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Abstract

We consider the sub- or supercritical Neumann elliptic probleMy + pu = u Z—f%ﬂy u>0ing; g—,‘; =0o0n 452,52 being
a smooth bounded domain B, N > 4, 1 > 0 and ez 0 a small number. We show that fer> 0, there always exists a
solution to the slightly supercritical problem, which blows up at the most curved part of the boundaggesto zero. On the
other hand, foe < 0, assuming that the domain is not convex, there also exists a solution to the slightly subcritical problem,
which blows up at the least curved part of the domain.
© 2005 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved
Résumeé

£2 étant un domaine borné régulier &, N > 4, on considére le probléme elliptique de Neumanu + pu = u%+€,
u > 0 danss$2; g—z =0 sur 92, ouu > 0 est un parametre fixé. On montre que paur 0 assez petit, le probleme admet
une solution non-constante, qui se concentre quatehd vers zéro en un point de la frontiére ou la courbure moyenne est
maximum. En supposant que le domaine n’est pas convexe, on montre aussi<pdassez proche de zéro, I'existence d’'une
solution non-constante, qui se concentre quatehd vers zéro en un point de la frontiére ou la courbure moyenne est minimum.
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1. Introduction

In this paper we consider the nonlinear Neumann elliptic problem

P _Au+uu=uq, u>0 |nQ,
( q,u) g_z =0 onos2,

where 1< g < 400, i > 0 ands2 is a smooth and bounded domairRf, N > 4.

Eaq. (P,,.) arises in many branches of the applied sciences. For example, it can be viewed as a steady-state
equation for the shadow system of the Gierer—Meinhardt system in biological pattern formation [12,27], or for
parabolic equations in chemotaxis, e.g. Keller—Segel model [24].

Wheng is subcritical, i.eq < %—f% Lin, Ni and Takagi proved that the only solution, for smallis the constant
one, whereas nonconstant solutions appear for larg&l] which blow up, ast goes to infinity, at one or several
points. The least energy solution blows up at a boundary point which maximizes the mean curvature of the frontier
[29,30]. Higher energy solutions exist which blow up at one or several points, located on the boundary [8,13,22,
42,18], in the interior of the domain [5,7,10,11,15,20,40,43], or some of them on the boundary and others in the
interior [17]. (A good review can be found in [27].) In the critical case,g.e= 5, Zhu [44] proved that, for convex
domains, the only solution is the constant one for smdkee also [41]). For large, nonconstant solutions exist
[1,35]. As in the subcritical case the least energy solution blows up,@ses to infinity, at a unique point which
maximizes the mean curvature of the boundary [3,28]. Higher energy solutions have also been exhibited, blowing
up at one [2,36,32,14] or several boundary points [26,37,38,16]. The question of interior blow-up is still open.
However, in contrast with the subcritical situation, at least one blow-up point has to lie on the boundary [33].

Very few is known about the supercritical case, save the uniqueness of the radial solution on a ball for small
[23]. In [27], Ni raised the following conjecture.

Conijecture. For any exponeng > 1, andu large, there always existsrgonconstansolution to(P,, ).

Our aim, in this paper, is to continue our study [34] on the problem for fixeathen the exponent is close to
the critical one, i.eq = %—fg + ¢ ande is a small nonzero number. Whereas the previous results, concerned with
peaked solutions, always assume thagoes to infinity, we are going to prove that a single interior or boundary
peak solution may exist for fixed, provided thay; is close enough to the critical exponent. In [34], we showed that
for N = 3, a single interior bubble solution exists for finjte ase — 0. In this paper, we establish the existence
of a single boundary bubble fanyfinite . and for any smooth bounded domanc RV, N > 4, provided that
¢ > 0 is sufficiently small.

Let H(a) denote the boundary mean curvature function atd 2. The following result partially answers Ni’s

conjecture:

Theorem 1.1.Suppose thav > 4. Then(P%er) has a nontrivial solution, foe > 0 close enough to zero,
which blows up as goes to zero at a point € 952, such thatH (a) = maxpcy H(P).

In the case of < 0, i.e. slightly subcritical case, we then have the following theorem.

Theorem 1.2.Assume thalv > 4 and £2 is not convex. The(\PN%zH H) has a nontrivial solution, foe < 0 close
NS +e.
enough to zero, which blows up agjoes to zero at a point € 952, such thatd (a) = minpcy; H(P).

Remark. Theorem 1.2 agrees with the following result of Gui and Lin: in [14], it is proved that if there exists a
sequence of single boundary blowing up solutiagsto P%Hi’ﬂ with &; <0, then necessarily,; blows up at

a boundary point: € 32 such thatH (a) < 0 anda is a critical point of H. Here we have established a patrtial
converse to [14].
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A similar slightly supercritical Dirichlet problem

(0:) {—Au:ux_tg—i_sz, u>0 ing2,
u=>0 onas2
has been studied in [9], where the existence of solutions with two bubbles in domains with a small hole is estab-
lished, provided that is small. It is interesting to note that, here, and also in [34], we have no condition on the
domain, in the slightly supercritical Neumann case.

The scheme of the proof is similar to [34] (see also [9]). However, we use a different framework — i.e. weighted
Sobolev spaces — to treat the cage> 4. In the next section, we define a two-parameters set of approximate
solutions to the problem, and we look for a true solution in a neighborhood of this set. Considering in Section 3 the
linearized problem at an approximate solution, and inverting it in suitable functional spaces, the problem reduces
to a finite dimensional one, which is solved in Section 4. Some useful facts and computations are collected in
Appendix.

2. Some preliminaries
2.1. Approximate solutions and rescaling

For sake of simplicity, we consider in the following the supercritical case, i.e. we assume h@t The
subcritical case may be treated exactly in the same way. For normalization reasons, we consider throughout the
paper the equation

2
—Au—l—uu:a;\/u%ﬂ, u>0, (2.1)
instead of the original one, whetgy = N (N — 2). The solutions are identical, up to the multiplicative constant

—2
(ozN)_4+[<VN—2)E. We recall that, according to [6], the functions
s v
U.alx)= v, A>0,aeR", (2.2)
L+A2x —al®) 2

are the only solutions to the problem

2
—Au :aNu%, u>0 inRVN.
As a € 352 and goes to infinity, these functions provide us with approximate solutions to the problem that we
are interested in. However, in view of the additional linear tgmmwhich occurs ir(PNingE u)' the approximation
N5 tes

needs to be improved.
Integral estimates (see Appendix) suggest to make the addid@rari assumption that behaves as 1/ase
goes to zero. Namely, we set

1 1
A=—, —<A<¥ (2.3)
Ag &
with 8’ some strictly positive number. Now, fixe 352. We defineV, , , . = V satisfying
—-A = “ ing
V4+uVv OINU%’(J , (2.4)
» =0 onas.
TheVa q,.,¢'S are the suitable approximate solutions in the neighborhood of which we shall find a true solution to
the problem. In order to make further computations easier, we proceed to a rescaling. We set

Q2
Q2. ==
&
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and define inf2, the functions
N-2 a
WA,S,,u,s(x)ZETVA,H,;L,S(EX)a §= ; (25)

Wa e e =W satisfies

N+42

—AW + 2w =ozNUﬁZ in $2;,
Z’

(2.6)
aw
S = =0 onos2,
and, sincdJ 1 £ > Ce¥~2andAW >0 at a minimum point o#¥ in the closure of?2
I
w>ceV inQ. (2.7)
Another fact that we shall use later is the following: observe dhav satisfies
N+2
—A@4W) +pe2oaW =anda(UT}) in &2,
A
AOAW) _
== =0 onoas2;.
N+2 N+2
Slnce|8A(U )| CUY"?, by comparison principle we obtain
A
[0AW| < CW. (2.8)

The same holds fad: W instead ofo, W.
Finding a solution tc(PN+z ) in a neighborhood of the functions, . . . is equivalent, through the follow-

ing rescaling
_2anv-2  (x
u(x)—>8 ANy | —
&

to solving the problem

2, _ NES+e i
Au+peu =ayuv=2"", u>0 ing,, (2.9)

(Piiz,. ) : )
atem =0 onog,
in a neighborhood of the functior®, ¢ ;. .. (From now on, we shall work WIthPN+2+ en ).) For that purpose, we

have to use some local inversion procedure. Namely, we are going to look for a solutigih, towriting as
w=Wpepueto

with w small and orthogonal av, ¢ , ., in a suitable sense, to the manifold
M ={Wa g e Asatisfying (2.3)f € 982}

The general strategy consists in finding first, using an inversion procedure, a smooth ngap-> (A, &) such

that Wa g, + w(A, €, u, ) solves the problem in an orthogonal spaceMo Then, we are left with a finite
dimensional problem, for which a solution may be found using the assumptions of the theorems. In the subcritical
or critical case, the first step may be performediih (see e.g. [4, 31 ,32]). However, this approach is not valid any
more in the supercritical case, fA* does not injectintd.? asq > -2 5. In [9], a weighted Holder spaces approach

was used. In the present paper, we use weighted Sobolev spaces to reduce the problem to a finite dimensional one



0. Rey, J. Wei/ Ann. |. H. Poincaré — AN 22 (2005) 459-484 463

2.2. Boundary deformations

Fix a € 32. We introduce a boundary deformation which strengthens the boundary: n#éthout loss of
generality, we may assume that= 0 and after rotation and translation of the coordinate system we may assume
that the inward normal t62 ata is the direction of the positivey-axis. Denotex’ = (x1,...,xy_1), B'(§) =
(x' e RN-1: |x'| < 8}, and$21 = 2 N B(a, §), whereB(a, 8) = {x e RV: |x —a| < 8}.

Then, since) §2 is smooth, we can find a constant 0 such thab 2 N B(a, §) can be represented by the graph
of a smooth functiomp, : B'(§) — R, wherep,(0)=0, Vp,(0)=0, and

2N B(a,8) ={(x',xy) € B(a,8): xy > pa(x")}. (2.10)
Moreover, we may write
1 N-1
pa(x) = > > kixz+ 0(1x?). (2.11)

i=1
Herek;,i =1,..., N — 1, are the principal curvaturesatFurthermore, the average of the principal curvatures of
082 ata is the mean curvaturf (a) = ﬁ Zf\’:_ll k;. To avoid clumsy notations, we drop the indein p.
On a2 N B(a, §), the normal derivative (x) writes as

n(x) = V'p,-1) (2.12)

1
V14|V

and the tangential derivatives are given by

9 1 9
- <0,...,1,...,—p), i=1,...,N—1. (2.13)

0Tix /14 19p/dx;|? 0x;

When there is no confusion, we also drop the dependenggiaf , on x.

2.3. Expansion oV and W

In Appendix (Lemma A.1), we derive the following asymptotic expansiol offor N > 4, we have the expan-
sion

V=UA1£’a—(Aa)4_TNgoo<%) +0(e°7 [Ine|™) (2.14)
wheregg solves some linear problem and= 1 for N = 4 andm = 0 for N > 5. This then implies that

W=Us (1)~ p@) (2.15)
where

@(x):eA“zN%(xf) +0(Ingl™). (2.16)

Furthermore, we have the following upper bound
Celln, g|"
(L+|x —&PN=3

wheren =1 for N =4,5 andn =0 for N > 6, whence
(W ()| < C(U%’E)l_f in $2 (2.18)

X € 82 (2.17)

wherer is a positive number which can be chosen to be zemd &s6, and as small as desired &s= 4, 5.
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3. The finite dimensional reduction
3.1. Inversion of the linearized problem

We first consider the linearized problem at a functi¥n ¢ ., ., and we invert it in an orthogonal spaceib
From now on, we omit for sake of simplicity the indices in the writingVsf ¢ ,. .. EquippingH1(£2,) with the
scalar product

(u,v) = /(Vu -Vuv+ ,uezuv)
£2¢
orthogonality to the functions

Iw Iw
Yo=—, Y= .
1

in that space is equivalent, setting

1<i<N-1, (3.1)

poe AW GBW W W
= — —_— E —_—, ] = — E s
0 oA THE A A on T

1<i<N-1 (3.2)

to the orthogonality inL2(£2,), equipped with the usual scalar prodict), to the functionsz;, 0<i < N — 1.
Then, we consider the following problent being given, find a functiop which satisfies

—A¢ + uelep — aN(%—Jjg + E)Wﬁ“(p =h+Y,c¢Z inS$2,
¥ -0 onas,, (3.3)
0<i<N-1 (Zi,¢$)=0
for some numbers;.
Existence and uniquenessgfvill follow from an inversion procedure in suitable functional spaces.¥et 3,
the weighted Holder spaces in [9] or [34] work well. Rér> 4, we use a weighted Sobolev approach which seems
more suitable in treating the large dimensions case. (Special attention is needed for the-cakg Similar
approach has been used in [39] in dealing with a slightly supercritical exponent problem.

LetZ/ be an open set iRY andé e /. For 1< t < 400, a nonnegative integéyand a real numbe#, we define
a weighted Sobolev norm

l
11yt = D 66 = 7 10% ] g,
|o|=0

where(x — &) = (1 + |x — £[%)%. Whenl = 0, we denotdivg”(l/l) asLiU).
Let f be a function inf2,. We define the following two weighted Sobolev norms

and

I e = W F N2y 200

We choose andg such that

N—-2 NN -2) N
N <t < 400, 5 + P <ﬂ<7—2 (3.4)
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wheret’ is the conjugate exponent ofi.e., % + % =1. (Itis easily checked that such a choice ahdg is always
possible.) Since > N, by Sobolev embedding theorem, we have

Vo )|+ 6] < Clx — &) P lle,  Vx € 2. (3.5)
We recall the following result:

Lemma 3.1(Corollary 1 of [25]).The integral operator
u(y)
T ‘f EETEL

is a bounded operator from LRY) to Ly (RVN), provided that—— <p<¥_2
We are also in need of the following lemma, whose proof is given in the Appendix:

Lemma3.2.Let f e L. +2(528) andu satisfy

. ou
—Au—i—/wzu:f in 2, 3_:O onos2;.
n
Then we have
[f I

u@)| < / vz (3.6)
and

llulls < CIS Ik (3.7

The main result of this subsection is:

Proposition 3.1.There existgg > 0 and a constanC > 0, independent of and§, A satisfying(2.3), such that
forall0<e <ggandallh e L, +2(98) problem(3.3) has a unique solutiopp = L. (k). Besides,

”Le(h)”* < Cllh]ls, lci] < Cllhllx- (3.8)
Moreover, the mag., (k) is C* with respect tad, & and theW2 1(£2,)-norm, and
IDca.eyLe)||, < Clikllss. 3.9

Proof. The argument follows closely the ideas in [9] and [34]. We repeat it since we use a different norm. The
proof relies on the following result:

Lemma 3.3.Assume thap, solveg3.3)for h = h,. If ||h¢||«+ gO€eS to zero as goes to zero, SO dod#, || «-

Proof of Lemma 3.3. Arguing by contradiction, we may assume that ||, = 1. Multiplying the first equation in
(3.3) byY; and integrating in2, we find

2 N+2 A e
Y eilZi Yj) =(—AY; + ue’Y; —ay o HE)WITEY g ) = (he, X)),
i

On one hand we check, in view of the definitionzf, Y;

(Zo. Yo) = |YolZ=co+o(D), (Z.Yi)=|Yi|?=c1+0(1), 1<i<N-1 (3.10)
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whereco, c¢1 are strictly positive constants, and
(Zi,Yj)=01), i#]. (3.11)

On the other hand, in view of the definition Bf and W, straightforward computations yield

N+2 4
<—AY]' +M82Yj _O{N(m +S>WN_2+8Yj,¢8> =0(”¢8”*)

and
(he, Yj> = O(Hhé‘”**)
Consequently, inverting the quasi diagonal linear system solved hy'theve find

¢i = O(llhellsx) + ol e ll+)- (3.12)

In particular,c; = o(1) ase goes to zero. 5
Sincel|¢¢ ||« = 1, elliptic theory shows that along some subsequepgg;) = ¢.(x — &) converges uniformly
in any compact subset Nﬁ to a nontrivial solution of

N+2 4 .
N—2U/l ¢

for someA > 0. Moreoverg L%(RN). A bootstrap argument (see e.g. Proposition 2.2 of [39]) impiés)| <
C/|x|N~2. As a consequence, writes as

—Ad=ay

- aUAO N-1 8UA0
¢ =ap Y +Zoti b

i=1
(see [31]). On the other hand, equalities, ¢.) = 0 provide us with the equalities

A A0 34 '

RY RY
Uz g - 4 Uy -
/—A aaA_%:/UANBZ 32%:0, 1<i<N-—1.
1 ’ 1
RY RY

As we have also
aU »
[
aA
RY

and

2
=c1>0, 1<i<N-1

2 oU -
=co >0, /WV BAO

aj
RY

U ; U oU ; U ;
/V A0 g A,OZ/V 40 G0%A0 _ o i

3/} ' da; Baj ' da;
RY RY
the «;’s solve a homogeneous quasi diagonal linear system, yielding 0, 0< o; < N — 1, and$ = 0. So
¢e(x —&) — 0in CL_(£2,). Now, since

_4 _ _ _
[(x — &)P 2w w29, |" < Cllgell’ (x — &)@~ W=D ¢ FLRN)
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(using (2.18)), by the Dominated Convergence Theorem we obtain

/|<x—s>ﬁ+2W~i—2+8¢g|’=o(1> e W2 gl = o(d).
2

On the other hand, from (2.6), (3.2) and the definitioofwe know that
(x =&z <Clx— )V e L'RY).
Applying Lemma 3.2 we obtain

4
Ipells < CIW T2 [luse + Cllhe|las + C Z lcilll Zill s = 0(1)

1

that is, a contradiction.

Proof of Proposition 3.1 completed.We set
H={peH 2),(Zi,¢)=0,0<i <N —1]
equipped with the scalar produgt -).. Problem (3.3) is equivalent to findinge H such that

N+2
(¢79)6:<0[N<N+2+8>WN42+5¢+11,9>, Vo e H

that is
¢ =T(9)+ (3.13)

h depending linearly o, andT, being a compact operator iti. Fredholm’s alternative ensures the existence of
a unique solution, provided that the kernel oHd; is reduced to 0. We notice that agy € Ker(Ild —T;) solves
(3.3) withz = 0. Thus, we deduce from Lemma 3.3 thiat || . = o(1) ase goes to zero. As Keld —T;) is a vector
space, Kelld —T,) = {0}. The inequalities (3.8) follow from Lemma 3.3 and (3.12). This completes the proof of
the first part of Proposition 3.1.

The smoothness df, with respect tad and¢ is a consequence of the smoothnesg,cfindi, which occur in
the implicit definition (3.13) ofp = L. (h), with respect to these variables. Inequalities (3.9) are obtained differenti-
ating (3.3), writing the derivatives @f with respect taAd andé¢ as a linear combination of thé’ and an orthogonal
part, and estimating each term using the first part of the proposition — see [9,19] for detailed computations.

3.2. The reduction

Let

+
Se(u) = —Au + /wzu — ozNuJ’:_’z ‘

whereu, = max0, ). Then (2.9) is equivalent to
. d
Se(w)=0 N2,  uy#0, 8-”:0 ona, (3.14)
n
for if u satisfies (3.14), the Maximum Principle ensures that0 in £2, and (2.9) is satisfied. Observe that

N3+e

Se(W+¢) = —AW +¢) + e’ (W +¢) —an(W +¢) }
may be written as

2
Se(W +) = A + ue’p - (% +8>0‘NWN42+8¢ — R* —ayN:(9) (3.15)
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with
N1 N+2
Ne(@) = (W+¢) Y 2" — wis+e _ (N—+2 + e)w%%, (3.16)
& 2 N4Z24 e N4Z e %—f%
R* =AW — ueW +ay W27 =qy(Wr=2" — U 7). (3.17)

A

We first have:

Lemma 3.4.There exist€, independent of, A satisfying(2.3), such that

IR e <Ce, | DaeyRE|,, < Ce.

Proof. According to (2.15) and (2.18W =U + O(eU%%g(l‘f)) uniformly in 2, (wherert is a positive number
which is either zero, or may be chosen as small as desired). Consequently, noticibgth@t™ =2 in £2,, C
independent of, easy computations yield

R = 0(:U N30y + e ¥E0-T) (3.18)
uniformly in £2, whence, using3.4)

1R o = | (x — £)FP2(U R —wiee)| o

< Cellte — )2 U U+ U)o < e

” L'(82¢)

The first estimate of the lemma follows. The other ones are obtained in the same way, differentiating (3.17) and
estimating each term as previouslyo

We consider now the following nonlinear problem: findigguch that, for some numbets

N+2
— AW +) + (W +¢) —an(W+) 2 =3, iz in 2,
% _0 onan (3.19)
on &
0<i<N-1, (Z;,¢)=0.

The first equation in (3.19) writes as

N+2 _4_
— AP+ ue’p — (m + E)OlNWN42+8¢ =ayNe(p) + R° + Zcizi (3.20)

for some numbers;. We now obtain some estimates concerniig

Lemma 3.5.Assume thalv > 4 and (3.4) holds. There exist; > 0, independent oft, &, andC, independent of
e, A, &, such thatfore| <eq, and||¢|« <1

min(2, X2 +¢)

IN:(9)],., < Cligllx (3.21)

and, for||¢; |l <1

[ Ne@r) — Ne@a)] ., < C(max{llgalle, Igalle) ™ =52 gy — ol (3.22)



0. Rey, J. Wei/ Ann. |. H. Poincaré — AN 22 (2005) 459-484 469

Proof. The argument is similar to Lemma 3.1 and Proposition 3.5 of [39]. For the convenience of the reader, we
include a proof here. We deduce from (3.16) that

{\Ns<¢>|< (W€ (g2 4 |p| V2 7€) if N <6, (3.23)

|Ne(@)] < Clp| 2+ if N>7.
Using (3.4) and (3.5) we have

|||¢|%—+3+8||**=<f(< — )BTy ¥ z“))

2

24e N+2 2
C||¢||” v (/(x £)/P+2=(=3 “‘”3)) <C||¢>||“ )

Q¢

For N = 4,5,6, using also (2.18), and noticing that® is bounded sincéV is bounded and satisfies (2.7)), we
have

1
”W%+a|¢|2“** — </((x —E)ﬁ+2W“+E|¢|2)t> t

1
< C||¢||§< / (x — f)“*‘N@(“”’) < Clel?
¢
whence (3.21). Concerning (3.22), we write

Ne(91) — Ne(d2) = 9y Ne(n) (1 — ¢2)
for somen = x¢1 + (1 — x)¢2, x € [0,1]. From

N+2
%m@:-;i+s«W+r”+ W)
N -2
we deduce
9, N, <C W is e Nipte if N <86,
{\;Am! ( IM+M| ) (3.24)
|9, Ne(m)| < C| ifN=>7

whence (3.22), using as previously (3.4) and (3.5}
We state now the following result:

Proposition 3.2.There existL, independent of and &, A satisfying(2.3), such that for smali problem(3.19)
has a unique solutiop = ¢ (A, &, 1, €) with

llls < Ce. (3.25)
Moreover,(A, £) = ¢ (A, &, i, €) is C with respect to theWé”(Qg)—norm, and

[Das9], < Ce. (3.26)
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Proof. Following [9], we consider the map, from F = {¢ € H1 N Wg"(s?g): ol < Coe} to HEN Wé”(fzg)
defined as

Ag (@) = Ls(aNN8(¢) + Rs).

Here C1 is a large number, to be determined later, dndis give by Proposition 3.1. We remark that finding a
solutiong to problem (3.19) is equivalent to finding a fixed pointAf. One the one hand we have, the F and
¢ small enough

[Ae@], < [Le(Ne@) [, + [ Le(RD], < [N:@)],, + Ce < 2Ce

with C independent o€, implying thatA, sendsF into itself, if we choose&Co = 2C. On the other hand. is a
contraction. Indeed, fap; and¢2 in F, we write

; 1
|Ac(@1) — Ac@2) ], < C[Ne(dn) — Ne(g2),, < Ce™ 721 — o]l < 561~ 2]l

by Lemma (3.5). Contraction Mapping Theorem implies thathas a unique fixed point ifF, that is problem
(3.19) has a unique solutiaghsuch that|¢||. < Coe.
In order to prove thatA, &) — ¢ (A, &) is C1, we remark that setting for € F

B(A,E,m)=n— Le(anNe(n) + R®)
¢ is defined as
B(A,E,¢)=0. (3.27)
We have
Iy B(AE,MIO] =6 —anLe (0 (3yNe) ().
Using Proposition 3.1, (3.5), (3.24) and (3.4) we obtainXog 7
L (63, Ne) () ”* < C||9(3nNa)(n)||** <Cllx - &)_ﬁ(anNa)(n)H**II@II*
4 Tt
<C|x - £)%|n| w2t ||Lt(95)ll9ll* <Clnll™* 101«
<cemz (o],
and, proceeding in the same way, using also (2.18), we fid as4,5, 6
L (63, Ne) () ||* < Cellf]]«.
Therefore we can write, for any > 4
; 4
|Ze(0@y N )|, < Ce™M 726

Consequently), B(A, &, ¢) is invertible inWé”(QS) with uniformly bounded inverse. Then, the fact that &) —

(A, &) is CL follows from the fact that A, £, n) — L.(N:(n)) is C! and the implicit functions theorem.
Finally, let us show how estimates (3.26) may be obtained. Derivating (3.27) with respeciMohave

dagp = (8,B(A,E, ¢))7l(aN(aALs)(N£ (#)) +anLe((0aNe) (@) + 04 (Le(RY)))
whence, according to Proposition 3.1

104¢ 1+ < C(|(0aLe)(Ne@) ||, + || (Le(@aN (@), + | (04 (Le(R))],)
<C([|Ne@],., + [@aND @), + [ (04 (Le(RD)) )



O. Rey, J. Wei/ Ann. . H. Poincaré — AN 22 (2005) 459-484 471

From (3.21) and (3.25) we know that
[N, < cemME D,

Concerning the next term, we notice that according to the definition (3.18) ahd the boundedness Bf*

|(0AN) ()]
= (N—+§+s> (W+¢))~ W2t e _ (i_ers)WN 2ty

4 4 .
[WR=2|gl it N >7; WR=2|g| + WIg| 72" if N <6]
[(x = &) D Plg|l. if N >7
_4_
(x = ) DB g ), + (x — £) "V RATD 2 g I if N < 6]

where we used successively the fact that> 0 (see (2.7)) and@, W| < CW (see (2.8)), inequality (3.5) and
W< CUYT < Clx — &)~ (N-21-1),

As (3.4) ensures thd — £)~40-D~8 and(x — &)~V "20--%22F for N < 6, are inL
thatt is chosen small enough), (3.25) yields

|@aND@)|,, < Ce

From Proposition 3.1 we deduce the estimate for the last term
|04 (Le(RO)) |, < CIR s < Ce

and finally
94011« < Ce

This concludes the proof of Proposition 3.2. (The first derivativeg wofith respect ta&c may be estimated in the
same way, but this is not needed herer)

[0A W]

<C
<C

(RV) (provided

3.3. Coming back to the original problem

We introduce the following functional defined il (£2,) N W2 1(82)

1 aN 2N e

A v 4 et — 7/ W2 3.28

e = [(Vult+ petu?) = et [ (3.28)
2 $2¢

whose nontrivial critical points are solutlons(tBN+2+ ). Setting

I.(A,a) = JE(WA,G + ¢£,A,a) (3.29)

we have:

Proposition 3.3.The functioru = W + ¢ is a solution to problem{PN+2 ) if and only if (A, a) is a critical
point of I.

Proof. We notice thai: = W + ¢ being a solution toiPNﬁJﬁS ) is equivalent to being a critical point of. It is
also equivalent to the cancellation of tyés in (3.19) or, in view of (3.10), (3.11)

J(W+¢)[¥]=0, 0<i<N-—1. (3.30)
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On the other hand, we deduce from (3.29) tHat\, a) = 0 is equivalent to the cancellation 8f(W + ¢) applied
to the derivatives of¥ + ¢ with respect taAd andé. According to the definition (3.1) of thE’s, Lemma 3.4 and
Proposition 3.2 we have

IW+¢) AW +¢)
oA ot e

with ||y; |« = 0(1), 0<i < N — 1. Writing

—Yj+y;, 1<j<N-1,

N-1
Y=Y+ Y a;Yi, (LZj)y=0]Y)e=0, 0<i,j<N-1,
j=0

and
JL(W+P)Yil =i

it turns out thatf/ (A, a) = 0 is equivalent, sincé/(W + ¢)[0] =0for (9§, Z;) =(0,Y;), =0,0< j <N —1,t0
(Id + [a;j])[e;]1 =0.

Asa;j = O(|lyill+) = o(1), we see thal/(A, a) = 0 means exactly that (3.30) is satisfieda

4. Proofs of Theorems 1.1 and 1.2

In view of Proposition 3.3 we have, for proving the theorem, to find critical points .0fVe establish first a
Cl-expansion of,.

4.1. Expansion of;
Proposition 4.1.There existA, B, C, strictly positive constants such that
N —2)? N —2)?

IS(A,CI) =A— BASH(CI) + %AS“’]A—FS(C—F %

with o, andd 40, going to zero ag goes to zero, uniformly with respect tosatisfying(2.3).

A) +e0.(A,a)

Proof. In Appendix, we shall prove

(N —2)?

(N — 2y
JS(W)=A—BA8H(a)+TAeInA+8 C+ —

AN A) +o(e). (4.2)

Then it remains to show that
I (A, a) — Je(W + @) =o(e). (4.2)
Actually, in view of (3.29), a Taylor expansion and the fact that + ¢)[¢] = 0 yield

1
HA@—&WO:MW+@—kmﬂzi/ﬂWH4@WMMt
0

1
4 £
=_/(/(|v¢|2+u82¢2—a,v<xf§+e)(W+t¢)P+ ¢2+R‘°‘¢>>tdt
0

2
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1
4 &
= —/(dN/<N€(¢)¢+ (% +s)[Wﬁ+€ — (W+t¢)+_’2+ ]¢2>)tdt
0 2

1 /‘ Re
5 .
£2¢
The first term can be estimated as follows. Using (3.23), (3.5), (3.4) and Proposition 3.2, we have; for

2N

’/ N€(¢>)¢>' <l /(x _ gy P < oy

98 QS

In the same way we obtain f&f = 4,5, 6, in view of (3.23) and (2.18)

2N _ _ 28 (f— _
fN€(¢)¢> <CsN—z+cn¢||§/<x—s> -6-M1-1) < 3
2 £2¢

whence finally, for anyv > 4

/ No(@)p| < CceMG ), (4.3)
2

For the second term, the same arguments as previously yield

_4
2 §2¢

< C<||¢||§/(x _g)"2-4a-0 ”qj”frﬁﬂ/(x —g)—ﬁ<2+N—42+s)>

2 ¢

whence, using again (3.4)

- — Nz el 2 2
/|WN—2 —(W+19)) 2 |p° < Ce” (4.4)
2

Concerning the last term, we remark that according to (3.18)
Rf < Ce(x — %->—(N+l)(1—f)
uniformly in £2,. Therefore
/ |R*¢| < Ce||¢||*/<x —g)~NHv=p
2 2
yielding, through Proposition 3.2
/|R8¢| < Ce?. (4.5)
2

The desired result follows from (4.3), (4.4) and (4.5). The same estimate holds for the first derivative with
respect taA, obtained similarly with more delicate computations — see Proposition 3.4 of [19].
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4.2. Proofs of Theorem 1.1 and Theorem 1.2 completed

We first prove Theorem 1.1 through a max-min argument. Sfaée smooth and bounded, maxy e H(P) =
y > 0. Foré < v, we define

(02)s={a €02 st. H(a) > 8},

and
. A—IL(Aa) 1 (N —2)?
I.(A,a)=—————4+—-|C+——A). 4.6
(A, a) Be +B<+ N (4.6)
By Proposition 4.1, we have the following asymptotic expansionfon, a):
I.(A,a)= AH@) —aIn A —6.(A,a) 4.7)
with
(N —2)? . .
o= TA >0 and o.(A,a)=0(1), 0x6:(A,a)=0(1) ass— 0.
We set
2
Z‘o:{(A,a)‘ﬂ<A<—, ae(asz)yo} (4.8)
2 c1

wherecs is a small number, to be chosen later, and ) < y. We define also
1 1
B = {(A,a) ‘ c1<AL—,a€ (39);/1}, Bo = {c1} x (02),, U {—} X (082)y,
c1 c1

whereyg < y1 < y. (Here we choose, fop;, close enough tg, a contractible component ¢652),, so thatB is
contractible.)

It is trivial to see thatBg C B C X, Bg, B are closed and is connected. Lef” be the class of continuous
functionsy : B — X with the property thap(y) = y for all y € Bg. Define the max-min value as

= in/, : 4.
¢ = maxmin (e() (4.9)

We now show that defines a critical value. To this end, we just have to verify the following two conditions

(HL) minyeg, e (p() > ¢, Vo € T';
(H2) Forally € 39X such thatl (y) = c, there exists, a tangent vector t8 X aty such that

3z, 1e(v) #0.

Suppose (H1) and (H2) hold. Then standard deformation argument ensures that the max-mirnsvalftepo-
logically nontrivial ) critical value forl, (A, a) in Xo.

To check (H1) and (H2), we writg(y) = (p1(y), ¢2(y)) wherepi(y) € [$, 2] andga(y) € (352),,.

Sinceyp|p, =id, B is contractible ang is continuous, necessarily there is somia B such thatd (p2(y)) =y .
Then, in view of (4.7)

c}do:zmin{ig(A,a), H(a)=vy, A >0} =a—alna+alny +0().

Now, let (Ag, ag) € B be such thatd (ag) =y, Ag = % (c1 being chosen small enough so thig € [c1, %]).

We note thatfg(Ao,ao) =do + o(1). For anyg € I', ¢1 is a continuous function from B t()%l, %] such that
[c1, %] C ¢1(B). Thus, there existgy € B such thatp1(yg) = Ao, whence
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g;ig I:(¢() < I (Ao, 92(30)) < —H (92(30)) —aIna +alny +o(1) < do=o(1).

XRIR

As a consequence
c=dp+ol)=a—alna+alny +o(). (4.10)
Fory € Bo, we havep1(y) =c1 orp1(y) = é In the first case, we ha\fe(y) =c1H(p2(y)) —alnci+o(1) >
aln % + 0(1) > 2dg > ¢, providedc; is small enough. In the latter case, we haig/@) = %H((pz(y)) +alney +
o(1) > }C’—i +alnct 4+ o(1) > 2dy > ¢, provided again; is small enough. So (H1) is verified.
To check (H2), we observe thatXp) = ({%} x (082),,) U ({%} X (882)y0) U ([c1, %] x (0(0£2),)). Let

y = (y1, y2) € 3 X0 be such thaf, (y) = c. )
ON ({3} x (92)y,) U ({2} x (352),,), previous arguments show that(y) > ¢ ascy is chosen sufficiently

small. On([c1, -1 x (3((32),4)), takingz, = 5%, we obtain
O, fe(v) = Hy2) = S +0(1) #0

sinced:, e (v) = 0 would yield AH (y2) = @ + o(1), and
L(y)=a—alna+anH(p(y) +o(l)=a —alne +alny+o(1).

Then, (4.10) shows thdt(y) < ¢, a contradiction to the assumption. So (H2) is also verified. A
In conclusion, we proved that farsmall enough¢ is a critical value, i.e. a critical pointA,, a;) € Xg of I,
exists. Letu, = Wa, ¢, .6 + P A, £.u.s- Ue IS @ NONtrivial solution to the problem
N+2 9
—Au+u82u=ui”2+g in £2,; 3—u=0 onas2,.
n

Then, the strong maximum principle shows that> 0 in £2.. The fact thatu, blows up, as goes to zero, at
a pointa such thatH (a) = maxpcy H(P), follows from the construction ofi.. This concludes the proof of
Theorem 1.1.

In the case of < 0, we have

I.(A,a) = AH(a) + aIn(A) — 6:(A, a).
We assume tha® is nonconvex. Similarly as before, we define
(02)s={a €92 | H(a) < -6}

where 0< § <y = —min,cy H(a) > 0, and

c1 2
To=1(ha) | 2<A<E ae@2)n,
2 c1

1 1
B= {(A,a) ‘ c1<AL —, a€ (3.{2)y1}, Bo={c1} x (0§2), U {—} X (882),
Cc1 c1
with yo <y1 < y.

Let I" be the class of continuous functiops B — X with the property thap(y) = y for all y € Bg. We define
the min-max value as

= minmax/, )
c pel ep s(‘p()’))

Arguing as previously, we find thatis a critical point off,. This proves Theorem 1.2.
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Appendix
A.1. Error estimates

We recall that, according to the definition W} , , . in Section 2
VA,a,M,s(x) = Uﬁ,a (x) — PA,a e (A-l)
With ¢4 4, .,¢ Satisfying

_A(PA,a,/L,e + LA a,p,e = MU 1 a in 2,

0PA a6 _ aU%,a on9s (A.2)
on on ’

This subsection is devoted to an expansiop @f; ;. .
We recall that, through space translation and rotation, we assume th@tands2 is given, in a neighborhood
of a, by (2.10) and (2.11). We introduce an auxiliary functign let ¢o be such that

Agpg=0 in RN {(x XN), XN > O}
N-1, 2
90 _ w2 Zimt KAl ooy (A3)
dxn 1+ 1x)z
@o(x) — 0 as|x| - 4o0.

Using Green’s representaticpr writes as

y? 1
Vi dy (A.4)
RNfl L+ 1y ¥ =yIN2

wo(x) =

wherewy _1 denotes the measure of the unit spher®&in From (A.4) we deduce that

C
|lpo(x)| < AT T3 (A.5)
and
C C
[Vgo(x)| < At rph-2 | D?po(x)| < At pvT° (A.6)

Definition. From now on, we considefy as a smooth continuation IiRY of the previous function defined R,
such that (A.5), (A.6) hold in whol&" .

We state:

Lemma A.1.For N > 4, we have the expansion

an (x—a
PA,aue(x)=(Ag)" 2 ¢o e

withm =1 for N =4 andm = 0for N > 5. Moreover,

)+0(562N|Ine|”‘) (A7)

847TN|In8|"
1+ |(x —a)/(Ae)
withn =1 andz > 0is any small fixed number fa¥ =4,5,n =0andt =0for N > 6.

@A 00| <C 7= and [eaaue @) <C(U ) (A8)
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Proof. We first remark that the second inequality in (A.8) is a straightforward consequence of the first one. Next,
we decompose
o =g+
whereg! satisfies

_A(pi-l,a,u,s + lup}l,a,u,s =0 ing,

1
Wiane _ OV onag
on on

andy? satisfies

2 2 _ .
=AY g T PG e = U in 2,

1
el
2
8¢A,a,u,s
on

Let us estimate? first. Let

=0 onos2.

. 2 .
Py =e"7 ¢ (ex).
Theng¢? satisfies
in $2;,

A2 212 _ 2
_A(pA a, i, + ue gDA,a,;L,E = peU E

>

8(OA a,pn.e
on
Inequality (3.6) of Lemma 3.2 provides us with

=0 onos2,.

d
~2 y
$2(x) CSf d \CE/
[9°0] < Ix |N 2% Aty —EPN2jx — y|N-2
whence
|A2(x)| <c e2|lng|™
IS My —eph e

withm =1for N =4 andm =0 for N > 5. (ForN > 5, see Lemma 2.3 of [21].) Consequently

4-N
e 2 |Ing|™

2 6-N m 2
v =0z ine) and '] < € o anv e

This finishes the estimate fgf. Next we estimate?. To this end, we write

4-N X —a
q)}x,a,u,s =(Ag)2 §00( Ae > ‘I'@:/S&,a,u,g(x) + ‘p‘/lx,a,u,s(x)
whereg3 , . satisfies
N + ueps =0 in 2
(pA,a,u,s /’L(pA,a,u,a ’
3
on on on Ag



478 O. Rey, J. Wei/ Ann. I. H. Poincaré — AN 22 (2005) 459-484

andg} , . satisfies

4N X —a .
—Awﬁ,a,ﬂ,e+u<ﬂi‘\,a,ﬂ,e=(A—u)<(A8) z <Po( - )) in 2,

4
a(pA,a,pL,E
an

The estimate fop? is similar to that ofp2. Namely, in view of (A.3) and (A.4), inequality (3.6) of Lemma 3.2
gives

1 d d

5 <CS3(— / Y + Y d)

%] &2 Arly—&DV T —y 2" | @y —epv 2 —yv2
Q2:\RY £2

=0 onas.

ng( 1 N [Ing|? )
e(l+x—€gPN-3 QA4 |x—&pN->
with p=1for N =5andp =0 for N # 5, whence
s%ﬂllnelp
A+ 1(x —a)/(Ae) N3

It only remains to estimatg®. Forx € 952 N B(a, §), we consider the following change of variable (still assuming
a=0)

P)=0@7) and |p*x)|<C

Agy' =x',  Asyy =xny — p(x)).
According to the definition ot/ and (2.12), we have

3U1 (x —a,n)

— 22 () = —(N — 2)(Ae) 2
on (Ae)2+|x —al)?

N-2 (Ae)'2
— 5 (ka +O|x|)>

(Ae)? +|x —a®)%

N-2 (ae)=" (N2
-— (Zk,yl+0(8|y|)>

A+ 1y)E

and, using (A.3) and (A.6)

(e oo =) ) = (a6) 7 (Vo[ S0 - vipo) — 220 (X
_— & = —
on o\ "Ae o\ "Ae PR 5w T ae
228 N-1 4N
N—2 (Ae)z 9 ( g2 |y >
- kiy?+ 0 ——— 0 ).
2 A+yP? ; RRACET
Therefore
0%y og® 2| 5
— —o(—2 ) forxea.nB(a, ). A9
oy ) gy ) 1+ /N2 S G (A.9)

On the other hand we have clearly, from (A.6) and the definitioti of

A3
a—(x) 0Nt forx €98, N B° (a, ﬁ). (A.10)
&
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-N

Then, standard elliptic theory shows ti&t= 0 (¢2) uniformly in £2,, whencep®(x) = O (¢ 7" ) uniformly in 2.
Moreover, (A.9) and (A.10) lead, through Green’s representation, to the estimate

g2

~3 <c— %
i
whence
4_TN
o3| <C £

(1+1(x —a)/(Ae) PN =3
This concludes the proof of Lemma A.10

A.2. Integral estimates
Omitting, for sake of simplicity, the indice4, a, u, ¢, we state:

Proposition A.1. N > 4. Assuming thati satisfieq2.3), we have the uniform expansionssagoes to zero

(N —2)%A (N —2)%A 2
Je(W)=A—BAle|H@) + ————¢elNA+ (C+-—"")e+ 0(*),
4 4N
Ve (y = =248y ptel 4 062 )
oA T aA ¢ ‘
with
2 N —2)? N
A:(N—z)/Uffo—2 cz—%/ufgz INUp0>0 (A.11)
RY RY
and
(N=2? [ 2
B="\—% / U2 IyI% (A.12)
aRY

Proof. For sake of simplicity, we assume that- O (the computations are equivalentsas 0). In view of (A.2)
and (2.15), we write

/(|VW|2+,u€2W2)=/(—AW+M82W)W=/ozNUx_thzaN/U% —aN/U%ﬁ@.
2. 2, 2 $2¢ 2
withU =U £ On the other hand

1
T

/W%”:/W% +/W%(W€—1)
2 2 ol

Ay 2N s 2N ~ 2
=[WU-pV2+e [ (U—-@)V2InU — @) + O(eInel)

N-2

2N 2N N+2 o 2N « 2
=/UN—2 - UN—2¢+8/(U—¢)N—2 In(U — ¢) 4+ O(¢“|In¢]).
.Qg Qs ‘QE
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The validity of this expansion can be verified by Lebesgue’s Dominated Convergence Theorem and the fact that
W —-U| < Cs|lne3|"U1 P (see the first inequality in (A.8) and similar arguments in Section 5 of [34]). Note also
that

~2 [y -
InA Uo”+ | Upo INU0+ 0™ 7).
RY RY

/(U—@%Inw—@}

Then, according to the definition (3.28) &f anday = N(N — 2)

-2)3 N — N+
sy = (v -2+ S fude  MEZ2 [yl

AN
2
(N —2)° 2 (N —2)? A 5
+ ¢4 / Ul'y? — e / Ufo” InUso+ 0(") (A.13)
RY RY

noticing (see estimates below), tff@}g U% =0() andee U%é = 0(¢¥"7). We observe that

2N_ /
/U% :/UlN—Oz<y’,yN+—p(iy))+0(82’)
A’

2 Rﬁ
%
U7~ ’
1o (ey") _
szN Z(y )’N)+/ A (y/,yN)<p y >+0(82 ‘L’)
ayN &
RY RY
whence
2N w1
uvz= | Uy —EAeH(a) U |y| dy+ 0(%27). (A.14)
Q¢ RY aRY

On the other hand, in view of the expansiongof , ... in Lemma A.1, we also have

N+2 N3 21 N5 2¢
an [ UN=294 que = Aeay | Ufg g0+ O™ ") = Asan | Uiy o+ O(e™")
2 2 RY

0
= Ae f (—AU1.000 + U1.0A¢0) + O(%77) = Ae / (—ayﬂm,o) +0(*)
N

RY aRY
o N-1 2
y4
z
i AERENE
Therefore
N+2 |y|2 -

UN=2 = 0] . A.15
OZN/ PA.a,u,e H(a) / I+ly |2)N 1 + O(e ) ( )

Q2



O. Rey, J. Wei/ Ann. . H. Poincaré — AN 22 (2005) 459-484 481

Substituting (A.14) and (A.15) into (A.13), we obtain

(N—-2)
4

2 2
N-2
aeinaso( 22

Je(W)=A— B*A¢H (a) + N

A+ c) + 0%

whereA, C are givenin (A.11) and

N-2 2 N-2 ly[2
B* — UN72 2+ / .
7 / o V== | @y
aRY aRY

To make the proof of Proposition A.1 complete, it only remains to showAliat B defined by (A.12). In fact, it
is easily seen that

L) [ V=3 [
UN- — _ d = - —d
f 10 WIT=on Zf(1+r2)N "TonN—p“¥ Zf A+ N1
aRY 0 °

wherewy_» is the area of the unit sphere & —1. The last equality follows from simple integration by parts.
Then, we can rewrit8* as

(N =27 [
B*=B= N_3 Uy’ Iyl
aRY

The expansions for the derivatives.ffare obtained exactly in the same waya
A.3. Proof of Lemma 3.2

We prove (3.6) first. Through scaling, we may assumedkatl. LetG(x, y) be the Green'’s function satisfying
aG(x,y)
on

—AG(x,y) +uGx,y)=48, ing2, =0 o0noasf.

Then we have fox € £2,
u(x) = / G(x,y) f(y)dy.
Q
So it is enough to show that there exists a constgrihdependent of andy, such that
C
G, | < ——.
| (X y)| |x—y|N_2
To this end, we decomposg in two parts:
Gx,y)=K(lx—yl)+H(x,y)
whereK (|x — y|) is the singular part off and H (x, y) is the regular part of;. Certainly we havék (Jx — y|)| <
#. It remains to show that
C
Hx,y)| < —. A.16
[Ho | < o= (A.16)

Note that, ifd(x, 082) > do > 0 ord(y, 982) > dp > 0, then|H (x, y)| < C and hence (A.16) also holds. So we
just need to estimat# (x, y) for d(x, 0§2) andd(y, §2) small. Lety € £2 be such thatl = d(y, 9£2) is small. So
there exists a unique poifite 352 such thawl = |y — y|. Without loss of generality, we may assume- 0 and the
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outer normal ag is pointing towardx y -direction. Lety* be the reflection poing™ = (0, ..., 0,—d) and consider
the following auxiliary function

H*(x,y) = K (|x — y*]).

ThenH* satisfiesAH* — uH* =0 in £2 and ono 2
P 0 1
115, 0) = = = 31) + 0 75 ).

Hence we derive that

1
H(x,y)=—-H"(x,y) + 0<dN_3)

which proves (A.16) for, y € £2. This implies that forx € £2

()| < /| |N2|f(y)|dy (A.17)

If x € 982, we consider a sequence of pointse 2, x; — x € 92 and take the limit in (A.17). Lebesgue’s
Dominated Convergence Theorem applies and (3.6) is proved.
We turn now to the proof of (3.7). By Lemma 3.1, we have

||u||L;S(_QS) < C||f||L;5+2(.Qg)
hence
2
le“ully, 20 < Clully @y < ClF Iy, 0)-

By a usual transformation and extension (as done in Step 2 of Proof of Theorem 2.1 in [30]) and interpolation, one
can show that

”M”WZ t(B(s/ (S)) C”S M”Lt Z(QS) + C”f”LZ+2(Q;) g C”f”L’ﬁJrz(.QE)’ (A18)

wheres is a small fixed constant. Next we take a cut-off functiomy) such thaty (x) = 1 for x| < andx x)=
for |x| > 8, and we consider the function

wt(n) =u(y)(L- x(ey — )

which satisfies
—Axut + peut =26V Vo x + e2ubx + fF(1—x)

in 2 = 2\{|x —a| < 8}. Applying the elliptic regularity theory, we obtain
el y2n ) < C26VyuVex +e%ulbcx + fQL= 0| 0a)

whence, taking account of (A.18)

B+2

Combining (A.18) and (A.19), we obtain (3.7)O



0. Rey, J. Wei/ Ann. |. H. Poincaré — AN 22 (2005) 459-484 483

References

[1] Adimurthi, G. Mancini, The Neumann problem for elliptic equations with critical nonlinearity, “A tribute in honour of G. Prodi”, Scuola
Norm. Sup. Pisa (1991) 9-25.
[2] Adimurthi, G. Mancini, Geometry and topology of the boundary in the critical Neumann problem, J. Reine Angew. Math. 456 (1994)
1-18.
[3] Adimurthi, F. Pacella, S.L. Yadava, Interaction between the geometry of the boundary and positive solutions of a semilinear Neumann
problem with critical nonlinearity, J. Funct. Anal. 113 (1993) 318-350.
[4] A. Bahri, Critical Points at Infinity in Some Variational Problems, Pitman Res. Notes Math. Ser., vol. 182, Longman, 1989.
[5] P. Bates, G. Fusco, Equilibria with many nuclei for the Cahn—Hilliard equation, J. Differential Equations 160 (2000) 283-356.
[6] L. Caffarelli, B. Gidas, J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth,
Comm. Pure Appl. Math. 42 (1989) 271-297.
[7] G. Cerami, J. Wei, Multiplicity of multiple interior peaks solutions for some singularly perturbed Neumann problems, Intern. Math. Res.
Notes 12 (1998) 601-626.
[8] E.N. Dancer, S. Yan, Multipeak solutions for a singularly perturbed Neumann problem, Pacific J. Math. 189 (1999) 241-262.
[9] M. Del Pino, P. Felmer, M. Musso, Two-bubble solutions in the super-critical Bahri-Coron’s problem, Calc. Var. Partial Differential
Equations 16 (2003) 113-145.
[10] M. Grossi, A. Pistoia, On the effect of critical points of distance function in superlinear elliptic problems, Adv. Differential Equations 5
(2000) 1397-1420.
[11] M. Grossi, A. Pistoia, J. Wei, Existence of multipeak solutions for a semilinear elliptic problem via nonsmooth critical point theory, Calc.
Var. Partial Differential Equations 11 (2000) 143-175.
[12] A. Gierer, H. Meinhardt, A theory of biological pattern formation, Kybernetik (Berlin) 12 (1972) 30-39.
[13] C. Gui, Multi-peak solutions for a semilinear Neumann problem, Duke Math. J. 84 (1996) 739-769.
[14] C. Gui, C.S. Lin, Estimates for boundary-bubbling solutions to an elliptic Neumann problem, J. Reine Angew. Math. 546 (2002) 201-235.
[15] C. Gui, J. Wei, Multiple interior peak solutions for some singularly perturbed Neumann problems, J. Differential Equations 158 (1999)
1-27.
[16] C. Gui, J. Wei, On the existence of arbitrary number of bubbles for some semilinear elliptic equations with critical Sobolev exponent, in
press.
[17] C. Gui, J. Wei, On multiple mixed interior and boundary peak solutions for some singularly perturbed Neumann problems, Canad. J.
Math. 52 (2000) 522-538.
[18] C. Gui, J. Wei, M. Winter, Multiple boundary peak solutions for some singularly perturbed Neumann problems, Ann. Inst. H. Poincaré
Anal. Non Linéaire 17 (2000) 47-82.
[19] S. Khenissy, O. Rey, A criterion for existence of solutions to the supercritical Bahri-Coron’s problem, Houston J. Math. 30 (2004) 587—
613.
[20] M. Kowalczyk, Multiple spike layers in the shadow Gierer—Meinhardt system: existence of equilibria and quasi-invariant manifold, Duke
Math. J. 98 (1999) 59-111.
[21] Y. Li, W.-M. Ni, On conformal scalar curvature equationit, Duke Math. J. 57 (1988) 895-924.
[22] Y.Y. Li, On a singularly perturbed equation with Neumann boundary condition, Comm. Partial Differential Equations 23 (1998) 487-545.
[23] C.S. Lin, W.M. Ni, On the Diffusion Coefficient of a Semilinear Neumann Problem, Lecture Notes in Math., vol. 1340, Springer, New
York, 1986.
[24] C.S. Lin, W.N. Ni, I. Takagi, Large amplitude stationary solutions to a chemotaxis system, J. Differential Equations 72 (1988) 1-27.
[25] R. McOwen, The behavior of the Laplacian on weighted Sobolev spaces, Comm. Pure Appl. Math. 32 (1979) 783-795.
[26] S. Maier-Paape, K. Schmitt, Z.Q. Wang, On Neumann problems for semilinear elliptic equations with critical nonlinearity: existence and
symmetry of multi-peaked solutions, Comm. Partial Differential Equations 22 (1997) 1493-1527.
[27] W.-M. Ni, Diffusion, cross-diffusion, and their spike-layer steady states, Notices Amer. Math. Soc. 45 (1998) 9-18.
[28] W.N. Ni, X.B. Pan, |. Takagi, Singular behavior of least-energy solutions of a semi-linear Neumann problem involving critical Sobolev
exponents, Duke Math. J. 67 (1992) 1-20.
[29] W.N. Ni, I. Takagi, On the shape of least-energy solutions to a semi-linear problem Neumann problem, Comm. Pure Appl. Math. 44 (1991)
819-851.
[30] W.M. Ni, I. Takagi, Locating the peaks of least-energy solutions to a semi-linear Neumann problem, Duke Math. J. 70 (1993) 247-281.
[31] O. Rey, The role of the Green'’s function in a nonlinear elliptic problem involving the critical Sobolev exponent, J. Funct. Anal. 89 (1990)
1-52.
[32] O. Rey, An elliptic Neumann problem with critical nonlinearity in three dimensional domains, Comm. Contemp. Math. 1 (1999) 405-449.
[33] O. Rey, The question of interior blow-up points for an elliptic Neumann problem: the critical case, J. Math. Pures Appl. 81 (2002) 655—-696.
[34] O. Rey, J. Wei, Blow-up solutions for an elliptic Neumann problem with sub- or supercritical nonlineanty=13, J. Funct. Anal., in
press.
[35] X.J. Wang, Neumann problem of semilinear elliptic equations involving critical Sobolev exponents, J. Differential Equations 93 (1991)
283-310.



484 O. Rey, J. Wei/ Ann. I. H. Poincaré — AN 22 (2005) 459-484

[36] Z.Q. Wang, The effect of domain geometry on the number of positive solutions of Neumann problems with critical exponents, Differential
Integral Equations 8 (1995) 1533-1554.

[37] Z.Q. Wang, High energy and multi-peaked solutions for a nonlinear Neumann problem with critical exponent, Proc. Roy. Soc. Edinburgh
Sect. A 125 (1995) 1003-1029.

[38] Z.Q. Wang, Construction of multi-peaked solution for a nonlinear Neumann problem with critical exponent, J. Nonlinear Anal. 27 (1996)
1281-1306.

[39] X. Wang, J. Wei, On the equatictiu + K (x), u%iez =0in R", Rend. Circ. Mat. Palermo 2 (1995) 365—400.

[40] J. Wei, On the interior spike layer solutions of singularly perturbed semilinear Neumann problems, Tohoku Math. J. 50 (1998) 159-178.

[41] J. Wei, X. Xu, Uniqueness and a priori estimates for some nonlinear elliptic Neumann equaﬁ&ﬁ;sPhix:ific J. Math., in press.

[42] J. Wei, M. Winter, Stationary solutions for the Cahn—Hilliard equation, Ann. Inst. H. Poincaré, Anal. Non Linéaire 15 (1998) 459-482.

[43] S. Yan, On the number of interior multipeak solutions for singularly perturbed Neumann problems, Topol. Methods Nonlinear Anal. 12
(1998) 61-78.

[44] M. Zhu, Uniqueness results through a priori estimates, I. A three dimensional Neumann problem, J. Differential Equations 154 (1999)
284-317.



