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Abstract

In 1995, Constantin, Foias, Kukavica, and Majda had shown that the 2-D space periodic Navier—Stokes equations have a rich
set of the solutions that exist for all times R and grow exponentially in Sobolel1 norm whens — —oc. In the present
note we show that these solutions grow exponentially (when—oo) in any Sobolevi™ norm (m > 2) provided the driving
force is bounded i ~1 norm.
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Résumé
En 1995 Constantin, Foias, Kukavica et Majda ont demontré que les équations de Navier—Stokes périodififesatmgs
dent un ensemble ample des solutions qui existent pour tout teaiRset qui ont une croissance exponentielle (pods —oo)
dans I'espace de Sobolg¥l. Dans cet article nous montrons que ces solutions ont aussi une croissance exponentielle (pour

t — —o0) dans tout espace de SobolE{" (m > 2) & condition que la force soit dans 'espace de Sobalév L.
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1. Introduction

One of the remarkable properties of the 2-D space periodic Navier—Stokes equations is the richness of the set of
initial data for which the solutions exist for all time& R and increase exponentially as> —oo. These solutions
were studied in [3], where, among other results, it was proveddhats such a solution if and only if its Dirichlet
quotient| AY2u(1)|1?/|u(t)|? — A, ast — —oo (here| - | is the L2-norm, A is the Stokes operator, ang is one
of its eigenvalues — see Section 2 for more precise definitions). The invariakt,sef all the trajectories of these
solutions is proved to project entirely onto the spectral space associated with thesigsnvalues of the Stokes
operator (cf. [3]). This fact implied the only known partial answer to the Bardos—Tartar conjecture (cf. [3]). This
conjecture (cf. [1]) affirms that the set of initial data for which solutions of the 2-D space periodic Navier—Stokes
equations exist for all times is dense in the phase space equipped with the energy norm (Zedta in this
case). However, in [3] the density was proved in the npgm1/2 . |.

The paper [3] also raised a number of questions regarding the geometric structdye Bbr example, it would
be interesting to investigate the relationship between these sets and the other invariant sets of the Navier—Stoke:s
equations, namely the global attractor and inertial manifolds.

Another open question is whethlef, M,, is dense in the energy norm of the phase space, which, if answered
affirmatively, would solve the Bardos—Tartar conjecture in the energy norm. The study of higher order quotients
on the sets\,, is of particular interest in this respect. In fact, a good result about boundedness of quotients of the
form |A%u|?/|u|? would imply the desired density result foy,, M,, via the method presented in [3].

In this paper we prove that the quotients'u|?/|u|* are bounded on any,,. (cf. Theorem 2 and its Corol-
lary 1). Our bounds, however, are not sufficient to prove the density,oM,, in the energy norm of the phase
space. But as a corollary we show that if a solution of the 2-D space periodic Navier—Stokes equation exists for all
times and increases exponentially in the energy norm {as—o0), than it increases exponentially in any Sobolev
norm, provided the driving force is regular (cf. Corollary 2). In particular,fe norm of any derivative of such
a solution grows at most exponentiallyas> —oo.

It is worth mentioning that by a slight modification of the proofs given in this paper one can prove similar
results for the 2-D space periodic Navier—Stokemodel and 2-D space periodic Kelvin-filtered Navier—Stokes
equations. Note that the analogs of the sets defined for these systems have very similar properties compared
to the Navier—Stokes case. In particular for the 2-D space periodic Navier-Stakesel,| J, M, is dense in the
L2 norm, which is still weaker than the energy norm for that system (cf. [10]). On the other hand, for the 2-D space
periodic Kelvin-filtered Navier—Stokes equations the density is proved in their energy norm (cf. [11]).

However, not all dissipative systems have the same kind of behavior for negative times. For example, in the
case of the 1-D space periodic Kuramoto—Sivashinsky equation it was established that all the solutions outside the
global attractor will blow up backward in finite time (cf. [6,7]). The other peculiar example is Burgers’ original
model for turbulence. Although Burgers’ model has a rich &¢t, the solutions on it display some surprising
dynamical differences from those in the Navier—Stokes case (cf. [4]). Still, it would be interesting to see whether
the results similar to the ones presented in this note can also be proved for the sétBurgers’ original model
for turbulence.

2. Preliminaries

We consider the 2-D space periodic Navier—Stokes Equations (NSE)=0, L]%:

d
d—tu—vAu—l—(u-V)u—}—Vp:f,

V-u=0,
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u, p 2-periodic /u 0,

2

whereu(r) :R? — R?, p(t) :R? — R are unknown functions and> 0, f € L%(£2) (f is £2-periodic, [, f = 0)
are given.
Let H be the closure i2(£2)2 of

{v € L2(£2)%: v £2-periodic trigonometric polynomialV - v = 0, / v= O}.

Q
We denote

(v,w)::/vow

2
and
o] == (v, 0)*?

the inner product and the norm H.

Let A = — P; A be the Stokes operator (definedbd) = H N H?(£2)?), whereP; is the orthogonal projection
from L2(£2)2 onto H. Observe tha#i : D(A) — H is an unbounded positive self-adjoint operator with a compact
inverse. Its eigenvalues a(én/L)z(kf + k%), where (k1, ko) € N2\{0,0}. We arrange them in the increasing
seguence:

r/LP =71 <hp<---.
We will need the following fact aboyt.,, } (cf. [8]).

limsup(A,+1 — Ay) = 00.

n—00
Also, it is obvious that

Anti— A 2 A1, n=1l,
and

lim A, =oo.
n—00
Next we denoteB(u, v) = Pr((v- VIYw)) andb(u, v, w) = (B(u,v), w), u, w € H, v € D(A). Observe that

b(u,v,w)=-bu,w,v), ueH, v,we D(A),

b(u,u, Au) =0, wue D(A).
We will also use the following inequality far:

|b(u, v, w)| < colul?|AY2u 2| AY2y| |w| Y2 AY 2|12, (1)

whereu, v, w € D(AY2)(= H N H1(2)3?).
Finally, denoteg = Py f.
Then the NSE can be written as

%u+Au+B(u,u)=g. (2)

We denote bys(¢)ug the solution of the NSE which igg atz = 0.
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Let
A= {uoe (St H: sugSuo| <oo} @A)
>0 teR

be the global attractor of Eq. (2). Refer to [2] or [9] for the comprehensive treatment of Eq. (2).
We will study theS(z)-invariant sets

A1/2 2 don + A _
M, =AU {uo € ﬂ S@H)H: lim sup| S(t)u20| < t Antl = A,,}. (4)
150 t—>—oco  |S()uol 2
We will use the following known facts abou,, (cf. [3]).
Theorem 1. The set J, M, is dense inH with the topology of the norin /2. |.
Alsa
o Ifu(r) e M,\ M,_1then
AL/2 2
1A u®]” . (5)
t—>—00  |u(t)|?
e u(t) e M, ifand only if
lu@)| =0, ast — —oo; (6)
o If u(t) e M,\M,_1then
o u(D)]
It[)n_lrg(fJ prr v > 0. )
Moreover, if
2
luol = yo:= maX{M, v} (8)
VA1
then
A1/2S 2 B
I (t)uzol < (9)
|S@)uol
forall ¢t <O0.
3. Main result
For everyd > 0 andg € D(AY) define
1A%
Go =~ (10)
V20t

the generalized Grashoff number.
Our main goal is to prove the following

Theorem 2. Letd = k/2, k € N\{0}, andg € D(A?). Then for everyig € M,, such thatjug| > yo, there exists a
positive constanMy (Gg) depending only, co (wherecg the constant fron(l)), andGy such that

|A%ug|? My (Go) —
|u0|40 =~ p40—-2 no-

(11)
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Moreover, if6 > 1 than there exists a positive constavi(Gy_1/2), that depends only of), co, andGy_1,2 such
that

fo
|A%u|? No(Go—1/2) —p_1
upo—2 4 = T a3 A (12)
—0oQ
whereu(t) is a solution of the NSE satisfyingzg) = uo.
Also, if6 > 1/2then
|A%u(n)? (13)

i>—co [u(t)[*

Observe that (11) expands the estimate (9) from Theorem 1 to the quotients involving higher powers of the
operatorA. In fact, these estimates hold for any power of the operator.

Corollary 1. Leta > 1/2andg € D(A?), whered = ([2a] + 1)/2. Then for everyig € M,, with |ug| > 1o, there
is a constantV,, (depending only 0#, G (1241+1),2,andco) such that

|A%uol® _ Mo 3,

< 14
g%~ vz -

Proof. Letd = ([2«a] + 1)/2. Observe thad > «. Then, by interpolation,

|A°‘uo|2 |A9u0|2 (20—-1)/(20-1) |A1/2u0|2 (20—20)/(20-1)
ol S gl
uo uo

(20—1)/(20—1) (2a—1)/(20—1)
My —o / T—(20—-200)/(20—1) _ M, 20
< An =—A

A ,
S\ o2t pha—2 "

|uol?

and thus, (14) holds with, = M >~ D/~

Another consequence of Theorem 2 is that/afy any Sobolev norm of a solution will grow exponentially for
negative time.

Corollary 2. Suppose: () € M,\A andg € D(A™/?) then
| A" 2u(1)[F < O 24y, 1 — —o0.

Moreover, ifm > 2, then for anyw = (a1, @) With a1, a2 > 0, a1 + a2 <m — 2, we have
|Dau|Loo — O(e—(a1+az+2)v)»nt)’ t — —00,

where

aa1+a2u
D%u(xq1,x9) = ————.
0%1x10%2x9
In particular, wheng € C°°(£2), any solutior: of the NSE which exists for all times and increases exponentially
ast — —oo in the phase spac#, will also increase exponentially as— —oo in any Sobolev spac:ﬁfi’,’ér(Q)2 =

Wﬁé’,”([))z (m > 0). Moreover, theL> norm of any(space)derivative ofu will also increase exponentially as
t — —o0.
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Proof. Recall that the Sobolev norm Hé’ér(ﬂ) is equivalent to the norm

1/2
[ I o= (14772 1272,
Note that by Theorem i(r) € M, \.A implies thatju(r)|,, grows at least exponentially as> —oo, and|u(¢)|2 =
O(e V") ast — —o0.

On the other hand, according to Theorem 2,
Mm/2
p2m—2

|Am/2M(t)|2 < )\’I;l|u|2m — O(e—zmvknt)'

Thus,u(t) increases exponentially iﬂgér(.Q)2 ast — —oo.
To prove the second part of the corollary we apply the Sobolev Embedding Theorem to obtain that
|Da’4|oo < C|Da’4|H2(Q),

for any multi-indexa = (a1, a2) € N2. Here we are writing

aa1+(¥zu
D%u(xy, x2) = ————.
0%1x10%2xo

Observe that by the first part of the corollad®® u(t)| y2(o) = O(e~(1teatdvinty g5 5 o0, Consequently, we
also have thatD%u |, = O(e~(@1te2t2vinty g5 —» — 0. O

4. The proof of the main result

For convenience we will use the following notation:

Notation 1.
|AL/2y2
T
|Aul?
T
Ei=(A—2)—,
|u]

1/2
o= A—§A u,
2°) |ul?

[ Ant+1+ Ay

n -— #’
' |A0u|2
Ho,m = |u|m .

First, we will prove the following useful lemma.

Lemma 1. Letu be a solution of the NSE that exists for all times and satifiés)| > yo for somerg. Then for
anyt < ro and anym > 1,

t

2 1 _ MO o2 1

— <v < — .
3m Ju(t)|™ I lu(z)|™ m |u(t)|™

(15)
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Also, ifu(tg) € M\ A, then

t

v f A<r>|5(r)|2dr<%(Aﬁ—xzmn

—00

|gI?
v2Ju(r)|?

and
t

1
v/u(r)dtéO(mm'z), fort - —o0.

—00

Proof. From (2) we obtain
1d
5 uP vl = (g0,
from Wh|ch we get

1 1d||+ A u
a2 TS 2 )

Thus
t t

A u 1 1
e e )dr=————.
”/ ufm /(g |u|m+2> T ()

J J
[ t 1\ 1 1
8 8
< | Sodr< [ (=) —de<
flul’"+1 i f(vxl|u|>|u|m rsgY ||m
J J

—00

Notice that forr < 1o

t
u
‘ /<g |u|'"+2>df
—0oQ

sincelu(t)| > y0(> ) andA(t) > A for all r < #p. Thus, returning to (19) we get

JE S
_ = de<———
Iul’" |ua|™ m Iu(t)l”’

t t

/ A dr+ 1 / A dr > 1 1
v ——drt+ =v ——drt > —
|u|™ 2 |u|™ m |u(t)|™

—0o0 —00

and

for all # < tp, from which the relation (15) readily follows.
In order to prove (16), we observe that

d
54 —|AY2u? 4 v|Aul? = (g, Auw),

which, together with (18), implies that
ra, = < s)
2dr lu|’

from which we obtain

k|g|2
2 2

——A"+ VA < ——.
2dt VAEI" S v|u|2

/II’”

391

(16)

(17)

(18)

(19)

(20)
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By integrating the relation above, using (15) far= 2 as well as the fact that(z) — A, ast — —oo (cf. results
from [3] summarized in Theorem 1), we get

t

—00

which implies the inequality (16) from the statement of the lemma.
Finally, to prove (17) consider

1d A —v]Au®+ (g, Au) - —v|AY2u|2 + (g, u)

2dr [ul? |ul# |u|? |u|? ’
from where

1d a gl 1) 22 _Algl

S <o+ copt v 2=

20 ST TITIE
Consequently

LN PN ST |

dr Ju|? e lul? ~ ul®

Thus, by integrating the previous inequality and using (15) we obtain

t

1
v f M(T) dz < O(W) fort - —oo. O

Let u(r) be a solution of the NSE such thatr) € M,,. Our first result is

Proposition 1. If g € D(A) and
[u(0)| = yo.

then for every < O we have

t

p() + €3 / Mo dr < %(kﬁ —220) +

K122 + (13/4)e*32
|u(2))?

—0Q
whereK1 = e*(coGo + G1) with cg — the constant from the inequalif§). Moreover,

t
A3/2y)2 A K122 4 (13/4)e*22
Ue_3f | M| dr < € ()L,%—)LZ(Z‘))—F 1 1+( / ) n

4 |u(1)[2

T
lu|? =212

3
—0oQ

for anyr <O0.

Proof. Observe that sincg € D(A), we have

1d  —v]A%2u)? — b(Au,u, Au) + (Ag, Au) ) —v|AY2u|2 + (g, u)
2™ uf® # ul?

’

SO,

d b(Au,u, Au) (Ag, Au) (g, u)
_MZ_V(M3/2,4_2/J/)L)_ |u|4 T’M|4 _2/“[/ |gu|2 .
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Thus,
1d 9v A3 b(Au,u, Au)
—— Ap=— - 21
TR vIUI+4||2 L (21)
Ag Au) u
=% —3 —2u<g,—>.
(Iul2 |u|? |u|?
Note that
|b(Au,u, Aw)|  b(Au—u,u, Au — hu) co|§||Al/2§||A1/2u|
it Jul® S ul2
1/2 5 )»3 1/2
— con 2 g (1612 40 -2
|ua] 4 ful
and thus
|b(Au, u, Au)l 2 2 5 23
— 7 S 5. IEI lo|®+Apn—~—> ).
Jue|# 4 u|?
Now, going back to (21) we get
1d 5v 23 9y A3 cok 2 |Agl 1 u
- A <__ AMp— ——— 4 — 2_2ul g, —s ).
St T VARS lo|? +2 r—g |M|2+ 7 |M|2 ISI s u(g |u|2>
Observe that
Agl 1o 1 1Ag? v p
oM X T
|u|? 20301 |ul? 2 |uf?
Consequently
d V3 u 2 COA 5 1 /13v 4 |Ag|?
<|—=-4lg.— ) |n— — — (== .
gt TS [|u|2 (g |u|2>}“ ol e +|u|2( g v%)
Note that the conditions of the proposition imply that) < 4, for all < 0. Let us denote
n «— 4 n v3)\%9
3
VA1 u
=—=—4(g.— ).
Pi=Tup (g |u|2>
Then, by the Gronwall inequality,
t
! IA
,u(t)<M(to)ef’0ﬂ+/<—v|a|2—v)»,u+ © 2 |n|2>efftﬁdt. (22)
V u

]
Observe that cf. Theorem 1,

2
I|m|nf| u)|
t——oco @ VAt

>0,

and soB(t) is bounded and absolutely integrable on the intefvalo, ]. Moreover, by Lemma 1(co/v)A|£]% +
I,A/|ul? is also absolutely integrable dr-oo, 1]. On the other hand, from (17) we conclude that there exists a
sequence,? — —oo such thawt,?) — 0. Thus, by takingg = t,? and lettingn — oo, the inequality (22) yields:

! t
“(t)‘Fcl"/‘(|Cf|2-l—)»u¢)dr<c2/<%O

—00 —00

A
|;|2) dr, (23)
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where
c1(t) = inf e~ ?,
<t

and

ea(r) = supel-=#.

<t

Observe that the relation (15) from Lemma 1 implies that

t
L < L
|u|? V|u(r)[?

—00

Using this, together with (16), in the inequality (23), we obtain

t
2 c2¢o 1- 2 .2 |g|2 c2ly,
M(l)+61V/(|0| + ap) dr < = (2(?»,Z r2(0) + l)2|u(t)|2>+ THOP (24)

—00

Observe that from (24) we can infer thatr) is bounded, whiléo |2 and . are integrable o—oo, ], and thus

|A3/2 12 ; 3|2
" 2 colg €2

—00 —00

Using (24) again to estimatgv fioo 3urdr, we obtain

A3?y2 2cc colg|? 4c
cwf' ul” 4 vzzo(x,%—xz(z))+< °l§| +Fn> 2_ < 0. (25)

Jue vlu(t)[?

Observe that from (15) we obtain that

/|u| TS 2|u<r>|

1 > & [oa@igl/lul) 5 g=6lgl/Alu(O))) 5 o3

Hence,

and, sincdu| > yp > v,
cp < el o VPRa/ P+l u])  @v?/Iu P +6Ig]/halu®]) < gl+3 _
Finally, if we define
K1(Go, G1) :=€'(coGo + G),

and use (24) and (25) we will obtain the desired estimates from the proposition.

The following proposition allows us to deduce the boundedness of higher order quotients based on the bound-
edness on the lower ones.



R. Dascaliuc / Ann. |. H. Poincaré — AN 22 (2005) 385-401 395

Proposition 2. Let g € D(A?+1/2) with § = k/2 andk € N. Suppose that for evem(r) € M, |u(t)| > yo we
have

O a0 2
[A%u(t)] - Co.m(Go— 1/2)A_k L
u(t)|™ pm-1

whereCy , (+) is a positive increasing function. Then there exist positive increasing funoﬂQgﬁ-), Ko.m(-),
such that

o
|A%u(to)|2 /|A9+1/2u<t>|2 Co.n(G0) —
n

—_— <
|u(10)|+2 |u(r)|0m+2) v
—0o0
and
|A*Y2u(6)|?  Kom(Got1/2) Tk
u(n)|m+d = ym2
Moreover,
A2y )2 |Au@))?

1—>—00 ()| 100 ju(t)| ™D

Proof. Using (2) we get the following equation for the Galerkin approximatio®gcf. [2] for the facts about the
Galerkin approximations for the NSE)

1d v v AT2N 2 (g, AZUN) — b u, AP uN)
S tem+2= uN |(m+2)
+m—|—2 v VIAY2uNZ — (g, uM)
2 /’LQ,m-i-Z |MN|2

Applying Theorem 3 from the Appendix as well as the Cauchy—Schwarz inequality, we get

1d |Aeg| 1 |A9+l/2uN||A9uN||Al/2uN|
N <—v +——°_ N /2 + coc
2 dtﬂe m+2 X M9+1/2 m42 u N|(m+2)/2:“9 m+2 0C29 N |42
m+2 m+2 gl N
+l) 2 )‘“0 m+2 2 |uN|H’9,m+2

(herecay = 6([0]+ (20 — [0])2%~2) is the constant from Theorem 3). Now, using the Jensen inequality, we obtain

1d vy L IA%P vy 6
St m+2<—§M9+1/2,m+2+2v,\1W+ T Mozt T A e
m+2 m+2 gl
5 Mo mi2 T Tmﬂe,mu‘

+

Hence,

d N N
aptem+2 T Ve 11/2.m 2

|AY g|? <w\l cgcng v(m + 2)AN (m+2)|g|> N

+ .
= UA1|uN|(’"+2) [uN|2 v [uN|2 lul |3 0,m

Sinceg € D_(A9+1/2), we can integrate fromto tg (¢ < o) and pass to the limiv — oo. Taking into the account
thatA(r) < A, we get
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fo

g %2 [ de

mo,m+2(10) +v | o+1/2.m+20d7 < po,m2(t) + o) 2
t

t

1

22 0
c§c5 - 1 ( - (m+2)|g|
+ An + vi1i+v(m+2r, + ——— He.m dt.
[ v Juio))? " uio)] J "
Since
? Com(Go_1/2)
0,m(Gg—1/2) —;_
/ Mo.mdT < mvmi_l/)hnk 1,
—00

there exists a sequenge—> —oo such that
im pgm(@) =0 (= M womia(®r)).
=00 [— o0
Thus, by lettingg =1 — —o0, we get
10

we,m+2(to) +v [ Ho+1/2,m+2dT

—00
o fo
1A g|2 dr chcdy - 1 _ (m+2g /
< x A Dy + ————20 dr.
VAL |u|m+2 + » n+ |u(t0)|2 v l+v(m+ ) n+ |M(lo)| Ho,m AT
—00 —00

Hence,
lim Ne,m+2([) =0
t——00

Moreover, since according to Lemma 1,

2 1
/I I’”+2 m+2|u(to)|’"+2’

we obtain
)
1o,m+2(to) + / Ho+1/2,m+20dT
—00
A%%g12 2 1 c2c2 1
<|2g2| 2 m+2 [029}‘ 3
VeA] m+ Y0 v O
Observe that by the Poincaré inequali, > Gg_1/2. ThusCo , (Go—1/2) < Co,m(Go). Using this fact, together

with the definition ofyp, we can define the positive increasing functic(f‘ggm(Gg) from the statement of the
proposition as follows:

2|A€g|2vm N |: )

gl
(m + 2)v2) 21Ky m+2 o + e (1 tons 2)(1 T Vo Com(Go-12)
1 0 0

(V)»1+v(m+2))\ Lo +2)|8|>}C9m(G9 1/2)_k L

Y0 pm 1

2 3
i 2G9 + (Cocze + > + 4> Com(Go-1/2)

2 3
< " +ZGG + (Coczg + Zm +4)C9 m(Gg) == C9 m(GG)
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On the other hand, again for the Galerkin approximations, we have

1d N B _V|A9+luN|2 + (g7 A29+1MN) _ b(uN, MN, A29+luN)
§&M9+l/2,m+4_ |MN|(m+4)
m+4 y v|AY2uN | — (g, uM)
2 5 Ho+1/2,m+4 N |2 )

and similarly to what was done above we get
f

|A9+l/2g|2
wo+1/2,m+4(fo) + v / Mo+1,m+adT < (o172 mya(t) + / [
t

VA1
t

C(%C§9+1X 1 N 4 5 gl ‘o |

(here againry 1 is the constant from Theorem 3). By the same argument as in the previous case,-wheso
we obtain

+

o

|A9+l/2g|2
Mo+1/2,m+a(to) +v / Mo+1m+adr < Y / |u|(m+4)

—0o0
2.2 9
CoC941 - 1 ( - lg]
+ An+ vi1+ (m+ )| vi, + Ho+1/2,m+20dT.
[ v (o) 2 " JuGo)] R
Thus
lim poy1/2mea()=0
t——00
and
Ky,
Ho+1/2,m+4(t) < m:é ot
where
2 3
Kom(Got1/2) = 4G9+1/2+ cGchyi + 2m+7 Co.m(Go+1/2)-

Observe thaKy ,, satisfies conditions from the proposition, since
2|A0+1/2g|2 m+4
(m+4) v4)»]i+3y6”+4
2
T m+4

1)2
+ [c§c§9+1 + ?(1+ (m + 4)(1+ —'g'y ))}c@,m(Ge)
0

3
G9+1/2 + (Cocze+1 + > + 7) Co.m(Go) < Ko m(Goy1y2). O

Proof of the main theorem. We will prove Theorem 2 by induction dn= 26.

Whenk = 1 the theorem holds (cf. (9)).

When k = 2 the theorem is valid via Proposition 1. Observe that this proposition allows us to choose, for
example,

Mo(Gr) = <(co +1)G1+ Z) e,
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Moreover, Proposition 1 gives us that
N3zjp=4 e3M2.

Thus, applying Proposition 2, we conclude that the theorem holds iwkeB.
Suppose now that the theorem is true for some intéger3. Then there exists a positive increasing function
Ny (-), such that

o
|A%u|? de = No(Go-1/2) 729 1
|u|4972 l)4673 n ’

—00

whered = k/2. But according to Proposition 2, if € D(A?+%/?), then there exist positive increasing functions
Mo 1/2(-) anng+1/2(~) such that

fo
|A9H+Y/2y(1))? o~ No+12(Go)

< 9
|u(r)|% pdo—1 o
|A9TY 2012 Myi1/2(Gotay2) 52041
|u0|4«9+2 = a0 n ’

and

|A9+l/2u(t)|2 _o
=00 fu(n|+z

which shows that the theorem is true for the intefjger1, and by induction, the proof is completen

Acknowledgements

The author would like to thank Professor Ciprian Foias for helpful discussions, suggestions, and comments.

Appendix. Estimate for the nonlinear term (cf. [5])

Lemma 2. For eachn € N (n > 2) and everny € D(A"):
b(u,u, A"u) = —nib(Ahu, u, A"y, (26)
h=1
Proof. Observe first that
A(B(u,v) + B(v,u)) = B(u, Av) + B(v, Au) — B(Au,v) — B(Av, u).
Thus, ifn is odd, then

n (n+1)/2
AY B, Ay = > A(B(AMu, AMu) + B(A" ", Al))
h=0 h=0
(n+1)/2 (n+1)/2

= Z B(A"u, A1y + Z B(A" My, APy
h=0 h=0
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(n+1)/2 (n+1)/2
- Z B(AMy, Ay — Z B(A" 1y Ay
h=0 h=0

= B(u, A" ) — B(A" 1w, u).

Consequently, in this case,

n n n
> b(AMuu, A"y = = b(AMu, A ) = — (A > B(AMu, A" M), Alu>

h=0 h=0 h=0
=—b(u, A" A7) + b(A" Y, u, A7)
=b(u, A" u, A" u) — b(A"u, A7, u) =0,
since
b(Av,v, w) =b(w, v, Av)

for everyv € D(A) andw € H.
If n is even, we have

n n/2
A Z B(A"u, A" ") = AB(A™u, u) + Z A(B(AMu, A"y + B(A""u, AMw))
h=0 h=0

=AB(A"u,u) + B(u, A"u) — B(A"u, u).
Thus,

n n n
> b(AMuu, A"y = = b(AMu, A ) = — (A > B(A"u, A" M), A1u>
h=0 h=0 h=0

= —(AB(A"u,u), AYu) — b(u, A" u, A7) + bA" P u u, A )
=b(A"u,u,u) +0=0.

Consequently the identity from the lemma holds forall O
Theorem 3. For eachn € N (n > 2) and everyu € D(A"):
|b(u, u, A"u)| < cocn| A" 2u) |ACTD/2y) | AY 2y, (.27)
wherec,, := 6([n/2] + (n — [n/2])2"2).

Proof. Observe that going to the Fourier coefficients:

b, v.w)| =] D> (ak-j)bj-c)

j+k+1=0eZ2

< D lallillbjllel = b, v, w),

Jj+k+1=0e72
where M(.X) — ZkEZZ ay e(ZTH'/L)(k-X)' v(x) — ZjEZZ b] e(ZJTi/L)(./-X)’ and w(x) — ZIEZZ c e(Zm’/L)(l-x), with
u,we H,veV.

Using the previous lemma we get

n—1 n—1
b, A"w)| < Y [b(A" e, AP | <Y B(A A,
h=1 h=1

Observe that
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n—1 n—1
b, Ay =" Y kP a1l aj ] 112
h=1

h=1 j+k+1=0e72

<A+ B+C,
where
n—1
A=Y > \k1? a1l ar| |12,
h=1 j+k+1=0eZ2, |k|<min{|;],|!|}
n—1
B:=Y" > k12 a1 aj | lar 12",
h=1 j4k+1=0eZ2, |j|<min{|kl|,|l]}
and
n—1

Ci=Y > K17 lax | 1] 1aj | la| 11127

h=1 j1k+1=0eZ2, |I|<min{| ], |k|}
Because of the symmetry we have tat C. Also,

n—1
B>Y" > k1% lax| 117" ajla] 11| = C (= A),
h=1 jtk+1=0eZ2, |k|<min{|;],1]}

and thus we get

n—1

|b(u,u, A"u)| <3B<3) 2 > K17 lax| 1] 1aj| la| 112"
h=1 " j+k+1=0eZ2, |jI<|l|<|K|
[n/2]

=6)_ > k1 lax 11 laj] lar| 1120

h=1 j+k+1=0eZ2, |jI<||<Ik|

n—1
2h . 2(n—nh
+6 Y > |1 ag |11 || lag| 1120
h=[n/2]+1 j+k4+1=0eZ2, |j|<|I|<|k|
n/2]

<6) > [kl ag |11 laj | e | 11"

h=1 j+k+1=0eZ2, |jI<||<Ik|

n—1
+6 Y > K1 lax |11 aj] lag| 11120

h=[n/2]+1 j+k+1=0eZ2, |j|I<|I|<|k]|
Observe that in the previous suns,= |j + | < |j| + |I| < 2]l|. Thus,

n—1

6 Y. > (k1% lax| 1] 1aj| la| 112

h=I[n/2]1+1 j4+k+i=0eZ2, |j|<|I|<|k|

n—1
2h— . —
<6 > > kI (2120) ™" lax| 1] | a] 112"

h=[n/2]+1 j4k+1=0eZ2, |j|<|I|<|k]|
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< 6(n —[n/2])2"2 > IkI"lak| 1] 1ajl larl 111"
JHk+=0€Z2, |jI<II<IK|

Also,
[n/2]

6 > IkI" a1 | a| 12"

h=1 j+k+1=0eZ2, |jI<III<IK]

< 6([n/2]) Z k" la| 1l laj|lar| |1".

JjHk+1=0eZ2, | jI<|1I<IK|

Consequently,

jHk+=0e72, |jI<II<IK|

Letc, = 6([n/2] + (n — [n/2])2"~2). From the above we conclude that

b, u, A"w)| <cn5<A"/Zu,u,A"/zu>=cn/¢(x>w(x>¢<x>dx,
2

where we denote (x) = Y_, e /Dkx|q | [k|", v (x) = Y, €@V DI |q;]|j|, andg (x) = Y, €@V g |1,
Applying Schwartz inequality we get

DG, u, A"u)| < callpal 218 Lo
Now apply Ladyzhenskaya inequality
w34 < colwl yalwl 2
to estimatge|; 4+ and|s|; 4 and obtain

|b(u, u, A"u)| < cocn| A" 2ul [ACTD 20| AV O
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