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Abstract

In the first part of this paper, we establish the existence of a global renormalized solution to a family of vortex density
equations arising from superconductivity. And we show by an explicit example the necessity of the notion of renormalized
solution to be used here. In the second part, we prove the global existence and unique#iéss afid C* solutions to a
modified model, which is derived from the physically sign-changing vortices case.
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Résumé

On montre 'existence de solutions globales pour une famille d’équations provenant de la super-conductivité. On montre
par un exemple que la notion de solutions renormalizées est nécessaire ici. Dans la seconde partie de ce papier, on montr
I'existence et 'unicité de solution# -7 et C* pour un modéle qui décrit des vortex qui changent de signes.
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1. Introduction

This paper deals with two models coming from the hydrodynamic equations of Ginzburg—Landau vortices (see
[13,6] for some earlier related works). In the first part of this paper, we shall establish the global existence of
renormalized solutions to

dp +div(up) =0, (t,x) € (0,00) x R?,
u=VaAa-lp, (1.2)
0lr=0 = po,

with initial datapg € L*(R?).

Our main motivation to study this problem comes from the type-Il superconductivity. It is generally accepted
that, when effects due to thermal or field fluctuations are taken into account, the Abrikosov vortex lattice obtained
from the mean-field theory can melt and form a vortex liquid. Then one of the important issues that one wishes to
understand is the intrinsic nonlinear effects in the dynamics of such a liquid, where the vortex density satisfies (1.1).
The rigorous finite gradient vortex dynamics was studied in [12] ( see also [10]). The formal derivation of (1.1)
from the finite vortex dynamics was carried out in [19] (see also [1]). Under the assumptigs tised positive
Randon measure, the authors in [13] mathematically justified the formal derivation. One can check more physical
explanation to (1.1) from [19,1,13].

When we take a complex time relaxation in the finite gradient dynamics into account, we need to rotate the
second equation of (1.1), and then the equation is modified to the following form:

dp +divup) =0, (,x) € (0,00) x R?,

cos¥ —sind 1
= " 1.2
<sm9 cos9 )VA P (1.2)
Pli=0 = po.

Indeed, when cas= 0, (1.2) is the classical 2-D vorticity-formulated incompressible Euler equation. In that
case, with smooth initial data, (1.2) has a unique global smooth solution. \Aher.*°, Yudovich [21] solves
the global existence and unigueness of weak solutions to (1.2). In [5] and [18], the authors establish the global
existence of weak solutions to (1.2) with € L? for 1 < p < oco. However, the uniqueness of the weak solutions
in this class is still open. Whepy € M(R?) N H,gcl(IRiz), the above problem is the so-called vortex sheets problem
in fluid mechanics. In 1991, Delort [7] solved the existence problem wyeeeps the sign, the remaining case is
still an outstanding open question in the mathematical fluid mechanics.

Compared to the 2-D incompressible Euler equations, whe#é €08, smooth solution to (1.2) may blow up
in finite time. In [13], the authors proved a global existence result to (1.1) whenM*(R2). Furthermore,
they found thato(z, x) will be a function fors > 0 and belongs tcLl’[’JC(R+ x R2) with p < 2. However, when
po changes sign, the second author and his collaborator [6] found that there exists concentration phenomena in
the approximate solutions sequence of (1.2) no matter how smooth the initial data is. This argument implies the
global existence of a measure-valued solution to (1.2). This motivates us to think that: to make the measure-valued
solution more precise, we may need the notion of renormalized solution, which was first introduced by the DiPerna
and Lions [3,4] in the study of transport and kinetic equations, for (1.2). On the other hand, it is easy to observe
that (1.2) will keep thel.! norm of p nondecreasing with respect t@ven after formation of singularities to the
smooth solution. Hence it is natural to study the global existence for the system (1.2) with initial dataAmwe
allow pg to change sign, the proof of the global existence of the renormalized solution to (1.2) makes no difference
for cos® # 0. For simplicity, we take co$ = 1, which reduces to (1.1).

Note that the notion of renormalized solution can allow concentration in the solution, but it will make the
problem much more nonlinear than the original problem. Then the main issue in the proof of the existence is to
prove that there is no oscillation in the approximate solution sequence. Motivated by [14,15,22] and [11], we will
useL” Young measure theory (see [20,17] and [16]) to cancel the possible oscillations in the approximate solutions.
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Then based on a space—time estimate for the approximate solutions in [6], in Section 2, we shall establish the
existence of a global renormalized solution to (1.1) with initial datainMoreover, we will show by an example
the necessity of the notion of renormalized solutions to be used here.

Considering the vortices of different sign and taking the London approximation to the induced magnetic field
into account, a similar but modified system to (1.1) was derived in [1]:

dp+div(ulp]) =0, (t,x)e (0,00) x R?,

u=VO2:A —1)"1p, (1.3)

Pli=0 = po.
Here denotes the penetration depth. A vector version of (1.3) was also available in [1] to take the three dimen-
sional effect into account. Whemis aRR? valued function, using the stream function, the authors in [8] establish
the existence and uniqueness of viscosity solution to an equation similar to (1.3). Such a technique obviously can
not be used for the scalar case. Besides the stationary solutions studied in [1], we have not seen the other genere
existence result to (1.3).

To draw the main feature from (1.3) and get an analogy with (1.1), we consider the following system instead

of (1.3):

dp+div(ulpl) =0, (t,x) € (0,00) x R?,

u=vVAlp, (1.4)

Pli=0 = po.
In this case, whepg changes sign, we cannot prove the existeno€’o$olutions to (1.4) due to the fact that the
term |p| is only Lipschitz with respect t@. In Section 3, we decomposeinto a positive and a negative part,
and use a time semi-discretization scheme to establish the global existence of solutions to (1.4) with initial data in
WP andC® for 2 < p < oo and O< « < 1 respectively. Hence we almost get the solution in the best possible
space, which we can have for (1.4). It should be noted that the approach to be used here is completely different
from the vanishing viscosity method in [6], where the authors proved a global existence result to the reduced one
space dimensional case with initial dataAiv .

Finally we point out that although (1.1) and (1.4) are derive@®fn our approach here does not depend too
much on two space dimension. The arguments in this paper actually implies the corresponding result for the same
equations in the general space dimension.

The outline of this paper is the following: in Section 2, we present the global existence of renormalized solutions
to (1.1), and in Section 3, we prove the global existence and uniqueness d¥bdtandC* solutions to (1.4).

2. Global renormalized solutions to (1.1)

In this section, we are going to establish the global existence of renormalized solutions to (1.1) with initial data
in LY(R?). It is standard that the first step in the proof of the global existence of weak solutions is to construct the
approximate solutions sequence. Note that given sign-changing smooth initiahdéta easy to observe that the
smooth solution to (1.1) will blow-up in finite time. Therefore to construct the approximate solutions to (1.1), we
first introduce the following cut-off function

1
Ev S 2 _gu
__7 g < __|
€ €
and mollify the initial datgog by po.c = (Poxe) * je, Wherexe (x) = x (ex), x € C°(R?),

oot K<t
XY= V0, 1x =2,
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and j. is the standard Friedrich’s mollifier with suppc B.(0), namely j.(x) = e%j(f)vj c CSO(IR{Z), and
[ j(x)dx=1. We consider
dpe +ue - Vpe=—Tc(p)pe, (t,x) € (0,00) x R?,
Ue = VA_J',OG, 2.1)
p€|t:0 = P0,¢-

Then by [6], (2.1) has a unique global smooth solutipn u.) for any fixede. Moreover, combining Lemma 2.1
and Lemma 2.2 of [6], we have

Lemma 2.1 (Solution of (2.1) with smooth data)Let pg € L1(R?). Then, for any fixed, there exists a unique
strong solution(pe, u¢) to (2.1) such thatp, € L®([0, T], WLP(R?)), Vu, € L®([0, T], WP (R?)) for any
l<p<oo, T <oo,and

~ 1P

loe@. 9|1 <llpollpz.  p@t.x) <= forz>0. (2.2)

Furthermore, for anyx € (0,1), T, L > 0, there exists a positive constafi, 7.z, which depends only on thie!
norm of pg and the listed variables, such that

T

/ / lpe |7 dxdr < Co 71 (2.3)

0 |x|<L

Proof. For completeness, we outline the main idea of the proof here. One can check the proof of Lemma 2.2 of
[6] for more details.

Step 1.Let o = do/d1 € (0, %) with d1 andd, being odd positive integers, ardx) € COO(RZ) ¢ > 0 with
¢=1on {x||x| <R} and supg C {x | |x| < R+ 1}. Setn(¢) = “fo max(1, |s))*~1ds for £ € R such that
7' () = amax(l, |s))*~ 1. We now multiply the first equation of (2.1) iy(x)n’ (pe), integrate the resulting identity
over[0, T] x R2, and perform integration by parts several times to obtain:

//§ pen(pe) — peTe (PN (pe) dxdt—/in(pe)dXIo //Viuen(pe)dxds (2.4)
0 R2 0 R2
Hence, by the definition af andn, we have
T
//é“(pen(pe)—peTe(pe)n’(pe))dxdt2/[1\,,591{((1—01)&”“+ape)dx, (2.5)
0 R2 0 Rr2

which together with the first part of (2.2), (2.4) and some classical estimates feads to

//;p

0 |pel21
foralla = do/d1 € (0, 3).
Step 2.With (2.6), we takex = d»/d; € (O, g), and repeat the argument from (2.4)—(2.6) to get

T

< /{Ipeldx+C1+C2> (2.6)

11
|,05|p2d.xdt<C(Ol, R7T3 ”pO,G”Ll)v Vp2< E (27)
0 [x<R+1
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Step 3.Inductively, we can prove that
T
|pelPr+idxdr < C(o, R, T, [lp0cllz1),  Vpus1 <14 any, (2.8)
0 [x<R+1

where p,11 =1+ «,, and «, is defined by the inductive formula,;1 = (14 3w,)/(2(1 + «,)). Note that
lim,_ « a0, = 1, we complete the proof of (2.3).

Remark 2.1. We can also construct approximate solutions via the following system
3 pe +diV(uepe) =0, (1,x) € (0,00) x R?,
ue = VAT (pe),
Pelt=0= po.e-

Then we can also prove similar estimates(fav, u.) as thatin (2.2) and (2.3).

From (2.2) and (2.3), there is a subsequencgoef, which we denote{p.;}, and some functiorp(z, x) €
L®@RY, LYR?)) N LY (Rt x R?) for any 1< p < 2, such that

loc

pe, —~p weaklyinLp (R* x R?), (2.9)
ase; — 0. Moreover, by (2.2), (2.3) and a trivial interpolation, we find that

pe is uniformly bounded irL L (R, L2 (R?)), (2.10)
with1/p1=8/q,1/po=1—+B/gqforall0< B < 1,1 < q < 2. Therefore

{uc} is uniformly bounded inL/L (R, Wlé’C”Z(IRZ)). (2.11)

On the other hand, by (2.51) of [6(9; p¢} is uniformly bounded inLPL (R, VI/IZ)CLZ/(HQ)(RZ) +L1(R?)). Then

Lions—Aubin’s Lemma implies that there is a subsequendedf which we denotdu,; }, such that
ue, > u2 VA~ stronglyinLEL(RY, Lj (R?)), (2.12)

loc
ase; — 0ands < pswith 1/p3=1/p, — 1/2.

To prove thatp, u) thus obtained is indeed a weak solution to (1.1), we need first to prove that there is no oscil-
lation in the approximate solutions sequence. Arguing as in [14,15,22] and [11], we shall prove the precompactness
of the solution sequendg,} in L”([0, T] x [—L, L]) forany O< T, L < oo and 1< p < 2, by applying Young
measure theory (see [20,17] and [16]). For the convenience of the reader, we quote the following lemma from [11]
(see also [5,9)).

Lemma 2.2 (Young measure).Let i/ be an open subset @", whose boundary has zero Lebesgue measure.
Given a bounded familjv.} C L*(U), s > 1, of RV -valued functions, then there exist a subsequdageand a
measurable family of probability measure BA , {y(-), ¥y € U}, such that for all continuous functiorfs(1) with

F() = 0(|Ar|?) as|A| — oo andg < s, there holds

tm [ o01Fegdy=[60) [ FoydiGaay. (2.13)
! u RN

for all ¢ (y) € L"(U) with compact support in the closure &f wherel/r + g/s = 1. Moreover,

f / A1 Gy (G dy < I o - (2.14)

€j
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In the sequel, we will denote the weak limit fv.) by F (v) for convenience.
Combining Lemma 2.1 with Lemma 2.2, there is a family of Young measuré€x), such that for all continuous
functionsF (1) with F(1) = O(|A|?) as|r| — oo andg < 2, there holds

lim /qb(t,x)F(pej)dxdt: / /¢(t,x)F(A)dM,,x(k)dxdt, (2.15)

€;—0
R+ xR2 R+xR2 R

for all test functionp (¢, x) € C°([0, 0o) x R?). In particular, (2.9) and (2.15) imply that

p(t,x) = / Adpy ().
R
With the above preparation, we will prove the precompactne$g.of

Lemma 2.3(precompactness @p.}). Letpg € L1(R?), thenu, (1) = 85¢.x) (1)

Proof. The proof is based on an argument of the propagation of precompactness (see [14] and [15] for some
similar arguments). As in [22], we separate the analysis of the precompactness of the solution sequence into the
precompactness of the positive part and of the negative one respectively. Therefore, we deggrimose

Pe =Pelpe>0+l)elp€<0ép+,e — P—es (2.16)

where 1, >0 denote the characteristic function on the{getx): pc(z, x) > 0}, and so for ], <o.

Step 1.The propagation of the precompactness of the positive pait.of

Let us denoteve = ,/p ¢, by (2.3),{w} is actually uniformly bounded i > (R*, L(R?)) N L{% (RT x R?)
for any g1 < 4. Therefore by Lemma 2.2, there is a subsequend@gf which we denotdw, }, some function

o(t,x) € L*(R*, L2([R?)) N L (R* x R?), and a family of Young measuné', (1), such that

oo
we, ~ D= / Advt () weakly inL® (R, LA(R?)) N LI (RT x R?), (2.17)
0
ase; — 0. Furthermore, a similar equality to that of (2.13) holds for the weak Iimwaf)q) andvl%x ).
Next let us prove that!, (1) = 8z(.x)(1). Note thatw, is only uniformly bounded inL>°(R*, L3(R?)), to

study the propagation of the precompactnessafwe cannot takeF (1) growing like (O|A|2) at infinity. To
overcome this technical difficulty, let us take the cut-off functions

0, §<0,
O’ %go, EZ
TR(é)z{é, 0<§ <R, SgE) =1 2 0<§ <R,
R, §>R,

R
— > R.
R(s=3). >R
Noticing thatpcwe = Z¢ (pe)we = wg from (2.1), it is easy to observe that
) 14
Orwe +AdiV(uewe) = Ewe, (2.18)

holds in the sense of distributions. Formally multiplying (2.18)7t\(w. ), we infer that

0r SR (we) + diV(ueSR(we)) = WS(SR(CUG) - %we TR(“%))- (2.19)
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The rigorous justification of (2.19) can be done by mollifying (2.18) first, then using Lemma 11.1 of [3] to take the
mollifying coefficient to be 0As it is rather standard, we omit the details here. (See (2.15)—(2.19) of [22] for a
similar argument).

Combining (2.12) with Lemma 2.2, we take— 0 in (2.19) to get

— 1
0;Sr(w) + div(uSR(w)) = w2<SR(w) — Ea)TR(a))>. (2.20)
On the other hand, again by (2.12), we take- 0 in (2.18) to find
d o+ div(um) = %a? (2.21)

In the sequel, we denofg, p— the weak limits ofp;. . and p_ . respectively. Then triviallyp = w?2. Formally
multiplying (2.21) byTk (), a trivial calculation yields

% Sr(@) +div(uSg(®)) = (w? — p2)(Sr(@) — Tr(@)w) + %;TR(E) (2.22)

where we have used the fact that divéuxﬁ —0o).
Subtracting (2.22) from (2.20), we arrive at

3 (Sr(@) — Sg(@)) + div(u(Sg (@) — Sr(@)))

1 —~ 1.
= w2<SR(w) — E(UTR(CU)> — (% — p)<SR(5) — ETR(Q))CU)
-éﬁﬁﬂma—;mamﬁ—ﬁa. (2.23)

Note by the second inequality of (2.2), we haxe; ® < 1/4/1 for t > 0. Therefore, noting tha§z (¢) = %STR(S)
for &€ < R, we deduce that

S;@a—%wgg@a=0=5ﬂ5)—%nam5 (2.24)

fort > %, which together with Lemma 2.2 implies that

a)2<SR(a)) — %a)TR(a))> =0, (2.25)

for t > 1/R?. While the classical convexity inequality yields
3 > 02w,
which together with (2.23)—(2.25) implies that
3 (Sg(@) — Sr(@)) +div(u(Sg(w) — Sr(@))) <0 (2.26)

fort > 1/R?. o
Let us denotg =: %(a)z — »2). Then a similar proof of (2.24) yields

(Sr(®) — Sr(@))(t, x) = g(t, x) (2.27)

for a. e.(r, x) € (1/R?, o0) x R?. Furthermore, there holds
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1[f——— 1
!BmJMASE/wQLmdeE/MUJMW,
R2

2 (2.28)

1_
. el
lg. ), < ¢ < >

Now we are going to use the argument, which is used in the last step of proof to Lemma 3.2 of [24] and (6.39)

of [22], to complete the proof of the propagation of the precompactness of the positive part of the approximate
solutions sequence. First, from (2.18), it is easy to prove that

E)ta)g + div(ugwf) =0,
holds in the sense of distributions, therefore,
/w?(r,x) dx < /a)(zl6 dx, (2.29)
R2 R2
which implies that
/az(z,x)dxg fc?(t,x)dngwgdx, (2.30)
R2 R2 R2
aswo,c strongly converges t@p in L2(R). While from (2.21), we obtain
(t,x) — wo(x) weakly inL?(R) ast — 0. (2.31)
Hence by summing up (2.30) and (2.31), and using Theorem 1 of [9], we get
lim / @°(t, x)dx = / @5 dx. (2.32)
—
R2 R2
Combining (2.32) with (2.30), we arrive at
|imof52(t,x)dx< /agdxg |im0/52(t,x)dx,
= t—
R2 R2 R2

which implies that
lim / (@2 — @) (t, x)dx = 0. (2.33)
t—
R2
Furthermore, motivated by [24], let us talgx) € C;’O(Rz) with ¢(x) = 1 for |x] < 1 and¢(x) = 0 for

Ix| > 2, and takes = 6/R?, i > 20/R? to be one of the Lebesgue points ff g(t, x)¢ (x/n) dx, and take
¥i(t) € C°(1/R?, o0) such that

5 0, t<Sort>i+s
t: E) \2 _/ il
Vo {1, 5<1<i—38,
.._C . _cC o
o<y <<, rel0sl -y <<, reli-si+al

Letus multiplyx//‘s(t)cj)(jl—‘) to (2.26) and integrate the resulting inequality o(f%roo) x R? to yield



N. Masmoudi, P. Zhang / Ann. |. H. Poincaré — AN 22 (2005) 441-458 449

i+3

%_/8[8‘1’( )dxdf< //ew g¢>< )dxdt

t

</5f8,w5g¢<%>dxdt+ ff¢ v¢< )ugdxdt

5/4R2 5/4 R2

_/fg¢< )dxdt__//w pm—l(ws( ) )dxdt, (2.34)

where in the last step, we used integration by parts and the faai that A—15. To proceed further, note by the
standard inequality in 2 space dimension that

VA~ < ClAIFZ IR
and (2.28), we find
_ X 2 2 _
‘VA 1(V¢<;)g> <CIVll=ligli gy~ < ClIVllLer 2. (2.35)
LOO

Plugging (2.35) to (2.34), and takirgy— oo in the resulting inequality, we find by (2.33) that

7
) C _ _ CVI|Vll L
c/g<r,x>¢(§) dr< o [ [lao0 v 2drdr < S, (2.36)
R2 0 R2
which together Fatou's Lemma yields that
[ s 0dc=o0. (2.37)
R2

Note thatfp, g(r, x)¢ (£) dx € L®(R™), therefore, almost all e R™ is a Lebesgue point of;, g (7, x)¢ (£) dx.
Due to the arbitrariness of we obtain

g(t,x)=0, ae.,x)eR" xR2 (2.38)
Hence for a.e(r, x) € RT x R2, there holds

f/p\ o du,x(,\)dx_/(a) — @) (t,x)dx=0

RZ 0
which implies that
Vi (0) = 850,00 (A, (2.39)

fora.e.(r, x) e RT x R2.
Step 2.The proof of the precompactness for the negative papt of

To prove the precompactness of the negative part of the solutions sequenge we will use a different
renormalization procedure to the approximate solutions sequence. Firstly byo(2 13atisfies

0rp—e + e -Vo_e=~Tc(pe) e, (2.40)
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in the sense of distributions. We dendate_.)Y/* by 5., then, by Lemma 2.1{z} is uniformly bounded in
L®@®*, L4R?) N LI (RT x R?) for anyr < 8. Therefore, by Lemma 2.2, there exists a subsequengg. hf
{ne,;}, and a family of Young measure%x(k) such that a similar equality as that of (2.13) holds fqs;} and
vfx(k). Moreover, from (2.40), a trivial calculation yields
: 5, 1 4
Ortte + divGuete) = =g + 7 To/e (N e (2.41)

Let us denotéy(z, x) = fg’oxdvfx(x). Then by takinge — 0 in (2.41) and using (2.12), we find

3—
d + div(ui) = _Z”S' (2.42)
While from (2.41), it is easy to observe that

. 1
dnZ + div(uen?) = —n° + ETl/e(n?)nf,
then similar to the proof of (2.42), we get

S 1—
0n? + div(un?) = —5776. (2.43)

On the other hand, note that = ;7_4, (2.42) together with an argument following (2.19) implies
Lo < ..o 3—E_

0,71 + divii®) = O = D) = S0 (2.44)

Subtracting (2.44) from (2.43), we arrive at
— , = 1—- =, 3—=_ ___

8 (2 — 72 + div[u(n? — 719)] = —Ene — 4 + §n5n + Py 7% (2.45)
Notice that from (2.3) and (2.39), we can take a subsequende.of}, {p+;}, such thatoy ¢, — px in
L} (Rt x R?) for any p < 2. Therefore,

PN, — Py i1 weakly inLiy (R x R?), (2.46)
foranys < g. But by their definitionsp, ¢, 7¢; = 0, which together with (2.46) implies that
oy 1=0. (2.47)
Hence, the right-hand side of (2.45) equals
1— — 3+ 1— — — 1= —
_ 6 _ 4524 265 _ [ =6 452y _ 5% Z(n57 — ph5p2
XA A LA <2(n+nn) nn>+2(nn n*n°)
1 1
=5 f AMo—m2dvi () + > f A0 — ) dvZ (), (2.48)
R R

note thatf 7°(x — #) dv?,. (1) = 0, from which, we obtain

1 1
(248)= - / MO R0+ / 04— 0 — 2, (1)
R R
1
=5 f (=A% 4+ 237+ 2272 0% + 7 (= D2 duf ()
R

<cit f (= D22, (V). (2.49)
R
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Combining (2.45) with (2.49), we obtain

3 (12 — 72 + div(u(n2 — 79) < Cii* f (= M2V, (). (2.50)
R
Trivially
W <rh=pm, /(x C2d2, () = (2 — 7).
R

while a similar proof of (2.47) also implies

pm? =0,
which together with (2.47) and (2.50) implies that
0, (% = 1% + div(u(m? — 71%) < C(P~ — PP — 72 = —Cp(n? — 7?), (2.51)

where we used the fact that= —(p= — 7). In what follows, we denotén2 — 72) by 7, f. = f * je, then by
Lemma II.1 of [3], we obtain

O fe +div(ufe) < —Cp fe +re, (2.52)

with re - 0in Lj (R x R?) for s < ‘3‘. Let us taked, y > 0 be small constants, which will be determined later.

Then multiplying (2.52) by (f. + y)?~1, we find
O (fe+ )0 +div(u(fe +1)") = (0(C = 1) = 1) (= — 5 (fe + 1) +0(fe + )" re. (2.53)

Takinge — 0 theny — 0 in (2.53), and picking the constafitsmall enough such th&(C — 1) — 1< 0 and
£2(t, x) € LR, L4(R?)), we arrive at

3 f? +divur?) <o. (2.54)
With (2.54), a similar proof of (2.34) and (2.36) implies that: for almost @R, there holds

f
c/fG(f,x)qs(;—‘) dx < —%//5(t,x)VA1<V¢<;—C)f9> dxdr. (2.55)
R2 0 R2

On the other hand, note that

_ X =y
VA~ h| = ‘/ 2h<y>dy‘
Zu—ﬂ
R

<‘f x_y2h<y)dy‘+’/ x_yzhmdy’
lx — ¥l lx =yl

[x—y|<r [x—y|=r
1
< C(rY? |l o + ~l1Al ).

By takingr = (||/z]| .1/l ]|>)%2 in the above inequality, we obtain

1/3

p LA (2.56)

IVA™ Rl < Cll| 7a

In particular, from (2.56), we obtain
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1/3
_ x x
Hm 1(v¢>(—)f9) < cst(—) 1Vl o
n 1,00 n L4/3
1/3 2/3
< Cn 2|Vl IV £ o (2.57)

Plugging (2.57) to (2.55), and using a similar procedure as that in the proof of (2.37), we obtain

/fg(t,x)dx=0,
RZ

for almost allz > 0. This implies that
UEX A = 85(&)6)()\). (2.58)
Combining (2.39) with (2.58), we complete the proof of the lemma.

Before the presentation of the main result of this section, let us first introduce the precise definition of the
renormalized solution to (1.1).

Definition 2.1. We call (o(z, x), u(z, x)) a renormalized solution of (1.1) if for am§(t) € C1(R) with 8(0) =0
andg’(t) = O(|r|*~ 1) for some O< « < 1, there holds

8, B(p) +div(uB(p)) = pB(p) — B (p), (2.59)
and
u=VATlp, (2.60)

in the sense of distributions.

Theorem 2.4. Let pg € L1(R?), then(1.1) has a global renormalized solutiap, ) in the sense of Definitio. 1.
Furthermore o (, x) € LR, LYR2)) N LL (Rt x R?) foranyg < 2, andu(t, x) € LEL(RT, WI%)’C”Z (R?)) with
the exponentg,, p2 given at the next line of2.10) Furthermore, forr > 0O, there holds

1
plt,x) <>, aexe R?. (2.61)

Remark 2.2. Note by (2.61) that there are only concentrations on the negative partt af). Therefore, we
actually only need to renormalize the negative par @f Definition 2.1.

Proof. We first construct the approximate solutions via (2.1). Then from (2.3), (2.11) and setting we obtain

(p, u) with the required regularity as that stated in the theorem. Moreover, from (2.12), there holds (2.60). Therefore
to complete the proof of the theorem, we only need to justify {hat:) thus obtained satisfies (2.59). In fact, by
multiplying 8’ (p¢) to the first equation of (2.1), we get

3 B(pe) +div(uef(pe)) = peB(pe) — Te(pe) pe B (pe)- (2.62)
Note by (2.3) and Lemma 2.3, we find that there is a subsequerige}of{o¢, }, such that

pe, — p stronglyL{ (R* x R?), (2.63)

loc

for any g < 2. Then by takinge = ¢; in (2.62), and using (2.12), we prove (2.59). This completes the proof of
the theorem. O
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Remark 2.3. In the one space dimension case, (2.1) is reduced to
X
0;p + 9y (up) =0, u(t,x):/,o(t,y)dy. (2.64)
0

Itis easy to observe that whexi0, x) takes negative values, a smooth solution to (2.64) will blow up in finite time.
In fact, we have the following explicit solutiofp, «) to (2.64):

0 r>1 0, 121,

) el 1, x<t—1,
e B B Al B RIS B B

—Xx-1,11(x), 1=0, -1, x>1—1t.

On can easily check thajp, 1) thus defined is a renormalized solution but not a distributional weak solution
to (2.64).

3. Global strong solutions to (1.4)

In this section, we consider the global existence and uniqueness of strong solutions to (1.4) with initial data
po(x) € LY(R?) n wlP(R?) for 2 < p < oo. Formally we decompose the solutiprof (1.4) into

p=ply>0+plyco= pp — oo,

where 1,>¢ again denotes the characteristic function on th¢@et): p(¢, x) > 0}, and similar meaning for k.
Then we can rewrite the first equation of (1.4) as

3 (py — p)+u-Vipr +p) =—(04)° + (p-)°. 3.1
Motivated by this formulation, for any fixed small constant- 0, we decompose the time intervid, oo) as
UrZolie, (i + 1)e), and will construct the approximate solutions to (1.4) on each time intgiiali + 1)¢), then

pitch them together to get the global approximate solutions. First, on the time irf@realwe solve for(oS. ;, uf)
through

dpS g Eus- VoL =—(ps % 1€l0,el,

ug=VATHpS 1~ pC 9, (3.2)

p5 1li=0=p+0, P 1li=0=p- 0,
wherep o = polyy>0 andp_ o = —pol,<o. As bothpy o andp_ o are positive functions, mollifying the initial
data by j,, we can use the classical characteristic method to solve the above problem globally. For amy fixed
we can get am independent estimate for the approximate solutions, then wejtaké to get the estimate for the
solutions of (3.2) with rough initial data. For simplicity, we will omit this step in the subsequence, and will do the
a priori estimate directly.

By takingd,, to the first equation of (3.2), and multiplying the resulting equatiop [y, pﬁr_1|/"1sign(axi PS 1)

we obtain ' ’

0113y, pS 117 + div(ugldy, oS 417)
= divu§|dy, 05 117 — pdxul - VoS 110y, 05 1177 SigN(@, 05 1) — 2ppS. 110x, 05 117 (3.3)
Note from the characteristic form of (3.2), it is trivial to observe that

0< p% 1(t, %) < llpollLee, oS 1@, )] 12 < lloxoll 2. (3.4)
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Then integrating (3.3) ovék?, and using Gronwall inequality and (3.4), we find

t € . 00
[ V205109 1p < IVxp 0l o€ Jo 1VxtaIlioe ds, (3.5)

Similar to the estimate of (3.5), we can prove the following estimat&’for®

t €re . o
IVxpS 1 (1, lzp < [ Vxp— ollLr € JoIVstils:llioe ds, (3.6)

This completes the construction and the estimate for the approximate solutions on the time|[idtejvdb go to
the next step, let us define the data at tinfest. Attimer = €, we redesigrp§ ; andp® ; by setting

pi,l(€+vx) Z(pi’l_pi’l)ﬂ-(e_v-x)’ pi,l(€+vx) Z(pi’l_pi’l)-ﬁ-(e_’x)' (37)
With the above definition, it is easy to observe that
[VerSatet, 0 o + [ VepS st 0| L <[ Varfale= 0] + [VerS 1(e= 0] 1, (3.8)

Indeed, for any fixed positive constait we denoteD;f = |pL 1€+, x + h) — pS 1(e+,X)| + [pE 1 (e+,x +
h) — pi’1(6+,x)|, and similar notation foD,” with €+ in D; replaced by — . Then, if ,ofhl(e—,x +h) >
p< 1(e—,x + h), we have the following two subcases: eithgr,(e—, x) > p¢ 1(e—, x), then

D = oS 1(e= x +h) = p< 1(€= x +h) = p§ (€=, x) + p< 1 (€= 0)| < Dy, (3.9)
or pi,l(e—,x) < pi’l(e—,x), and then
D;f = (pS 1(e— x +h) = pS 1(e—, x + ) + (p€ 1(€—,x) — p 1(e—, %)) < D}, (3.10)
While whenp j(e—, x +h) < p 1(e—,x + h), similar to the proof of (3.9) and (3.10), we still can prove that
D <D, .

Combining (3.9) with (3.10), we obtain

D\’ D;\’
JG) s [(5r) o
h h
R? R?
takings — 0 in the above inequality, we get (3.8).

Next we solve for(pft’z, u5) on [e, 2¢) by (3.2) with (p;l, uf) there replaced by,oftyz, u5), together with the
datapf ;(e+,x) atr = €. From (3.4) and its proof, it is easy to get that

N

0< P55, 0) <llpollze, 1195 o0t It < llpaoll 1, (3.12)

fore <r < 2e.

Furthermore, similar to the proof of (3.5) and (3.6), we can get similar estimaté¢¥far | ..

With the above argument, we can inductively define the approximate solutidis ¢h+ 1)¢) for any integet.
And on each time step, there hold similar estimates as (3.5), (3.6) and (3.8). Now we define the global approximate
solutions to (1.4) by

PL(t,x)=pS ;4@ x), forte [ie. (i + De),
u€(t,x) =uf(t,x), fortelie, (i +1e), (3.12)
p(t, x) = pS(t, x) — p<.(t, x).
Then from (3.5), (3.6) and (3.8), we find
IV205 )| + [ V605 | 1p < (19205 oo + V0% gll ) €8 Jo Vx5l ds, (3.13)
for all t e R*. Therefore, from (3.12), we obtain

|90 (2, )] < 201V poll 1 €6 Jo IV o ds, (3.14)
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On the other hand, note that = VA~1p¢, by Lemma 2.2 of [2], we have

V,p<(t, -
[Vt 1, ) o < Cllp" I log (14 2 ey (3.15)
L o€l zoe
Summing up (3.4), (3.14) and (3.15), we arrive at
[ Vot )] L < Ve poll o €€ 010012 Gl s (3.16)

To get the uniform estimate fdfv, p€(z, -)||r, let us set

Fe(t) = || Vi pollr € Jo 00CHHIVxp 0l d
then from (3.16), we get

F/(t) = Clog(1+ ||Vxp(t, )| ,) Fe(t) < Clog(1+ Fe(1)) Fe(0), (3.17)
from which, we obtain

| V20|, < Fe) < IVapollr €€, (3.18)

which together with (3.13) and (3.15) implies that there is a positive conétant which is independent of,
such that

| VapSt, )], <C@. (3.19)
Furthermore, by (3.4) and (3.11), we have

loS . )] ;1m0 < Nox0ll L1700
which together with (3.19) and some basic fact on singular integral operator implies that

|u€ @, )| o < C@). (3.20)

To prove the precompactness(@f, u€), we need also some weak continuity«f with respect to the variable.
In order to do so, for any positive constaft< co, let us take any test functiap(z, x) € D([0, T) x R?). Denote
K= [g], the integer part og. Then from the first equation of (3.2), we find

T
[ [@o+uc-vo -t o108 drc
0 Rr2
T Kk—1 (tDe
= [ [@s+u-vo-pcompiararr 3 [ [@o+uvo-pors du
Ke R2 i=0 . R2
K
=Z/¢(i6,x)(pi’i(ie—,x) —p§ i€+, x)) dx—/¢(o,x)p+,o(x)dx. (3.21)
i=1g2 R2
Similar to the proof of (3.21), again from (3.2), we get
T
[ [@o—u-vo- i)t dec
0 R2

K
=Z/¢(ie,x)(p€_’i(ie—,x)—,O:i(ie—i—,x)) dx—/d)(O,x)p,,o(x)dx. (3.22)

i:]'RZ R2
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On the other hand, by (3.7), there holds

(05 ii€=,x) = p5. ;lies, 1)) = (0 ;e =, x) — pS (iey, x)) =0,

from which, subtracting (3.22) from (3.21), we arrive at

T
//(8,(1)/06 +u(pS. +pS) - Vo) dxdr + / ¢ (0, x)go(x) dx. (3.23)
R2

0 R2

(3.23) implies that{p¢} is uniformly bounded in LigR™, W—11(R2)). Note thatp > 2, by (3.18) and Lions
Aubin’s Lemma (see the proof Lemma 3 of [23] for a similar argument), we find that: there is subsedgignce
andp € L¥(R*, w7 (R?)) such that

{p/} uniformly converges t@ on every compact subsefR™ x R?. (3.24)

With p thus defined, we set=VA~1p. Thenu € LR, W27 (R?)), and{u,,} converges ta on every com-

pact set 0f0, 0o) x R2. Therefore from (3.23)p, u) is indeed a weak solution to (1.4) if we can prove that
S + p< converges tgp| in L (RT x R?), (3.25)

loc

for anyq < oo. Actually by (3.2), on each time intervli — 1)e, i€), we have
I (p§ P ;) = (—uf - VoS- (Pi,i)z)ﬂ)i,i + (uf - Vol ; — (Pi,i)z)pi,r

Integrating the above equation oér — 1)e, 1] x RZ with 7 < ie, and using (3.18), we obtain

/ (P55 ), x)dx < Ce. (3.26)
[-L,L]?
Then by (3.12), (3.26) is actually for alk R*.
Note that

(0} + P72 = (p)? +4p{ p.

which together with (3.24) and (3.26), we prove tl(lﬁif + p)2 converges tgp? almost everywhere, then by
Egrov Theorem, we prove (3.25).

By summing up the above argument, we achieve the following result on the global existence of strong solutions
to (1.4).

Theorem 3.1. Let pg € LY(R?) N WP (R?) with 2 < p < co. Then(1.4) has a unique global strong solution

(p,u) such thato(r, x) € L°(R*, LY®R?) N LR Y, WhP(R?)), andu(t, x) € L (RT, W2P(R?)).

Proof. Note that the solution constructed here is strong enough, it is trivial to prove the uniqueness by comparing
different solutions. We omit the details herex

Whenpg € C* with « € (0, 1), or Lipschitz space, by modifying the above arguments, we can still get the global
existence result to (1.4). For simplicity, we just present the result with initial data in Holder space case.

Theorem 3.2. Let pp € L1(R?) N C*(R?) with 0 < « < 1. Then(1.4) has a global strong solutiofp, «) such that
p(t,x) € L°@RT, LYR?) N LE(RT, C*(R?), andu(t, x) € L2 (RT, C1t2(R2)).

loc loc
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Proof. With the detailed proof of Theorem 3.1, we are going to only outline the proof to the above theorem, and
omit the details here.

Again as in the first step in the proof of Theorem 3.1, we can construct the approximate solutions as that in
(3.12). Then we are going to get the uniform estimatef From the proof of Theorem 3.1, we only need to
get a similar version of (3.5) in the setting of Holder space. In order to do so, let us define the plus and minus
characteristicsX$ ;, by the equations

d

ax;yl(z,x) = tuf (1, X5 1(t, x)). (3.27)
From (3.2) and (3.27), we get

d 2

gt X5 1 @0) = =(p8 4 (1, XS 1.5, 0)))%, (3.28)

from which, we obtain
S o((XS DT X))
1+ 105 o((XS P71 0)

Let us fix a small positive constant we are going to get a uniform estimate f(wi,l(t, -+ h)— pi’l(t, )/ kY.
Actually by (3.29), we get

oS 1(1.) (3.29)

PLAC X +h) —pS )| 1| pLo((XE DT x+h)  pf o((XS DTHE X))
h |14 pS (XS DT x +R) 1+ 1pS o(X DT X))
< h%wi,o((Xi,o‘l(a x+h) = 5 o((X5. D72 0)]- (3.30)
While by takingV, to (3.27), and using Gronwall inequality, we obtain
e oIVt & v, XS 1 < @lo IVl (3.31)
Note that

Calt XS D7 0) =x,
by takingV, to the above formula and using (3.31), we obtain
e foIvuilie & < 7 (X¢ )Y < eloIVuilieds, (3.32)
Combining (3.30) with (3.32), and taking the supremum of (3.30) with respéctue arrive at
|05 1t ) | o < 105 gllcuo V2o d, (3.33)

With (3.33), we can follow the proof of Theorem 3.1 step by step to complete the proof of Theorents.2.
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