e. on R+ × R. (4.3)

Proof. Note that ρ0 = γ0 − γ0,xx ∈ M+(R). Then we have

ρ0,ε := γ0,ε − γ0,ε,xx = φε ∗ ρ0 � 0

and

‖ρ0,ε‖L1(R) � ‖ρ0‖M, 0 < ε < 1.

By Lemma 4.1, for fixed T > 0, we have

γεk
⇀ γ, in H 1([0, T ] × R

)
, and γεk

→ γ, uniformly in A ⊂ R+ × R,

where A is an any compact subset of R+ × R. By Eq. (2.1), Lemma 2.8, (2.9)–(2.10) and (3.1), for fixed t ∈ (0, T ),
we deduce that the sequence πε(t, ·) ∈ BV (R) with

V
[
πε(t, ·)

] = ∥∥γε,xx(t, ·)
∥∥

L1(R)
�

∥∥γε(t, ·)
∥∥

L1(R)
+ ∥∥ρε(t, ·)

∥∥
L1(R)

� 2‖ρ0‖M(R)

and ∥∥πε(t, ·)
∥∥

L∞(R)
�

∥∥γε(t, ·)
∥∥

L∞(R)
�

√
2

2
‖z0,ε‖H 1(R)×H 1(R) �

√
2

2
‖z0‖H 1(R)×H 1(R).

Here BV (R) is the space of functions with bounded variation and V(f ) is the total variation of f ∈ BV (R),
cf. [41]. By Helly’s theorem (see [41, p. 222]), there exists a subsequence, denoted again {πεk

(t, ·)}, which con-
verges at every point to some function v(t, ·) of finite variation with V(v(t, ·)) � 2‖ρ0‖M(R). Since for almost all
t ∈ (0, T ), πεk

(t, ·) → γx(t, ·) in D′(R), this enables us to identify v(t, ·) with γx(t, ·) for a.e. t ∈ (0, T ). Therefore
πε(t, x) → π(t, x) = γx(t, x) a.e. on R+ × R, and V(γx(t, ·)) = ‖γxx(t, ·)‖M(R) � 2‖ρ0‖M(R), for a.e. t ∈ (0, T ).
This completes the proof of the lemma. �
Remark 4.1. From Lemma 3.2 and Lemma 4.1, we can deduce that there exist two functions q ∈ L

p

loc(R+ × R),

q2 ∈ Lr
loc(R+ × R) such that

qεk
⇀ q in L

p

loc(R+ × R), q2
εk

⇀ q2 in Lr
loc(R+ × R), (4.4)

for every 1 < p < 3, 1 < r < 3
2 . Moreover,

q2(t, x) � q2(t, x), a.e. (t, x) ∈ R+ × R. (4.5)

In view of (4.4), we conclude that for any convex η ∈ C1(R) with η′ bounded, Lipschitz continuous on R, η(0) = 0
and any 1 < p < 3, we have

η(qεk
) ⇀ η(q) in L

p

loc(R+ × R). (4.6)

By Lemma 2.8 and Lemmas 4.1–4.2, in view of (2.3), (2.5) and (4.4), we have(
u2

εk
+ 1

2
γ 2
εk

− 1

2
π2

εk
− P1,εk

)
η(qε) ⇀

(
h(u, γ, γx) − P1

)
η(q) in L

p

loc(R+ × R), (4.7)

where h(u, γ, γx) = u2 + 1
2γ 2 − 1

2γ 2
x .

Multiplying Eq. (3.3) by η′(qε), we get

∂

∂t
η(qε) + ∂

∂x

(
uεη(qε)

) = qεη(qε) − 1

2
q2
ε η′(qε)

+
(

u2
ε + 1

γ 2
ε − 1

π2
ε − P1,ε

)
η′(qε) − ε∂x

(
η′(qε)∂xqε

) − εη′′(qε)(∂xqε)
2.
2 2
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Note that {√ε∂xqε} is uniformly bounded in L2(R+ × R) due to Theorem 2.1. Taking ε → 0, due to the convexity
of η, by Lemma 4.1 and (4.6)–(4.7) we obtain that

∂η(q)

∂t
+ ∂

∂x

(
uη(q)

)
� qη(q) − 1

2
q2η′(q) + (

h(u, γ, γx) − P1
)
η′(q), (4.8)

in the sense of distributions on R+ × R, here f is the limit of fεk
in the sense of distributions on R+ × R.

Using (3.3) and Lemmas 4.1–4.2, and letting ε → 0, we get

∂q

∂t
+ ∂

∂x
(uq) = 1

2
q2 + h(u, γ, γx) − P1, (4.9)

in the sense of distributions on R+ × R.
The next lemma contains a renormalized formulation of (4.9).

Lemma 4.3. For any η ∈ C1(R) with η′ bounded, Lipschitz continuous on R and η(0) = 0, we have

∂η(q)

∂t
+ ∂

∂x

(
uη(q)

) = qη(q) +
(

1

2
q2 − q2

)
η′(q) + (

h(u, γ, γx) − P1
)
η′(q), (4.10)

in the sense of distributions on (R+ × R), where h(u, γ, γx) = u2 + 1
2γ 2 − 1

2γ 2
x .

Proof. Denote qε(t, x) := (q(t, ·) ∗ φε)(x). According to Lemma II.1 of [29], it follows from (4.9) that qε solves

∂qε

∂t
+ u

∂qε

∂x
=

(
−q2 + 1

2
q2

)
+ (

h(u, γ, γx) − P
) ∗ φε + τε, (4.11)

where the error τε tends to zero in L1
loc(R+ × R). Multiplying (4.10) by η′(qε), we get

∂η(qε)

∂t
+ ∂

∂x

(
uη

(
qε

)) =
((

1

2
q2 − q2

)
∗ φε

)
η′(qε

) + qη
(
qε

) + ((
h(u, γ, γx) − P

) ∗ φε + τε

)
η′(qε

)
.

(4.12)

Using the boundedness of η,η′, we can send ε → 0 in (4.12) to obtain (4.11). �
For the strong convergence of ∂xuε we recall the following results.

Lemma 4.4. (See Appendix C of [48].) Let X be a separable reflexive Banach space and let f n be bounded in
L∞(0, T ;X) for some T ∈ (0,∞). We assume that f n ∈ C([0, T ];Y) where Y is a Banach space such that X ↪→ Y ,
Y ′ is separable and dense in X′. Furthermore, (φ,f n(t))Y ′×Y is uniformly continuous in t ∈ [0, T ] and uniformly in
n � 1. Then f n is relatively compact in Cw([0, T ];X), the space of continuous functions from [0, T ] with values in X

when the latter space is equipped with its weak topology.

Remark 4.2. If the conditions which f n satisfies in Lemma 4.4 are replaced by the following conditions:

f n ∈ L∞(0, T ;X), ∂tf
n ∈ Lp(0, T ;Y) for some p ∈ (1,∞),

and ∥∥f n
∥∥

L∞(0,T ;X)
,
∥∥∂tf

n
∥∥

Lp(0,T ;Y)
� C, ∀n � 1,

then the conclusion of Lemma 4.4 holds true.

Lemma 4.5. There holds

lim
t→0+

∫
R

q2(t, x) dx = lim
t→0+

∫
R

q2(t, x) =
∫
R

u2
0,x(x) dx. (4.13)
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Proof. By Lemma 4.1 and Theorem 2.1, for any T > 0, we have uε ∈ L∞((0, T );H 1(R)), uε,t uniformly bounded in
L∞((0, T );L2(R)) and uε ∈ C([0, T ];H 1(R)). Then in view of Lemma 4.4, Remark 4.2 and the proof of Lemma 4.1,
we have that {uε} contains a subsequence, we denote again by {uεk

}, which converges weakly in H 1(R) uniformly
in t . The limit function is u. This implies that u is weakly continuous from (0, T ) into H 1(R), i.e.

u ∈ Cw
([0, T ];H 1(R)

)
.

Thus, we get

q(t, ·) ⇀ u0,x in L2(R) as t → 0+.

Therefore

lim inf
t→0+

∫
R

q2(t, x) dx �
∫
R

u2
0,x dx.

Similarly,

lim inf
t→0+

∫
R

γ 2
x (t, x) dx �

∫
R

γ 2
0,x dx.

Then we have

lim inf
t→0+

∫
R

(
q2(t, x) + γ 2

x (t, x)
)
dx �

∫
R

u2
0,x + γ 2

0,x dx. (4.14)

On the other hand, from (2.3) we obtain∫
R

(
u2(t, x) + q2(t, x) + γ 2(t, x) + γ 2

x (t, x)
)
dx

� lim inf
k→∞

∫
R

(
(uεk

)2(t, x) + (uεk,x)
2(t, x) + (γεk

)2(t, x) + (γεk,x)
2(t, x)

)
dx

� lim inf
k→∞

∫
R

((
u

nk

0

)2
(x) + (

u
nk

0,x

)2
(x) + (γ0,εk

)2(x) + (γ0,εk,x)
2(x)

)
dx

=
∫
R

(
u2

0 + u2
0,x + γ 2

0 + γ 2
0,x

)
dx.

Again using the continuity of u, γ and by Lemma 4.1, we have

lim
t→0+

∫
R

(
u2(t, x) + γ 2(t, x)

)
dx =

∫
R

(
u2

0 + γ 2
0

)
dx.

Hence

lim sup
t→0+

∫
R

(
u2

x(t, x) + γ 2(t, x)
)
dx �

∫
R

(
u2

0,x + γ 2
0,x

)
dx. (4.15)

Clearly, by (4.5), (4.14)–(4.15) and Lemma 4.2, we get (4.13). This completes the proof of the lemma. �
By (4.8), (4.10), Lemma 3.1, Lemmas 4.1–4.2 and Lemma 4.5, in view of h(u, γ, γx) ∈ L∞(R+ × R), we can

obtain the following result.

Lemma 4.6. Under the assumption of Theorem 1.1, there holds

qε(t, x) → q(t, x) = ux(t, x) a.e. on R+ × R. (4.16)
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The proof of Lemma 4.6 goes along the lines of the analogous results in [51] or [8], so, we omit here.

Proof of Theorem 1.1. By the above results we have

p ∗
(

u2
εk

+ 1

2
u2

εk,x
+ 1

2
γ 2
εk

− 1

2
γ 2
εk,x

)
→ p ∗

(
u2 + 1

2
u2

x + 1

2
γ 2 − 1

2
γ 2
x

)
,

p ∗ (uεk,xγεk,x) → p ∗ (uxγx),

and

p ∗ (uεk,xγεk
) → p ∗ (uxγ ),

in the sense of distributions on R+ × R. This implies that z is a global weak solution of (1.1). This completes the
proof of Theorem 1.1. �
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